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Abstract 
We present an operating environment, called BindFlow™, and a companion program structure well suited 

for workflow programs which automate portions of real-world business processes.  The flowchart logic of 

most business processes can be authored concisely using traditional programming techniques; however, 

the extended delays, overlapped execution, and hardware constraints in practical workflow scenarios 

severely complicate programs.  We examine workflow programs as a mix of nondeterministic operations 

and deterministic transformations.  Isolating a process’s deterministic transformations from its 

nondeterministic operations allows us to record every input into the process.  Instances can be safely 

unloaded from memory, destroying state, because the record of the inputs is all that is required to rebuild 

the logical state of a process instance on demand. 

We introduce the BindFlow model and explore its ability to express the workflow patterns that have been 

recognized in the research by van der Aalst, Russell, ter Hofstede, et al., documented at 

http://www.workflowpatterns.com.   
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Introduction 
We present an operating environment, called BindFlow™, and a companion program structure well suited 

for workflow programs which automate portions of real-world business processes.  Such programs are 

relatively light-weight computationally and may be considered to be “in-process” for weeks, months, or 

even years. We demonstrate a much improved articulacy of this operating environment over alternatives 

that employ state-persistence. 

As an example of workflow, the business process for a company employee to officially request vacation 

time may instruct that the employee complete a provided form, obtain management-level written 

approval, and deliver the approved request form to the Payroll department.  Finally, the Payroll 

department adjusts the records accordingly and notifies all interested parties.  Some parts of this 

procedure such as the choice of the vacation days, the decision of the manager, and the adjustment of 

the payroll data may not be automatable, while other parts such as the routing of a completed form to a 

manager, the forwarding of the approved request to payroll, and the notification of the interested parties 

upon completion may be fully automatable. 

The flowchart logic of this and most other business processes can be authored concisely using common 

imperative programming style; however, the extended delays, overlapped execution, and hardware 

constraints in practical workflow scenarios severely complicate programs.  As one would with other 

programming assignments, one could construct complex structures in memory to store the state of 

business processes using only the data and control-flow features found in popular programming 

languages.  Unfortunately for that approach, some business processes take weeks or months to enact 

from start to finish.  Furthermore, the worth of automating a business process suggests the expectation 

of multiple simultaneous enactments, or instances1, overlapping at various stages of completion.  Even 

ignoring the gluttonous resource consumption, interruptions of in-memory processes by a hosting 

computer’s reboot would result in an unacceptable loss of state of each instance. 

Instance state is not limited to easily storable data such as digital form entries – it also includes branching 

and multi-iterative functionality, code as data, and related data scoping concerns.  Contemporary 

computer architectures encourage in-memory-only state management, therefore custom persistence 

routines are the burden of the developer.   

The commercial workflow software that we have been able to examine all use what we will label the 

“state-persistence” approach to workflow.  That approach is to record the entirety of the workflow state 

to disk prior to unloading the instance and to logically restore it from the persisted state when needed.  

In our experience, the state-persistence model requires frustrating departures from standard software 

development practices and is under-expressive. 

                                                             
 

1 To improve readability, we have italicized special-use terms and have underlined each near its first 

contextual description.  See also the Terminology section of this document. 
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We first examine workflow programs as a mix of nondeterministic operations and deterministic 

transformations.  We contrast this model against the state-persistence model.  We then illustrate the 

usage of this model through examples written in C# for our implementation of BindFlow Server.  Finally, 

we explore this model’s ability to express the workflow patterns that have been catalogued in the research 

by van der Aalst, Russell, ter Hofstede, et al.[1].   

The Model 
Workflow programs are a mix of nondeterministic operations and deterministic transformations.  To 

explain, we return to our vacation request example for some definitions: The non-automatable human 

decision steps are not dictated from the perspective of the business procedure or the system that is 

partially automating it:  The employee is making the choices of which days to request and of when to 

submit the request to the manager.  The manager may have biases, but the final decision of approval or 

disapproval is not predictable.  The Payroll system is not governed or tracked by this particular policy and 

so the results of the records adjustments are unknown.  An operation is considered nondeterministic from 

the perspective of the system performing it if the results of the operation cannot be predicted from the 

data input for the operation.  Two identical vacation request form submissions might be reviewed with 

different results because of some criteria that the manager uses to make the decision that is outside the 

scope of what the business procedure or the implementing system tracks.  

The automatable steps in this example are deterministic by definition.  That is, their behavior is consistent 

for any particular set of input data and is not influenced by circumstances that are not declared to be part 

of the input data.  An employee submission of a vacation request always gets sent to the management 

team.  A manager’s approval always gets forwarded to Payroll and a rejection always gets returned to the 

employee.  The payroll analyst’s reported actions always get sent to the interested parties.  The interested 

parties are always calculated as the manager, the employee, and an email distribution list of HR analysts.  

An operation is considered deterministic from the perspective of the system performing it if the results of 

the operation over data inputs are always the same.  In the example, the calculations or transformations 

performed to discover an employee’s management team depend only on the identity of the employee 

and the dataset representing the current organizational hierarchy.  Given the same employee and org 

chart, the result of repeated program executions will be consistent.  If the system asks for the 

management team for a different employee, or if the organizational structure changes in an applicable 

way, the answer will be different from the previous example, but it will be consistent for that dataset. 

The results of nondeterministic operations, such as the manager’s decision to approve an employee’s 

vacation, provide the input to deterministic functions which transform that input into a request for a next 

nondeterministic operation.  Isolating a process’s deterministic transformations from its nondeterministic 

operations allows us to record every input to a log in non-volatile storage.  Persisting input is much simpler 

than persisting the resulting state.  Instances can be safely unloaded from memory, destroying state, 

because the record of the inputs is all that is required to rebuild the logical state of a process instance 

when needed.  Each time the instance is loaded in memory and finally unloaded is called a Session. 
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Borrowing a term from pure functional programming, nondeterministic operations are called IO, for 

input/output as they observe or manipulate information external to the system.  Examples of IO are: 

sending an email, reading/writing the contents of a file, getting the current time, generating a random 

number, and asking for a user’s answer to a question.  Note that even though random number generation 

is usually done through deterministic pseudorandom number generating algorithms, these algorithms are 

external to the business process logic and are intended to provide nondeterministic-like behavior and so 

we may consider them to be nondeterministic. 

Readers familiar with functional programming may recognize what we describe as a feature-rich version 

of the Replay monad, a construct in which pure functions bind the results of IO to a supplied pure function 

continuation.  We have in a way adapted this concept for multi-threaded workflows and multi-user 

environments[2]. 

A log and replay approach has been applied in lower-level systems to virtualization, unit-test generation, 

and debugging[3]. 

In BindFlow, deterministic transformations are program code, quite naturally chained into control-flow 

logic called sequences.  While sequences cannot perform IO themselves due to the determinism 

requirement, a sequence may emit requests for IO to be performed.  Note that constructing and emitting 

a message describing a request for IO is not the same as performing the IO.  We call these request 

descriptions favors.  The instance requests something of its host through a favor and the host responds 

with the results of the operation. 

Besides generic IO favors, which request arbitrary real-world interaction, there are built-in system favors.  

Like fork() and other API calls used in traditional multitasking programming, these predefined favors are 

used to manipulate the host or the state of a running instance in ways that the sequences are unable to 

express or directly perform themselves.  These include operations such as assigning an 

external task to a user or external system, subscribing to (or registering interest in) 

occurrences of an external type of event, jumping to another sequence, or forking to 

another sequence or process instance for parallel processing. 

We may consider the instance isolation as a bubble membrane.  Inside the bubble are 

the deterministic transformations and private data structures.  Outside the bubble is 

the real world – the people, the external events, and external hardware and software 

components.  Only the hosting environment can reach into the bubble and provide new 

input.  Only the hosting environment can directly receive favor messages originating 

from inside the bubble.  These favor messages describe either predefined actions OR 

arbitrary functions to be run by the host. 

Sequences take the input from the last favor (or the input data of the sequence) and either terminates or 

transforms that data into a new favor to be requested of the system.  Within a sequence, standard 

computation and control-flow mechanisms are used to implement the transformations.  Figure 1 

illustrates the alternating nature of deterministic transformations and nondeterministic operations. 

Figure 1 
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By definition, a process will have a default state, possibly empty.  An instance of a process is initiated when 

a nondeterministic external event, the request for a new instance along with its custom data payload 

(externally supplied, such as submitted form data), prompts the BindFlow system to allocate the new 

instance and submit the request’s payload to the process’s known entry point, which we call the Start 

sequence.  Start uses the default state and the supplied payload to determine what external action must 

be taken next, which then it communicates back to the BindFlow system by responding to the host’s call 

into its entry point with a favor.  The result of a favor, having been procured by the host, is passed back 

into the remainder of an unfinished sequence as additional input for the next transformation.  This 

concept extends to internally multi-threaded processes as explained in the section explaining the 

implementation of the Parallel Split pattern. 

     
An instance’s initial data is 
written to the log.  The 
input is deterministically 
transformed into a Favor 
and emitted to the host by 
the instance.   

The host engine performs 
the requested operation 
and logs the result before 
supplying it to the next 
deterministic 
transformation. 

The engine unloads the 
instance’s state to 
conserve memory and CPU 
when receiving Favors, 
such as AssignTask, which 
may block an instance for 
extended durations. 

Unloaded instances are 
restored by rapidly 
rerunning the same 
deterministic 
transformations using the 
original data read from the 
log. 

This instance terminates 
once a final deterministic 
transformation returns 
without requesting a 
Favor.  

Figure 2 – Deterministic Transformations and Nondeterministic operations 

By recording each input, BindFlow can track the interaction between nondeterministic operations and 

deterministic transformations.  This guarantees that the logical state of a partially executed instance can 

be rebuilt from the process’s default state.  When needed, BindFlow restores the state of the instance by 

feeding the recorded inputs back to the sequences in the original order, responding to each emitted favor 

with the stored result rather than a newly generated one.  Once the log of results has been depleted, the 

instance will be in the same logical state as it was before being unloaded from memory.   

Failures during IO can be handled by any appropriate corrective action whereas interrupted sequence 

transformations have no effect on the system or data due to their required functional purity and can be 

retried. 

Comparison to State-Persistence 
The commercially available workflow software that we have been able to examine all use what we will 

label the “state-persistence” approach.  That approach is to record the entirety of the workflow state to 

non-volatile storage prior to unloading the instance and to logically restore it from the persisted state 

when needed.  In our experience, the state-persistence model requires frustrating departures from 

standard software development practices and is under-expressive.  We will now summarize the 
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succession of compromises that the state-persistence approach dictates which lead, rather unavoidably, 

to those drawbacks: 

A conceptually naïve implementation of state-persistence performs a core dump before unloading an 

instance and with significant effort, restriction, and storage cost, can resurrect the instance at a later 

time[4].    

More practical state-persistence workflow engines avoid the costs of core dumps by requiring that a 

workflow be segmented into a collection of independent programs (or perhaps a library of equivalently-

independent functions) such that idle-points in the process occur between segments.  And just as a 

flowchart’s steps are granulated to support looping and other conditional redirection, so too is a 

workflow’s logic divided into its segments.  Often, each one of the many segments is very short, existing 

merely to update a persisted variable, evaluate a condition, or perform a basic integration operation.  

Since the segments cannot communicate directly, each segment must load the relevant state, perform its 

small part of the total process, and update the relevant state accordingly.   

Each segment is executed by the workflow engine if the conditional paths leading to it are met.  The 

condition and its inputs, or at least the condition’s outcome, must be accessible to the workflow engine 

and so constraints are imposed on the manner in which a state is persisted to conform to the engine’s 

supported interface.  Native control-flow mechanisms are unusable for the purposes of routing among 

segments since the engine performs the routing based on state-data; difficult-to-follow jump instructions 

are instead encoded into the state for the enactment by the engine.  An otherwise simple program 

definition will become overrun by an inelegant mix of structural and data-based control-flow and 

persistence mechanisms. 

Rather than communicating through in-memory data structures, the state-persistence model requires 

segments to communicate only through the persisted state – even for intermediate data that has no 

external use.  It may seem to work well for simple workflows with a single, global data-scope but it severely 

complicates the state-management mechanisms for the workflow engines which are expected to support 

more complex data scoping patterns such as the Multiple Instance Data pattern discussed in the 

Workflow Patterns section.  More detailed descriptions of workflow engine designs are made available by 

Georgakopoulos[5]. 

In contrast to state-persistence engines, BindFlow does not attempt to persist the state of a workflow, 

opting instead to merely record any new data as it enters the instance along its execution.  The instance 

is free to create and maintain any arbitrary, strongly typed, and granularly scoped data structures in its 

memory-space.  If an interruption occurs, the recorded inputs are replayed into the deterministic code 

and the logical state is restored.  Language-native control-flow mechanisms are sufficient for most routing 

situations and the workflow engine imposes no restrictions on the state data that is accumulated during 

execution. 

Workflow Patterns 
Van der Aalst et al.[1] have studied, named, and sorted more than 120 universal workflow requirements 

into the four pattern categories of Control-flow, Data, Resource, and Exception Handling.  Control-flow is 
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perhaps the most familiar category, dealing with the rules that govern the progression of workflow state.  

Control-flow is the distinguished feature of graphical flow charts commonly represented as the lines and 

diamonds among the rectangular nodes.  In an arbitrary process with multiple participants and some data 

payload routed among them, the control-flow patterns would describe the order or stage in which the 

participants are involved.  It may be that each participant gets the payload in turn, sequentially, or they 

may receive the payload simultaneously, in parallel.  Maybe they all do the same work, or maybe they 

each have different assignments.  Often, multiple patterns are at work within a single process definition.   

Data patterns describe the way data is scoped or shared among various parts of the workflow system, 

including getting data in or out of the instance state.  Maybe all participants share a single copy of the 

data related to an assignment or maybe they each get an isolated copy.  

Resource patterns include the selection of the participants, people or machines, and the access rights of 

the participants to instance status and data.  The work might be assigned to an individual or an entire 

group.  Perhaps the work assigned to a group should be locked to the first person to open the item.  

Perhaps future steps in the workflow should be directly assigned to the individuals who are now familiar 

with the case.  Depending on the pattern, the choice of the assignees may be from a deterministic source 

(hard-coded) or a nondeterministic source (external). 

The Exception Handling category discusses a system’s ability to handle exceptional cases, such as invalid 

input, without having to explicitly code for each possibility.  

The patterns, generally, are a taxonomy for the fundamental design challenges facing workflow 

developers.  The aim of cataloging these patterns is that regardless of the industry, participants, or data, 

every workflow problem can be understood as an assembly of the patterns and that the workflow 

solutions can be realized by a composition of the implementation techniques.  The patterns might 

describe routing for an online retailer’s product fulfillment, a corporate budget approval, or a nuclear 

facility’s safety regulations - but as illustrated by van der Aalst et al.[1], our introductory descriptions have 

unspecified nuance that must be understood before the actual process can be accurately automated.  We 

encourage the reader to review the detailed technical descriptions and the interactive animations of these 

patterns at workflowpatterns.com. 

An Implementation 
BindFlow™ is an implementation of this described model written in C# and .Net 3.5.  To be clear, BindFlow 

is not based on Microsoft’s Workflow Foundations (WF) which is a set of types useful for implementing a 

state-persisting workflow engine.  This paper is based on the 2012 version of the BindFlow software. 
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Figure 3 

 

BindFlow has three main components:  BindFlow Server™, the BindFlow Development Kit™, and the 

BindFlow Client API™.  The BindFlow Server is an installable window service.  It is responsible for providing 

the runtime environment for BindFlow process instances and for maintaining lists of assignments pending 

completion. 

The BindFlow Development Kit is a code library defining the base types for BindFlow processes and custom 

IO and contains pre-built IO for common external systems integration.  Business analysts and developers 

work together to extend these base classes to automate workflow logic as BindFlow processes.  Processes 

are defined as classes extending the ProcessBase base class.  .Net assemblies containing one or more 

process definitions are called Process Sets. 

The BindFlow Client API is a code library to facilitate interaction with the BindFlow Server.  User interface 

applications surfacing the forms or other data use this API to communicate with BindFlow server to 

provide such common application needs as displaying and completing assignments. 

In this document, we focus on the use of the BindFlow Development Kit and its dependence on the 

BindFlow Server.  We will ignore aspects of the BindFlow system that do not pertain to the 

implementation of the workflow patterns, such as safety mechanisms and security. 

0 public class TrivialProcess : ProcessBase 

1 { 

2     public override IEnumerable<IFavor> Start(object data) 

3     { 

4         yield break; 

5     } 

6 } 

Code Listing 1 – The trivial process 

Referring now to Code Listing 1, this TrivialProcess is the simplest valid extension of ProcessBase.  

The process performs no computation and terminates immediately.  The data parameter of the Start 

sequence would be ignored, if any were to be provided.  This BindFlow implementation makes heavy use 

of the iterator concept available in many languages including C# and Java.  All BindFlow sequences are 

enumerable code-blocks which conform to the Sequence(object data):IEnumerable<IFavor> 

signature, or its overloads.  C# requires that each iterator block have at least one yield statement, either 

yield break, which terminates the iteration of the sequence, or yield return favor, where favor 
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is an object of a type that implements IFavor.  Each yield return statement will be simply referred 

to as a yield or an emission. 

By taking advantage of the syntactic sugaring provided by the C# compiler for iterator blocks, BindFlow 

can simulate interruption of function calls while in fact, each section of an enumerator is rearranged by 

the compiler as a stateful object conforming to the iterator interface.  The reader is invited to learn more 

about this powerful language feature, as it is implemented in C#, on Microsoft’s MSDN documentation[6] 

or elsewhere. 

BindFlow is a cooperative multi-tasking system and as such, it is the responsibility of the process to return 

control to the host (BindFlow Server) either by terminating itself or by emitting a favor.  Termination can 

be explicit with yield break or can be implicit by reaching the end of the code branch.  As sequences 

must remain deterministic, sequence code is not allowed to directly interact with anything outside of the 

scope of the related instance except by passing favor messages back to the calling host.  This restriction 

includes any sort of delay, which would require interaction with the system’s timer and callback routines.  

