
 Portions of the software described in this document are covered by U.S. Patent No. 8,051,427.

Workflow Patterns
implemented in

BindFlow™

Jason Kleban

BindFlow LLC

 2

Abstract
We present an operating environment, called BindFlow™, and a companion program structure well suited

for workflow programs which automate portions of real-world business processes. The flowchart logic of

most business processes can be authored concisely using traditional programming techniques; however,

the extended delays, overlapped execution, and hardware constraints in practical workflow scenarios

severely complicate programs. We examine workflow programs as a mix of nondeterministic operations

and deterministic transformations. Isolating a process’s deterministic transformations from its

nondeterministic operations allows us to record every input into the process. Instances can be safely

unloaded from memory, destroying state, because the record of the inputs is all that is required to rebuild

the logical state of a process instance on demand.

We introduce the BindFlow model and explore its ability to express the workflow patterns that have been

recognized in the research by van der Aalst, Russell, ter Hofstede, et al., documented at

http://www.workflowpatterns.com.

 3

Pattern Implementation Quick Reference

Control-Flow 20

Basic 20
Sequence 20
Parallel Split 21
Synchronization 22
Exclusive Choice 23
Simple Merge 24

Advanced Branching and Synchronization 24
Multi-Choice 24
Structured Synchronizing Merge 25
Multi-Merge 26
Structured Discriminator 27
Blocking Discriminator 28
Cancelling Discriminator 30
Structured Partial Join 31
Blocking Partial Join 32
Cancelling Partial Join 33
Generalized AND-Join 34
Local Synchronizing Merge 36
General Synchronizing Merge 37
Thread Merge 39
Thread Split 40

Multiple Instance 40
Multiple Instances without

Synchronization 40
Multiple Instances with a

Priori Design-Time Knowledge 41
Multiple Instances with a

Priori Run-Time Knowledge 42
Multiple Instances without a

Priori Run-Time Knowledge 43
Static Partial Join for

Multiple Instances 44
Cancelling Partial Join for

Multiple Instances 45
Dynamic Partial Join for

Multiple Instances 47

State-based 48
Deferred Choice 48
Interleaved Parallel Routing 49
Milestone 51
Critical Section 52
Interleaved Routing 53

Cancellation and Force Completion 53
Cancel Task 53
Cancel Case 54
Cancel Region 55
Cancel Multiple Instance Activity 56
Complete Multiple Instance Activity 57

Iteration 58
Arbitrary Cycles 58
Structured Loop 58
Recursion 59

Termination 59
Implicit Termination 59
Explicit Termination 60

Trigger 60
Transient Trigger 60
Persistent Trigger 61

Data Patterns 62

Data Visibility 62
Task Data 62
Block Data 62
Scope Data 63
Multiple Instance Data 63
Case Data 63
Folder Data 63
Workflow Data 63
Environment Data 63

Internal Data Interaction 64
Task to Task 64
Block Task to Sub-Workflow

Decomposition 64
Sub-Workflow Decomposition to

Block Task 64
To Multiple Instance Task 64
From Multiple Instance Task 65
Case to Case 65

External Data Interaction 65
Task to Environment - Push-Oriented 65
Environment to Task - Pull-Oriented 66
Environment to Task - Push-Oriented 66
Task to Environment - Pull-Oriented 66
Case to Environment - Push-Oriented 66
Environment to Case - Pull-Oriented 66

 4

Environment to Case - Push-Oriented 66
Case to Environment - Pull-Oriented 67
Workflow to Environment - Push-Oriented 67
Environment to Workflow - Pull-Oriented 67
Environment to Workflow - Push-Oriented 67
Workflow to Environment - Pull-Oriented 67

Data Transfer Patterns 67
By Value - Incoming 67
By Value - Outgoing 68
Copy In/Copy Out 68
By Reference - Unlocked 68
By Reference - With Lock 68
Data Transformation - Input 68
Data Transformation - Output 69

Data-based Routing 69
Task Precondition - Data Existence 69
Task Precondition - Data Value 69
Task Postcondition - Data Existence 69
Task Postcondition - Data Value 69
Event-based Task Trigger 70
Data-based Task Trigger 70
Data-based Routing 70

Resource Patterns 70

Creation 71
Direct Distribution 71
Role-Based Distribution 71
Deferred Distribution 71
Authorization 71
Separation of Duties 71
Case Handling 72
Retain Familiar 72
Capability-Based Distribution 72
History-Based Distribution 72
Organisational Distribution 72
Automatic Execution 72

Push 73
Single Distribution by Offer 73
Multiple Distribution by Offer 73
Single Distribution by Allocation 73
Random Allocation 73
Round Robin Allocation 73
Shortest Queue 73
Early Distribution 74
Distribution on Enablement 74
Late Distribution 74

Pull 74
Resource-Initiated Allocation 74
Resource-Initiated Execution -

Allocated Work Item 74
Resource-Initiated Execution -

Offered Work Item 74
System-Determined Work

Queue Content 75
Resource-Determined Work

Queue Content 75
Selection Autonomy 75

Detour 75
Delegation 75
Escalation 75
Deallocation 77
Stateful Reallocation 77
Stateless Reallocation 77
Suspension-Resumption 77
Skip 78
Redo 78
Pre-Do 78

Auto-Start 78
Commencement on Creation 78
Commencement on Allocation 78
Piled Execution 79
Chained Execution 79

Visibility 79
Configurable Unallocated Work

Item Visibility 79
Configurable Allocated Work

Item Visibility 79

Multiple Resource 79
Simultaneous Execution 79
Additional Resources 79

Exception Handling 80

 5

Introduction
We present an operating environment, called BindFlow™, and a companion program structure well suited

for workflow programs which automate portions of real-world business processes. Such programs are

relatively light-weight computationally and may be considered to be “in-process” for weeks, months, or

even years. We demonstrate a much improved articulacy of this operating environment over alternatives

that employ state-persistence.

As an example of workflow, the business process for a company employee to officially request vacation

time may instruct that the employee complete a provided form, obtain management-level written

approval, and deliver the approved request form to the Payroll department. Finally, the Payroll

department adjusts the records accordingly and notifies all interested parties. Some parts of this

procedure such as the choice of the vacation days, the decision of the manager, and the adjustment of

the payroll data may not be automatable, while other parts such as the routing of a completed form to a

manager, the forwarding of the approved request to payroll, and the notification of the interested parties

upon completion may be fully automatable.

The flowchart logic of this and most other business processes can be authored concisely using common

imperative programming style; however, the extended delays, overlapped execution, and hardware

constraints in practical workflow scenarios severely complicate programs. As one would with other

programming assignments, one could construct complex structures in memory to store the state of

business processes using only the data and control-flow features found in popular programming

languages. Unfortunately for that approach, some business processes take weeks or months to enact

from start to finish. Furthermore, the worth of automating a business process suggests the expectation

of multiple simultaneous enactments, or instances1, overlapping at various stages of completion. Even

ignoring the gluttonous resource consumption, interruptions of in-memory processes by a hosting

computer’s reboot would result in an unacceptable loss of state of each instance.

Instance state is not limited to easily storable data such as digital form entries – it also includes branching

and multi-iterative functionality, code as data, and related data scoping concerns. Contemporary

computer architectures encourage in-memory-only state management, therefore custom persistence

routines are the burden of the developer.

The commercial workflow software that we have been able to examine all use what we will label the

“state-persistence” approach to workflow. That approach is to record the entirety of the workflow state

to disk prior to unloading the instance and to logically restore it from the persisted state when needed.

In our experience, the state-persistence model requires frustrating departures from standard software

development practices and is under-expressive.

1 To improve readability, we have italicized special-use terms and have underlined each near its first

contextual description. See also the Terminology section of this document.

 6

We first examine workflow programs as a mix of nondeterministic operations and deterministic

transformations. We contrast this model against the state-persistence model. We then illustrate the

usage of this model through examples written in C# for our implementation of BindFlow Server. Finally,

we explore this model’s ability to express the workflow patterns that have been catalogued in the research

by van der Aalst, Russell, ter Hofstede, et al.[1].

The Model
Workflow programs are a mix of nondeterministic operations and deterministic transformations. To

explain, we return to our vacation request example for some definitions: The non-automatable human

decision steps are not dictated from the perspective of the business procedure or the system that is

partially automating it: The employee is making the choices of which days to request and of when to

submit the request to the manager. The manager may have biases, but the final decision of approval or

disapproval is not predictable. The Payroll system is not governed or tracked by this particular policy and

so the results of the records adjustments are unknown. An operation is considered nondeterministic from

the perspective of the system performing it if the results of the operation cannot be predicted from the

data input for the operation. Two identical vacation request form submissions might be reviewed with

different results because of some criteria that the manager uses to make the decision that is outside the

scope of what the business procedure or the implementing system tracks.

The automatable steps in this example are deterministic by definition. That is, their behavior is consistent

for any particular set of input data and is not influenced by circumstances that are not declared to be part

of the input data. An employee submission of a vacation request always gets sent to the management

team. A manager’s approval always gets forwarded to Payroll and a rejection always gets returned to the

employee. The payroll analyst’s reported actions always get sent to the interested parties. The interested

parties are always calculated as the manager, the employee, and an email distribution list of HR analysts.

An operation is considered deterministic from the perspective of the system performing it if the results of

the operation over data inputs are always the same. In the example, the calculations or transformations

performed to discover an employee’s management team depend only on the identity of the employee

and the dataset representing the current organizational hierarchy. Given the same employee and org

chart, the result of repeated program executions will be consistent. If the system asks for the

management team for a different employee, or if the organizational structure changes in an applicable

way, the answer will be different from the previous example, but it will be consistent for that dataset.

The results of nondeterministic operations, such as the manager’s decision to approve an employee’s

vacation, provide the input to deterministic functions which transform that input into a request for a next

nondeterministic operation. Isolating a process’s deterministic transformations from its nondeterministic

operations allows us to record every input to a log in non-volatile storage. Persisting input is much simpler

than persisting the resulting state. Instances can be safely unloaded from memory, destroying state,

because the record of the inputs is all that is required to rebuild the logical state of a process instance

when needed. Each time the instance is loaded in memory and finally unloaded is called a Session.

 7

Borrowing a term from pure functional programming, nondeterministic operations are called IO, for

input/output as they observe or manipulate information external to the system. Examples of IO are:

sending an email, reading/writing the contents of a file, getting the current time, generating a random

number, and asking for a user’s answer to a question. Note that even though random number generation

is usually done through deterministic pseudorandom number generating algorithms, these algorithms are

external to the business process logic and are intended to provide nondeterministic-like behavior and so

we may consider them to be nondeterministic.

Readers familiar with functional programming may recognize what we describe as a feature-rich version

of the Replay monad, a construct in which pure functions bind the results of IO to a supplied pure function

continuation. We have in a way adapted this concept for multi-threaded workflows and multi-user

environments[2].

A log and replay approach has been applied in lower-level systems to virtualization, unit-test generation,

and debugging[3].

In BindFlow, deterministic transformations are program code, quite naturally chained into control-flow

logic called sequences. While sequences cannot perform IO themselves due to the determinism

requirement, a sequence may emit requests for IO to be performed. Note that constructing and emitting

a message describing a request for IO is not the same as performing the IO. We call these request

descriptions favors. The instance requests something of its host through a favor and the host responds

with the results of the operation.

Besides generic IO favors, which request arbitrary real-world interaction, there are built-in system favors.

Like fork() and other API calls used in traditional multitasking programming, these predefined favors are

used to manipulate the host or the state of a running instance in ways that the sequences are unable to

express or directly perform themselves. These include operations such as assigning an

external task to a user or external system, subscribing to (or registering interest in)

occurrences of an external type of event, jumping to another sequence, or forking to

another sequence or process instance for parallel processing.

We may consider the instance isolation as a bubble membrane. Inside the bubble are

the deterministic transformations and private data structures. Outside the bubble is

the real world – the people, the external events, and external hardware and software

components. Only the hosting environment can reach into the bubble and provide new

input. Only the hosting environment can directly receive favor messages originating

from inside the bubble. These favor messages describe either predefined actions OR

arbitrary functions to be run by the host.

Sequences take the input from the last favor (or the input data of the sequence) and either terminates or

transforms that data into a new favor to be requested of the system. Within a sequence, standard

computation and control-flow mechanisms are used to implement the transformations. Figure 1

illustrates the alternating nature of deterministic transformations and nondeterministic operations.

Figure 1

 8

By definition, a process will have a default state, possibly empty. An instance of a process is initiated when

a nondeterministic external event, the request for a new instance along with its custom data payload

(externally supplied, such as submitted form data), prompts the BindFlow system to allocate the new

instance and submit the request’s payload to the process’s known entry point, which we call the Start

sequence. Start uses the default state and the supplied payload to determine what external action must

be taken next, which then it communicates back to the BindFlow system by responding to the host’s call

into its entry point with a favor. The result of a favor, having been procured by the host, is passed back

into the remainder of an unfinished sequence as additional input for the next transformation. This

concept extends to internally multi-threaded processes as explained in the section explaining the

implementation of the Parallel Split pattern.

An instance’s initial data is
written to the log. The
input is deterministically
transformed into a Favor
and emitted to the host by
the instance.

The host engine performs
the requested operation
and logs the result before
supplying it to the next
deterministic
transformation.

The engine unloads the
instance’s state to
conserve memory and CPU
when receiving Favors,
such as AssignTask, which
may block an instance for
extended durations.

Unloaded instances are
restored by rapidly
rerunning the same
deterministic
transformations using the
original data read from the
log.

This instance terminates
once a final deterministic
transformation returns
without requesting a
Favor.

Figure 2 – Deterministic Transformations and Nondeterministic operations

By recording each input, BindFlow can track the interaction between nondeterministic operations and

deterministic transformations. This guarantees that the logical state of a partially executed instance can

be rebuilt from the process’s default state. When needed, BindFlow restores the state of the instance by

feeding the recorded inputs back to the sequences in the original order, responding to each emitted favor

with the stored result rather than a newly generated one. Once the log of results has been depleted, the

instance will be in the same logical state as it was before being unloaded from memory.

Failures during IO can be handled by any appropriate corrective action whereas interrupted sequence

transformations have no effect on the system or data due to their required functional purity and can be

retried.

Comparison to State-Persistence
The commercially available workflow software that we have been able to examine all use what we will

label the “state-persistence” approach. That approach is to record the entirety of the workflow state to

non-volatile storage prior to unloading the instance and to logically restore it from the persisted state

when needed. In our experience, the state-persistence model requires frustrating departures from

standard software development practices and is under-expressive. We will now summarize the

 9

succession of compromises that the state-persistence approach dictates which lead, rather unavoidably,

to those drawbacks:

A conceptually naïve implementation of state-persistence performs a core dump before unloading an

instance and with significant effort, restriction, and storage cost, can resurrect the instance at a later

time[4].

More practical state-persistence workflow engines avoid the costs of core dumps by requiring that a

workflow be segmented into a collection of independent programs (or perhaps a library of equivalently-

independent functions) such that idle-points in the process occur between segments. And just as a

flowchart’s steps are granulated to support looping and other conditional redirection, so too is a

workflow’s logic divided into its segments. Often, each one of the many segments is very short, existing

merely to update a persisted variable, evaluate a condition, or perform a basic integration operation.

Since the segments cannot communicate directly, each segment must load the relevant state, perform its

small part of the total process, and update the relevant state accordingly.

Each segment is executed by the workflow engine if the conditional paths leading to it are met. The

condition and its inputs, or at least the condition’s outcome, must be accessible to the workflow engine

and so constraints are imposed on the manner in which a state is persisted to conform to the engine’s

supported interface. Native control-flow mechanisms are unusable for the purposes of routing among

segments since the engine performs the routing based on state-data; difficult-to-follow jump instructions

are instead encoded into the state for the enactment by the engine. An otherwise simple program

definition will become overrun by an inelegant mix of structural and data-based control-flow and

persistence mechanisms.

Rather than communicating through in-memory data structures, the state-persistence model requires

segments to communicate only through the persisted state – even for intermediate data that has no

external use. It may seem to work well for simple workflows with a single, global data-scope but it severely

complicates the state-management mechanisms for the workflow engines which are expected to support

more complex data scoping patterns such as the Multiple Instance Data pattern discussed in the

Workflow Patterns section. More detailed descriptions of workflow engine designs are made available by

Georgakopoulos[5].

In contrast to state-persistence engines, BindFlow does not attempt to persist the state of a workflow,

opting instead to merely record any new data as it enters the instance along its execution. The instance

is free to create and maintain any arbitrary, strongly typed, and granularly scoped data structures in its

memory-space. If an interruption occurs, the recorded inputs are replayed into the deterministic code

and the logical state is restored. Language-native control-flow mechanisms are sufficient for most routing

situations and the workflow engine imposes no restrictions on the state data that is accumulated during

execution.

Workflow Patterns
Van der Aalst et al.[1] have studied, named, and sorted more than 120 universal workflow requirements

into the four pattern categories of Control-flow, Data, Resource, and Exception Handling. Control-flow is

 10

perhaps the most familiar category, dealing with the rules that govern the progression of workflow state.

Control-flow is the distinguished feature of graphical flow charts commonly represented as the lines and

diamonds among the rectangular nodes. In an arbitrary process with multiple participants and some data

payload routed among them, the control-flow patterns would describe the order or stage in which the

participants are involved. It may be that each participant gets the payload in turn, sequentially, or they

may receive the payload simultaneously, in parallel. Maybe they all do the same work, or maybe they

each have different assignments. Often, multiple patterns are at work within a single process definition.

Data patterns describe the way data is scoped or shared among various parts of the workflow system,

including getting data in or out of the instance state. Maybe all participants share a single copy of the

data related to an assignment or maybe they each get an isolated copy.

Resource patterns include the selection of the participants, people or machines, and the access rights of

the participants to instance status and data. The work might be assigned to an individual or an entire

group. Perhaps the work assigned to a group should be locked to the first person to open the item.

Perhaps future steps in the workflow should be directly assigned to the individuals who are now familiar

with the case. Depending on the pattern, the choice of the assignees may be from a deterministic source

(hard-coded) or a nondeterministic source (external).

The Exception Handling category discusses a system’s ability to handle exceptional cases, such as invalid

input, without having to explicitly code for each possibility.

The patterns, generally, are a taxonomy for the fundamental design challenges facing workflow

developers. The aim of cataloging these patterns is that regardless of the industry, participants, or data,

every workflow problem can be understood as an assembly of the patterns and that the workflow

solutions can be realized by a composition of the implementation techniques. The patterns might

describe routing for an online retailer’s product fulfillment, a corporate budget approval, or a nuclear

facility’s safety regulations - but as illustrated by van der Aalst et al.[1], our introductory descriptions have

unspecified nuance that must be understood before the actual process can be accurately automated. We

encourage the reader to review the detailed technical descriptions and the interactive animations of these

patterns at workflowpatterns.com.

An Implementation
BindFlow™ is an implementation of this described model written in C# and .Net 3.5. To be clear, BindFlow

is not based on Microsoft’s Workflow Foundations (WF) which is a set of types useful for implementing a

state-persisting workflow engine. This paper is based on the 2012 version of the BindFlow software.

 11

Figure 3

BindFlow has three main components: BindFlow Server™, the BindFlow Development Kit™, and the

BindFlow Client API™. The BindFlow Server is an installable window service. It is responsible for providing

the runtime environment for BindFlow process instances and for maintaining lists of assignments pending

completion.

The BindFlow Development Kit is a code library defining the base types for BindFlow processes and custom

IO and contains pre-built IO for common external systems integration. Business analysts and developers

work together to extend these base classes to automate workflow logic as BindFlow processes. Processes

are defined as classes extending the ProcessBase base class. .Net assemblies containing one or more

process definitions are called Process Sets.

The BindFlow Client API is a code library to facilitate interaction with the BindFlow Server. User interface

applications surfacing the forms or other data use this API to communicate with BindFlow server to

provide such common application needs as displaying and completing assignments.

In this document, we focus on the use of the BindFlow Development Kit and its dependence on the

BindFlow Server. We will ignore aspects of the BindFlow system that do not pertain to the

implementation of the workflow patterns, such as safety mechanisms and security.

0 public class TrivialProcess : ProcessBase

1 {

2 public override IEnumerable<IFavor> Start(object data)

3 {

4 yield break;

5 }

6 }

Code Listing 1 – The trivial process

Referring now to Code Listing 1, this TrivialProcess is the simplest valid extension of ProcessBase.

The process performs no computation and terminates immediately. The data parameter of the Start

sequence would be ignored, if any were to be provided. This BindFlow implementation makes heavy use

of the iterator concept available in many languages including C# and Java. All BindFlow sequences are

enumerable code-blocks which conform to the Sequence(object data):IEnumerable<IFavor>

signature, or its overloads. C# requires that each iterator block have at least one yield statement, either

yield break, which terminates the iteration of the sequence, or yield return favor, where favor

 12

is an object of a type that implements IFavor. Each yield return statement will be simply referred

to as a yield or an emission.

By taking advantage of the syntactic sugaring provided by the C# compiler for iterator blocks, BindFlow

can simulate interruption of function calls while in fact, each section of an enumerator is rearranged by

the compiler as a stateful object conforming to the iterator interface. The reader is invited to learn more

about this powerful language feature, as it is implemented in C#, on Microsoft’s MSDN documentation[6]

or elsewhere.

BindFlow is a cooperative multi-tasking system and as such, it is the responsibility of the process to return

control to the host (BindFlow Server) either by terminating itself or by emitting a favor. Termination can

be explicit with yield break or can be implicit by reaching the end of the code branch. As sequences

must remain deterministic, sequence code is not allowed to directly interact with anything outside of the

scope of the related instance except by passing favor messages back to the calling host. This restriction

includes any sort of delay, which would require interaction with the system’s timer and callback routines.

Rather, a correctly built sequence performs any arbitrary deterministic transformation on the latest input

as quickly as possible and does not perform any synchronization operations. When nondeterministic

operations such as I/O or delays are required, the intention is emitted to the host in the form of a favor.

Jump An unconditional jump. Moves the current sequence iteration to the beginning of
a sequence. The jumping sequence is not resumed at the completion of the Jump-
targeted sequence.

Call Suspends the current sequence iteration and executes a new sequence. Once
finished, the calling iteration continues.

Sequence A convenience. Wraps a single favor or an array of favors in a new sequence, to
be emitted serially if iterated (with Call, Jump, or AsyncCall).

AssignTask Blocks a sequence, pending a task result
Subscribe Registers an interest in external events with the host. Asks the host to execute a

particular sequence upon each occurrence of such event.
Unsubscribe Revokes a subscription. Asks the host to no longer notify for the particular

subscription.
AsyncCall For multi-threading/parallel execution of sequences. The host will execute a new

iteration of the given sequence until the target sequence iteration blocks and then
will immediately resume execution of the calling sequence. Target sequences, the
calling sequence, and all other unrelated sequences can be further executed in an
order not specified at design-time.

Wait Waits on a single sequence or sub-instance to complete.
Cancel Cancels a sub-instance or an entire branch of execution of a root sequence. That

is, the canceled sequence and all of its active sub-branches and instances are also
canceled.

Spawn Creates and executes a sub-instance, an instance of a named process.
AbandonSession Abandons the current session without committing its progress. A convenience for

special applications. Any sub-instances are not abandoned.
ForceTerminate Terminates a process instance immediately. Sub-instances are also terminated.
Return Immediately ends a sequence and returns some value (as a replacement for

yield break which syntactically cannot return a value to the calling sequence)

 13

Table 1 – System Favors

Favors come in two varieties, system requests and IO. There are 13 primitive system favors that perform

interaction with the host’s managed data and/or perform instance state manipulations that must be

honored or tracked by the host. They are as listed in Table 1.

Delay Blocks the current sequence for no less than a minimum duration

AsyncDelay Executes a sequence after a minimum duration has elapsed

WaitAll Waits on the completion of all of the listed sequences and/or sub-instances.

WaitOnPrimary Terminates (prematurely abandons) the secondary sequence iteration upon the
completion of the primary sequence iteration

Table 2 – Composite System Favors

In addition, there are several built-in favors that are included for convenience, but which are merely

common, user-definable composites of the 13 primitive system favors. They are as listed in Table 2.

System favors are created within processes by calling the ProcessBase-defined protected methods

named in Table 1 and Table 2. These methods each return an IFavor which must be emitted to the host.