Rather, a correctly built sequence performs any arbitrary deterministic transformation on the latest input 

as quickly as possible and does not perform any synchronization operations.  When nondeterministic 

operations such as I/O or delays are required, the intention is emitted to the host in the form of a favor. 

Jump An unconditional jump.  Moves the current sequence iteration to the beginning of 
a sequence.  The jumping sequence is not resumed at the completion of the Jump-
targeted sequence. 

Call Suspends the current sequence iteration and executes a new sequence.  Once 
finished, the calling iteration continues. 

Sequence A convenience.  Wraps a single favor or an array of favors in a new sequence, to 
be emitted serially if iterated (with Call, Jump, or AsyncCall). 

AssignTask Blocks a sequence, pending a task result 
Subscribe Registers an interest in external events with the host.  Asks the host to execute a 

particular sequence upon each occurrence of such event. 
Unsubscribe  Revokes a subscription.  Asks the host to no longer notify for the particular 

subscription. 
AsyncCall  For multi-threading/parallel execution of sequences.  The host will execute a new 

iteration of the given sequence until the target sequence iteration blocks and then 
will immediately resume execution of the calling sequence.  Target sequences, the 
calling sequence, and all other unrelated sequences can be further executed in an 
order not specified at design-time. 

Wait Waits on a single sequence or sub-instance to complete. 
Cancel  Cancels a sub-instance or an entire branch of execution of a root sequence.  That 

is, the canceled sequence and all of its active sub-branches and instances are also 
canceled. 

Spawn Creates and executes a sub-instance, an instance of a named process. 
AbandonSession Abandons the current session without committing its progress.  A convenience for 

special applications.  Any sub-instances are not abandoned. 
ForceTerminate Terminates a process instance immediately.  Sub-instances are also terminated. 
Return Immediately ends a sequence and returns some value (as a replacement for 

yield break which syntactically cannot return a value to the calling sequence) 
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Table 1 – System Favors 

Favors come in two varieties, system requests and IO.  There are 13 primitive system favors that perform 

interaction with the host’s managed data and/or perform instance state manipulations that must be 

honored or tracked by the host.  They are as listed in Table 1.  

Delay Blocks the current sequence for no less than a minimum duration 

AsyncDelay Executes a sequence after a minimum duration has elapsed 

WaitAll Waits on the completion of all of the listed sequences and/or sub-instances. 

WaitOnPrimary Terminates (prematurely abandons) the secondary sequence iteration upon the 
completion of the primary sequence iteration 

Table 2 – Composite System Favors 

In addition, there are several built-in favors that are included for convenience, but which are merely 

common, user-definable composites of the 13 primitive system favors.  They are as listed in Table 2.  

System favors are created within processes by calling the ProcessBase-defined protected methods 

named in Table 1 and Table 2.  These methods each return an IFavor which must be emitted to the host.  

That is, the protected methods such as AssignTask which does not perform the assignment of the task 

directly create the favor (message object) that should be used to communicate the request for the related 

operation back to the host.  System request favors are sealed and cannot be extended.  

0 public class IOMyOperation : IOBase 

1 { 

2     protected override object Perform() 

3     { 

4         return null; 

5     } 

6 } 

Code Listing 2 – The trivial IO 

The second type of favor, IO, is based on the IOBase abstract base class.  The trivial IO is illustrated in 

Code Listing 2.  This IO takes no input, does no computation and returns null.  Similar to the deterministic 

restrictions of sequences, correctly written IO should do whatever single-threaded computation is 

necessary and return immediately without explicit delay.  IO is only for synchronous, immediate system 

integration.  Any desired delays should be implemented by creating Delay favors and emitting them from 

within an executing sequence.  Contrary to system favors, which are created by the factory methods, IO 

favor messages may be instantiated directly using the new keyword; however for consistency, we 

recommend providing static factory methods within IO definitions to mimic the calling convention of the 

system favors.  We do not follow this advice here. 

00 public class MyProcess : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var getNameById = new IOGetNameByID(4); 

05          

06         yield return getNameById; 
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07          

08         // use getNameById.Name … 

09     } 

10 } 

11   

12 class IOGetNameByID : IOBase 

13 { 

14     int id; 

15   

16     public string Name { get { return RawResult as string; } } 

17   

18     public IOGetNameByID(int id) 

19     { 

20         this.id = id; 

21     } 

22   

23     protected override object Perform() 

24     { 

25         return SQL.GetNameByID(id); 

26     } 

27 } 

Code Listing 3 – Implementation and use of a less trivial custom IO. 

Code Listing 3 demonstrates a completed IO.  The constructor sets the parameters to be used by Perform 

when called by the engine.  Perform returns a serializable string object.  The engine records the value 

and populates IOBase.RawResult, which is exposed by the custom Name property of the getNameById 

favor on Line 06. 

00 public class Example : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var firstTask = AssignTask( 

05                         "Do you like peanut butter?", 

06                         "", 

07                         this.Initiator, 

08                         null); 

09   

10         yield return firstTask; 

11   

12         if ((bool)firstTask.Result) 

13         { 

14             var secondTask = AssignTask( 

15                             "I have some.  Do you want a sandwich?", 

16                             "", 

17                             this.Initiator, 

18                             null); 

19   

20             yield return secondTask; 

21         } 

22     } 

23 } 

Code Listing 4 – Example Process 
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Code Listing 4 is an example of a simple workflow.  In it, the data parameter is ignored – there is no initial 

payload required to start an instance of this process.   

Starting on line 04, firstTask is assigned as a favor returned from the AssignTask factory method.  

Line 05 is the readable summary of this task which would be presented to the assignee as one assignment 

in a list of all assignments due by the assignee, called a task-list.  Line 06 would represent to URI of the 

resource that the assignee should use to complete the request, such as the URL of a web application.  In 

this scenario, we are ignoring these practical concerns.  Line 07 is the assignee, in this case, the initiator 

of the instance.  Line 08 is the data associated with this request – in this case null since we have enough 

information for this example being the assignment’s summary, “Do you like peanut butter?” 

On line 10, we emit the firstTask favor.  This has the effect of blocking the sequence (and since there 

are no other active sequence iterations, the entire instance) until the assignee completes the task.  The 

task will appear in the task-list and the assignee responds through an end-user-application-validated 

choice of either true or false. 

By line 12, the result of the firstTask favor is available and is cast as the expected bool type for 

evaluation.  If the assignee responds with a value of true then a second assignment similar to the first is 

constructed and emitted, otherwise the sequence and, ultimately, the instance is terminated. 

Though it is not important to understand to be productive in this model, you may note that at each favor 

emission, the host may decide to completely release the state of the instance from memory.  If the host 

implementation should so choose to unload the instance from memory during line 20, for example, the 

host will resume the instance by recreating the instance state from scratch, starting with the default 

(empty) state and executing Start with the same input originally provided (probably null, in this 

example), running the Start sequence until line 10, receiving the firstTask favor, dequeueing the 

original result of that first assignment (which we must here assume to be true, since we reached line 20 

at all), and immediately resuming at line 12.  The sequence immediately continues creating secondTask 

just as it did in the first session.  After the emission on line 20, the original state has been restored.  At this 

point, if we assume that the completion of the assignment by the assignee was what prompted the host 

to restore the state of the instance, we are now ready to immediately inject the result of secondTask 

back into the remainder of the sequence.  The remainder (or continuation) happens to be empty in this 

short example and the secondTask’s result is not used, but very well could be as was the firstTask’s 

result. 

Terminology 
Note that a BindFlow instance is the runtime version of a BindFlow process.  A process is the definition of 

all possible paths that an instance might take and contains no state (though it may describe a default 

state).  Instances are the runtime embodiment of a specific path through a process.  In some discussions, 

the terms are roughly interchangeable.  Many independent instances may follow the rules of a single 

process, each with their own state and isolated from each other. 

Note that a BindFlow branch is a runtime version of a BindFlow sequence.  As a process is to an instance, 

a sequence is to a branch.  A sequence is the definition of all possible paths that a branch might take and 
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contains no state.  Branches are iterations over their sequence, the runtime embodiment of a specific path 

through a sequence.  In some discussions, these terms are also roughly interchangeable.  Many 

independent branches in a single instance may follow the rules of a single sequence, each with their own 

state and isolated from each other.  Data may be shared in a variety of ways depending on scoping – for 

example, data fields scoped at the instance level may be shared by all branches. 

Note that while methods such as AssignTask() and AsyncCall() are not exactly favors, but are 

instead factory methods that return favors of type IAssignTask and IAsyncCall respectively, it is 

productive to loosely refer to the use of such methods as favors in discussion for the sake of overall clarity 

- i.e. “The AssignTask favor”. 

Note that BindFlow terminology and the terminology chosen by van der Aalst et al.[1] sometimes collide.  

Care has been taken to translate the underlying concepts put forth by van der Aalst et al. into BindFlow’s 

model.  One example of a terminology difference is “Task”.  Van der Aalst et al. consider a “task” as a 

discrete step, a logical section of a workflow.  In BindFlow, a “task” is an assignment to be completed by 

a user or external system.  While both concepts are present in both models, the mapping of named 

concept to named concept is indistinct.  Other terms to read carefully are “instance” (of a task), and 

“branch”.  

BindFlow Stack & Threading Model 

In BindFlow, the standard CIL call stack is supported (as used in any C# program) for normal method calls.  

Then there are the BindFlow stack and wait-list managed by the engine for multithreading support.  It 

may be useful to understand how the stack and wait-list operate and how they are honored by various 

system favors.  We refer to BindFlow engine’s threads unless otherwise noted. 

BindFlow’s threading model is cooperative.  While an instance may have many threads in play, only one 

is actively processed at any one time.  Thread execution always continues uninterrupted until it emits a 

favor.  Non-blocking favors that do not affect the instance’s callstack are continued again after the favor 

is satisfied.  Newly initiated branches (Call, AsyncCall) or newly spawned instances (Spawn) are placed 

on the top of the stack, pausing the execution of the initiating branch.  AsyncCall runs a newly initiated 

branch until it first blocks (or terminates), then returns the control to the calling branch.  Spawn behaves 

the similarly for spawned instances – instances are run from their Start  sequence until the instance 

terminates or all of the branches are blocked, then the spawning instance is resumed at the spawning 

branch.  Call runs a called sequence until branch termination and moves the calling branch from the 

stack to the wait-list.  Wait similarly moves the emitting branch from the stack to the wait-list.  Normal 

branch termination or Cancel, which terminates a branch, removes it from the wait-list, and pushes any 

waiting branches back on the stack. 

Wait-list items are returned to the stack LIFO so that the most recently waited item will be at the top of 

the stack and resumed first.   

AssignTask may be considered a Call to an external person or system – where the emitting branch is 

blocked until the assigned task is completed.  AssignTask moves the calling branch to the wait-list.  
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While an AssignTask cannot be canceled directly, its containing branch may be canceled which has the 

effect of revoking the task. 

Jump terminates the current branch and replaces it with a branch of the target sequence. 

Return provides a way to terminate the emitting branch and populate the Result property of the 

AsyncCall favor that initiated it.  The ProcessBase.Result property may be set to provide a value to 

the Spawn favor that spawned it.  Setting ProcessBase.Result does not immediately terminate the 

instance as Return does for a branch. 

IO favors may not block, and so do not affect the stack or wait-lists. 

Instances in the same spawn tree – that is, instances sharing a common ancestral instance – may not be 

executed simultaneously since one might intend to terminate the other. 

The BindFlow Framework 
There are two halves of the BindFlow APIs, as depicted in Figure 3: the BindFlow Client API and the 

BindFlow Development Kit.  The Client API is used to communicate and configure the BindFlow Server, 

start new instances, retrieve work items, complete tasks, and notify on subscriptions.  The BindFlow 

Development Kit contains the base classes for custom processes to be executed in BindFlow Server. 

An instance should be considered to be within a protective bubble membrane isolated from the outside 

world.  Outside of the bubble, the universe, anything can happen.  Inside the bubble, anything can be 

calculated about the outside universe, but to support the replay, input must be strictly controlled through 

the portals in the bubble managed by the BindFlow Server.  These portals are the instance creation, and 

completing of IO, including tasks and subscriptions. 
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ProcessBase: 
Public Members - 
  Start(object data) : Sequence 
  Summarize() : string (must implement) 
 
Protected Members - 
  Initiated : DateTimeOffset 
  Initiator : Account 
  InstanceId : long 
  Milestones : IMilestoneCollection 
  Result : object 
  SessionResult : object 
 
  AssignTask(priority : TaskPriority, summary : string, assignment : string,  
             assignee : Account, data : object) : IAssignTask (overloaded) 
  AsyncCall(target : Sequence) : IAsyncCall (overloaded)  
  Call(target : Sequence) : ICall (overloaded) 
  Cancel(waitable : IWaitable) : ICancel 
  Jump(target : Sequence) : IJump (overloaded) 
  Return(result : object) : IReturn 
  Sequence(favors : IFavor, …) : Sequence 
  Spawn(processName : string, data : object, largeData : object) : ISpawn (overloaded) 
  Subscribe(tag : string, data : object, callback : Sequence<object>) : ISubscribe 
  Unsubscribe(subscription : ISubscribe) : IUnsubscribe 
  Wait(waitable : IWaitable, …) : IWait 
  AbandonSession() : IAbandonSession  
  ForceTerminate() : IForceTerminate 
 
IOBase: 
Public Members - 
  IsUsed : bool 
  Succeeded : bool 
  TreatErrorsAsData : bool 
  UnhandledException : Exception 
 
Protected Members - 
  CurrentInstanceInfo : InstanceInfo 
  RawResult : object 
 
  Perform() : object (must implement) 
 
  GetInstanceLargeData(preserve : bool) : object 
  ClearInstanceLargeData() : void 
  GetCurrentNotificationLargeData(preserve : bool) : object 
  ClearCurrentNotificationLargeData() : void 
  GetNotificationLargeData(subscriptionId : long, occurrenceId : long,  
                           preserve : bool) : object 
  ClearNotificationLargeData(subscriptionId : long, occurrenceId : long) : void 
  GetTaskLargeData(taskId : long, preserve : bool) : object 
  ClearTaskLargeData(taskId : long) : void 
  GetConfigValue_(key : string) : string 
  GetInstanceInfo(instanceId : long) : InstanceInfo 
 
  CompleteTask(taskHandle : string, data : byte[],  
               largeData : byte[]) : InternalSessionResponse 
  NotifySubscriber(subscriptionHandle : string, data : byte[],  
                   largeData : byte[]) : InternalSessionResponse 
 

Figure 4 BDK abbreviated framework types 
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The BindFlow Development Kit’s two major classes are BindFlow.BDK.ProcessBase and 

BindFlow.BDK.IOBase.  Abbreviated members are listed in Figure 4.  Subclasses of ProcessBase 

describe all deterministic transformations.  Subclasses of IOBase describe custom nondeterministic 

operations, or integration with the real world.  The Development Kit also contains a Visual Studio-

integrated BindFlow implementation, called the “Workbench”, that facilitates testing and break-point 

debugging. 

ServerProxy: 
  NewInstance(processName : string, startData : object,  
              largeData : object, wait : bool) : SessionResponse 
 
  GetTask(taskHandle : string) : GetTaskResult 
  SaveTaskData(taskHandle : string, data : object, largeData : object) : void 
  CompleteTask(taskHandle : string, data : object, largeData : object, wait : bool,  
               faultBehavior : OnFaultBehavior) : SessionResponse 
 
  GetSubscription(subscriptionHandle : string) : GetSubscriptionResult 
  NotifySubscriber(subscriptionHandle : string, data : object, largeData : object,  
                   wait : bool, faultBehavior : OnFaultBehavior) : SessionResponse 
 

Figure 5 Client API ServerProxy abbreviated listing 

The BindFlow Client API has one main class, BindFlow.Client.ServerProxy.  Its abbreviated member 

list is in Figure 5. 

These code samples illustrate the patterns minimally, but none of the implementations cheat such that 

an implementation could not be extended to practical scenarios.  We do not use the full features of the 

favors when not required.  An overload of the AssignTask favor factory method is listed in Figure 4 

where priority is a low, normal, high enumeration; summary is a friendly short string describing the 

task; assignment is a URL to a web application or some other redirect where the task can be completed; 

assignee is an Account (A reference to a user); data is any serializable data or null, such as form data, 

to be available for completing the task; and visibleInTaskList is a Boolean value indicating a task’s 

visibility in the built-in BindFlow Viewer.  We test our implementations in the Workbench to avoid having 

to write a custom User Interface for each example, and so options such as assignment are omitted.  For 

these examples, we often populate the data parameter with the default value of the expected result type.  

There is no requirement that this data value and the IAssignTask.Result are related in any way, 

however, providing such a template value facilitates testing within the Workbench. 

An Optimization for Large Data Input 
Another valuable feature not demonstrated in the examples, but one which is relevant to practical 

applications built on BindFlow is “Large Data”.  Very large data sets, such as document attachments, to be 

submitted as part of an instance’s initial payload, a task’s completion data, or a subscription notification 

are often immediately moved to some document repository as a process step.  In these cases, loading this 

very large dataset for all subsequent sessions, just to satisfy the replay requirements is inefficient.  Other 

workflow products face a similar obstacle in keeping state small and may work around it by advising the 
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application developer to upload the document to the target repository and only submit a reference to the 

document for processing.  This puts unnecessary burden on the developer to host such a repository and 

have two methods for interacting with the repository (one prior to submission and one in the workflow), 

even if the need for the data is only short-term.  To solve this problem in BindFlow, we have a mechanism 

called “Large Data” which can be used to pass any serializable data to a new instance, task completion, or 

subscription notification but which is only directly accessible from IO.  When submitting a large document 

as an attachment for processing, the application developer can include it as Large Data.  Any custom IO 

can access it, process it, and preferably discard it from the Large Data store.  In some cases, the document 

is merely to be moved to some document repository and, optionally, the original submission can be 

cleared from the built-in temporary store.  In other cases, only a subset of the document’s data is 

necessary for process decision points and an IO can be used to arbitrarily summarize the contents of the 

Large Data down to those key decision factors.  The entire Large Data dataset can be explicitly returned 

to the Instance’s internal state from an IO in cases if deferred conditional access to the full Large Data is 

required. 

Pattern Support 
Van der Aalst et al.[1] categorize their identified workflow patterns into four major groups: Control-Flow, 

Data, Resource, and Exception Handling.  All quoted definitions are referenced for convenience from van 

der Aalst et al. though referenced pattern-variation definitions are not quoted here. Redundant lines of 

the code listings including namespace references are omitted after Code Listing 5 to save space. 

Note that the example implementations do not necessarily represent best practices for code, but are 

crafted as short illustrations of the essence of the solution for each pattern to avoid the need to cover too 

many topics in a single pattern discussion. 

Note also that pattern implementation complexity will vary by model.  The order of presentation of the 

patterns here is copied from van der Aalst et al. for consistency rather than attempting to reorder them 

by complexity relative to the BindFlow model. 

Not every technique or mechanism is discussed for every pattern, but we attempt to cover all techniques 

as necessary. 

Control-Flow 
Control-flow patterns deal with the mechanics of decision points in a workflow.  Van der Aalst et al.[1] 

organize control-flow patterns into groups of conceptually similar patterns.  All 43 of these patterns are 

supported in BindFlow. 

Basic 

Sequence 

A task in a process in enabled after the completion of a preceding task in the same process. 

00 using System; 
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01 using System.Collections.Generic; 

02 using BindFlow.BDK; 

03 using System.Collections; 

04 using System.Linq; 

05   

06 namespace WorkflowPatterns.ControlFlow 

07 { 

08     public class Sequence : ProcessBase 

09     { 

10         public override IEnumerable<IFavor> Start(object data) 

11         { 

12             var task = AssignTask("Advance", Initiator); 

13             // First Task 

14             yield return task; 

15   

16             // Second Task 

17             yield return AssignTask("Advance Again", Initiator); 

18         } 

19     } 

20 } 

Code Listing 5 – Sequence Implementation Example 

The Sequence pattern is implemented as an unconditional iteration over an ordered listing of instructions.  

These instructions can be either purely instance-state manipulations or can be deterministic operations 

interleaved with IO.  In Code Listing 5, the Start sequence consists of two serial tasks.  The first task is 

assigned and the instance blocks until the task is completed by a user.  Then the second task is assigned 

and the instance blocks until the task is completed by a user.  Then the process implicitly terminates.  This 

process makes no considerations for the data passed in to Start nor data submitted when completing 

either task. 

Parallel Split 

The divergence of a branch into two or more parallel branches each of which execute 
concurrently. 

00 public class ParallelSplit : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         // Split 

05         yield return AsyncCall(Other); 

06   

07         // First Task 

08         yield return AssignTask("Advance Main branch", Initiator); 

09     } 

10   

11     IEnumerable<IFavor> Other() 

12     { 

13         // Second Task 

14         yield return AssignTask("Advance Other branch", Initiator); 

15     } 

16 } 

Code Listing 6 – Parallel Split Implementation Example 
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The Parallel Split pattern is implemented using the AsyncCall favor to initiate a new sequence. In Code 

Listing 6, Line 05 emits an AsyncCall requesting the execution of a new branch of the Other sequence.  

The BindFlow engine pushes a new Other branch onto the stack which immediately blocks with the 

“Advance Other Branch” task.  The branch is moved to the wait-list and control is returned to Start, line 

08, which assigns a second task.  The session concludes as all of its branches are blocked and the server 

adds both tasks to the instance initiator’s work list.  Either task can be completed first and the other 

second.  In this example, the completion of either task leads to an immediate implicit termination of the 

respective branch.  Once both branches have completed, there is no work left to do and the instance is 

complete. 

A note about multithreading: A process can define one or more sequences.  These sequences are sections 

of code (implemented as iterator blocks which yield favors between deterministic steps.  Parallelism 

means not that two steps are being actively executed simultaneously, but that the execution of the steps 

is only partially ordered.  In Process X of Figure 6, step A1 precedes A2 which precedes A3; B1 precedes 

B2 which precedes B3; and C1 precedes C2 which precedes C3.  The ordering between steps in each 

lettered sequence is not defined.  Note that though the total order is not defined, only one of the many 

permutations occurs during each execution.  As an instance progresses through its process, this order is 

recorded for consistent state restoration.  This preservation of the total order in an instance is handled 

transparently to support the illusion of programming as though for a single session. 

 

Figure 6 - Two legitimate runtime ordering of steps in a Process with Sequences executed in parallel 

 

Synchronization 

The convergence of two or more branches into a single subsequent branch such that the 
thread of control is passed to the subsequent branch when all input branches have been 
enabled. 

00 public class Synchronization : ProcessBase 
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01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var other =  AsyncCall(Other); 

05          

06         // Split 

07         yield return other; 

08   

09         // First Task 

10         yield return AssignTask("Advance Main branch", Initiator); 

11   

12         // Wait for other branch 

13         yield return Wait(other); 

14   

15         // Final Task 

16         yield return AssignTask("Finish", Initiator); 

17     } 

18   

19     IEnumerable<IFavor> Other() 

20     { 

21         // Second Task 

22         yield return AssignTask("Advance Other branch", Initiator); 

23     } 

24 } 

Code Listing 7 – Synchronization Implementation Example 

The Synchronization pattern can be implemented by using the Wait favor.  In Code Listing 7, the Parallel 

Split example is extended.  A reference to the AsyncCall favor for the Other sequence is retained on 

Line 04 in order that it may be used on Line 13.  By Line 13, both tasks have been assigned.  If the labeled 

“Second Task” and, therefore, the Other branch is completed before the labeled “First Task”, 

then Line 13 does not block.  If “First Task” is completed first, then Line 13’s Wait causes the Start 

branch to be moved to the wait-list pending the completion of the Other branch.  Once the Other branch 

completes as a consequence of the “Second Task” being completed, or if Other was completed first, 

Start continues at Line 16 with the assignment of a “Final Task”.  Critically, this “Final Task” will 

not be assigned until both of the branches have synchronized following the completion of both tasks. 

Exclusive Choice 

The divergence of a branch into two or more branches such that when the incoming 
branch is enabled, the thread of control is immediately passed to precisely one of the 
outgoing branches based on a mechanism that can select one of the outgoing branches. 

00 public class ExclusiveChoice : ProcessBase 

01 { 

02     // Expects a boolean value as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         if ((bool)data) 

06         { 

07             // True branch 

08             yield return AssignTask("Advance 'true' branch", Initiator); 

09         } 

10         else 
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11         { 

12             // False branch 

13             yield return AssignTask("Advance 'false' branch", Initiator); 

14         } 

15     } 

16 } 

Code Listing 8 – Exclusive Choice Implementation Example 

An Exclusive Choice pattern can be implemented using a traditional if-statement control-flow 

mechanism.  In Code Listing 8, the payload provided to the initial sequence is cast as a bool to determine 

which if-else block should be followed.  As expected, only one of the two if-else blocks will be 

executed. 

Simple Merge 

The convergence of two or more branches into a single subsequent branch such that each 
enablement of an incoming branch results in the thread of control being passed to the 
subsequent branch. 

00 public class SimpleMerge : ProcessBase 

01 { 

02     // Expects a boolean value as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         if ((bool)data) 

06         { 

07             // True branch 

08             yield return AssignTask("Advance 'true' branch", Initiator); 

09         } 

10         else 

11         { 

12             // False branch 

13             yield return AssignTask("Advance 'false' branch", Initiator); 

14         } 

15   

16         // Common continuation 

17         yield return AssignTask("Finish", Initiator); 

18     } 

19 } 

Code Listing 9 – Simple Merge Implementation Example 

A Simple Merge pattern can be implemented as a non-conditional code listing following a conditional 

code listing.  Code Listing 9 expands upon Code Listing 8 with such a continuation. 

Advanced Branching and Synchronization 

Multi-Choice 

The divergence of a branch into two or more branches such that when the incoming 
branch is enabled, the thread of control is immediately passed to one or more of the 
outgoing branches based on a mechanism that selects one or more outgoing branches. 

00 public class MultiChoice : ProcessBase 
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01 { 

02     // Expects a string as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         var one = AsyncCall(One); 

06         var two = AsyncCall(Two); 

07   

08         switch ((string)data) 

09         { 

10             case "Just One": 

11                 yield return one; 

12                 break; 

13             case "Just Two": 

14                 yield return two; 

15                 break; 

16             default: 

17                 yield return one; 

18                 yield return two; 

19                 break; 

20         } 

21     } 

22   

23     IEnumerable<IFavor> One() 

24     { 

25         yield return AssignTask("Advance One", Initiator); 

26     } 

27   

28     IEnumerable<IFavor> Two() 

29     { 

30         yield return AssignTask("Advance Two", Initiator); 

31     } 

32 } 

Code Listing 10 – Multi-Choice Implementation Example 

The Multi-Choice pattern is easily achieved with C# control-flow mechanisms.  In Code Listing 10, a switch 

statement is used to the instance’s input data to determine whether One, Two, or both One and Two 

should be executed.  For effect, both favors are created (a benign calculation) even though within some 

instances, only one will be emitted. 

Structured Synchronizing Merge 

The convergence of two or more branches (which diverged earlier in the process at a 
uniquely identifiable point) into a single subsequent branch such that the thread of control 
is passed to the subsequent branch when each active incoming branch has been enabled. 
The Structured Synchronizing Merge occurs in a structured context, i.e. there must be a 
single Multi-Choice construct earlier in the process model with which the Structured 
Synchronizing Merge is associated and it must merge all of the branches emanating from 
the Multi-Choice. These branches must either flow from the Structured Synchronizing 
Merge without any splits or joins or they must be structured in form (i.e. balanced splits 
and joins). 

00 public class StructuredSynchronizingMerge : ProcessBase 

01 { 
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02     // Expects a string as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         var one = AsyncCall(One); 

06         var two = AsyncCall(Two); 

07   

08         // Split 

09         switch ((string)data) 

10         { 

11             case "Just One": 

12                 yield return one; 

13                 break; 

14             case "Just Two": 

15                 yield return two; 

16                 break; 

17             default: 

18                 yield return one; 

19                 yield return two; 

20                 break; 

21         } 

22   

23         // Merge 

24         if (one.IsUsed) yield return Wait(one); 

25         if (two.IsUsed) yield return Wait(two); 

26     } 

27   

28     IEnumerable<IFavor> One() 

29     { 

30         yield return AssignTask("Advance One", Initiator); 

31     } 

32   

33     IEnumerable<IFavor> Two() 

34     { 

35         yield return AssignTask("Advance Two", Initiator); 

36     } 

37 } 

Code Listing 11 – Structured Synchronizing Merge Implementation Example 

The Structured Synchronizing Merge pattern can be implemented by waiting on the various created 

branches.  Code Listing 11 extends Code Listing 10.  A runtime error would occur if a Wait were emitted for an 

AsyncCall that had not already been emitted, hence the IsUsed check.  

Multi-Merge 

The convergence of two or more branches into a single subsequent branch such that each 
enablement of an incoming branch results in the thread of control being passed to the 
subsequent branch. 

00 public class MultiMerge : ProcessBase 

01 { 

02     // Expects a string as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         var one = AsyncCall(One); 

06         var two = AsyncCall(Two); 
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07   

08         switch ((string)data) 

09         { 

10             case "Just One": 

11                 yield return one; 

12                 break; 

13             case "Just Two": 

14                 yield return two; 

15                 break; 

16             default: 

17                 yield return one; 

18                 yield return two; 

19                 break; 

20         } 

21     } 

22   

23     IEnumerable<IFavor> One() 

24     { 

25         yield return AssignTask("Advance One", Initiator); 

26   

27         yield return Jump(Final); 

28     } 

29   

30     IEnumerable<IFavor> Two() 

31     { 

32         yield return AssignTask("Advance Two", Initiator); 

33   

34         yield return Jump(Final); 

35     } 

36   

37     IEnumerable<IFavor> Final() 

38     { 

39         yield return AssignTask("Finish", Initiator); 

40     } 

41 } 

Code Listing 12 – Multi-Merge Implementation Example 

The Multi-Merge pattern can be implemented with Jump.  Code Listing 12 extends Code Listing 10 such that 

upon the completion of each of One and Two, execution is transferred to two independent branches of 

the shared Final sequence. 

Structured Discriminator 

The convergence of two or more branches into a single subsequent branch following a 
corresponding divergence earlier in the process model such that the thread of control is 
passed to the subsequent branch when the first incoming branch has been enabled. 
Subsequent enablements of incoming branches do not result in the thread of control being 
passed on. The Structured Discriminator construct resets when all incoming branches have 
been enabled. The Structured Discriminator occurs in a structured context, i.e. there must 
be a single Parallel Split construct earlier in the process model with which the Structured 
Discriminator is associated and it must merge all of the branches emanating from the 
Structured Discriminator. These branches must either flow from the Parallel Split to the 
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Structured Discriminator without any splits or joins or they must be structured in form (i.e. 
balanced splits and joins). 

00 public class StructuredDiscriminator : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var one = AsyncCall(One); 

05         var two = AsyncCall(Two); 

06   

07         // Split 

08         switch ((string)data) 

09         { 

10             case "Just One": 

11                 yield return one; 

12                 break; 

13             case "Just Two": 

14                 yield return two; 

15                 break; 

16             default: 

17                 yield return one; 

18                 yield return two; 

19                 break; 

20         } 

21   

22         yield return Wait(one, two); 

23     } 

24   

25     IEnumerable<IFavor> One() 

26     { 

27         yield return AssignTask("Advance One", Initiator); 

28     } 

29   

30     IEnumerable<IFavor> Two() 

31     { 

32         yield return AssignTask("Advance Two", Initiator); 

33     } 

34 } 

Code Listing 13 – Structured Discriminator Implementation Example 

The Structured Discriminator pattern can be implemented using the Wait favor with multiple wait-

targets.  In Code Listing 13, Line 22 emits such a favor.  Once either of the supplemental branches completes, 

Start is resumed (to terminate).  The remaining branch is left to continue on its own as the sole remaining 

branch for the instance.  Having passed multiple wait-targets to Wait asks the engine to unblock once 

ANY of the targets has been completed or canceled. 

Blocking Discriminator 

The convergence of two or more branches into a single subsequent branch following one 
or more corresponding divergences earlier in the process model. The thread of control is 
passed to the subsequent branch when the first active incoming branch has been enabled. 
The Blocking Discriminator construct resets when all active incoming branches have been 
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enabled once for the same process instance. Subsequent enablements of incoming 
branches are blocked until the Blocking Discriminator has reset. 

00 public class BlockingDiscriminator : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         yield return Subscribe("QUEUE", "", Enqueue); 

05     } 

06   

07     IAsyncCall previousEnablement = null; 

08   

09     IEnumerable<IFavor> Enqueue(object newEntry) 

10     { 

11         var currentEnablement = AsyncCall(ProcessEntry,  

12             (string)newEntry, previousEnablement); 

13   

14         previousEnablement = currentEnablement; 

15   

16         yield return currentEnablement; 

17     } 

18   

19     IEnumerable<IFavor> ProcessEntry(string newEntry,  

20         IAsyncCall myPreviousEnablement) 

21     { 

22         if (myPreviousEnablement != null) 

23             yield return Wait(myPreviousEnablement); 

24   

25         var splitOne = AsyncCall(SplitOne, newEntry); 

26         var splitTwo = AsyncCall(SplitTwo, newEntry); 

27   

28         yield return splitOne; 

29         yield return splitTwo; 

30   

31         yield return Wait(splitOne); 

32         yield return Wait(splitTwo); 

33     } 

34   

35     IEnumerable<IFavor> SplitOne(string newEntry) 

36     { 

37         yield return AssignTask(newEntry + "A: One at a time ", Initiator); 

38     } 

39   

40     IEnumerable<IFavor> SplitTwo(string newEntry) 

41     { 

42         yield return AssignTask(newEntry + "B: One at a time ", Initiator); 

43     } 

44 } 

Code Listing 14 – Blocking Discriminator Implementation Example 

The Blocking Discriminator pattern can be implemented as a subscription that processes incoming work 

through a queue, a Parallel Split, and subsequent Merge.  In Code Listing 14, the Start sequence merely 

opens the subscription for the Enqueue sequence.  After this initial session, the instance’s Start branch 

completes and the instance is held unfinished only by its Enqueue subscription and branch.  With each 

new entry, as input through the subscription, a new branch of Enqueue is run.  previousEnablement 
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serves as a references to the back of a queue that forms within BindFlow’s wait-list as additional 

enablements arrive.  currentEnablement is assigned as a new AsyncCall favor to ProcessEntry, 

additionally storing the parameters for ProcessEntry.  The currentEnablement, newly created is set 

to be pushed to the back of the queue by reassigning previousEnablement and is then emitted.  This 

starts a new branch of ProcessEntry which immediately Waits on the stored 

myPreviousEnablement which was passed in to the ProcessEntry sequence as a parameter.  If this 

previousEnablement was already completed, then the Wait does not block.  Each enablement 

continues on to the Split and Merge starting on Line 25.  Only once the Merge is completed and the 

ProcessEntry branch terminates implicitly on line 33 is any waiting following entry allowed to take its 

own turn through the remainder of ProcessEntry from its own line 25.  Note that in this example, the 

subscription is never removed with an Unsubscribe and thus the instance never terminates.  Note that 

because BindFlow instances store and replay every input for each session, a single instance would get 

slower and require more storage, linearly, as additional entries are accepted by Enqueue.  Extending this 

example to spawn new instances at strategic times, such as when the queue is momentarily empty, could 

keep performance optimal.  