That is, the protected methods such as AssignTask which does not perform the assignment of the task

directly create the favor (message object) that should be used to communicate the request for the related

operation back to the host. System request favors are sealed and cannot be extended.

0 public class IOMyOperation : IOBase

1 {

2 protected override object Perform()

3 {

4 return null;

5 }

6 }

Code Listing 2 – The trivial IO

The second type of favor, IO, is based on the IOBase abstract base class. The trivial IO is illustrated in

Code Listing 2. This IO takes no input, does no computation and returns null. Similar to the deterministic

restrictions of sequences, correctly written IO should do whatever single-threaded computation is

necessary and return immediately without explicit delay. IO is only for synchronous, immediate system

integration. Any desired delays should be implemented by creating Delay favors and emitting them from

within an executing sequence. Contrary to system favors, which are created by the factory methods, IO

favor messages may be instantiated directly using the new keyword; however for consistency, we

recommend providing static factory methods within IO definitions to mimic the calling convention of the

system favors. We do not follow this advice here.

00 public class MyProcess : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var getNameById = new IOGetNameByID(4);

05

06 yield return getNameById;

 14

07

08 // use getNameById.Name …

09 }

10 }

11

12 class IOGetNameByID : IOBase

13 {

14 int id;

15

16 public string Name { get { return RawResult as string; } }

17

18 public IOGetNameByID(int id)

19 {

20 this.id = id;

21 }

22

23 protected override object Perform()

24 {

25 return SQL.GetNameByID(id);

26 }

27 }

Code Listing 3 – Implementation and use of a less trivial custom IO.

Code Listing 3 demonstrates a completed IO. The constructor sets the parameters to be used by Perform

when called by the engine. Perform returns a serializable string object. The engine records the value

and populates IOBase.RawResult, which is exposed by the custom Name property of the getNameById

favor on Line 06.

00 public class Example : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var firstTask = AssignTask(

05 "Do you like peanut butter?",

06 "",

07 this.Initiator,

08 null);

09

10 yield return firstTask;

11

12 if ((bool)firstTask.Result)

13 {

14 var secondTask = AssignTask(

15 "I have some. Do you want a sandwich?",

16 "",

17 this.Initiator,

18 null);

19

20 yield return secondTask;

21 }

22 }

23 }

Code Listing 4 – Example Process

 15

Code Listing 4 is an example of a simple workflow. In it, the data parameter is ignored – there is no initial

payload required to start an instance of this process.

Starting on line 04, firstTask is assigned as a favor returned from the AssignTask factory method.

Line 05 is the readable summary of this task which would be presented to the assignee as one assignment

in a list of all assignments due by the assignee, called a task-list. Line 06 would represent to URI of the

resource that the assignee should use to complete the request, such as the URL of a web application. In

this scenario, we are ignoring these practical concerns. Line 07 is the assignee, in this case, the initiator

of the instance. Line 08 is the data associated with this request – in this case null since we have enough

information for this example being the assignment’s summary, “Do you like peanut butter?”

On line 10, we emit the firstTask favor. This has the effect of blocking the sequence (and since there

are no other active sequence iterations, the entire instance) until the assignee completes the task. The

task will appear in the task-list and the assignee responds through an end-user-application-validated

choice of either true or false.

By line 12, the result of the firstTask favor is available and is cast as the expected bool type for

evaluation. If the assignee responds with a value of true then a second assignment similar to the first is

constructed and emitted, otherwise the sequence and, ultimately, the instance is terminated.

Though it is not important to understand to be productive in this model, you may note that at each favor

emission, the host may decide to completely release the state of the instance from memory. If the host

implementation should so choose to unload the instance from memory during line 20, for example, the

host will resume the instance by recreating the instance state from scratch, starting with the default

(empty) state and executing Start with the same input originally provided (probably null, in this

example), running the Start sequence until line 10, receiving the firstTask favor, dequeueing the

original result of that first assignment (which we must here assume to be true, since we reached line 20

at all), and immediately resuming at line 12. The sequence immediately continues creating secondTask

just as it did in the first session. After the emission on line 20, the original state has been restored. At this

point, if we assume that the completion of the assignment by the assignee was what prompted the host

to restore the state of the instance, we are now ready to immediately inject the result of secondTask

back into the remainder of the sequence. The remainder (or continuation) happens to be empty in this

short example and the secondTask’s result is not used, but very well could be as was the firstTask’s

result.

Terminology
Note that a BindFlow instance is the runtime version of a BindFlow process. A process is the definition of

all possible paths that an instance might take and contains no state (though it may describe a default

state). Instances are the runtime embodiment of a specific path through a process. In some discussions,

the terms are roughly interchangeable. Many independent instances may follow the rules of a single

process, each with their own state and isolated from each other.

Note that a BindFlow branch is a runtime version of a BindFlow sequence. As a process is to an instance,

a sequence is to a branch. A sequence is the definition of all possible paths that a branch might take and

 16

contains no state. Branches are iterations over their sequence, the runtime embodiment of a specific path

through a sequence. In some discussions, these terms are also roughly interchangeable. Many

independent branches in a single instance may follow the rules of a single sequence, each with their own

state and isolated from each other. Data may be shared in a variety of ways depending on scoping – for

example, data fields scoped at the instance level may be shared by all branches.

Note that while methods such as AssignTask() and AsyncCall() are not exactly favors, but are

instead factory methods that return favors of type IAssignTask and IAsyncCall respectively, it is

productive to loosely refer to the use of such methods as favors in discussion for the sake of overall clarity

- i.e. “The AssignTask favor”.

Note that BindFlow terminology and the terminology chosen by van der Aalst et al.[1] sometimes collide.

Care has been taken to translate the underlying concepts put forth by van der Aalst et al. into BindFlow’s

model. One example of a terminology difference is “Task”. Van der Aalst et al. consider a “task” as a

discrete step, a logical section of a workflow. In BindFlow, a “task” is an assignment to be completed by

a user or external system. While both concepts are present in both models, the mapping of named

concept to named concept is indistinct. Other terms to read carefully are “instance” (of a task), and

“branch”.

BindFlow Stack & Threading Model

In BindFlow, the standard CIL call stack is supported (as used in any C# program) for normal method calls.

Then there are the BindFlow stack and wait-list managed by the engine for multithreading support. It

may be useful to understand how the stack and wait-list operate and how they are honored by various

system favors. We refer to BindFlow engine’s threads unless otherwise noted.

BindFlow’s threading model is cooperative. While an instance may have many threads in play, only one

is actively processed at any one time. Thread execution always continues uninterrupted until it emits a

favor. Non-blocking favors that do not affect the instance’s callstack are continued again after the favor

is satisfied. Newly initiated branches (Call, AsyncCall) or newly spawned instances (Spawn) are placed

on the top of the stack, pausing the execution of the initiating branch. AsyncCall runs a newly initiated

branch until it first blocks (or terminates), then returns the control to the calling branch. Spawn behaves

the similarly for spawned instances – instances are run from their Start sequence until the instance

terminates or all of the branches are blocked, then the spawning instance is resumed at the spawning

branch. Call runs a called sequence until branch termination and moves the calling branch from the

stack to the wait-list. Wait similarly moves the emitting branch from the stack to the wait-list. Normal

branch termination or Cancel, which terminates a branch, removes it from the wait-list, and pushes any

waiting branches back on the stack.

Wait-list items are returned to the stack LIFO so that the most recently waited item will be at the top of

the stack and resumed first.

AssignTask may be considered a Call to an external person or system – where the emitting branch is

blocked until the assigned task is completed. AssignTask moves the calling branch to the wait-list.

 17

While an AssignTask cannot be canceled directly, its containing branch may be canceled which has the

effect of revoking the task.

Jump terminates the current branch and replaces it with a branch of the target sequence.

Return provides a way to terminate the emitting branch and populate the Result property of the

AsyncCall favor that initiated it. The ProcessBase.Result property may be set to provide a value to

the Spawn favor that spawned it. Setting ProcessBase.Result does not immediately terminate the

instance as Return does for a branch.

IO favors may not block, and so do not affect the stack or wait-lists.

Instances in the same spawn tree – that is, instances sharing a common ancestral instance – may not be

executed simultaneously since one might intend to terminate the other.

The BindFlow Framework
There are two halves of the BindFlow APIs, as depicted in Figure 3: the BindFlow Client API and the

BindFlow Development Kit. The Client API is used to communicate and configure the BindFlow Server,

start new instances, retrieve work items, complete tasks, and notify on subscriptions. The BindFlow

Development Kit contains the base classes for custom processes to be executed in BindFlow Server.

An instance should be considered to be within a protective bubble membrane isolated from the outside

world. Outside of the bubble, the universe, anything can happen. Inside the bubble, anything can be

calculated about the outside universe, but to support the replay, input must be strictly controlled through

the portals in the bubble managed by the BindFlow Server. These portals are the instance creation, and

completing of IO, including tasks and subscriptions.

 18

ProcessBase:
Public Members -
 Start(object data) : Sequence
 Summarize() : string (must implement)

Protected Members -
 Initiated : DateTimeOffset
 Initiator : Account
 InstanceId : long
 Milestones : IMilestoneCollection
 Result : object
 SessionResult : object

 AssignTask(priority : TaskPriority, summary : string, assignment : string,
 assignee : Account, data : object) : IAssignTask (overloaded)
 AsyncCall(target : Sequence) : IAsyncCall (overloaded)
 Call(target : Sequence) : ICall (overloaded)
 Cancel(waitable : IWaitable) : ICancel
 Jump(target : Sequence) : IJump (overloaded)
 Return(result : object) : IReturn
 Sequence(favors : IFavor, …) : Sequence
 Spawn(processName : string, data : object, largeData : object) : ISpawn (overloaded)
 Subscribe(tag : string, data : object, callback : Sequence<object>) : ISubscribe
 Unsubscribe(subscription : ISubscribe) : IUnsubscribe
 Wait(waitable : IWaitable, …) : IWait
 AbandonSession() : IAbandonSession
 ForceTerminate() : IForceTerminate

IOBase:
Public Members -
 IsUsed : bool
 Succeeded : bool
 TreatErrorsAsData : bool
 UnhandledException : Exception

Protected Members -
 CurrentInstanceInfo : InstanceInfo
 RawResult : object

 Perform() : object (must implement)

 GetInstanceLargeData(preserve : bool) : object
 ClearInstanceLargeData() : void
 GetCurrentNotificationLargeData(preserve : bool) : object
 ClearCurrentNotificationLargeData() : void
 GetNotificationLargeData(subscriptionId : long, occurrenceId : long,
 preserve : bool) : object
 ClearNotificationLargeData(subscriptionId : long, occurrenceId : long) : void
 GetTaskLargeData(taskId : long, preserve : bool) : object
 ClearTaskLargeData(taskId : long) : void
 GetConfigValue_(key : string) : string
 GetInstanceInfo(instanceId : long) : InstanceInfo

 CompleteTask(taskHandle : string, data : byte[],
 largeData : byte[]) : InternalSessionResponse
 NotifySubscriber(subscriptionHandle : string, data : byte[],
 largeData : byte[]) : InternalSessionResponse

Figure 4 BDK abbreviated framework types

 19

The BindFlow Development Kit’s two major classes are BindFlow.BDK.ProcessBase and

BindFlow.BDK.IOBase. Abbreviated members are listed in Figure 4. Subclasses of ProcessBase

describe all deterministic transformations. Subclasses of IOBase describe custom nondeterministic

operations, or integration with the real world. The Development Kit also contains a Visual Studio-

integrated BindFlow implementation, called the “Workbench”, that facilitates testing and break-point

debugging.

ServerProxy:
 NewInstance(processName : string, startData : object,
 largeData : object, wait : bool) : SessionResponse

 GetTask(taskHandle : string) : GetTaskResult
 SaveTaskData(taskHandle : string, data : object, largeData : object) : void
 CompleteTask(taskHandle : string, data : object, largeData : object, wait : bool,
 faultBehavior : OnFaultBehavior) : SessionResponse

 GetSubscription(subscriptionHandle : string) : GetSubscriptionResult
 NotifySubscriber(subscriptionHandle : string, data : object, largeData : object,
 wait : bool, faultBehavior : OnFaultBehavior) : SessionResponse

Figure 5 Client API ServerProxy abbreviated listing

The BindFlow Client API has one main class, BindFlow.Client.ServerProxy. Its abbreviated member

list is in Figure 5.

These code samples illustrate the patterns minimally, but none of the implementations cheat such that

an implementation could not be extended to practical scenarios. We do not use the full features of the

favors when not required. An overload of the AssignTask favor factory method is listed in Figure 4

where priority is a low, normal, high enumeration; summary is a friendly short string describing the

task; assignment is a URL to a web application or some other redirect where the task can be completed;

assignee is an Account (A reference to a user); data is any serializable data or null, such as form data,

to be available for completing the task; and visibleInTaskList is a Boolean value indicating a task’s

visibility in the built-in BindFlow Viewer. We test our implementations in the Workbench to avoid having

to write a custom User Interface for each example, and so options such as assignment are omitted. For

these examples, we often populate the data parameter with the default value of the expected result type.

There is no requirement that this data value and the IAssignTask.Result are related in any way,

however, providing such a template value facilitates testing within the Workbench.

An Optimization for Large Data Input
Another valuable feature not demonstrated in the examples, but one which is relevant to practical

applications built on BindFlow is “Large Data”. Very large data sets, such as document attachments, to be

submitted as part of an instance’s initial payload, a task’s completion data, or a subscription notification

are often immediately moved to some document repository as a process step. In these cases, loading this

very large dataset for all subsequent sessions, just to satisfy the replay requirements is inefficient. Other

workflow products face a similar obstacle in keeping state small and may work around it by advising the

 20

application developer to upload the document to the target repository and only submit a reference to the

document for processing. This puts unnecessary burden on the developer to host such a repository and

have two methods for interacting with the repository (one prior to submission and one in the workflow),

even if the need for the data is only short-term. To solve this problem in BindFlow, we have a mechanism

called “Large Data” which can be used to pass any serializable data to a new instance, task completion, or

subscription notification but which is only directly accessible from IO. When submitting a large document

as an attachment for processing, the application developer can include it as Large Data. Any custom IO

can access it, process it, and preferably discard it from the Large Data store. In some cases, the document

is merely to be moved to some document repository and, optionally, the original submission can be

cleared from the built-in temporary store. In other cases, only a subset of the document’s data is

necessary for process decision points and an IO can be used to arbitrarily summarize the contents of the

Large Data down to those key decision factors. The entire Large Data dataset can be explicitly returned

to the Instance’s internal state from an IO in cases if deferred conditional access to the full Large Data is

required.

Pattern Support
Van der Aalst et al.[1] categorize their identified workflow patterns into four major groups: Control-Flow,

Data, Resource, and Exception Handling. All quoted definitions are referenced for convenience from van

der Aalst et al. though referenced pattern-variation definitions are not quoted here. Redundant lines of

the code listings including namespace references are omitted after Code Listing 5 to save space.

Note that the example implementations do not necessarily represent best practices for code, but are

crafted as short illustrations of the essence of the solution for each pattern to avoid the need to cover too

many topics in a single pattern discussion.

Note also that pattern implementation complexity will vary by model. The order of presentation of the

patterns here is copied from van der Aalst et al. for consistency rather than attempting to reorder them

by complexity relative to the BindFlow model.

Not every technique or mechanism is discussed for every pattern, but we attempt to cover all techniques

as necessary.

Control-Flow
Control-flow patterns deal with the mechanics of decision points in a workflow. Van der Aalst et al.[1]

organize control-flow patterns into groups of conceptually similar patterns. All 43 of these patterns are

supported in BindFlow.

Basic

Sequence

A task in a process in enabled after the completion of a preceding task in the same process.

00 using System;

 21

01 using System.Collections.Generic;

02 using BindFlow.BDK;

03 using System.Collections;

04 using System.Linq;

05

06 namespace WorkflowPatterns.ControlFlow

07 {

08 public class Sequence : ProcessBase

09 {

10 public override IEnumerable<IFavor> Start(object data)

11 {

12 var task = AssignTask("Advance", Initiator);

13 // First Task

14 yield return task;

15

16 // Second Task

17 yield return AssignTask("Advance Again", Initiator);

18 }

19 }

20 }

Code Listing 5 – Sequence Implementation Example

The Sequence pattern is implemented as an unconditional iteration over an ordered listing of instructions.

These instructions can be either purely instance-state manipulations or can be deterministic operations

interleaved with IO. In Code Listing 5, the Start sequence consists of two serial tasks. The first task is

assigned and the instance blocks until the task is completed by a user. Then the second task is assigned

and the instance blocks until the task is completed by a user. Then the process implicitly terminates. This

process makes no considerations for the data passed in to Start nor data submitted when completing

either task.

Parallel Split

The divergence of a branch into two or more parallel branches each of which execute
concurrently.

00 public class ParallelSplit : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 // Split

05 yield return AsyncCall(Other);

06

07 // First Task

08 yield return AssignTask("Advance Main branch", Initiator);

09 }

10

11 IEnumerable<IFavor> Other()

12 {

13 // Second Task

14 yield return AssignTask("Advance Other branch", Initiator);

15 }

16 }

Code Listing 6 – Parallel Split Implementation Example

 22

The Parallel Split pattern is implemented using the AsyncCall favor to initiate a new sequence. In Code

Listing 6, Line 05 emits an AsyncCall requesting the execution of a new branch of the Other sequence.

The BindFlow engine pushes a new Other branch onto the stack which immediately blocks with the

“Advance Other Branch” task. The branch is moved to the wait-list and control is returned to Start, line

08, which assigns a second task. The session concludes as all of its branches are blocked and the server

adds both tasks to the instance initiator’s work list. Either task can be completed first and the other

second. In this example, the completion of either task leads to an immediate implicit termination of the

respective branch. Once both branches have completed, there is no work left to do and the instance is

complete.

A note about multithreading: A process can define one or more sequences. These sequences are sections

of code (implemented as iterator blocks which yield favors between deterministic steps. Parallelism

means not that two steps are being actively executed simultaneously, but that the execution of the steps

is only partially ordered. In Process X of Figure 6, step A1 precedes A2 which precedes A3; B1 precedes

B2 which precedes B3; and C1 precedes C2 which precedes C3. The ordering between steps in each

lettered sequence is not defined. Note that though the total order is not defined, only one of the many

permutations occurs during each execution. As an instance progresses through its process, this order is

recorded for consistent state restoration. This preservation of the total order in an instance is handled

transparently to support the illusion of programming as though for a single session.

Figure 6 - Two legitimate runtime ordering of steps in a Process with Sequences executed in parallel

Synchronization

The convergence of two or more branches into a single subsequent branch such that the
thread of control is passed to the subsequent branch when all input branches have been
enabled.

00 public class Synchronization : ProcessBase

 23

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var other = AsyncCall(Other);

05

06 // Split

07 yield return other;

08

09 // First Task

10 yield return AssignTask("Advance Main branch", Initiator);

11

12 // Wait for other branch

13 yield return Wait(other);

14

15 // Final Task

16 yield return AssignTask("Finish", Initiator);

17 }

18

19 IEnumerable<IFavor> Other()

20 {

21 // Second Task

22 yield return AssignTask("Advance Other branch", Initiator);

23 }

24 }

Code Listing 7 – Synchronization Implementation Example

The Synchronization pattern can be implemented by using the Wait favor. In Code Listing 7, the Parallel

Split example is extended. A reference to the AsyncCall favor for the Other sequence is retained on

Line 04 in order that it may be used on Line 13. By Line 13, both tasks have been assigned. If the labeled

“Second Task” and, therefore, the Other branch is completed before the labeled “First Task”,

then Line 13 does not block. If “First Task” is completed first, then Line 13’s Wait causes the Start

branch to be moved to the wait-list pending the completion of the Other branch. Once the Other branch

completes as a consequence of the “Second Task” being completed, or if Other was completed first,

Start continues at Line 16 with the assignment of a “Final Task”. Critically, this “Final Task” will

not be assigned until both of the branches have synchronized following the completion of both tasks.

Exclusive Choice

The divergence of a branch into two or more branches such that when the incoming
branch is enabled, the thread of control is immediately passed to precisely one of the
outgoing branches based on a mechanism that can select one of the outgoing branches.

00 public class ExclusiveChoice : ProcessBase

01 {

02 // Expects a boolean value as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 if ((bool)data)

06 {

07 // True branch

08 yield return AssignTask("Advance 'true' branch", Initiator);

09 }

10 else

 24

11 {

12 // False branch

13 yield return AssignTask("Advance 'false' branch", Initiator);

14 }

15 }

16 }

Code Listing 8 – Exclusive Choice Implementation Example

An Exclusive Choice pattern can be implemented using a traditional if-statement control-flow

mechanism. In Code Listing 8, the payload provided to the initial sequence is cast as a bool to determine

which if-else block should be followed. As expected, only one of the two if-else blocks will be

executed.

Simple Merge

The convergence of two or more branches into a single subsequent branch such that each
enablement of an incoming branch results in the thread of control being passed to the
subsequent branch.

00 public class SimpleMerge : ProcessBase

01 {

02 // Expects a boolean value as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 if ((bool)data)

06 {

07 // True branch

08 yield return AssignTask("Advance 'true' branch", Initiator);

09 }

10 else

11 {

12 // False branch

13 yield return AssignTask("Advance 'false' branch", Initiator);

14 }

15

16 // Common continuation

17 yield return AssignTask("Finish", Initiator);

18 }

19 }

Code Listing 9 – Simple Merge Implementation Example

A Simple Merge pattern can be implemented as a non-conditional code listing following a conditional

code listing. Code Listing 9 expands upon Code Listing 8 with such a continuation.

Advanced Branching and Synchronization

Multi-Choice

The divergence of a branch into two or more branches such that when the incoming
branch is enabled, the thread of control is immediately passed to one or more of the
outgoing branches based on a mechanism that selects one or more outgoing branches.

00 public class MultiChoice : ProcessBase

 25

01 {

02 // Expects a string as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 var one = AsyncCall(One);

06 var two = AsyncCall(Two);

07

08 switch ((string)data)

09 {

10 case "Just One":

11 yield return one;

12 break;

13 case "Just Two":

14 yield return two;

15 break;

16 default:

17 yield return one;

18 yield return two;

19 break;

20 }

21 }

22

23 IEnumerable<IFavor> One()

24 {

25 yield return AssignTask("Advance One", Initiator);

26 }

27

28 IEnumerable<IFavor> Two()

29 {

30 yield return AssignTask("Advance Two", Initiator);

31 }

32 }

Code Listing 10 – Multi-Choice Implementation Example

The Multi-Choice pattern is easily achieved with C# control-flow mechanisms. In Code Listing 10, a switch

statement is used to the instance’s input data to determine whether One, Two, or both One and Two

should be executed. For effect, both favors are created (a benign calculation) even though within some

instances, only one will be emitted.

Structured Synchronizing Merge

The convergence of two or more branches (which diverged earlier in the process at a
uniquely identifiable point) into a single subsequent branch such that the thread of control
is passed to the subsequent branch when each active incoming branch has been enabled.
The Structured Synchronizing Merge occurs in a structured context, i.e. there must be a
single Multi-Choice construct earlier in the process model with which the Structured
Synchronizing Merge is associated and it must merge all of the branches emanating from
the Multi-Choice. These branches must either flow from the Structured Synchronizing
Merge without any splits or joins or they must be structured in form (i.e. balanced splits
and joins).

00 public class StructuredSynchronizingMerge : ProcessBase

01 {

 26

02 // Expects a string as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 var one = AsyncCall(One);

06 var two = AsyncCall(Two);

07

08 // Split

09 switch ((string)data)

10 {

11 case "Just One":

12 yield return one;

13 break;

14 case "Just Two":

15 yield return two;

16 break;

17 default:

18 yield return one;

19 yield return two;

20 break;

21 }

22

23 // Merge

24 if (one.IsUsed) yield return Wait(one);

25 if (two.IsUsed) yield return Wait(two);

26 }

27

28 IEnumerable<IFavor> One()

29 {

30 yield return AssignTask("Advance One", Initiator);

31 }

32

33 IEnumerable<IFavor> Two()

34 {

35 yield return AssignTask("Advance Two", Initiator);

36 }

37 }

Code Listing 11 – Structured Synchronizing Merge Implementation Example

The Structured Synchronizing Merge pattern can be implemented by waiting on the various created

branches. Code Listing 11 extends Code Listing 10. A runtime error would occur if a Wait were emitted for an

AsyncCall that had not already been emitted, hence the IsUsed check.