Cancelling Discriminator 

The convergence of two or more branches into a single subsequent branch following one 
or more corresponding divergences earlier in the process model. The thread of control is 
passed to the subsequent branch when the first active incoming branch has been enabled. 
Triggering the Cancelling Discriminator also cancels the execution of all of the other 
incoming branches and resets the construct. 

00 public class CancellingDiscriminator : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var splitOne = AsyncCall(SplitOne); 

05         var splitTwo = AsyncCall(SplitTwo); 

06   

07         yield return splitOne; 

08         yield return splitTwo; 

09   

10         yield return Wait(splitOne, splitTwo); 

11   

12         if (splitOne.IsComplete) yield return Cancel(splitTwo); 

13         if (splitTwo.IsComplete) yield return Cancel(splitOne); 

14     } 

15   

16     IEnumerable<IFavor> SplitOne() 

17     { 

18         yield return AssignTask("One", Initiator); 

19     } 

20   

21     IEnumerable<IFavor> SplitTwo() 

22     { 

23         yield return AssignTask("Two", Initiator); 

24     } 

25 } 
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Code Listing 15 – Cancelling Discriminator Implementation Example 

The Cancelling Discriminator pattern can be implemented by holding references to each of multiple 

branches, waiting on any of the branches, and cancelling the remaining branches after the Wait is 

unblocked.  Code Listing 15 is such an implementation. 

Structured Partial Join 

The convergence of two or more branches (say m) into a single subsequent branch 
following a corresponding divergence earlier in the process model such that the thread of 
control is passed to the subsequent branch when n of the incoming branches have been 
enabled where n is less than m. Subsequent enablements of incoming branches do not 
result in the thread of control being passed on. The join construct resets when all active 
incoming branches have been enabled. The join occurs in a structured context, i.e. there 
must be a single Parallel Split construct earlier in the process model with which the join is 
associated and it must merge all of the branches emanating from the Parallel Split. These 
branches must either flow from the Parallel Split to the join without any splits or joins or 
be structured in form (i.e. balanced splits and joins). 

00 public class StructuredPartialJoin : ProcessBase 

01 { 

02     // Expects an int as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         IAsyncCall[] assignments = new IAsyncCall[(int)data]; // m 

06   

07         // Create the assignments 

08         for (int counter = 0; counter < assignments.Length; counter++) 

09             assignments[counter] = AsyncCall(Assignment, counter); 

10   

11         // Emit the assignments 

12         for (int counter = 0; counter < assignments.Length; counter++) 

13             yield return assignments[counter]; 

14   

15         // Wait for m-1 assignments to be completed 

16         IWait wait = Wait(assignments); 

17         int remaining; 

18         do 

19         { 

20             yield return wait; 

21             remaining = wait.NotCompleted.Count(); 

22             wait = Wait(wait.NotCompleted.ToArray()); 

23         } while (remaining > 1); 

24   

25         yield return AssignTask("Finish", Initiator); 

26     } 

27   

28     // Expects an int as data 

29     IEnumerable<IFavor> Assignment(int assignmentNumber) 

30     { 

31         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

32     } 

33 } 

Code Listing 16 – Structured Partial Join Implementation Example 
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The Structured Partial Join pattern can be implemented as in Code Listing 16.  Some integer m >= 2 is 

passed in to the new instance as object data.  An array is allocated to hold m AsyncCall favors on 

Line 05, and is then filled by the loop on Line 08.  The Assignment sequence takes an assignmentNumber 

parameter, an identity to help differentiate each of its branches for the user.  This identity is passed to 

the sequence through the AsyncCall.  The second parameter of the AsyncCall favor factory method 

on Line 09 provides this value as the loop’s incremented counter.  Once the AsyncCalls are created and 

referenced in the assignments array, they are emitted for parallel execution by the loop on Line 12.  To 

fulfill the requirements of the Partial Join, we choose to Wait on m-1 of the Assignment branches to 

complete before continuing to the final “Finish” task.  Line 16 holds a reference to the Wait favor so 

that Lines 21 and 22 may refer to it.  Including multiple wait-targets, AsyncCalls or Spawns, in a Wait 

blocks until any one of the targets is terminated or canceled.  Line 21 stores the count of the remaining 

uncompleted targets for the loop condition on Line 25.  Line 22 reassigns a new Wait favor with only the 

remaining targets.  The loop is repeated until only 1 unfinished target remains indicating that m-1 targets 

did finish.  The last remaining branch of Assignment is not canceled, but no longer blocks the rest of the 

instance.  The process terminates after both the last remaining assignment and the “Finish” task of Line 

25 are completed in either order. 

Blocking Partial Join 

The convergence of two or more branches (say m) into a single subsequent branch 
following one or more corresponding divergences earlier in the process model. The thread 
of control is passed to the subsequent branch when n of the incoming branches has been 
enabled (where 2 = n < m). The join construct resets when all active incoming branches 
have been enabled once for the same process instance. Subsequent enablements of 
incoming branches are blocked until the join has reset. 

00 public class BlockingPartialJoin : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         yield return Subscribe("QUEUE", "", Enqueue); 

05     } 

06   

07     IAsyncCall previousEnablement = null; 

08   

09     IEnumerable<IFavor> Enqueue(object newEntry) 

10     { 

11         var currentEnablement = AsyncCall(ProcessEntry, 

12             (string)newEntry, previousEnablement); 

13   

14         previousEnablement = currentEnablement; 

15   

16         yield return currentEnablement; 

17     } 

18   

19     IEnumerable<IFavor> ProcessEntry(string newEntry, 

20         IAsyncCall myPreviousEnablement) 

21     { 

22         if (myPreviousEnablement != null) 
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23             yield return Wait(myPreviousEnablement); 

24   

25         IAsyncCall[] assignments = new IAsyncCall[3]; // m 

26   

27         // Create the assignments 

28         for (int counter = 0; counter < assignments.Length; counter++) 

29             assignments[counter] = AsyncCall(Assignment, counter); 

30   

31         // Emit the assignments 

32         for (int counter = 0; counter < assignments.Length; counter++) 

33             yield return assignments[counter]; 

34   

35         // Wait for m-1 assignments to be completed 

36         IWait wait = Wait(assignments); 

37         int remaining; 

38         do 

39         { 

40             yield return wait; 

41             remaining = wait.NotCompleted.Count(); 

42             wait = Wait(wait.NotCompleted.ToArray()); 

43         } while (remaining > 1); 

44   

45         yield return AsyncCall(PostJoin); 

46     } 

47   

48     IEnumerable<IFavor> Assignment(int assignmentNumber) 

49     { 

50         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

51     } 

52   

53     IEnumerable<IFavor> PostJoin() 

54     { 

55         yield return AssignTask("Finish", Initiator); 

56     } 

57 } 

Code Listing 17 – Blocking Partial Join Implementation Example 

The Blocking Partial Join pattern can be implemented as a combination of the Blocking Discriminator and 

the Structured Partial Join.  Code Listing 17 combines Code Listing 14 and Code Listing 16.  The AsyncCall on 

Line 45 followed by an immediate implicit termination of the sequence provides the reset mechanism for 

an extended continuation after the Partial Join without blocking further enablements. 

Cancelling Partial Join 

The convergence of two or more branches (say m) into a single subsequent branch 
following one or more corresponding divergences earlier in the process model. The thread 
of control is passed to the subsequent branch when n of the incoming branches have been 
enabled where n is less than m. Triggering the join also cancels the execution of all of the 
other incoming branches and resets the construct. 

00 public class CancellingPartialJoin : ProcessBase 

01 { 

02     // Expects an int as data 

03     public override IEnumerable<IFavor> Start(object data) 
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04     { 

05         IAsyncCall[] assignments = new IAsyncCall[(int)data]; // m 

06   

07         // Create the assignments 

08         for (int counter = 0; counter < assignments.Length; counter++) 

09             assignments[counter] = AsyncCall(Assignment, counter); 

10   

11         // Emit the assignments 

12         for (int counter = 0; counter < assignments.Length; counter++) 

13             yield return assignments[counter]; 

14   

15         // Wait for m-1 assignments to be completed 

16         IWait wait = Wait(assignments); 

17         int remaining; 

18         do 

19         { 

20             yield return wait; 

21             remaining = wait.NotCompleted.Count(); 

22             wait = Wait(wait.NotCompleted.ToArray()); 

23         } while (remaining > 1); 

24   

25         foreach (var remainingAssignment in wait.NotCompleted) 

26         { 

27             yield return Cancel(remainingAssignment); 

28         } 

29   

30         yield return AssignTask("Finish", Initiator); 

31     } 

32   

33     // Expects an int as data 

34     IEnumerable<IFavor> Assignment(int assignmentNumber) 

35     { 

36         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

37     } 

38 } 

Code Listing 18 – Canceling Partial Join Implementation Example 

The Canceling Partial Join pattern can be implemented as a variation of the Structured Partial Join of Code 

Listing 16.  Code Listing 18 adds the loop of Line 25 to cancel any remaining Assignment branches following 

the Partial Join.  In this example, n=m-1 is hard-coded, exactly one remaining branch is canceled. 

Generalized AND-Join 

The convergence of two or more branches into a single subsequent branch such that the 
thread of control is passed to the subsequent branch when all input branches have been 
enabled. Additional triggers received on one or more branches between firings of the join 
persist and are retained for future firings. Over time, each of the incoming branches should 
deliver the same number of triggers to the AND-join construct (although obviously, the 
timing of these triggers may vary). 

00 public class GeneralizedAndJoin : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 
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04         yield return Subscribe("QUEUE", "", Enqueue); 

05     } 

06   

07     IAsyncCall previousEnablement = null; 

08   

09     IEnumerable<IFavor> Enqueue(object newEntry) 

10     { 

11         var currentEnablement = AsyncCall(ProcessEntry, 

12             (string)newEntry, previousEnablement); 

13   

14         previousEnablement = currentEnablement; 

15   

16         yield return currentEnablement; 

17     } 

18   

19     IEnumerable<IFavor> ProcessEntry(string newEntry, 

20         IAsyncCall myPreviousEnablement) 

21     { 

22         var splitOne = AsyncCall(SplitOne, newEntry); 

23         var splitTwo = AsyncCall(SplitTwo, newEntry); 

24   

25         yield return splitOne; 

26         yield return splitTwo; 

27   

28         yield return Wait(splitOne); 

29         yield return Wait(splitTwo); 

30   

31         if (myPreviousEnablement != null) 

32             yield return Wait(myPreviousEnablement); 

33   

34         yield return AsyncCall(PostJoin); 

35     } 

36   

37     IEnumerable<IFavor> SplitOne(string newEntry) 

38     { 

39         yield return AssignTask(newEntry + "A: One at a time ", Initiator); 

40     } 

41   

42     IEnumerable<IFavor> SplitTwo(string newEntry) 

43     { 

44         yield return AssignTask(newEntry + "B: One at a time ", Initiator); 

45     } 

46   

47     IEnumerable<IFavor> PostJoin() 

48     { 

49         yield return AssignTask("Finish", Initiator); 

50     } 

51 } 

Code Listing 19 – Generalized AND-Join Implementation Example 

The Generalized AND-Join pattern can be implemented as a variation of the Blocking Discriminator.  Code 

Listing 19 is based on Code Listing 14 such that the Wait emission is delayed until Line 32 and a PostJoin 

sequence is added as an extended continuation after the join has reset. 



  36 
 

Local Synchronizing Merge 

The convergence of two or more branches which diverged earlier in the process into a 
single subsequent branch such that the thread of control is passed to the subsequent 
branch when each active incoming branch has been enabled. Determination of how many 
branches require synchronization is made on the basis on information locally available to 
the merge construct. This may be communicated directly to the merge by the preceding 
diverging construct or alternatively it can be determined on the basis of local data such as 
the threads of control arriving at the merge. 

00 public class LocalSynchronizingMerge : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         LocalContext context = new LocalContext(); 

05   

06         var selection = AssignTask("Provide some selection of A, B, and C",  

07             Initiator, "ABC"); 

08   

09         yield return selection; 

10   

11         if (((string)selection.Result).Contains("A")) 

12             context.threads.Add(AsyncCall(GenericWork, "A")); 

13   

14         if (((string)selection.Result).Contains("B")) 

15             context.threads.Add(AsyncCall(GenericWork, "B")); 

16   

17         if (((string)selection.Result).Contains("C")) 

18         { 

19             context.waitOnC = true; 

20             context.c = AsyncCall(C, context); 

21             context.threads.Add(context.c); 

22         } 

23   

24         foreach (var thread in context.threads) 

25             yield return thread; 

26   

27         yield return AsyncCall(Finish, context); 

28     } 

29   

30     IEnumerable<IFavor> GenericWork(string data) 

31     { 

32         yield return AssignTask(data, Initiator); 

33     } 

34   

35     IEnumerable<IFavor> C(LocalContext context) 

36     { 

37         var choice = AssignTask("C", Initiator, true); 

38         yield return choice; 

39         context.waitOnC = (bool)choice.Result; 

40   

41         // replace the c that we're looking for,  

42         //allowing the finish to trigger. 

43         context.c = AsyncCall(C2);  

44         context.threads.Add(context.c); 
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45   

46         yield return context.c; 

47     } 

48   

49     IEnumerable<IFavor> C2() 

50     { 

51         yield return AssignTask("C2", Initiator); 

52     } 

53   

54     IEnumerable<IFavor> Finish(LocalContext context) 

55     { 

56         while ((!context.waitOnC && context.threads.Any(t =>  

57             t != context.c)) || 

58             (context.waitOnC && context.threads.Any())) 

59         { 

60             var waitAny = Wait(context.threads.ToArray()); 

61             yield return waitAny; 

62   

63             foreach (var thread in waitAny.Completed) 

64             { 

65                 context.threads.Remove(thread); 

66             } 

67         } 

68   

69         yield return AssignTask("Merge Complete", Initiator); 

70     } 

71 } 

72   

73 class LocalContext 

74 { 

75     public List<IWaitable> threads = new List<IWaitable>(); 

76     public IAsyncCall c = null; 

77     public bool waitOnC = false; 

78 } 

Code Listing 20 - Local Synchronizing Merge Implementation Example 

The Local Synchronizing Merge pattern by passing an object representing local context through to the 

different actors of the construct.  Code Listing 20 mimics the interactive demonstration by van der Aalst et 

al.[1] for this pattern.  Any or all of A, B, and C are chosen to execute.  As branch C has extended 

functionality to control the Synchronizing Merge, LocalContext is shared between the A, B section and 

the C section.  After the Split, the Merge of C is conditional.  If C should be Merged, the local context is 

populated with C’s continuation; otherwise, C’s continuation is run without blocking the Merge. 

General Synchronizing Merge 

The convergence of two or more branches which diverged earlier in the process into a 
single subsequent branch such that the thread of control is passed to the subsequent 
branch when either (1) each active incoming branch has been enabled or (2) it is not 
possible that any branch that has not yet been enabled will be enabled at any future time. 

00 public class GeneralSynchronizingMerge : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 
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04         var selection = AssignTask("Provide some selection of A, B, and C",  

05             Initiator, "ABC"); 

06   

07         yield return selection; 

08   

09         var a = AsyncCall(GenericWork, "A"); 

10         var b = AsyncCall(GenericWork, "B"); 

11         var c = AsyncCall(C); 

12   

13         if (((string)selection.Result).Contains("A")) 

14             yield return a; 

15   

16         if (((string)selection.Result).Contains("B")) 

17             yield return b; 

18   

19         if (((string)selection.Result).Contains("C")) 

20             yield return c; 

21   

22         if (a.IsUsed) yield return Wait(a); 

23         if (b.IsUsed) yield return Wait(b); 

24         if (c.IsUsed) yield return Wait(c); 

25   

26         yield return AssignTask("Merge Complete", Initiator); 

27     } 

28   

29     IEnumerable<IFavor> GenericWork(string taskSummary) 

30     { 

31         yield return AssignTask(taskSummary, Initiator); 

32     } 

33   

34     IEnumerable<IFavor> C() 

35     { 

36         IAssignTask choice = null; 

37   

38         while (choice == null || choice.Result == "C") 

39         { 

40             choice = AssignTask("C, D, or E?", Initiator, "C"); 

41   

42             yield return choice; 

43         } 

44   

45         if ((string)choice.Result == "D") 

46         { 

47             var d = AsyncCall(D); 

48             yield return d; 

49             yield return Wait(d); 

50         } 

51         else if ((string)choice.Result == "E") 

52         { 

53             yield return AsyncCall(E); 

54         } 

55     } 

56   

57     IEnumerable<IFavor> D() 

58     { 

59         yield return AssignTask("D", Initiator); 

60     } 
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61   

62     IEnumerable<IFavor> E() 

63     { 

64         yield return AssignTask("E", Initiator); 

65     } 

66 } 

Code Listing 21 - General Synchronizing Merge Implementation Example 

The General Synchronizing Merge pattern can be implemented using techniques used in previous 

patterns.  Code Listing 21 implements the demonstration of this same pattern by van der Aalst et al.[1] and 

is similar to Code Listing 20 but without the need for a local context and with the addition of the while loop 

on Line 37.   

Thread Merge 

At a given point in a process, a nominated number of execution threads in a single branch 
of the same process instance should be merged together into a single thread of execution. 

00 public class ThreadMerge : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         List<IAsyncCall> threads = new List<IAsyncCall>(); 

05   

06         for (int x = 0; x < (int)data; x++) 

07         { 

08             threads.Add(AsyncCall(ThreadWork, x)); 

09         } 

10   

11         foreach (var thread in threads) yield return thread; 

12   

13         yield return AsyncCall(Merge, threads); 

14     } 

15   

16     IEnumerable<IFavor> ThreadWork(int threadNumber) 

17     { 

18         yield return AssignTask("Move forward on " +  

19             threadNumber.ToString(), Initiator); 

20     } 

21   

22     IEnumerable<IFavor> Merge(List<IAsyncCall> threads) 

23     { 

24         foreach (var thread in threads) 

25         { 

26             yield return Wait(thread); 

27         } 

28   

29         yield return AssignTask("All threads have been merged", Initiator); 

30     } 

31 } 

Code Listing 22 – Thread Merge Implementation Example 
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The Thread Merge pattern can be implemented using the Wait favor.  Code Listing 22 stores a List of 

AsyncCall favors of some length determined at runtime, runs multiple parallel threads.  The list of 

threads to be merged is passed to the Merge sequence which waits on all of the threads. 

Thread Split  

At a given point in a process, a nominated number of execution threads can be initiated in 
a single branch of the same process instance. 

00 public class ThreadSplit : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         for (int x = 0; x < (int)data; x++) 

05         { 

06             yield return AsyncCall(ThreadWork, x); 

07         } 

08     } 

09   

10     IEnumerable<IFavor> ThreadWork(int threadNumber) 

11     { 

12         yield return AssignTask("Move forward on " +  

13             threadNumber.ToString(), Initiator); 

14     } 

15 } 

Code Listing 23 – Thread Split Implementation Example 

The Thread Split pattern can be implemented as the first part of the Thread Merge example.  Code Listing 

23 excerpts Code Listing 22 to only include the Parallel Splits.  The references to the split threads are not 

maintained in Start.  Start could continue with other independent sections of execution, possibly with 

additional and isolated Thread Split implementations or other patterns. 

Multiple Instance 

As noted in the terminology section, van der Aalst et al.[1] use the term “instance” to refer to a particular 

execution of a section of work in a workflow rather than a particular execution of a process.  In BindFlow, 

any code can be executed multiple times within a single instance of a process.  Code is internally 

referenceable at the sequence level (and as its branches, at runtime).  A sequence, as the starting point 

for any complex code path, can therefore represent any section of work of the process. 

Multiple Instances without Synchronization 

Within a given process instance, multiple instances of a task can be created. These 
instances are independent of each other and run concurrently. There is no requirement to 
synchronize them upon completion. Each of the instances of the multiple instance task 
that are created must execute within the context of the process instance from which they 
were started (i.e. they must share the same case identifier and have access to the same 
data elements) and each of them must execute independently from and without reference 
to the task that started them. 

00 public class MultipleInstancesWithoutSynchronization : ProcessBase 
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01 { 

02     string InstanceData = "Some Value"; 

03   

04     public override IEnumerable<IFavor> Start(object data) 

05     { 

06         yield return AsyncCall(One); 

07         yield return AsyncCall(Two); 

08     } 

09   

10     IEnumerable<IFavor> One() 

11     { 

12         yield return AssignTask("Advance One, " + InstanceData, Initiator); 

13     } 

14   

15     IEnumerable<IFavor> Two() 

16     { 

17         yield return AssignTask("Advance Two, " + InstanceData, Initiator); 

18     } 

19 } 

Code Listing 24 – Multiple Instances Without Synchronization Implementation Example 

The Multiple Instances Without Synchronization pattern can be implemented the same as a Parallel Split.  

The unit of work can be multiple branches of the same sequence or multiple branches of multiple 

sequences.  For clarity, Code Listing 24 uses two unique sequences which both have access to the same 

instance-wide data.  

Multiple Instances with a Priori Design-Time Knowledge 

Within a given process instance, multiple instances of a task can be created. The required 
number of instances is known at design time. These instances are independent of each 
other and run concurrently. It is necessary to synchronize the task instances at completion 
before any subsequent tasks can be triggered. 

00 public class MultipleInstancesWithAPrioriDesignTimeKnowledge : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         // Create the assignments 

05         var assignment1 = AsyncCall(Assignment, 1); 

06         var assignment2 = AsyncCall(Assignment, 2); 

07         var assignment3 = AsyncCall(Assignment, 3); 

08   

09         // Emit the assignments 

10         yield return assignment1; 

11         yield return assignment2; 

12         yield return assignment3; 

13   

14         // Wait for all of the assignments to be completed (in any order) 

15         yield return Wait(assignment1); 

16         yield return Wait(assignment2); 

17         yield return Wait(assignment3); 

18   

19         yield return AssignTask("Finish", Initiator); 

20     } 
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21   

22     // Expects an int as data 

23     IEnumerable<IFavor> Assignment(int assignmentNumber) 

24     { 

25         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

26     } 

27 } 

Code Listing 25 – Multiple Instances with a Priori Design-Time Knowledge Implementation Example 

The Multiple Instances with a Priori Design-Time Knowledge pattern can be implemented with a series 

of Thread Splits and Thread Merges where the number of branches or threads is hard-coded.  Code Listing 

25 generates a fixed three branches or threads of the Assignment sequence.  All three threads are 

synchronized before Start may continue. 

Multiple Instances with a Priori Run-Time Knowledge 

Within a given process instance, multiple instances of a task can be created. The required 
number of instances may depend on a number of runtime factors, including state data, 
resource availability and inter-process communications, but is known before the task 
instances must be created. Once initiated, these instances are independent of each other 
and run concurrently. It is necessary to synchronize the instances at completion before any 
subsequent tasks can be triggered. 

00 public class MultipleInstancesWithAPrioriRunTimeKnowledge : ProcessBase 

01 { 

02     // Expects an int as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         IAsyncCall[] assignments = new IAsyncCall[(int)data]; 

06   

07         // Create the assignments 

08         for (int counter = 0; counter < assignments.Length; counter++) 

09             assignments[counter] = AsyncCall(Assignment, counter); 

10   

11         // Emit the assignments 

12         for (int counter = 0; counter < assignments.Length; counter++) 

13             yield return assignments[counter]; 

14   

15         // Wait for the assignments to be completed 

16         for (int counter = 0; counter < assignments.Length; counter++) 

17             yield return Wait(assignments[counter]); 

18   

19         yield return AssignTask("Finish", Initiator); 

20     } 

21   

22     // Expects an int as data 

23     IEnumerable<IFavor> Assignment(int assignmentNumber) 

24     { 

25         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

26     } 

27 } 

Code Listing 26 – Multiple Instances with a Priori Run-Time Knowledge Implementation Example 
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The Multiple Instances with a Priori Run-Time Knowledge pattern can be implemented with a dynamic 

loop.  Code Listing 26 provides such an implementation. 

Multiple Instances without a Priori Run-Time Knowledge 

Within a given process instance, multiple instances of a task can be created. The required 
number of instances may depend on a number of runtime factors, including state data, 
resource availability and inter-process communications and is not known until the final 
instance has completed. Once initiated, these instances are independent of each other and 
run concurrently. At any time, whilst instances are running, it is possible for additional 
instances to be initiated. It is necessary to synchronize the instances at completion before 
any subsequent tasks can be triggered. 

00 public class MultipleInstancesWithoutAPrioriRunTimeKnowledge : ProcessBase 

01 { 

02     // Expects an int as data 

03     public override IEnumerable<IFavor> Start(object data) 

04     { 

05         var assignments = new List<IWaitable>(); 

06   

07         var primer = Call(Assignment); 

08         yield return primer; 

09   

10         int toCreate = (int)primer.Result; 

11   

12         while (assignments.Any() || 0 < toCreate) 

13         { 

14             // Add toCreate new assignments, possibly 0 

15             for (int x = 0; x < toCreate; x++) 

16             { 

17                 var assignment = AsyncCall(Assignment); 

18                 assignments.Add(assignment); 

19                 yield return assignment; 

20             } 

21   

22             // Wait on any of the remaining assignments 

23             var wait = Wait(assignments.ToArray()); 

24             yield return wait; 

25   

26             // Single is safe as we are assured that one and  

27             // only one assignment can complete per session 

28             toCreate = (int)wait.Completed.Single().Result; 

29   

30             // Reduce the number of assignments remaining by 

31             // the one that we just processed 

32             assignments = wait.NotCompleted.ToList(); 

33         } 

34   

35         // A final task 

36         yield return AssignTask("Finish", Initiator); 

37     } 

38   

39     IEnumerable<IFavor> Assignment() 

40     { 



  44 
 

41         var task = AssignTask("Create how many more?", Initiator, 0); 

42         yield return task; 

43         yield return Return((int)task.Result); 

44     } 

45 } 

Code Listing 27 - Multiple Instances without a Priori Run-Time Knowledge Implementation Example 

The Multiple Instances without a Priori Run-Time Knowledge pattern can be implemented with a 

dynamically managed list of unfinished branches.  Code Listing 27 begins with a blocking call to Assignment 

to get positive integer result of how many additional tasks to create.  Each requested branch is added to 

the dynamic list.  Each assignment asks the user for a number of additional branches to create.  The 

instance continues to the “Finish” task on Line 36 after the count of completed additional branches 

reaches the total count of those requested. 

Static Partial Join for Multiple Instances 

Within a given process instance, multiple concurrent instances of a task (say m) can be 
created. The required number of instances is known when the first task instance 
commences. Once n of the task instances have completed (where n is less than m), the 
next task in the process is triggered. Subsequent completions of the remaining m-n 
instances are inconsequential, however all instances must have completed in order for the 
join construct to reset and be subsequently re-enabled. 

00 public class StaticPartialJoinForMultipleInstances : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         yield return Subscribe("QUEUE", "", Enqueue); 

05     } 

06   

07     IAsyncCall previousEnablement = null; 

08   

09     IEnumerable<IFavor> Enqueue(object newEntry) 

10     { 

11         var currentEnablement = AsyncCall(ProcessEntry, 

12             (string)newEntry, previousEnablement); 

13   

14         previousEnablement = currentEnablement; 

15   

16         yield return currentEnablement; 

17     } 

18   

19     IEnumerable<IFavor> ProcessEntry(string newEntry, 

20         IAsyncCall myPreviousEnablement) 

21     { 

22         if (myPreviousEnablement != null) 

23             yield return Wait(myPreviousEnablement); 

24   

25         IAsyncCall[] assignments = new IAsyncCall[3]; // m 

26   

27         // Create the assignments 

28         for (int counter = 0; counter < assignments.Length; counter++) 

29             assignments[counter] = AsyncCall(Assignment, counter); 
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30   

31         // Emit the assignments 

32         for (int counter = 0; counter < assignments.Length; counter++) 

33             yield return assignments[counter]; 

34   

35         // Wait for m-1 assignments to be completed 

36         IWait wait = Wait(assignments); 

37         int remaining; 

38         do 

39         { 

40             yield return wait; 

41             remaining = wait.NotCompleted.Count(); 

42             wait = Wait(wait.NotCompleted.ToArray()); 

43         } while (remaining > 1); 

44   

45         yield return AsyncCall(PostJoin); 

46   

47         yield return Wait(wait.NotCompleted.ToArray()); 

48     } 

49   

50     IEnumerable<IFavor> Assignment(int assignmentNumber) 

51     { 

52         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

53     } 

54   

55     IEnumerable<IFavor> PostJoin() 

56     { 

57         yield return AssignTask("Finish", Initiator); 

58     } 

59 } 

Code Listing 28 - Static Partial Join for Multiple Instances Implementation Example 

The Static Partial Join for Multiple Instances pattern is very similar to the Blocking Partial Join in that 

only n < m branches must complete before the Partial Join runs a post-join step except that all m branches 

must be finished before the join resets allowing subsequent enablements.  Code Listing 28 adds Line 47 to 

Code Listing 17 to delay the reset. 

Cancelling Partial Join for Multiple Instances 

Within a given process instance, multiple concurrent instances of a task (say m) can be 
created. The required number of instances is known when the first task instance 
commences. Once n of the task instances have completed (where n is less than m), the 
next task in the process is triggered and the remaining m-n instances are cancelled. 

00 public class CancellingPartialJoinForMultipleInstances : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         yield return Subscribe("QUEUE", "", Enqueue); 

05     } 

06   

07     IAsyncCall previousEnablement = null; 

08   

09     IEnumerable<IFavor> Enqueue(object newEntry) 
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10     { 

11         var currentEnablement = AsyncCall(ProcessEntry, 

12             (string)newEntry, previousEnablement); 

13   

14         previousEnablement = currentEnablement; 

15   

16         yield return currentEnablement; 

17     } 

18   

19     IEnumerable<IFavor> ProcessEntry(string newEntry, 

20         IAsyncCall myPreviousEnablement) 

21     { 

22         if (myPreviousEnablement != null) 

23             yield return Wait(myPreviousEnablement); 

24   

25         IAsyncCall[] assignments = new IAsyncCall[3]; // m 

26   

27         // Create the assignments 

28         for (int counter = 0; counter < assignments.Length; counter++) 

29             assignments[counter] = AsyncCall(Assignment, counter); 

30   

31         // Emit the assignments 

32         for (int counter = 0; counter < assignments.Length; counter++) 

33             yield return assignments[counter]; 

34   

35         // Wait for m-1 assignments to be completed 

36         IWait wait = Wait(assignments); 

37         int remaining; 

38         do 

39         { 

40             yield return wait; 

41             remaining = wait.NotCompleted.Count(); 

42             wait = Wait(wait.NotCompleted.ToArray()); 

43         } while (remaining > 1); 

44  

45         // ToArray copies the enumeration to avoid  

46         // any lazy evaluation issues 

47         foreach (var w in wait.NotCompleted.ToArray()) 

48         { 

49             yield return Cancel(w); 

50         } 

51   

52         yield return AsyncCall(PostJoin); 

53     } 

54   

55     IEnumerable<IFavor> Assignment(int assignmentNumber) 

56     { 

57         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

58     } 

59   

60     IEnumerable<IFavor> PostJoin() 

61     { 

62         yield return AssignTask("Finish", Initiator); 

63     } 

64 } 

Code Listing 29 - Cancelling Partial Join for Multiple Instances Implementation Example 
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The Cancelling Partial Join for Multiple Instances pattern is very similar to the Blocking Partial Join in 

that only n < m branches must complete before the Partial Join runs a post-join step except that any m-

n branches must be canceled before the join resets allowing subsequent enablements.  Code Listing 29 adds 

the cancelation loop on Line 47 to Code Listing 17 to cancel the remaining branches.  In this example, the 

loop will execute exactly once since n is effectively hard-coded as m – 1. 

Dynamic Partial Join for Multiple Instances 

Within a given process instance, multiple concurrent instances of a task can be created. 
The required number of instances may depend on a number of runtime factors, including 
state data, resource availability and inter-process communications and is not known until 
the final instance has completed. At any time, whilst instances are running, it is possible 
for additional instances to be initiated providing the ability to do so had not been disabled. 
A completion condition is specified which is evaluated each time an instance of the task 
completes. Once the completion condition evaluates to true, the next task in the process 
is triggered. Subsequent completions of the remaining task instances are inconsequential 
and no new instances can be created. 

00 public class DynamicPartialJoinForMultipleInstances : ProcessBase 

01 { 

02     List<IWaitable> allThreads = new List<IWaitable>(); 

03     IAsyncCall currentWaitingAny = null; 

04   

05     public override IEnumerable<IFavor> Start(object data) 

06     { 

07         var newThread = AsyncCall(ProcessEntry); 

08         allThreads.Add(newThread); 

09         yield return newThread; 

10   

11         var subscription = Subscribe("QUEUE", null, Enqueue); 

12         yield return subscription; 

13   

14         bool partialJoinSatisfied = false; 

15   

16         while (!partialJoinSatisfied && 

17             allThreads.Any(t => !t.IsComplete)) 

18         { 

19             currentWaitingAny = AsyncCall(WaitForAny, allThreads); 

20             yield return currentWaitingAny; 

21             yield return Wait(currentWaitingAny); 

22   

23             if (currentWaitingAny.Result is bool &&  

24                 (bool)currentWaitingAny.Result) 

25                 partialJoinSatisfied = true; 

26         } 

27   

28         yield return Unsubscribe(subscription); 

29   

30         yield return AssignTask("Post-join work", Initiator); 

31     } 

32   

33     IEnumerable<IFavor> WaitForAny(List<IWaitable> threads) 

34     { 
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35         IWait waitAny = Wait(threads.Where(t => !t.IsComplete).ToArray()); 

36          

37         yield return waitAny; 

38   

39         yield return Return((bool)waitAny.Completed.Single().Result); 

40     } 

41   

42     IEnumerable<IFavor> Enqueue(object other) 

43     { 

44         var newThread = AsyncCall(ProcessEntry); 

45         allThreads.Add(newThread); 

46         yield return newThread; 

47   

48         yield return Cancel(currentWaitingAny); 

49     } 

50   

51     IEnumerable<IFavor> ProcessEntry() 

52     { 

53         var task = AssignTask("Finished?", Initiator, false); 

54         yield return task; 

55   

56         yield return Return((bool)task.Result); 

57     } 

58 } 

Code Listing 30 - Dynamic Partial Join for Multiple Instances Implementation Example 

The Dynamic Partial Join for Multiple Instances pattern can be implemented by combining several of the 

techniques demonstrated earlier.  Code Listing 30 begins with an initial ProcessEntry branch and an 

opening of the Enqueue subscription introduced in the Blocking Discriminator implementation.  A 

reference to a single active WaitForAny branch is held in currentWaitingAny and is accessible from 

both the Start branch and any Enqueue branches.  In a loop, Start waits on its current WaitForAny 

branch which waits on any of the ProcessEntry branches in allThreads.  If any ProcessEntry 

branch completes, returning a true or false, the result is passed back to Start where the Partial Join 

criteria can be reevaluated.  If Enqueue receives a new item and adds it to the allThreads list, it cancels 

the WaitForAny branch help in currentWaitingAny, triggering Start to unblock and renew its 

WaitForAny branch including the newly added ProcessEntry branch.  Once the Partial Join criteria is 

satisfied the subscription is closed and some post-join work is initiated.  Remaining ProcessEntries are 

allowed to complete normally. 