Multi-Merge

The convergence of two or more branches into a single subsequent branch such that each
enablement of an incoming branch results in the thread of control being passed to the
subsequent branch.

00 public class MultiMerge : ProcessBase

01 {

02 // Expects a string as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 var one = AsyncCall(One);

06 var two = AsyncCall(Two);

 27

07

08 switch ((string)data)

09 {

10 case "Just One":

11 yield return one;

12 break;

13 case "Just Two":

14 yield return two;

15 break;

16 default:

17 yield return one;

18 yield return two;

19 break;

20 }

21 }

22

23 IEnumerable<IFavor> One()

24 {

25 yield return AssignTask("Advance One", Initiator);

26

27 yield return Jump(Final);

28 }

29

30 IEnumerable<IFavor> Two()

31 {

32 yield return AssignTask("Advance Two", Initiator);

33

34 yield return Jump(Final);

35 }

36

37 IEnumerable<IFavor> Final()

38 {

39 yield return AssignTask("Finish", Initiator);

40 }

41 }

Code Listing 12 – Multi-Merge Implementation Example

The Multi-Merge pattern can be implemented with Jump. Code Listing 12 extends Code Listing 10 such that

upon the completion of each of One and Two, execution is transferred to two independent branches of

the shared Final sequence.

Structured Discriminator

The convergence of two or more branches into a single subsequent branch following a
corresponding divergence earlier in the process model such that the thread of control is
passed to the subsequent branch when the first incoming branch has been enabled.
Subsequent enablements of incoming branches do not result in the thread of control being
passed on. The Structured Discriminator construct resets when all incoming branches have
been enabled. The Structured Discriminator occurs in a structured context, i.e. there must
be a single Parallel Split construct earlier in the process model with which the Structured
Discriminator is associated and it must merge all of the branches emanating from the
Structured Discriminator. These branches must either flow from the Parallel Split to the

 28

Structured Discriminator without any splits or joins or they must be structured in form (i.e.
balanced splits and joins).

00 public class StructuredDiscriminator : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var one = AsyncCall(One);

05 var two = AsyncCall(Two);

06

07 // Split

08 switch ((string)data)

09 {

10 case "Just One":

11 yield return one;

12 break;

13 case "Just Two":

14 yield return two;

15 break;

16 default:

17 yield return one;

18 yield return two;

19 break;

20 }

21

22 yield return Wait(one, two);

23 }

24

25 IEnumerable<IFavor> One()

26 {

27 yield return AssignTask("Advance One", Initiator);

28 }

29

30 IEnumerable<IFavor> Two()

31 {

32 yield return AssignTask("Advance Two", Initiator);

33 }

34 }

Code Listing 13 – Structured Discriminator Implementation Example

The Structured Discriminator pattern can be implemented using the Wait favor with multiple wait-

targets. In Code Listing 13, Line 22 emits such a favor. Once either of the supplemental branches completes,

Start is resumed (to terminate). The remaining branch is left to continue on its own as the sole remaining

branch for the instance. Having passed multiple wait-targets to Wait asks the engine to unblock once

ANY of the targets has been completed or canceled.

Blocking Discriminator

The convergence of two or more branches into a single subsequent branch following one
or more corresponding divergences earlier in the process model. The thread of control is
passed to the subsequent branch when the first active incoming branch has been enabled.
The Blocking Discriminator construct resets when all active incoming branches have been

 29

enabled once for the same process instance. Subsequent enablements of incoming
branches are blocked until the Blocking Discriminator has reset.

00 public class BlockingDiscriminator : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 yield return Subscribe("QUEUE", "", Enqueue);

05 }

06

07 IAsyncCall previousEnablement = null;

08

09 IEnumerable<IFavor> Enqueue(object newEntry)

10 {

11 var currentEnablement = AsyncCall(ProcessEntry,

12 (string)newEntry, previousEnablement);

13

14 previousEnablement = currentEnablement;

15

16 yield return currentEnablement;

17 }

18

19 IEnumerable<IFavor> ProcessEntry(string newEntry,

20 IAsyncCall myPreviousEnablement)

21 {

22 if (myPreviousEnablement != null)

23 yield return Wait(myPreviousEnablement);

24

25 var splitOne = AsyncCall(SplitOne, newEntry);

26 var splitTwo = AsyncCall(SplitTwo, newEntry);

27

28 yield return splitOne;

29 yield return splitTwo;

30

31 yield return Wait(splitOne);

32 yield return Wait(splitTwo);

33 }

34

35 IEnumerable<IFavor> SplitOne(string newEntry)

36 {

37 yield return AssignTask(newEntry + "A: One at a time ", Initiator);

38 }

39

40 IEnumerable<IFavor> SplitTwo(string newEntry)

41 {

42 yield return AssignTask(newEntry + "B: One at a time ", Initiator);

43 }

44 }

Code Listing 14 – Blocking Discriminator Implementation Example

The Blocking Discriminator pattern can be implemented as a subscription that processes incoming work

through a queue, a Parallel Split, and subsequent Merge. In Code Listing 14, the Start sequence merely

opens the subscription for the Enqueue sequence. After this initial session, the instance’s Start branch

completes and the instance is held unfinished only by its Enqueue subscription and branch. With each

new entry, as input through the subscription, a new branch of Enqueue is run. previousEnablement

 30

serves as a references to the back of a queue that forms within BindFlow’s wait-list as additional

enablements arrive. currentEnablement is assigned as a new AsyncCall favor to ProcessEntry,

additionally storing the parameters for ProcessEntry. The currentEnablement, newly created is set

to be pushed to the back of the queue by reassigning previousEnablement and is then emitted. This

starts a new branch of ProcessEntry which immediately Waits on the stored

myPreviousEnablement which was passed in to the ProcessEntry sequence as a parameter. If this

previousEnablement was already completed, then the Wait does not block. Each enablement

continues on to the Split and Merge starting on Line 25. Only once the Merge is completed and the

ProcessEntry branch terminates implicitly on line 33 is any waiting following entry allowed to take its

own turn through the remainder of ProcessEntry from its own line 25. Note that in this example, the

subscription is never removed with an Unsubscribe and thus the instance never terminates. Note that

because BindFlow instances store and replay every input for each session, a single instance would get

slower and require more storage, linearly, as additional entries are accepted by Enqueue. Extending this

example to spawn new instances at strategic times, such as when the queue is momentarily empty, could

keep performance optimal.

Cancelling Discriminator

The convergence of two or more branches into a single subsequent branch following one
or more corresponding divergences earlier in the process model. The thread of control is
passed to the subsequent branch when the first active incoming branch has been enabled.
Triggering the Cancelling Discriminator also cancels the execution of all of the other
incoming branches and resets the construct.

00 public class CancellingDiscriminator : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var splitOne = AsyncCall(SplitOne);

05 var splitTwo = AsyncCall(SplitTwo);

06

07 yield return splitOne;

08 yield return splitTwo;

09

10 yield return Wait(splitOne, splitTwo);

11

12 if (splitOne.IsComplete) yield return Cancel(splitTwo);

13 if (splitTwo.IsComplete) yield return Cancel(splitOne);

14 }

15

16 IEnumerable<IFavor> SplitOne()

17 {

18 yield return AssignTask("One", Initiator);

19 }

20

21 IEnumerable<IFavor> SplitTwo()

22 {

23 yield return AssignTask("Two", Initiator);

24 }

25 }

 31

Code Listing 15 – Cancelling Discriminator Implementation Example

The Cancelling Discriminator pattern can be implemented by holding references to each of multiple

branches, waiting on any of the branches, and cancelling the remaining branches after the Wait is

unblocked. Code Listing 15 is such an implementation.

Structured Partial Join

The convergence of two or more branches (say m) into a single subsequent branch
following a corresponding divergence earlier in the process model such that the thread of
control is passed to the subsequent branch when n of the incoming branches have been
enabled where n is less than m. Subsequent enablements of incoming branches do not
result in the thread of control being passed on. The join construct resets when all active
incoming branches have been enabled. The join occurs in a structured context, i.e. there
must be a single Parallel Split construct earlier in the process model with which the join is
associated and it must merge all of the branches emanating from the Parallel Split. These
branches must either flow from the Parallel Split to the join without any splits or joins or
be structured in form (i.e. balanced splits and joins).

00 public class StructuredPartialJoin : ProcessBase

01 {

02 // Expects an int as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 IAsyncCall[] assignments = new IAsyncCall[(int)data]; // m

06

07 // Create the assignments

08 for (int counter = 0; counter < assignments.Length; counter++)

09 assignments[counter] = AsyncCall(Assignment, counter);

10

11 // Emit the assignments

12 for (int counter = 0; counter < assignments.Length; counter++)

13 yield return assignments[counter];

14

15 // Wait for m-1 assignments to be completed

16 IWait wait = Wait(assignments);

17 int remaining;

18 do

19 {

20 yield return wait;

21 remaining = wait.NotCompleted.Count();

22 wait = Wait(wait.NotCompleted.ToArray());

23 } while (remaining > 1);

24

25 yield return AssignTask("Finish", Initiator);

26 }

27

28 // Expects an int as data

29 IEnumerable<IFavor> Assignment(int assignmentNumber)

30 {

31 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

32 }

33 }

Code Listing 16 – Structured Partial Join Implementation Example

 32

The Structured Partial Join pattern can be implemented as in Code Listing 16. Some integer m >= 2 is

passed in to the new instance as object data. An array is allocated to hold m AsyncCall favors on

Line 05, and is then filled by the loop on Line 08. The Assignment sequence takes an assignmentNumber

parameter, an identity to help differentiate each of its branches for the user. This identity is passed to

the sequence through the AsyncCall. The second parameter of the AsyncCall favor factory method

on Line 09 provides this value as the loop’s incremented counter. Once the AsyncCalls are created and

referenced in the assignments array, they are emitted for parallel execution by the loop on Line 12. To

fulfill the requirements of the Partial Join, we choose to Wait on m-1 of the Assignment branches to

complete before continuing to the final “Finish” task. Line 16 holds a reference to the Wait favor so

that Lines 21 and 22 may refer to it. Including multiple wait-targets, AsyncCalls or Spawns, in a Wait

blocks until any one of the targets is terminated or canceled. Line 21 stores the count of the remaining

uncompleted targets for the loop condition on Line 25. Line 22 reassigns a new Wait favor with only the

remaining targets. The loop is repeated until only 1 unfinished target remains indicating that m-1 targets

did finish. The last remaining branch of Assignment is not canceled, but no longer blocks the rest of the

instance. The process terminates after both the last remaining assignment and the “Finish” task of Line

25 are completed in either order.

Blocking Partial Join

The convergence of two or more branches (say m) into a single subsequent branch
following one or more corresponding divergences earlier in the process model. The thread
of control is passed to the subsequent branch when n of the incoming branches has been
enabled (where 2 = n < m). The join construct resets when all active incoming branches
have been enabled once for the same process instance. Subsequent enablements of
incoming branches are blocked until the join has reset.

00 public class BlockingPartialJoin : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 yield return Subscribe("QUEUE", "", Enqueue);

05 }

06

07 IAsyncCall previousEnablement = null;

08

09 IEnumerable<IFavor> Enqueue(object newEntry)

10 {

11 var currentEnablement = AsyncCall(ProcessEntry,

12 (string)newEntry, previousEnablement);

13

14 previousEnablement = currentEnablement;

15

16 yield return currentEnablement;

17 }

18

19 IEnumerable<IFavor> ProcessEntry(string newEntry,

20 IAsyncCall myPreviousEnablement)

21 {

22 if (myPreviousEnablement != null)

 33

23 yield return Wait(myPreviousEnablement);

24

25 IAsyncCall[] assignments = new IAsyncCall[3]; // m

26

27 // Create the assignments

28 for (int counter = 0; counter < assignments.Length; counter++)

29 assignments[counter] = AsyncCall(Assignment, counter);

30

31 // Emit the assignments

32 for (int counter = 0; counter < assignments.Length; counter++)

33 yield return assignments[counter];

34

35 // Wait for m-1 assignments to be completed

36 IWait wait = Wait(assignments);

37 int remaining;

38 do

39 {

40 yield return wait;

41 remaining = wait.NotCompleted.Count();

42 wait = Wait(wait.NotCompleted.ToArray());

43 } while (remaining > 1);

44

45 yield return AsyncCall(PostJoin);

46 }

47

48 IEnumerable<IFavor> Assignment(int assignmentNumber)

49 {

50 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

51 }

52

53 IEnumerable<IFavor> PostJoin()

54 {

55 yield return AssignTask("Finish", Initiator);

56 }

57 }

Code Listing 17 – Blocking Partial Join Implementation Example

The Blocking Partial Join pattern can be implemented as a combination of the Blocking Discriminator and

the Structured Partial Join. Code Listing 17 combines Code Listing 14 and Code Listing 16. The AsyncCall on

Line 45 followed by an immediate implicit termination of the sequence provides the reset mechanism for

an extended continuation after the Partial Join without blocking further enablements.

Cancelling Partial Join

The convergence of two or more branches (say m) into a single subsequent branch
following one or more corresponding divergences earlier in the process model. The thread
of control is passed to the subsequent branch when n of the incoming branches have been
enabled where n is less than m. Triggering the join also cancels the execution of all of the
other incoming branches and resets the construct.

00 public class CancellingPartialJoin : ProcessBase

01 {

02 // Expects an int as data

03 public override IEnumerable<IFavor> Start(object data)

 34

04 {

05 IAsyncCall[] assignments = new IAsyncCall[(int)data]; // m

06

07 // Create the assignments

08 for (int counter = 0; counter < assignments.Length; counter++)

09 assignments[counter] = AsyncCall(Assignment, counter);

10

11 // Emit the assignments

12 for (int counter = 0; counter < assignments.Length; counter++)

13 yield return assignments[counter];

14

15 // Wait for m-1 assignments to be completed

16 IWait wait = Wait(assignments);

17 int remaining;

18 do

19 {

20 yield return wait;

21 remaining = wait.NotCompleted.Count();

22 wait = Wait(wait.NotCompleted.ToArray());

23 } while (remaining > 1);

24

25 foreach (var remainingAssignment in wait.NotCompleted)

26 {

27 yield return Cancel(remainingAssignment);

28 }

29

30 yield return AssignTask("Finish", Initiator);

31 }

32

33 // Expects an int as data

34 IEnumerable<IFavor> Assignment(int assignmentNumber)

35 {

36 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

37 }

38 }

Code Listing 18 – Canceling Partial Join Implementation Example

The Canceling Partial Join pattern can be implemented as a variation of the Structured Partial Join of Code

Listing 16. Code Listing 18 adds the loop of Line 25 to cancel any remaining Assignment branches following

the Partial Join. In this example, n=m-1 is hard-coded, exactly one remaining branch is canceled.

Generalized AND-Join

The convergence of two or more branches into a single subsequent branch such that the
thread of control is passed to the subsequent branch when all input branches have been
enabled. Additional triggers received on one or more branches between firings of the join
persist and are retained for future firings. Over time, each of the incoming branches should
deliver the same number of triggers to the AND-join construct (although obviously, the
timing of these triggers may vary).

00 public class GeneralizedAndJoin : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

 35

04 yield return Subscribe("QUEUE", "", Enqueue);

05 }

06

07 IAsyncCall previousEnablement = null;

08

09 IEnumerable<IFavor> Enqueue(object newEntry)

10 {

11 var currentEnablement = AsyncCall(ProcessEntry,

12 (string)newEntry, previousEnablement);

13

14 previousEnablement = currentEnablement;

15

16 yield return currentEnablement;

17 }

18

19 IEnumerable<IFavor> ProcessEntry(string newEntry,

20 IAsyncCall myPreviousEnablement)

21 {

22 var splitOne = AsyncCall(SplitOne, newEntry);

23 var splitTwo = AsyncCall(SplitTwo, newEntry);

24

25 yield return splitOne;

26 yield return splitTwo;

27

28 yield return Wait(splitOne);

29 yield return Wait(splitTwo);

30

31 if (myPreviousEnablement != null)

32 yield return Wait(myPreviousEnablement);

33

34 yield return AsyncCall(PostJoin);

35 }

36

37 IEnumerable<IFavor> SplitOne(string newEntry)

38 {

39 yield return AssignTask(newEntry + "A: One at a time ", Initiator);

40 }

41

42 IEnumerable<IFavor> SplitTwo(string newEntry)

43 {

44 yield return AssignTask(newEntry + "B: One at a time ", Initiator);

45 }

46

47 IEnumerable<IFavor> PostJoin()

48 {

49 yield return AssignTask("Finish", Initiator);

50 }

51 }

Code Listing 19 – Generalized AND-Join Implementation Example

The Generalized AND-Join pattern can be implemented as a variation of the Blocking Discriminator. Code

Listing 19 is based on Code Listing 14 such that the Wait emission is delayed until Line 32 and a PostJoin

sequence is added as an extended continuation after the join has reset.

 36

Local Synchronizing Merge

The convergence of two or more branches which diverged earlier in the process into a
single subsequent branch such that the thread of control is passed to the subsequent
branch when each active incoming branch has been enabled. Determination of how many
branches require synchronization is made on the basis on information locally available to
the merge construct. This may be communicated directly to the merge by the preceding
diverging construct or alternatively it can be determined on the basis of local data such as
the threads of control arriving at the merge.

00 public class LocalSynchronizingMerge : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 LocalContext context = new LocalContext();

05

06 var selection = AssignTask("Provide some selection of A, B, and C",

07 Initiator, "ABC");

08

09 yield return selection;

10

11 if (((string)selection.Result).Contains("A"))

12 context.threads.Add(AsyncCall(GenericWork, "A"));

13

14 if (((string)selection.Result).Contains("B"))

15 context.threads.Add(AsyncCall(GenericWork, "B"));

16

17 if (((string)selection.Result).Contains("C"))

18 {

19 context.waitOnC = true;

20 context.c = AsyncCall(C, context);

21 context.threads.Add(context.c);

22 }

23

24 foreach (var thread in context.threads)

25 yield return thread;

26

27 yield return AsyncCall(Finish, context);

28 }

29

30 IEnumerable<IFavor> GenericWork(string data)

31 {

32 yield return AssignTask(data, Initiator);

33 }

34

35 IEnumerable<IFavor> C(LocalContext context)

36 {

37 var choice = AssignTask("C", Initiator, true);

38 yield return choice;

39 context.waitOnC = (bool)choice.Result;

40

41 // replace the c that we're looking for,

42 //allowing the finish to trigger.

43 context.c = AsyncCall(C2);

44 context.threads.Add(context.c);

 37

45

46 yield return context.c;

47 }

48

49 IEnumerable<IFavor> C2()

50 {

51 yield return AssignTask("C2", Initiator);

52 }

53

54 IEnumerable<IFavor> Finish(LocalContext context)

55 {

56 while ((!context.waitOnC && context.threads.Any(t =>

57 t != context.c)) ||

58 (context.waitOnC && context.threads.Any()))

59 {

60 var waitAny = Wait(context.threads.ToArray());

61 yield return waitAny;

62

63 foreach (var thread in waitAny.Completed)

64 {

65 context.threads.Remove(thread);

66 }

67 }

68

69 yield return AssignTask("Merge Complete", Initiator);

70 }

71 }

72

73 class LocalContext

74 {

75 public List<IWaitable> threads = new List<IWaitable>();

76 public IAsyncCall c = null;

77 public bool waitOnC = false;

78 }

Code Listing 20 - Local Synchronizing Merge Implementation Example

The Local Synchronizing Merge pattern by passing an object representing local context through to the

different actors of the construct. Code Listing 20 mimics the interactive demonstration by van der Aalst et

al.[1] for this pattern. Any or all of A, B, and C are chosen to execute. As branch C has extended

functionality to control the Synchronizing Merge, LocalContext is shared between the A, B section and

the C section. After the Split, the Merge of C is conditional. If C should be Merged, the local context is

populated with C’s continuation; otherwise, C’s continuation is run without blocking the Merge.

General Synchronizing Merge

The convergence of two or more branches which diverged earlier in the process into a
single subsequent branch such that the thread of control is passed to the subsequent
branch when either (1) each active incoming branch has been enabled or (2) it is not
possible that any branch that has not yet been enabled will be enabled at any future time.

00 public class GeneralSynchronizingMerge : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

 38

04 var selection = AssignTask("Provide some selection of A, B, and C",

05 Initiator, "ABC");

06

07 yield return selection;

08

09 var a = AsyncCall(GenericWork, "A");

10 var b = AsyncCall(GenericWork, "B");

11 var c = AsyncCall(C);

12

13 if (((string)selection.Result).Contains("A"))

14 yield return a;

15

16 if (((string)selection.Result).Contains("B"))

17 yield return b;

18

19 if (((string)selection.Result).Contains("C"))

20 yield return c;

21

22 if (a.IsUsed) yield return Wait(a);

23 if (b.IsUsed) yield return Wait(b);

24 if (c.IsUsed) yield return Wait(c);

25

26 yield return AssignTask("Merge Complete", Initiator);

27 }

28

29 IEnumerable<IFavor> GenericWork(string taskSummary)

30 {

31 yield return AssignTask(taskSummary, Initiator);

32 }

33

34 IEnumerable<IFavor> C()

35 {

36 IAssignTask choice = null;

37

38 while (choice == null || choice.Result == "C")

39 {

40 choice = AssignTask("C, D, or E?", Initiator, "C");

41

42 yield return choice;

43 }

44

45 if ((string)choice.Result == "D")

46 {

47 var d = AsyncCall(D);

48 yield return d;

49 yield return Wait(d);

50 }

51 else if ((string)choice.Result == "E")

52 {

53 yield return AsyncCall(E);

54 }

55 }

56

57 IEnumerable<IFavor> D()

58 {

59 yield return AssignTask("D", Initiator);

60 }

 39

61

62 IEnumerable<IFavor> E()

63 {

64 yield return AssignTask("E", Initiator);

65 }

66 }

Code Listing 21 - General Synchronizing Merge Implementation Example

The General Synchronizing Merge pattern can be implemented using techniques used in previous

patterns. Code Listing 21 implements the demonstration of this same pattern by van der Aalst et al.[1] and

is similar to Code Listing 20 but without the need for a local context and with the addition of the while loop

on Line 37.

Thread Merge

At a given point in a process, a nominated number of execution threads in a single branch
of the same process instance should be merged together into a single thread of execution.

00 public class ThreadMerge : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 List<IAsyncCall> threads = new List<IAsyncCall>();

05

06 for (int x = 0; x < (int)data; x++)

07 {

08 threads.Add(AsyncCall(ThreadWork, x));

09 }

10

11 foreach (var thread in threads) yield return thread;

12

13 yield return AsyncCall(Merge, threads);

14 }

15

16 IEnumerable<IFavor> ThreadWork(int threadNumber)

17 {

18 yield return AssignTask("Move forward on " +

19 threadNumber.ToString(), Initiator);

20 }

21

22 IEnumerable<IFavor> Merge(List<IAsyncCall> threads)

23 {

24 foreach (var thread in threads)

25 {

26 yield return Wait(thread);

27 }

28

29 yield return AssignTask("All threads have been merged", Initiator);

30 }

31 }

Code Listing 22 – Thread Merge Implementation Example

 40

The Thread Merge pattern can be implemented using the Wait favor. Code Listing 22 stores a List of

AsyncCall favors of some length determined at runtime, runs multiple parallel threads. The list of

threads to be merged is passed to the Merge sequence which waits on all of the threads.

Thread Split

At a given point in a process, a nominated number of execution threads can be initiated in
a single branch of the same process instance.

00 public class ThreadSplit : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 for (int x = 0; x < (int)data; x++)

05 {

06 yield return AsyncCall(ThreadWork, x);

07 }

08 }

09

10 IEnumerable<IFavor> ThreadWork(int threadNumber)

11 {

12 yield return AssignTask("Move forward on " +

13 threadNumber.ToString(), Initiator);

14 }

15 }

Code Listing 23 – Thread Split Implementation Example

The Thread Split pattern can be implemented as the first part of the Thread Merge example. Code Listing

23 excerpts Code Listing 22 to only include the Parallel Splits. The references to the split threads are not

maintained in Start. Start could continue with other independent sections of execution, possibly with

additional and isolated Thread Split implementations or other patterns.