State-based 

Deferred Choice 

A point in a process where one of several branches is chosen based on interaction with the 
operating environment. Prior to the decision, all branches represent possible future 
courses of execution. The decision is made by initiating the first task in one of the branches 
i.e. there is no explicit choice but rather a race between different branches. After the 
decision is made, execution alternatives in branches other than the one selected are 
withdrawn. 

00 public class DeferredChoice : ProcessBase 
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01 { 

02     IAsyncCall one, two; 

03   

04     public override IEnumerable<IFavor> Start(object data) 

05     { 

06         one = AsyncCall(One); 

07         two = AsyncCall(Two); 

08   

09         yield return one; 

10   

11         yield return two; 

12     } 

13   

14     IEnumerable<IFavor> One() 

15     { 

16         yield return AssignTask("Advance One and cancel Two", Initiator); 

17   

18         yield return Cancel(two); 

19   

20         yield return AssignTask("Advance One and finish", Initiator); 

21     } 

22   

23     IEnumerable<IFavor> Two() 

24     { 

25         yield return AssignTask("Advance Two and cancel One", Initiator); 

26   

27         yield return Cancel(one); 

28   

29         yield return AssignTask("Advance Two and finish", Initiator); 

30     } 

31 } 

Code Listing 31 - Deferred Choice Implementation Example 

The Deferred Choice pattern can be implemented with a Parallel Split in which each branch has access to 

cancel the other branches.  Code Listing 31 splits to each One and Two.  A task is assigned in each branch and 

the user can choose between them.  The first branch to advance cancels the other and assigns a follow-

up task.  IAsyncCall one and two are defined at the instance level; however, a variation on this 

implementation might pass the other branches as parameters to One and Two. 

Interleaved Parallel Routing 

A set of tasks has a partial ordering defining the requirements with respect to the order in 
which they must be executed. Each task in the set must be executed once and they can be 
completed in any order that accords with the partial order. However, as an additional 
requirement, no two tasks can be executed at the same time (i.e. no two tasks can be 
active for the same process instance at the same time). 

00 public class InterleavedParallelRouting : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         List<IAssignTask> orderOne = new List<IAssignTask>(); 

05         List<IAssignTask> orderTwo = new List<IAssignTask>(); 

06   
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07         for (int x = 0; x < 3; x++) 

08         { 

09             orderOne.Add(AssignTask("The " + x +  

10                 "th created task of order ONE", Initiator)); 

11             orderTwo.Add(AssignTask("The " + x +  

12                 "th created task of order TWO", Initiator)); 

13         } 

14   

15         while (orderOne.Any() || orderTwo.Any()) 

16         { 

17             List<IAssignTask> current; 

18   

19             if (orderOne.Any() && orderTwo.Any()) 

20             { 

21                 var randomTask = IO.IORandom(new[] {0, 1}); 

22                 yield return randomTask; 

23   

24                 current = randomTask.Result == 1 ? orderOne : orderTwo; 

25             } 

26             else if (orderOne.Any()) 

27             { 

28                 current = orderOne; 

29             } 

30             else 

31             { 

32                 current = orderTwo; 

33             } 

34   

35             var task = current[0]; 

36   

37             current.RemoveAt(0); 

38   

39             yield return task; 

40         } 

41     } 

42 } 

Code Listing 32 – Interleaved Parallel Routing Implementation Example 

The Interleaved Parallel Routing pattern can be implemented by creating multiple lists representing each 

part of a partial order, and then using some selector to make progress along one of the partial orderings 

at a time. Code Listing 32 uses a random number generator as the selector input, choosing between one of 

the two partial orderings at a time.   

Note that because BindFlow sequences must be deterministic, the random number generator is invoked 

indirectly through the IO.IORandom favor.  Emitting this favor allows the IO.IORandom’s (hidden) 

Perform method to be called by the engine and generate the value randomly.  The engine records the 

value for future sessions.  That is, after three iterations of this loop, the random number generator has 

been invoked only three times, as one would hope.  This is in spite of the fact that each new session 

following the completion of the blocking task (Line 33) requires the engine to replay all previous inputs 

and deterministic transformations to restore the state of the instance.  With each new session, triggered 

by the completion of some task or other input, the recorded inputs, including the previously numbers 
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which were chosen at random by a random number generator, are fed into the process just as they were 

their first time through.  

Milestone 

A task is only enabled when the process instance (of which it is part) is in a specific state 
(typically a parallel branch). The state is assumed to be a specific execution point (also 
known as a milestone) in the process model. When this execution point is reached the 
nominated task can be enabled. If the process instance has progressed beyond this state, 
then the task cannot be enabled now or at any future time (i.e. the deadline has expired). 
Note that the execution does not influence the state itself, i.e. unlike normal control-flow 
dependencies it is a test rather than a trigger. 

00 public class Milestone : ProcessBase 

01 { 

02     bool open = false; 

03   

04     public override string Summarize() 

05     { 

06         return string.Format("The window is {0}.",  

07             open ? "open" : "closed"); 

08     } 

09   

10     // Expects a string as data 

11     public override IEnumerable<IFavor> Start(object data) 

12     { 

13         var listen = Subscribe("WINDOW", null, Handle); 

14   

15         yield return listen; 

16   

17         yield return AssignTask("Open the window", Initiator); 

18   

19         open = true; 

20   

21         yield return AssignTask("Close the window", Initiator); 

22   

23         open = false; 

24   

25         yield return AssignTask("Stop", Initiator); 

26   

27         yield return Unsubscribe(listen); 

28     } 

29   

30     IEnumerable<IFavor> Handle(object data) 

31     { 

32         if (open) 

33         { 

34             yield return AssignTask("Process Submission", Initiator); 

35         } 

36     } 

37 } 

Code Listing 33 – Milestone Implementation Example 
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The Milestone pattern can be implemented with a Boolean flag.  Code Listing 33 opens a subscription to 

handle data submissions, but only processes such submissions once Start has passed Line 18 and until 

it passed Line 22.  As the “WINDOW” subscription is invoked (perhaps by user action), Line 33 is reached 

only if the open flag is set and is discarded otherwise. 

Critical Section 

Two or more connected subgraphs of a process model are identified as "critical sections". 
At runtime for a given process instance, only tasks in one of these "critical sections" can 
be active at any given time. Once execution of the tasks in one "critical section" 
commences, it must complete before another "critical section" can commence. 

00 public class CriticalSection : ProcessBase 

01 { 

02     // BindFlow is cooperatively multitasking, so this is safe 

03     bool mutex = false;  

04   

05     // Mandatory main entry point 

06     public override IEnumerable<IFavor> Start(object data)  

07     { 

08         yield return AsyncCall(Other); 

09   

10         yield return AssignTask("Advance into Main critical section",  

11             Initiator); 

12   

13         if (mutex) throw new Exception("Cannot enter Main critical " +  

14             "section at this time"); 

15   

16         mutex = true; 

17   

18         yield return AssignTask("Complete Main critical section",  

19             Initiator); 

20   

21         mutex = false; 

22     } 

23   

24     IEnumerable<IFavor> Other() 

25     { 

26         yield return AssignTask("Advance into Other critical section",  

27             Initiator); 

28   

29         if (mutex) throw new Exception("Cannot enter Other critical " + 

30             "section at this time"); 

31   

32         mutex = true; 

33   

34         yield return AssignTask("Complete Other critical section",  

35             Initiator); 

36   

37         mutex = false; 

38     } 

39 } 

Code Listing 34 – Critical Section Implementation Example 
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The Critical Section pattern can be implemented with a mutex flag that blocks executing continuations 

into a locked critical section.  Code Listing 34 throws an System.Exception back to the session initiator if 

the critical section is locked.  The engine dumps a session upon catching an exception.  So long as no side-

effects were generated prior to the exception, there are no consequences to the failure and entering the 

critical section can be attempted again at a later time, perhaps after the critical section has been released. 

Interleaved Routing 

Each member of a set of tasks must be executed once. They can be executed in any order 
but no two tasks can be executed at the same time (i.e. no two tasks can be active for the 
same process instance at the same time). Once all of the tasks have completed, the next 
task in the process can be initiated. 

00 public class InterleavedRouting : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         List<IAssignTask> tasks = new List<IAssignTask>(); 

05   

06         for (int x = 0; x < 4; x++) 

07         { 

08             tasks.Add(AssignTask("The " + x + "th created task",  

09                 Initiator)); 

10         } 

11   

12         while (tasks.Any()) 

13         { 

14             var randomTask = IO.IORandom(tasks.Count - 1); 

15             yield return randomTask; 

16   

17             var task = tasks[randomTask.Result]; 

18   

19             tasks.Remove(task); 

20   

21             yield return task; 

22         } 

23     } 

24 } 

Code Listing 35 - Interleaved Routing Implementation Example 

The Interleaved Routing pattern can be implemented with a set of tasks and some selector.  Code Listing 35 

uses an IO.IORandom favor to request a randomly generated number.  The selected task is performed 

and removed from the set of pending tasks. 

Cancellation and Force Completion 

Cancel Task 

An enabled task is withdrawn prior to it commencing execution. If the task has started, it 
is disabled and, where possible, the currently running instance is halted and removed. 

00 public class CancelTask : ProcessBase 
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01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var other = AsyncCall(Other); 

05   

06         yield return other; 

07   

08         yield return AssignTask("Retract Other Assignment", Initiator); 

09   

10         yield return Cancel(other); 

11     } 

12   

13     IEnumerable<IFavor> Other() 

14     { 

15         yield return AssignTask("Finish Other", Initiator); 

16     } 

17 } 

Code Listing 36 – Cancel Task Implementation Example 

The Cancel Task pattern can be implemented with a cancellation of a particular branch of execution.   The 

meaning of “Task” in “Cancel Task” represents a terminology conflict with van der Aalst et al., and should 

be read as “branch of execution”.  Code Listing 36 performs a Parallel Split to Other and then, after 

completing the “Retract Other Assignment” AssignTask of Line 08, prematurely terminates the 

Other branch, if it wasn’t completed first. 

It is also possible to cancel an AssignTask indirectly by canceling its containing branch.   If only one 

assignment should be canceled without canceling the entire branch, consider refactoring the 

AssignTask to its own sequence. 

Cancel Case 

A complete process instance is removed. This includes currently executing tasks, those 
which may execute at some future time and all sub-processes. The process instance is 
recorded as having completed unsuccessfully. 

00 public class CancelCase : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var task = AssignTask("Spawn a child instance?",  

05             Initiator); 

06   

07         yield return task; 

08   

09         if ((bool)task.Result) 

10         { 

11             var spawn = Spawn("WorkflowPatterns.ControlFlow.CancelCase",  

12                 false); 

13   

14             yield return spawn; 

15   

16             var cancelation = AssignTask("Cancel all child instances?",  

17                 Initiator); 
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18   

19             yield return cancelation; 

20   

21             if ((bool)cancelation.Result) 

22                 yield return Cancel(spawn); 

23   

24             yield return Wait(spawn); 

25         } 

26     } 

27 } 

Code Listing 37 – Cancel Case Implementation Example 

The Cancel Case pattern can be implemented with a cancellation of a new instance spawned by the parent 

instance.  Code Listing 37 optionally spawns a new instance of itself recursively.  The resulting spawned 

instances may grow to be many levels deep, depending on the user’s choices.  If any parent is told to 

cancel all child instances through the AssignTask created on Line 16, descendant instances are canceled 

recursively. 

Cancel Region 

The ability to disable a set of tasks in a process instance. If any of the tasks are already 
executing (or are currently enabled), then they are withdrawn. The tasks need not be a 
connected subset of the overall process model. 

00 public class CancelRegion : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var conditional = AssignTask("Split to a new branch?",  

05             Initiator); 

06   

07         yield return conditional; 

08   

09         if ((bool)conditional.Result) 

10         { 

11             var split = AsyncCall(Start, (object)null); 

12   

13             yield return split; 

14   

15             var cancelation = AssignTask("Cancel all child branches?",  

16                 Initiator); 

17   

18             yield return cancelation; 

19   

20             if ((bool)cancelation.Result) 

21                 yield return Cancel(split); 

22         } 

23     } 

24 } 

Code Listing 38 – Cancel Region Implementation Example 

The Cancel Region pattern can be implemented with a cancelation of some branch of an instance.  Code 

Listing 38 optionally creates new branches of the Start sequence recursively.  The resulting split branches 
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may grow to be many levels deep, depending on the user’s choices.  If any parent branch is told to cancel 

all child branches through the AssignTask created on Line 15, descendant branches are canceled 

recursively. 

Cancel Multiple Instance Activity 

Within a given process instance, multiple instances of a task can be created. The required 
number of instances is known at design time. These instances are independent of each 
other and run concurrently. At any time, the multiple instance task can be cancelled and 
any instances which have not completed are withdrawn. Task instances that have already 
completed are unaffected. 

00 public class CancelMultipleInstanceActivity : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var multiTask = AsyncCall(MultiTask); 

05   

06         yield return multiTask; 

07   

08         yield return AssignTask("Advance to cancelation", Initiator); 

09   

10         var cancel = Cancel(multiTask); 

11   

12         yield return cancel; 

13     } 

14   

15     IEnumerable<IFavor> MultiTask() 

16     { 

17         // Create the assignments 

18         var assignment1 = AsyncCall(Assignment, 1); 

19         var assignment2 = AsyncCall(Assignment, 2); 

20         var assignment3 = AsyncCall(Assignment, 3); 

21   

22         // Emit the assignments 

23         yield return assignment1; 

24         yield return assignment2; 

25         yield return assignment3; 

26   

27         // Wait for all of the assignments to be completed (in any order) 

28         yield return Wait(assignment1); 

29         yield return Wait(assignment2); 

30         yield return Wait(assignment3); 

31     } 

32   

33     // Expects an int as data 

34     IEnumerable<IFavor> Assignment(int assignmentNumber) 

35     { 

36         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

37     } 

38 } 

Code Listing 39 - Cancel Multiple Instance Activity Implementation Example 
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The Cancel Multiple Instance Activity pattern can be implemented by canceling multiple branches of the 

same sequence.  Code Listing 39 Splits to multiple concurrent and independent branches of Assignment 

within MultiTask.  When the MultiTask branch is canceled, any unfinished Assignments are also 

canceled but the results of finished Assignments are unaffected. 

Complete Multiple Instance Activity 

Within a given process instance, multiple instances of a task can be created. The required 
number of instances is known at design time. These instances are independent of each 
other and run concurrently. It is necessary to synchronize the instances at completion 
before any subsequent tasks can be triggered. During the course of execution, it is possible 
that the task needs to be forcibly completed such that any remaining instances are 
withdrawn and the thread of control is passed to subsequent tasks. 

00 public class CompleteMultipleInstanceActivity : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var multiTask = AsyncCall(MultiTask); 

05   

06         yield return multiTask; 

07   

08         yield return AssignTask("Force completion", Initiator); 

09   

10         var cancel = Cancel(multiTask); 

11   

12         yield return cancel; 

13   

14         yield return AssignTask("Finish", Initiator); 

15     } 

16   

17     IEnumerable<IFavor> MultiTask() 

18     { 

19         // Create the assignments 

20         var assignment1 = AsyncCall(Assignment, 1); 

21         var assignment2 = AsyncCall(Assignment, 2); 

22         var assignment3 = AsyncCall(Assignment, 3); 

23   

24         // Emit the assignments 

25         yield return assignment1; 

26         yield return assignment2; 

27         yield return assignment3; 

28   

29         // Wait for all of the assignments to be completed (in any order) 

30         yield return Wait(assignment1); 

31         yield return Wait(assignment2); 

32         yield return Wait(assignment3); 

33     } 

34   

35     // Expects an int as data 

36     IEnumerable<IFavor> Assignment(int assignmentNumber) 

37     { 

38         yield return AssignTask("Advance #" + assignmentNumber, Initiator); 

39     } 
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40 } 

Code Listing 40 - Complete Multiple Instance Activity Implementation Example 

The Complete Multiple Instance Activity pattern can be implemented as a trivial extension of the Cancel 

Multiple Instance Activity pattern.  Code Listing 40 extends Code Listing 39 with an explicit continuation on 

Line 14 after the cancellation of MultiTask. 

Iteration  

Arbitrary Cycles 

The ability to represent cycles in a process model that have more than one entry or exit 
point. It must be possible for individual entry and exit points to be associated with distinct 
branches. 

00 public class ArbitraryCycles : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04     Step1: 

05         // First Task 

06         var task1 = AssignTask("Step 1: Jump to Step3?", Initiator); 

07         yield return task1; 

08         if ((bool)task1.Result) goto Step3; 

09   

10     Step2: 

11         // Second Task 

12         var task2 = AssignTask("Step 2: Jump to Step1?", Initiator); 

13         yield return task2; 

14         if ((bool)task2.Result) goto Step1; 

15   

16     Step3: 

17         // Third Task 

18         var task3 = AssignTask("Step 3: Jump to Step2?", Initiator); 

19         yield return task3; 

20         if ((bool)task3.Result) goto Step2; 

21     } 

22 } 

Code Listing 41 - Arbitrary Cycles Implementation Example 

The Arbitrary Cycles pattern can be implemented using labels and C# goto statements.  Code Listing 41 

allows each section of code to conditionally Jump to another step in an unstructured fashion as illustrated 

by the demonstration for this pattern by van der Aalst et al.[1]. 

Structured Loop 

The ability to execute a task or sub-process repeatedly. The loop has either a pre-test or 
post-test condition associated with it that is either evaluated at the beginning or end of 
the loop to determine whether it should continue. The looping structure has a single entry 
and exit point. 

00 public class StructuredLoop : ProcessBase 

01 { 
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02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         IAssignTask task; 

05   

06         do 

07         { 

08             task = AssignTask("Repeat?", Initiator); 

09   

10             yield return task; 

11         } while ((bool)task.Result); 

12     } 

13 } 

Code Listing 42 – Structured Loop Implementation Example 

The Structured Loop pattern can be implemented with any standard C# looping construct such as while 

or for loops.  Code Listing 42 uses a do-while loop conditional on the result of an assigned task. 