Multiple Instance

As noted in the terminology section, van der Aalst et al.[1] use the term “instance” to refer to a particular

execution of a section of work in a workflow rather than a particular execution of a process. In BindFlow,

any code can be executed multiple times within a single instance of a process. Code is internally

referenceable at the sequence level (and as its branches, at runtime). A sequence, as the starting point

for any complex code path, can therefore represent any section of work of the process.

Multiple Instances without Synchronization

Within a given process instance, multiple instances of a task can be created. These
instances are independent of each other and run concurrently. There is no requirement to
synchronize them upon completion. Each of the instances of the multiple instance task
that are created must execute within the context of the process instance from which they
were started (i.e. they must share the same case identifier and have access to the same
data elements) and each of them must execute independently from and without reference
to the task that started them.

00 public class MultipleInstancesWithoutSynchronization : ProcessBase

 41

01 {

02 string InstanceData = "Some Value";

03

04 public override IEnumerable<IFavor> Start(object data)

05 {

06 yield return AsyncCall(One);

07 yield return AsyncCall(Two);

08 }

09

10 IEnumerable<IFavor> One()

11 {

12 yield return AssignTask("Advance One, " + InstanceData, Initiator);

13 }

14

15 IEnumerable<IFavor> Two()

16 {

17 yield return AssignTask("Advance Two, " + InstanceData, Initiator);

18 }

19 }

Code Listing 24 – Multiple Instances Without Synchronization Implementation Example

The Multiple Instances Without Synchronization pattern can be implemented the same as a Parallel Split.

The unit of work can be multiple branches of the same sequence or multiple branches of multiple

sequences. For clarity, Code Listing 24 uses two unique sequences which both have access to the same

instance-wide data.

Multiple Instances with a Priori Design-Time Knowledge

Within a given process instance, multiple instances of a task can be created. The required
number of instances is known at design time. These instances are independent of each
other and run concurrently. It is necessary to synchronize the task instances at completion
before any subsequent tasks can be triggered.

00 public class MultipleInstancesWithAPrioriDesignTimeKnowledge : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 // Create the assignments

05 var assignment1 = AsyncCall(Assignment, 1);

06 var assignment2 = AsyncCall(Assignment, 2);

07 var assignment3 = AsyncCall(Assignment, 3);

08

09 // Emit the assignments

10 yield return assignment1;

11 yield return assignment2;

12 yield return assignment3;

13

14 // Wait for all of the assignments to be completed (in any order)

15 yield return Wait(assignment1);

16 yield return Wait(assignment2);

17 yield return Wait(assignment3);

18

19 yield return AssignTask("Finish", Initiator);

20 }

 42

21

22 // Expects an int as data

23 IEnumerable<IFavor> Assignment(int assignmentNumber)

24 {

25 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

26 }

27 }

Code Listing 25 – Multiple Instances with a Priori Design-Time Knowledge Implementation Example

The Multiple Instances with a Priori Design-Time Knowledge pattern can be implemented with a series

of Thread Splits and Thread Merges where the number of branches or threads is hard-coded. Code Listing

25 generates a fixed three branches or threads of the Assignment sequence. All three threads are

synchronized before Start may continue.

Multiple Instances with a Priori Run-Time Knowledge

Within a given process instance, multiple instances of a task can be created. The required
number of instances may depend on a number of runtime factors, including state data,
resource availability and inter-process communications, but is known before the task
instances must be created. Once initiated, these instances are independent of each other
and run concurrently. It is necessary to synchronize the instances at completion before any
subsequent tasks can be triggered.

00 public class MultipleInstancesWithAPrioriRunTimeKnowledge : ProcessBase

01 {

02 // Expects an int as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 IAsyncCall[] assignments = new IAsyncCall[(int)data];

06

07 // Create the assignments

08 for (int counter = 0; counter < assignments.Length; counter++)

09 assignments[counter] = AsyncCall(Assignment, counter);

10

11 // Emit the assignments

12 for (int counter = 0; counter < assignments.Length; counter++)

13 yield return assignments[counter];

14

15 // Wait for the assignments to be completed

16 for (int counter = 0; counter < assignments.Length; counter++)

17 yield return Wait(assignments[counter]);

18

19 yield return AssignTask("Finish", Initiator);

20 }

21

22 // Expects an int as data

23 IEnumerable<IFavor> Assignment(int assignmentNumber)

24 {

25 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

26 }

27 }

Code Listing 26 – Multiple Instances with a Priori Run-Time Knowledge Implementation Example

 43

The Multiple Instances with a Priori Run-Time Knowledge pattern can be implemented with a dynamic

loop. Code Listing 26 provides such an implementation.

Multiple Instances without a Priori Run-Time Knowledge

Within a given process instance, multiple instances of a task can be created. The required
number of instances may depend on a number of runtime factors, including state data,
resource availability and inter-process communications and is not known until the final
instance has completed. Once initiated, these instances are independent of each other and
run concurrently. At any time, whilst instances are running, it is possible for additional
instances to be initiated. It is necessary to synchronize the instances at completion before
any subsequent tasks can be triggered.

00 public class MultipleInstancesWithoutAPrioriRunTimeKnowledge : ProcessBase

01 {

02 // Expects an int as data

03 public override IEnumerable<IFavor> Start(object data)

04 {

05 var assignments = new List<IWaitable>();

06

07 var primer = Call(Assignment);

08 yield return primer;

09

10 int toCreate = (int)primer.Result;

11

12 while (assignments.Any() || 0 < toCreate)

13 {

14 // Add toCreate new assignments, possibly 0

15 for (int x = 0; x < toCreate; x++)

16 {

17 var assignment = AsyncCall(Assignment);

18 assignments.Add(assignment);

19 yield return assignment;

20 }

21

22 // Wait on any of the remaining assignments

23 var wait = Wait(assignments.ToArray());

24 yield return wait;

25

26 // Single is safe as we are assured that one and

27 // only one assignment can complete per session

28 toCreate = (int)wait.Completed.Single().Result;

29

30 // Reduce the number of assignments remaining by

31 // the one that we just processed

32 assignments = wait.NotCompleted.ToList();

33 }

34

35 // A final task

36 yield return AssignTask("Finish", Initiator);

37 }

38

39 IEnumerable<IFavor> Assignment()

40 {

 44

41 var task = AssignTask("Create how many more?", Initiator, 0);

42 yield return task;

43 yield return Return((int)task.Result);

44 }

45 }

Code Listing 27 - Multiple Instances without a Priori Run-Time Knowledge Implementation Example

The Multiple Instances without a Priori Run-Time Knowledge pattern can be implemented with a

dynamically managed list of unfinished branches. Code Listing 27 begins with a blocking call to Assignment

to get positive integer result of how many additional tasks to create. Each requested branch is added to

the dynamic list. Each assignment asks the user for a number of additional branches to create. The

instance continues to the “Finish” task on Line 36 after the count of completed additional branches

reaches the total count of those requested.

Static Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of a task (say m) can be
created. The required number of instances is known when the first task instance
commences. Once n of the task instances have completed (where n is less than m), the
next task in the process is triggered. Subsequent completions of the remaining m-n
instances are inconsequential, however all instances must have completed in order for the
join construct to reset and be subsequently re-enabled.

00 public class StaticPartialJoinForMultipleInstances : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 yield return Subscribe("QUEUE", "", Enqueue);

05 }

06

07 IAsyncCall previousEnablement = null;

08

09 IEnumerable<IFavor> Enqueue(object newEntry)

10 {

11 var currentEnablement = AsyncCall(ProcessEntry,

12 (string)newEntry, previousEnablement);

13

14 previousEnablement = currentEnablement;

15

16 yield return currentEnablement;

17 }

18

19 IEnumerable<IFavor> ProcessEntry(string newEntry,

20 IAsyncCall myPreviousEnablement)

21 {

22 if (myPreviousEnablement != null)

23 yield return Wait(myPreviousEnablement);

24

25 IAsyncCall[] assignments = new IAsyncCall[3]; // m

26

27 // Create the assignments

28 for (int counter = 0; counter < assignments.Length; counter++)

29 assignments[counter] = AsyncCall(Assignment, counter);

 45

30

31 // Emit the assignments

32 for (int counter = 0; counter < assignments.Length; counter++)

33 yield return assignments[counter];

34

35 // Wait for m-1 assignments to be completed

36 IWait wait = Wait(assignments);

37 int remaining;

38 do

39 {

40 yield return wait;

41 remaining = wait.NotCompleted.Count();

42 wait = Wait(wait.NotCompleted.ToArray());

43 } while (remaining > 1);

44

45 yield return AsyncCall(PostJoin);

46

47 yield return Wait(wait.NotCompleted.ToArray());

48 }

49

50 IEnumerable<IFavor> Assignment(int assignmentNumber)

51 {

52 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

53 }

54

55 IEnumerable<IFavor> PostJoin()

56 {

57 yield return AssignTask("Finish", Initiator);

58 }

59 }

Code Listing 28 - Static Partial Join for Multiple Instances Implementation Example

The Static Partial Join for Multiple Instances pattern is very similar to the Blocking Partial Join in that

only n < m branches must complete before the Partial Join runs a post-join step except that all m branches

must be finished before the join resets allowing subsequent enablements. Code Listing 28 adds Line 47 to

Code Listing 17 to delay the reset.

Cancelling Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of a task (say m) can be
created. The required number of instances is known when the first task instance
commences. Once n of the task instances have completed (where n is less than m), the
next task in the process is triggered and the remaining m-n instances are cancelled.

00 public class CancellingPartialJoinForMultipleInstances : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 yield return Subscribe("QUEUE", "", Enqueue);

05 }

06

07 IAsyncCall previousEnablement = null;

08

09 IEnumerable<IFavor> Enqueue(object newEntry)

 46

10 {

11 var currentEnablement = AsyncCall(ProcessEntry,

12 (string)newEntry, previousEnablement);

13

14 previousEnablement = currentEnablement;

15

16 yield return currentEnablement;

17 }

18

19 IEnumerable<IFavor> ProcessEntry(string newEntry,

20 IAsyncCall myPreviousEnablement)

21 {

22 if (myPreviousEnablement != null)

23 yield return Wait(myPreviousEnablement);

24

25 IAsyncCall[] assignments = new IAsyncCall[3]; // m

26

27 // Create the assignments

28 for (int counter = 0; counter < assignments.Length; counter++)

29 assignments[counter] = AsyncCall(Assignment, counter);

30

31 // Emit the assignments

32 for (int counter = 0; counter < assignments.Length; counter++)

33 yield return assignments[counter];

34

35 // Wait for m-1 assignments to be completed

36 IWait wait = Wait(assignments);

37 int remaining;

38 do

39 {

40 yield return wait;

41 remaining = wait.NotCompleted.Count();

42 wait = Wait(wait.NotCompleted.ToArray());

43 } while (remaining > 1);

44

45 // ToArray copies the enumeration to avoid

46 // any lazy evaluation issues

47 foreach (var w in wait.NotCompleted.ToArray())

48 {

49 yield return Cancel(w);

50 }

51

52 yield return AsyncCall(PostJoin);

53 }

54

55 IEnumerable<IFavor> Assignment(int assignmentNumber)

56 {

57 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

58 }

59

60 IEnumerable<IFavor> PostJoin()

61 {

62 yield return AssignTask("Finish", Initiator);

63 }

64 }

Code Listing 29 - Cancelling Partial Join for Multiple Instances Implementation Example

 47

The Cancelling Partial Join for Multiple Instances pattern is very similar to the Blocking Partial Join in

that only n < m branches must complete before the Partial Join runs a post-join step except that any m-

n branches must be canceled before the join resets allowing subsequent enablements. Code Listing 29 adds

the cancelation loop on Line 47 to Code Listing 17 to cancel the remaining branches. In this example, the

loop will execute exactly once since n is effectively hard-coded as m – 1.

Dynamic Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of a task can be created.
The required number of instances may depend on a number of runtime factors, including
state data, resource availability and inter-process communications and is not known until
the final instance has completed. At any time, whilst instances are running, it is possible
for additional instances to be initiated providing the ability to do so had not been disabled.
A completion condition is specified which is evaluated each time an instance of the task
completes. Once the completion condition evaluates to true, the next task in the process
is triggered. Subsequent completions of the remaining task instances are inconsequential
and no new instances can be created.