Recursion 

The ability of a task to invoke itself during its execution or an ancestor in terms of the 
overall decomposition structure with which it is associated. 

00 public class Recursion : ProcessBase 

01 { 

02     public override IEnumerable<IFavor> Start(object data) 

03     { 

04         var conditional = AssignTask("Call to a new branch?", Initiator); 

05   

06         yield return conditional; 

07   

08         if ((bool)conditional.Result) 

09         { 

10             yield return Call(Start, (object)null); 

11         } 

12     } 

13 } 

Code Listing 43 – Recursion Implementation Example 

The Recursion pattern can be implemented with a Call to a new branch of the calling sequence.  Code 

Listing 43 calls back onto Start optionally.  Emitting the Call pops the calling sequence from the stack 

and moves it to the wait-list and then pushes a new branch of the called sequence on to the stack for 

immediate execution.  Parent branches remain in the wait-list until the called branch completes. 

Termination  

Implicit Termination 

A given process (or sub-process) instance should terminate when there are no remaining 
work items that are able to be done either now or at any time in the future and the process 
instance is not in deadlock. There is an objective means of determining that the process 
instance has successfully completed. 

0 public class ImplicitTermination : ProcessBase 
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1 { 

2     public override IEnumerable<IFavor> Start(object data) 

3     { 

4         yield return AssignTask("Finish", Initiator); 

5     } 

6 } 

Code Listing 44 – Implicit Termination Implementation Example 

The Implicit Termination pattern is implemented by abstaining from providing more instructions for a 

process to follow.  When no work remains, the instance is considered terminated.  In Code Listing 44, 

following Line 4, there are no remaining instructions to follow and nothing left to do. 

Explicit Termination  

A given process (or sub-process) instance should terminate when it reaches a nominated 
state. Typically this is denoted by a specific end node. When this end node is reached, any 
remaining work in the process instance is cancelled and the overall process instance is 
recorded as having completed successfully, regardless of whether there are any tasks in 
progress or remaining to be executed. 

0 public class ExplicitTermination : ProcessBase 

1 { 

2     public override IEnumerable<IFavor> Start(object data) 

3     { 

4         yield return ForceTerminate(); 

5     } 

6 } 

Code Listing 45 – Explicit Termination Implementation Example 

The Explicit Termination pattern can be implemented with ForceTerminate.  ForceTerminate 

instructs the engine to immediately dump all state, including the execution of other branches, and mark 

the instance as finished.  Code Listing 45 is a simple such implementation. 

Trigger  

Transient Trigger 

The ability for a task instance to be triggered by a signal from another part of the process 
or from the external environment. These triggers are transient in nature and are lost if not 
acted on immediately by the receiving task. A trigger can only be utilized if there is a task 
instance waiting for it at the time it is received. 

00 public class TransientTrigger : ProcessBase 

01 { 

02     ISubscribe externalTrigger; 

03   

04     public override IEnumerable<IFavor> Start(object data) 

05     { 

06         externalTrigger = Subscribe("TRIGGER", null, EventHandler); 

07   

08         yield return externalTrigger; 

09   
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10         IAssignTask task; 

11   

12         do 

13         { 

14             task = AssignTask("Internally trigger", Initiator, true); 

15   

16             yield return task; 

17   

18             if ((bool)task.Result)  

19                 yield return AsyncCall(EventHandler, (object)null); 

20         } while ((bool)task.Result); 

21   

22         yield return Unsubscribe(externalTrigger); 

23         externalTrigger = null; 

24     } 

25   

26     IEnumerable<IFavor> EventHandler(object data) 

27     { 

28         if (externalTrigger != null) 

29             yield return AssignTask("Triggered!", Initiator); 

30     } 

31 } 

Code Listing 46 – Transient Trigger Implementation Example 

The Transient Trigger pattern can be implemented with a subscription and AsyncCalls for internal calls.  

Code Listing 46 opens a subscription and an event loop for both external and internal calls to 

EventHandler.  Calls are only processed while the subscription is open (and for the benefit of 

synchronizing the internal calls, when externalTrigger is not null). 

Persistent Trigger 

The ability for a task to be triggered by a signal from another part of the process or from 
the external environment. These triggers are persistent in form and are retained by the 
process until they can be acted on by the receiving task. 

00 public class PersistentTrigger : ProcessBase 

01 { 

02     int count; 

03     ISubscribe externalTrigger; 

04   

05     public override IEnumerable<IFavor> Start(object data) 

06     { 

07         externalTrigger = Subscribe("TRIGGER", null, EventHandler); 

08   

09         yield return externalTrigger; 

10   

11         IAssignTask task = null; 

12   

13         do 

14         { 

15             task = AssignTask("Internally trigger", Initiator, true); 

16   

17             yield return task; 

18   

19             if ((bool)task.Result) 
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20                 yield return AsyncCall(EventHandler, (object)null); 

21         } while ((bool)task.Result); 

22   

23         yield return Unsubscribe(externalTrigger); 

24         externalTrigger = null; 

25   

26         yield return AssignTask("Advance", Initiator); 

27   

28         for (int i = 0; i < count; i++) 

29         { 

30             yield return AssignTask("Handle deferred event", Initiator); 

31         } 

32     } 

33   

34     IEnumerable<IFavor> EventHandler(object data) 

35     { 

36         if (externalTrigger != null) 

37             count++; 

38   

39         yield break; // Required by C# compiler 

40     } 

41 } 

Code Listing 47 – Persistent Trigger Implementation Example 

The Persistent Trigger pattern can be implemented with a subscription and a trigger queuing mechanism.  

Code Listing 47 opens a subscription to EventHandler as in Code Listing 46 but queues up triggers with a 

counter, count.  The internal call loop also serves to keep the subscription open.  Once the subscription 

is closed, the deferred queue of work (count occurrences, in this example) can be processed in sequence. 

Data Patterns 
BindFlow supports 34 of the 40 Data Patterns. 

Data Visibility 

Task Data 

Data elements can be defined by tasks which are accessible only within the context of 
individual execution instances of that task. 

The Task Data pattern can be implemented with local variables which are scoped only to a particular task, 

such as at the C# method level or code block level.  Code Listing 10 uses this pattern to track references to 

child branches of One and Two – data which is not available by other areas of the workflow.  Ever narrower 

scoping can be achieved with C# block scoping. 

Block Data 

Block tasks (i.e. tasks which can be described in terms of a corresponding subprocess) are 
able to define data elements which are accessible by each of the components of the 
corresponding subprocess. 
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The Block Data pattern can be implemented by passing the data by value first to a branch of a sequence.  

The Value variation, of the variations described by van der Aalst et al.[1], is achieved by passing values to 

sequences as parameters as in Code Listing 16. The Global Reference and Reference variations are achieved 

by passing context objects to sequences as parameters as in Code Listing 20. 

Scope Data 

Data elements can be defined which are accessible by a subset of the tasks in a case. 

The Scope Data pattern can be implemented by passing (push) or referencing (pull) data selectively within 

tasks. 

Multiple Instance Data 

Tasks which are able to execute multiple times within a single case can define data 
elements which are specific to an individual execution instance. 

The Multiple Instance Data pattern can be implemented by branching to a single sequence multiple times 

at runtime, as in Code Listing 16.  Each branch maintains a private state. 

Case Data 

Data elements can be defined by tasks which are accessible only within the context of 
individual execution instances of that task. 

The Case Data pattern can be implemented with data fields at the class-level (process-global) as in Code 

Listing 24. 

Folder Data 

Data elements can be defined which are accessible by multiple cases on a selective basis. 
They are accessible to all components of the cases to which they are bound.  

The Folder Data pattern is not natively supported. 

Workflow Data 

Data elements are supported which are accessible to all components in each and every 
case of the process and are within the context of the process itself. 

Workflow Data is provided by the ConfigVariableAttribute, configuration variables, and the 

IO.IOGetConfigValue favor.  Configured data is read-only from within a process. 

Environment Data 

Data elements which exist in the external operating environment are able to be accessed 
by components of processes during execution. 
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Environment data from any source is accessible through custom IO.  Within the IO.Perform method, 

any serializable data can be written to or read from the real world.  Written data could be from or 

influenced by any data stored in the IO object during construction within the instance.  Read data is 

passed back to the instance through the return value of the Perform method.  The engine, which called 

the Perform method, writes any result to the instance’s log before setting the IO’s Result property 

and resuming the instance.  In subsequent sessions, the engine places the stored result in the IO’s 

Result property, bypassing the Perform method.  

Internal Data Interaction 

Task to Task 

The ability to communicate data elements between one task instance and another within 
the same case. The communication of data elements between two tasks is specified in a 
form that is independent of the task definitions themselves. 

The Task to Task data pattern can be implemented as the Integrated Control and Data Channel (passing 

data to sequences through parameters) or the Global Data Store (instance-level data) variations of van 

der Aalst et al.[1]. 

Block Task to Sub-Workflow Decomposition 

The ability to pass data elements from a block task instance to the corresponding 
subprocess that defines its implementation. Any data elements that are available to a 
block task are able to be passed to (or be accessed) in the associated subprocess although 
only a specifically nominated subset of those data elements are actually passed to the 
subprocess. 

The Block Task to Sub-Workflow Decomposition pattern is supported by the Explicit data passing via 

parameters by van der Aalst et al.[1]. 

Sub-Workflow Decomposition to Block Task 

The ability to pass data elements from the underlying subprocess back to the 
corresponding block task. Only nominated data elements defined as part of the subprocess 
are made available to the (parent) block task. 

The Sub-Workflow Decomposition to Block Task pattern is supported by the Return favor.  The value 

passed to the host as part of the Return favor is copied to any Call, AsyncCall, or Waits relevant to 

the terminated branch. 

To Multiple Instance Task 

The ability to pass data elements from a preceding task instance to a subsequent task 
which is able to support multiple execution instances. This may involve passing the data 
elements to all instances of the multiple instance task or distributing them on a selective 
basis. The data passing occurs when the multiple instance task is enabled. 



  65 
 

The To Multiple Instance Task pattern is supported by the Shared Data Passed by Reference (passing data 

by reference as sequence parameters), Instance Specific Data Passed by Value (passing data by value as 

sequence parameters), and Instance Specific Data Passed by Reference (passing instance specific objects 

by reference as sequence parameters) variations by van der Aalst et al.[1]. 

From Multiple Instance Task 

The ability to pass data elements from a task which supports multiple execution instances 
to a subsequent task. The data passing occurs at the conclusion of the multiple instance 
task. It involves aggregating data elements from all instances of the task and passing them 
to a subsequent task. 

The From Multiple Instance Task pattern is supported by through the Return favor or by modifying some 

commonly referenced context object.  The Join construct may perform the aggregation or the context 

object may on-write or on-read aggregation functionality. 

Case to Case 

The passing of data elements from one case of a process during its execution to another 
case that is executing concurrently. 

The Case to Case pattern is supported through the IO.IOCompleteTask and the 

IO.IONotifySubscriber favors which, as the names suggest, complete the tasks or notify on the 

subscriptions of other instances. 

External Data Interaction 

The ability of a task to initiate the passing of data elements to a resource or service in the 
operating environment. 

Environment data from any source is accessible through custom IO.  Within the IO.Perform method, 

any serializable data can be written to or read from the real world.  Written data could be from or 

influenced by any data stored in the IO object during construction within the instance.  Read data is 

passed back to the instance through the return value of the Perform method.  The engine, which called 

the Perform method, writes any result to the instance’s log before setting the IO’s Result property 

and resuming the instance.  In subsequent sessions, the engine places the stored result in the IO’s 

Result property, bypassing the Perform method.  

Task to Environment - Push-Oriented 

The ability of a task to initiate the passing of data elements to a resource or service in the 
operating environment. 

The Task to Environment pattern is supported through AssignTask, Subscribe, and any custom IO, as 

previously described. 
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Environment to Task - Pull-Oriented 

The ability of a task to request data elements from resources or services in the operational 
environment. 

The Environment to Task - Pull-Oriented pattern is supported through any custom IO, as previously 

described. 

Environment to Task - Push-Oriented 

The ability for a task to receive and utilise data elements passed to it from services and 
resources in the operating environment on an unscheduled basis. 

The Environment to Task – Push-Oriented pattern is supported through AssignTask. 

Task to Environment - Pull-Oriented 

The ability of a task to receive and respond to requests for data elements from services 
and resources in the operational environment. 

The Task to Environment - Pull-Oriented pattern is not supported. 

Case to Environment - Push-Oriented 

The ability of a case to initiate the passing of data elements to a resource or service in the 
operational environment. 

The Case to Environment pattern is supported through AssignTask, Subscribe, and any custom IO, as 

previously described.  Here, the instance (case) is understood to necessarily include its component parts 

– a process can be designed with branches of execution that act on behalf of the instance in a singleton 

fashion. 

Environment to Case - Pull-Oriented 

The ability of a case to request data from services or resources in the operational 
environment. 

The Environment to Case - Pull-Oriented pattern is supported through any custom IO, as previously 

described. 

Environment to Case - Push-Oriented 

The ability of a case to accept data elements passed to it from services or resources in the 
operating environment. 

The Environment to Case - Push-Oriented pattern is supported through AssignTask and Subscribe. 
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Case to Environment - Pull-Oriented 

The ability of a case to respond to requests for data elements from a service or resource 
in the operating environment. 

The Case to Environment - Pull-Oriented pattern is supported through the selected data published to the 

environment through an instance’s Summarize method and it’s collection of Milestones. 

Workflow to Environment - Push-Oriented 

The ability of a process environment to pass data elements to resources or services in the 
operational environment. 

The Workflow to Environment – Push-Oriented pattern is not supported. 

Environment to Workflow - Pull-Oriented 

The ability of a process environment to request global data elements from external 
applications. 

The Environment to Workflow - Pull-Oriented pattern is not supported. 

Environment to Workflow - Push-Oriented 

The ability of services or resources in the operating environment to pass global data to a 
process. 

The Environment to Workflow - Push-Oriented pattern is supported through the configuration value 

mechanism, either through a management console or through the APIs programmatically. 

Workflow to Environment - Pull-Oriented 

The ability of the process environment to handle requests for global data from external 
applications. 

The Workflow to Environment - Pull-Oriented pattern is supported through the configuration value 

mechanism, either through a management console or through the APIs programmatically. 

Data Transfer Patterns 

By Value - Incoming 

The ability of a process component to receive incoming data elements by value avoiding 
the need to have shared names or common address space with the component(s) from 
which it receives them. 

The By Value - Incoming pattern is supported through the serialization of data objects inbound through 

new instances, completed tasks, notified subscriptions, or IO. 
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By Value - Outgoing 

The ability of a process component to pass data elements to subsequent components as 
values avoiding the need to have shared names or common address space with the 
component(s) to which it is passing them. 

The By Value - Outgoing pattern is supported through the serialization of data objects outbound through 

AssignTasks, Subscribes, IO, the optional ProcessBase.Summarize overload or a set of 

ProcessBase.Result. 

Copy In/Copy Out 

The ability of a process component to copy the values of a set of data elements from an 
external source (either within or outside the process environment) into its address space 
at the commencement of execution and to copy their final values back at completion. 

The Copy In/Copy Out pattern is supported through the serialization of data objects inbound or outbound, 

as previously discussed. 

By Reference - Unlocked 

The ability to communicate data elements between process components by utilizing a 
reference to the location of the data element in some mutually accessible location. No 
concurrency restrictions apply to the shared data element. 

The By Reference - Unlocked pattern is supported by passing a pointer, such as a database key value, as 

data by value.  IO must be employed to access the referenced data. 

By Reference - With Lock 

The ability to communicate data elements between process components by passing a 
reference to the location of the data element in some mutually accessible location. 
Concurrency restrictions are implied with the receiving component receiving the privilege 
of read-only or dedicated access to the data element. The required lock is declaratively 
specified as part of the data passing request. 

The By Reference - With Lock is not supported natively, however, a locking mechanism at the application 

level is practical. 

Data Transformation - Input 

The ability to apply a transformation function to a data element prior to it being passed 
to a process component. The transformation function has access to the same data 
elements as the receiving process component. 

The Data Transformation - Input pattern is supported by leveraging the standard C# data transformation 

capabilities within a process.  
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Data Transformation - Output 

The ability to apply a transformation function to a data element immediately prior to it 
being passed out of a process component. The transformation function has access to the 
same data elements as the process component that initiates it. 

The Data Transformation - Output pattern is supported by leveraging the standard C# data 

transformation capabilities within a process.  

Data-based Routing 

Task Precondition - Data Existence 

Data-based preconditions can be specified for tasks based on the presence of data 
elements at the time of execution. The preconditions can utilize any data elements 
available to the task with which they are associated. A task can only proceed if the 
associated precondition evaluates positively. 

The Task Precondition – Data Existence pattern is supported through typical programming data existence 

test such as testing for null. 

Task Precondition - Data Value 

Data-based preconditions can be specified for tasks based on the value of specific 
parameters at the time of execution. The preconditions can utilize any data elements 
available to the task with which they are associated. A task can only proceed if the 
associated precondition evaluates positively. 

The Task Precondition – Data Value pattern is supported through arbitrary data validations written in C# 

within a process. 

Task Postcondition - Data Existence 

Data-based postconditions can be specified for tasks based on the existence of specific 
parameters at the time of task completion. The postconditions can utilize any data 
elements available to the task with which they are associated. A task can only proceed if 
the associated postcondition evaluates positively. 

The Task Postcondition – Data Existence pattern is supported through typical programming data 

existence test such as testing for null.  Postcondition failure may involve throwing a .Net exception or 

some alternative code path.  

Task Postcondition - Data Value 

Data-based postconditions can be specified for tasks based on the value of specific 
parameters at the time of execution. The postconditions can utilize any data elements 
available to the task with which they are associated. A task can only proceed if the 
associated postcondition evaluates positively. 
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The Task Postcondition – Data Value pattern is supported through arbitrary data validations written in 

C# within a process. Postcondition failure may involve throwing a .Net exception or some alternative code 

path. 

Event-based Task Trigger 

The ability for an external event to initiate a task and to pass data elements to it. 

The Event-based Task Trigger pattern is supported through tasks and subscriptions. 

Data-based Task Trigger 

Data-based task triggers provide the ability to trigger a specific task when an expression 
based on data elements in the process instance evaluates to true. Any data element 
accessible within a process instance can be used as part of a data-based trigger 
expression. 

The Data-based Task Trigger pattern is not supported. 

Data-based Routing 

Data-based routing provides the ability to alter the control-flow within a case based on 
the evaluation of data-based expressions. A data-based routing expression is associated 
with each outgoing arc of an OR-split or XOR-split. It can be composed of any data-values, 
expressions and functions available in the process environment providing it can be 
evaluated at the time the split construct with which it is associated completes. Depending 
on whether the construct is an XOR-split or OR-split, a mechanism is available to select 
one or several outgoing arcs to which the thread of control should be passed based on the 
evaluation of the expressions associated with the arcs. 

The Data-based Routing pattern is supported by selecting one or more routes through standard C# 

control-flow mechanisms. 

Resource Patterns 
AssignTask assignments in the code examples above use the convenient ProcessBase.Initiator 

to assign the task back to the initiator of the process.  Assigning to other accounts requires only knowing 

the name of the account to assign with the Account constructor new Account("TAG", 

"ACCOUNT_NAME") where "TAG" is the provider prefix for a configured user manager, such as Active 

Directory, and "ACCOUNT_NAME" is the unique identifier of a user or group within that user manager’s 

scope.  In BindFlow, the provider prefix can be omitted, defaulting to Active Directory.  new 

Account("[TAG]ACCOUNT_NAME") formatting is also supported. 

Furthermore, role-membership, permissions, and organizational hierarchy queries against Active 

Directory or other user managers is available through IO.  The built-in IOActiveDirectory IO factory 

implements several user and group queries. 
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While most of the Control-Flow and Data patterns are supported from within process code, the BindFlow 

Development Kit, many of the Resource patterns are realized through the external Client API. 

BindFlow fully-supports 39 of the 43 Resource Patterns and at least partially supports all 43 Resource 

Patterns. 

Creation 

Direct Distribution 

The ability to specify at design time the identity of the resource(s) to which instances of 
this task will be distributed at runtime.  

The Direct Distribution pattern is supported by assigning a task to a particular user within a configured 

user manager’s scope. 

Role-Based Distribution 

The ability to specify at design-time one or more roles to which instances of this task will 
be distributed at runtime. Roles serve as a means of grouping resources with similar 
characteristics. Where an instance of a task is distributed in this way, it is distributed to 
all resources that are members of the role(s) associated with the task. 

The Role-Based Distribution pattern is supported to a particular group within a configured user manager’s 

scope. 

Deferred Distribution 

The ability to specify at design-time that the identification of the resource(s) to which 
instances of this task will be distributed will be deferred until runtime. 

The Deferred Distribution pattern is supported by using variable data to create the Account object at 

runtime. 

Authorization 

The ability to specify the range of privileges that a resource possesses in regard to the 
execution of a process. In the main, these privileges define the range of actions that a 
resource can initiate when undertaking work items associated with tasks in a process. 

The Authorization pattern is supported by querying user managers through IO or by embedding some 

scheme of authorization tables within a process. 

Separation of Duties 

The ability to specify that two tasks must be executed by different resources in a given 
case. 
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The Separation of Duties pattern is supported by enforcing such rules in process code. 

Case Handling 

The ability to allocate the work items within a given case to the same resource at the time 
that the case is commenced. 

The Case Handling pattern is supported by enforcing such rules in process code. 

Retain Familiar 

Where several resources are available to undertake a work item, the ability to allocate a 
work item within a given case to the same resource that undertook a preceding work item. 

The Retain Familiar pattern is supported by enforcing such rules in process code.  Familiarity among cases 

is not natively supported, but can be implemented with an application-level external data store. 

Capability-Based Distribution 

The ability to distribute work items to resources based on specific capabilities that they 
possess. Capabilities (and their associated values) are recorded for individual resources as 
part of the organizational model. 

The Capability-Based pattern is supported by querying user managers through IO or by embedding some 

scheme of capability tables within a process. 

History-Based Distribution 

The ability to distribute work items to resources on the basis of their previous execution 
history. 

The History-Based pattern is supported by enforcing such rules in process code.  History among cases is 

not natively supported. 

Organizational Distribution 

The ability to distribute work items to resources based their position within the 
organization and their relationship with other resources. 

The Organizational Distribution pattern is supported by querying some organizational hierarchy through 

IO or by embedding it within a process. 

Automatic Execution 

The ability for an instance of a task to execute without needing to utilize the services of a 
resource. 
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The Automatic Execution pattern is supported as many steps in process code and IO do not require human 

intervention.  Furthermore, a built-in system timer can be used to delay automated execution until some 

statically or dynamically chosen future date. 

Push 

Single Distribution by Offer 

The ability to distribute a work item to a selected individual resource on a non-binding 
basis. 

The Single Distribution by Offer pattern is supported.  An assigned task may be delegated or reassigned 

as allowed by system permissions.  

Multiple Distribution by Offer 

The ability to distribute a work item to a group of selected resources on a non-binding 
basis. 

The Multiple Distribution by Offer pattern is supported by assigning work to an Account representing a 

group. 

Single Distribution by Allocation 

The ability to distribute a work item to a specific resource for execution on a binding basis. 

The Single Distribution by Allocation pattern is supported.  An assigned task may be delegated or 

reassigned as allowed by system permissions.  

Random Allocation 

The ability to allocate work items to a selected resource chosen from a group of eligible 
resources on a random basis. 

The Random Allocation pattern is supported through the use of IO.IORandom or similar IO. 

Round Robin Allocation 

The ability to allocate a work item to a selected resource chosen from a group of eligible 
resources on a cyclic basis. 

The Round Robin Allocation within a single instance is supported.  Round Robin Allocation among 

instances is not natively supported. 

Shortest Queue 

The ability to allocate a work item to a selected resource chosen from a group of eligible 
resources on the basis of having the shortest work queue. 
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The Shortest Queue pattern within a single instance is supported.  The Shortest Queue pattern among 

instances is not natively supported. 

Early Distribution 

The ability to advertise and potentially distribute a work items to resources ahead of the 
moment at which it is actually enabled. 

The Early Distribution pattern is supported.  The allocation of a task prior to its enablement may be 

achieved in many ways such as sending an advisory email or assigning a task early with a low priority 

setting and later upgrading the priority at intended enablement. 

Distribution on Enablement 

The ability to advertise and distribute a work items to resources at the moment that the 
task to which it corresponds is enabled for execution. 

The Distribution on Enablement pattern is supported as the default. 

Late Distribution 

The ability to advertise and distribute work items to resources after the task to which the 
work item corresponds has been enabled for execution. 

The Late Distribution pattern is supported.  An email reminder or upgrade of task priority are two possible 

approaches. 

Pull 

Resource-Initiated Allocation 

The ability for a resource to commit to undertake a work item without needing to 
commence working on it immediately. 

The Resource-Initiated Allocation pattern is supported.  Work assigned to one or more assignees may be 

Claimed by one of them. 

Resource-Initiated Execution - Allocated Work Item 

The ability for a resource to commence work on a work item that is allocated to it. 

The Resource-Initiated Execution – Allocated Work Item pattern is supported. 

Resource-Initiated Execution - Offered Work Item 

The ability for a resource to select a work item offered to it and commence work on it 
immediately. 
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The Resource-Initiated Execution - Offered Work Item pattern is supported.  A task opened by a user will 

be immediately claimed. 

System-Determined Work Queue Content 

The ability of the system to order the content and sequence in which work items are 
presented to a resource for execution. 

The System-Determined Work Queue Content pattern is supported.  Tasks are delivered to the user 

sorted by some default ordering, such as by task age. 

Resource-Determined Work Queue Content 

The ability for resources to specify the format and content of work items listed in the work 
queue for execution. 

The Resource-Determined Work Queue Content pattern is supported.  Tasks are delivered to the user 

sorted by some default ordering, such as by task age; however, the resource may choose other 

presentation formats, if allowed by configuration. 

Selection Autonomy 

The ability for resources to select a work item for execution based on its characteristics 
and their own preferences. 

The Selection Autonomy pattern is supported.  By default, resources are presented with a list of active 

tasks from which they are free to select. 

Detour 

Delegation 

The ability for a resource to allocate an unstarted work item previously allocated to it (but 
not yet commenced) to another resource. 

The Delegation pattern is supported.  In BindFlow, it is called “Reassign” to differentiate it from a similar 

feature called “Delegation” which allows the original assignee to maintain ownership of the item and 

recall it if desired. 

Escalation 

The ability of a system to distribute a work item to a resource or group of resources other 
than those it has previously been distributed to in an attempt to expedite the completion 
of the work item. 

00 public class Escalation : ProcessBase 

01 { 

02     string summary; 

03     public override string Summarize() { return summary; } 
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04   

05     public override IEnumerable<IFavor> Start(object data) 

06     { 

07         // Do nothing for one day 

08         yield return Delay(TimeSpan.FromHours(24)); 

09   

10         var call = Call<Sequence<Account, TaskPriority>>(Escalate,  

11             EscalatedStep); 

12   

13         yield return call; 

14   

15         summary = (string)call.Result; 

16     } 

17   

18     IEnumerable<IFavor> Escalate( 

19         Sequence<Account, TaskPriority> escalatedStep) 

20     { 

21         var escalatedStepBranch = AsyncCall(escalatedStep,  

22             Initiator, TaskPriority.NORMAL); 

23   

24         var delay = AsyncDelay(TimeSpan.FromHours(4)); 

25         var wait = Wait(escalatedStepBranch, delay); 

26   

27         yield return escalatedStepBranch; 

28         yield return delay; 

29         yield return wait; 

30   

31         if (wait.Completed.Single() == delay) 

32         { 

33             yield return Cancel(escalatedStepBranch); 

34   

35             var call = Call(escalatedStep,  

36                 new Account("Supervisors"), TaskPriority.HIGH); 

37   

38             yield return call; 

39   

40             yield return Return(call.Result); 

41         } 

42         else 

43         { 

44             yield return Cancel(delay); 

45   

46             yield return Return(escalatedStepBranch.Result); 

47         } 

48     } 

49   

50     IEnumerable<IFavor> EscalatedStep( 

51         Account assignee, TaskPriority priority) 

52     { 

53         var task = AssignTask(priority, "Complete Me", 

54             "http://intranet/run?task={TASK}", assignee, null); 

55   

56         yield return task; 

57   

58         yield return Return(task.Result); 

59     } 

60 } 
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Code Listing 48 – Escalation Implementation Example 

The Escalation pattern is supported through a combination of AsyncCalls, delay timer tasks, and 

cancelations.  Code Listing 48 implements the escalation of EscalatedStep to a Supervisors group.   

Line 10 involves high-level programming features of C# Generics and C# Delegates.  To demonstrate some 

of the advanced capabilities of the model, we generalize the Escalate method to accept any 

Sequence<Account, TaskPriority>. The type parameters of Call are often discovered by the C# 

type-inferencer, but in this case the C# compiler needs our assistance. 

The Escalate sequence employs the Deferred Choice pattern between the passed in escalatedStep 

and a Delay timer step, triggered by the system timer.  If the timer fires first, the still blocked 

escalatedStep is canceled and replaced with a new one escalated to “Supervisors” with high priority.  

Otherwise, the timer is canceled.  In either case, the eventual completion of either of the assignments is 

returned back to the waiting Start branch. 

Deallocation 

The ability of a resource (or group of resources) to relinquish a work item which is allocated 
to it (but not yet commenced) and make it available for distribution to another resource 
or group of resources. 

The Deallocation pattern is supported.  The allocation or “Claim” of a work item can be revoked by 

“Releasing” the claim. 

Stateful Reallocation 

The ability of a resource to allocate a work item that they are currently executing to 
another resource without loss of state data. 

The Stateful Reallocation pattern is supported.  Task progress, such as filling out only some of an 

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.  

During reassignment, the reassigner has the option of retaining that saved progress. 

Stateless Reallocation 

The ability for a resource to reallocate a work item that it is currently executing to another 
resource without retention of state. 

The Stateless Reallocation pattern is supported.  Task progress, such as filling out only some of an 

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.  

During reassignment, the reassigner has the option of deleting that saved progress. 

Suspension-Resumption 

The ability for a resource to suspend and resume execution of a work item. 
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The Suspension-Resumption pattern is supported.  Task progress, such as filling out only some of an 

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.  

It can be recalled later to continue the assignment. 

Skip 

The ability for a resource to skip a work item allocated to it and mark the work item as 
complete. 

The Skip pattern behavior can be implemented by completing a task with some result data signaling the 

desire to skip the work, but is not a distinct mechanism. 

Redo 

The ability for a resource to redo a work item that has previously been completed in a 
case. Any subsequent work items (i.e. work items that correspond to subsequent tasks in 
the process) must also be repeated. 

The Redo pattern can be implemented as a follow-up step giving a user the option of recalling any future 

work, but is not a distinct mechanism. 

Pre-Do 

The ability for a resource to execute a work item ahead of the time that it has been offered 
or allocated to resources working on a given case. Only work items that do not depend on 
data elements from preceding work items can be "pre-done". 

The Pre-do pattern can be implemented by careful design of a process similar to the Early Distribution 

Resource Allocation pattern, but is not a distinct mechanism. 

Auto-Start 

Commencement on Creation 

The ability for a resource to commence execution on a work item as soon as it is created. 

The Commencement on Creation pattern is supported.  Tasks assigned to an individual rather than to a 

group do not need to be allocated.  

Commencement on Allocation 

The ability to commence execution on a work item as soon as it is allocated to a resource. 

The Commencement on Allocation pattern is supported.  Tasks assigned to a group are first allocated to 

an individual by claim, delegation, or reassignment before being commenced. 
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Piled Execution 

The ability to initiate the next instance of a task (perhaps in a different case) once the 
previous one has completed with all associated work items being allocated to the same 
resource. The transition to Piled Execution mode is at the instigation of an individual 
resource. Only one resource can be in Piled Execution mode for a given task at any time. 

The Piled Execution pattern is supported through the Client API calls within an application. 

Chained Execution 

The ability to automatically start the next work item in a case once the previous one has 
completed. The transition to Chained Execution mode is at the instigation of the resource. 

The Chained Execution pattern is supported.  Upon completing a task or notifying on a subscription, the 

engine tracks the applicable thread of execution and returns relevant follow-up tasks from the same 

thread, if available. 

Visibility 

Configurable Unallocated Work Item Visibility 

The ability to configure the visibility of unallocated work items by process participants. 

The Configurable Unallocated Work Item Visibility pattern is supported through group membership of 

the allocation pool or supervisory and process-oversight permissions on the task-list. 

Configurable Allocated Work Item Visibility 

The ability to configure the visibility of allocated work items by process participants. 

The Configurable Allocated Work Item Visibility pattern is supported through supervisory and process-

oversight permissions on the task-list. 

Multiple Resource 

Simultaneous Execution 

The ability for a resource to execute more than one work item simultaneously. 

The Simultaneous Execution pattern is supported.  Multiple assignments can be outstanding 

simultaneously and can be completed any order, according to the control-flow pattern at work. 

Additional Resources 

The ability for a given resource to request additional resources to assist in the execution 
of a work item that it is currently undertaking. 



  80 
 

The Additional Resources pattern is supported through “Delegation” which allows the original assignee 

to maintain ownership of the item and recall it if desired. 

Exception Handling 
Exception handling in workflow is supported at the low level, step-by-step through traditional exception 

handling mechanisms in C#.  Exceptions can be handled in deterministic transformation steps and in 

nondeterministic IO steps, but cannot span multiple steps.  Code Listing 49 demonstrates several exception 

handling examples. 

00 public class ExceptionHandling : ProcessBase 

01 { 

02     string summary; 

03     public override string Summarize() { return summary; } 

04   

05     public override IEnumerable<IFavor> Start(object data) 

06     { 

07         int i; 

08   

09         try 

10         { 

11             i = int.Parse((string)data); 

12         } 

13         catch (InvalidCastException ex) 

14         { 

15             summary = "Data could not be cast to a string"; 

16             i = 0; 

17         } 

18         catch (ArgumentNullException ex) 

19         { 

20             summary = "String could not be null"; 

21             i = 0; 

22         } 

23         catch (FormatException ex) 

24         { 

25             summary = "String could not be interpreted as a Int32"; 

26             i = 0; 

27         } 

28         catch (OverflowException ex) 

29         { 

30             summary = "String represents a value out of range of a Int32"; 

31             i = 0; 

32         } 

33         catch 

34         { 

35             throw; 

36         } 

37         finally 

38         { 

39             summary = summary.ToUpper(); 

40         } 

41   

42         var breakMe = new IOBroken(i) { TreatErrorsAsData = true }; 

43         yield return breakMe; 

44         if (!breakMe.Succeeded) 
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45         { 

46             throw breakMe.UnhandledException; 

47         } 

48   

49         yield return AssignTask("i = " + i.ToString(), Initiator); 

50     } 

51 } 

52   

53 class IOBroken : IO 

54 { 

55     int i; 

56   

57     public IOBroken(int i) 

58     { 

59         this.i = i; 

60     } 

61   

62     protected override object Perform() 

63     { 

64         int x = 0; 

65   

66         return DateTime.Now.Second * (i / x); 

67     } 

68 } 

Code Listing 49 – Exception Handling Implementation Examples 

Future Work 
Additional work can be done to further support the few remaining Workflow Patterns.  We are not aware 

of any fundamental issues with the model that prevent these patterns from being supported by the engine 

or the hosting server environment. 
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