00 public class DynamicPartialJoinForMultipleInstances : ProcessBase

01 {

02 List<IWaitable> allThreads = new List<IWaitable>();

03 IAsyncCall currentWaitingAny = null;

04

05 public override IEnumerable<IFavor> Start(object data)

06 {

07 var newThread = AsyncCall(ProcessEntry);

08 allThreads.Add(newThread);

09 yield return newThread;

10

11 var subscription = Subscribe("QUEUE", null, Enqueue);

12 yield return subscription;

13

14 bool partialJoinSatisfied = false;

15

16 while (!partialJoinSatisfied &&

17 allThreads.Any(t => !t.IsComplete))

18 {

19 currentWaitingAny = AsyncCall(WaitForAny, allThreads);

20 yield return currentWaitingAny;

21 yield return Wait(currentWaitingAny);

22

23 if (currentWaitingAny.Result is bool &&

24 (bool)currentWaitingAny.Result)

25 partialJoinSatisfied = true;

26 }

27

28 yield return Unsubscribe(subscription);

29

30 yield return AssignTask("Post-join work", Initiator);

31 }

32

33 IEnumerable<IFavor> WaitForAny(List<IWaitable> threads)

34 {

 48

35 IWait waitAny = Wait(threads.Where(t => !t.IsComplete).ToArray());

36

37 yield return waitAny;

38

39 yield return Return((bool)waitAny.Completed.Single().Result);

40 }

41

42 IEnumerable<IFavor> Enqueue(object other)

43 {

44 var newThread = AsyncCall(ProcessEntry);

45 allThreads.Add(newThread);

46 yield return newThread;

47

48 yield return Cancel(currentWaitingAny);

49 }

50

51 IEnumerable<IFavor> ProcessEntry()

52 {

53 var task = AssignTask("Finished?", Initiator, false);

54 yield return task;

55

56 yield return Return((bool)task.Result);

57 }

58 }

Code Listing 30 - Dynamic Partial Join for Multiple Instances Implementation Example

The Dynamic Partial Join for Multiple Instances pattern can be implemented by combining several of the

techniques demonstrated earlier. Code Listing 30 begins with an initial ProcessEntry branch and an

opening of the Enqueue subscription introduced in the Blocking Discriminator implementation. A

reference to a single active WaitForAny branch is held in currentWaitingAny and is accessible from

both the Start branch and any Enqueue branches. In a loop, Start waits on its current WaitForAny

branch which waits on any of the ProcessEntry branches in allThreads. If any ProcessEntry

branch completes, returning a true or false, the result is passed back to Start where the Partial Join

criteria can be reevaluated. If Enqueue receives a new item and adds it to the allThreads list, it cancels

the WaitForAny branch help in currentWaitingAny, triggering Start to unblock and renew its

WaitForAny branch including the newly added ProcessEntry branch. Once the Partial Join criteria is

satisfied the subscription is closed and some post-join work is initiated. Remaining ProcessEntries are

allowed to complete normally.

State-based

Deferred Choice

A point in a process where one of several branches is chosen based on interaction with the
operating environment. Prior to the decision, all branches represent possible future
courses of execution. The decision is made by initiating the first task in one of the branches
i.e. there is no explicit choice but rather a race between different branches. After the
decision is made, execution alternatives in branches other than the one selected are
withdrawn.

00 public class DeferredChoice : ProcessBase

 49

01 {

02 IAsyncCall one, two;

03

04 public override IEnumerable<IFavor> Start(object data)

05 {

06 one = AsyncCall(One);

07 two = AsyncCall(Two);

08

09 yield return one;

10

11 yield return two;

12 }

13

14 IEnumerable<IFavor> One()

15 {

16 yield return AssignTask("Advance One and cancel Two", Initiator);

17

18 yield return Cancel(two);

19

20 yield return AssignTask("Advance One and finish", Initiator);

21 }

22

23 IEnumerable<IFavor> Two()

24 {

25 yield return AssignTask("Advance Two and cancel One", Initiator);

26

27 yield return Cancel(one);

28

29 yield return AssignTask("Advance Two and finish", Initiator);

30 }

31 }

Code Listing 31 - Deferred Choice Implementation Example

The Deferred Choice pattern can be implemented with a Parallel Split in which each branch has access to

cancel the other branches. Code Listing 31 splits to each One and Two. A task is assigned in each branch and

the user can choose between them. The first branch to advance cancels the other and assigns a follow-

up task. IAsyncCall one and two are defined at the instance level; however, a variation on this

implementation might pass the other branches as parameters to One and Two.

Interleaved Parallel Routing

A set of tasks has a partial ordering defining the requirements with respect to the order in
which they must be executed. Each task in the set must be executed once and they can be
completed in any order that accords with the partial order. However, as an additional
requirement, no two tasks can be executed at the same time (i.e. no two tasks can be
active for the same process instance at the same time).

00 public class InterleavedParallelRouting : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 List<IAssignTask> orderOne = new List<IAssignTask>();

05 List<IAssignTask> orderTwo = new List<IAssignTask>();

06

 50

07 for (int x = 0; x < 3; x++)

08 {

09 orderOne.Add(AssignTask("The " + x +

10 "th created task of order ONE", Initiator));

11 orderTwo.Add(AssignTask("The " + x +

12 "th created task of order TWO", Initiator));

13 }

14

15 while (orderOne.Any() || orderTwo.Any())

16 {

17 List<IAssignTask> current;

18

19 if (orderOne.Any() && orderTwo.Any())

20 {

21 var randomTask = IO.IORandom(new[] {0, 1});

22 yield return randomTask;

23

24 current = randomTask.Result == 1 ? orderOne : orderTwo;

25 }

26 else if (orderOne.Any())

27 {

28 current = orderOne;

29 }

30 else

31 {

32 current = orderTwo;

33 }

34

35 var task = current[0];

36

37 current.RemoveAt(0);

38

39 yield return task;

40 }

41 }

42 }

Code Listing 32 – Interleaved Parallel Routing Implementation Example

The Interleaved Parallel Routing pattern can be implemented by creating multiple lists representing each

part of a partial order, and then using some selector to make progress along one of the partial orderings

at a time. Code Listing 32 uses a random number generator as the selector input, choosing between one of

the two partial orderings at a time.

Note that because BindFlow sequences must be deterministic, the random number generator is invoked

indirectly through the IO.IORandom favor. Emitting this favor allows the IO.IORandom’s (hidden)

Perform method to be called by the engine and generate the value randomly. The engine records the

value for future sessions. That is, after three iterations of this loop, the random number generator has

been invoked only three times, as one would hope. This is in spite of the fact that each new session

following the completion of the blocking task (Line 33) requires the engine to replay all previous inputs

and deterministic transformations to restore the state of the instance. With each new session, triggered

by the completion of some task or other input, the recorded inputs, including the previously numbers

 51

which were chosen at random by a random number generator, are fed into the process just as they were

their first time through.

Milestone

A task is only enabled when the process instance (of which it is part) is in a specific state
(typically a parallel branch). The state is assumed to be a specific execution point (also
known as a milestone) in the process model. When this execution point is reached the
nominated task can be enabled. If the process instance has progressed beyond this state,
then the task cannot be enabled now or at any future time (i.e. the deadline has expired).
Note that the execution does not influence the state itself, i.e. unlike normal control-flow
dependencies it is a test rather than a trigger.

00 public class Milestone : ProcessBase

01 {

02 bool open = false;

03

04 public override string Summarize()

05 {

06 return string.Format("The window is {0}.",

07 open ? "open" : "closed");

08 }

09

10 // Expects a string as data

11 public override IEnumerable<IFavor> Start(object data)

12 {

13 var listen = Subscribe("WINDOW", null, Handle);

14

15 yield return listen;

16

17 yield return AssignTask("Open the window", Initiator);

18

19 open = true;

20

21 yield return AssignTask("Close the window", Initiator);

22

23 open = false;

24

25 yield return AssignTask("Stop", Initiator);

26

27 yield return Unsubscribe(listen);

28 }

29

30 IEnumerable<IFavor> Handle(object data)

31 {

32 if (open)

33 {

34 yield return AssignTask("Process Submission", Initiator);

35 }

36 }

37 }

Code Listing 33 – Milestone Implementation Example

 52

The Milestone pattern can be implemented with a Boolean flag. Code Listing 33 opens a subscription to

handle data submissions, but only processes such submissions once Start has passed Line 18 and until

it passed Line 22. As the “WINDOW” subscription is invoked (perhaps by user action), Line 33 is reached

only if the open flag is set and is discarded otherwise.

Critical Section

Two or more connected subgraphs of a process model are identified as "critical sections".
At runtime for a given process instance, only tasks in one of these "critical sections" can
be active at any given time. Once execution of the tasks in one "critical section"
commences, it must complete before another "critical section" can commence.

00 public class CriticalSection : ProcessBase

01 {

02 // BindFlow is cooperatively multitasking, so this is safe

03 bool mutex = false;

04

05 // Mandatory main entry point

06 public override IEnumerable<IFavor> Start(object data)

07 {

08 yield return AsyncCall(Other);

09

10 yield return AssignTask("Advance into Main critical section",

11 Initiator);

12

13 if (mutex) throw new Exception("Cannot enter Main critical " +

14 "section at this time");

15

16 mutex = true;

17

18 yield return AssignTask("Complete Main critical section",

19 Initiator);

20

21 mutex = false;

22 }

23

24 IEnumerable<IFavor> Other()

25 {

26 yield return AssignTask("Advance into Other critical section",

27 Initiator);

28

29 if (mutex) throw new Exception("Cannot enter Other critical " +

30 "section at this time");

31

32 mutex = true;

33

34 yield return AssignTask("Complete Other critical section",

35 Initiator);

36

37 mutex = false;

38 }

39 }

Code Listing 34 – Critical Section Implementation Example

 53

The Critical Section pattern can be implemented with a mutex flag that blocks executing continuations

into a locked critical section. Code Listing 34 throws an System.Exception back to the session initiator if

the critical section is locked. The engine dumps a session upon catching an exception. So long as no side-

effects were generated prior to the exception, there are no consequences to the failure and entering the

critical section can be attempted again at a later time, perhaps after the critical section has been released.

Interleaved Routing

Each member of a set of tasks must be executed once. They can be executed in any order
but no two tasks can be executed at the same time (i.e. no two tasks can be active for the
same process instance at the same time). Once all of the tasks have completed, the next
task in the process can be initiated.

00 public class InterleavedRouting : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 List<IAssignTask> tasks = new List<IAssignTask>();

05

06 for (int x = 0; x < 4; x++)

07 {

08 tasks.Add(AssignTask("The " + x + "th created task",

09 Initiator));

10 }

11

12 while (tasks.Any())

13 {

14 var randomTask = IO.IORandom(tasks.Count - 1);

15 yield return randomTask;

16

17 var task = tasks[randomTask.Result];

18

19 tasks.Remove(task);

20

21 yield return task;

22 }

23 }

24 }

Code Listing 35 - Interleaved Routing Implementation Example

The Interleaved Routing pattern can be implemented with a set of tasks and some selector. Code Listing 35

uses an IO.IORandom favor to request a randomly generated number. The selected task is performed

and removed from the set of pending tasks.

Cancellation and Force Completion

Cancel Task

An enabled task is withdrawn prior to it commencing execution. If the task has started, it
is disabled and, where possible, the currently running instance is halted and removed.

00 public class CancelTask : ProcessBase

 54

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var other = AsyncCall(Other);

05

06 yield return other;

07

08 yield return AssignTask("Retract Other Assignment", Initiator);

09

10 yield return Cancel(other);

11 }

12

13 IEnumerable<IFavor> Other()

14 {

15 yield return AssignTask("Finish Other", Initiator);

16 }

17 }

Code Listing 36 – Cancel Task Implementation Example

The Cancel Task pattern can be implemented with a cancellation of a particular branch of execution. The

meaning of “Task” in “Cancel Task” represents a terminology conflict with van der Aalst et al., and should

be read as “branch of execution”. Code Listing 36 performs a Parallel Split to Other and then, after

completing the “Retract Other Assignment” AssignTask of Line 08, prematurely terminates the

Other branch, if it wasn’t completed first.

It is also possible to cancel an AssignTask indirectly by canceling its containing branch. If only one

assignment should be canceled without canceling the entire branch, consider refactoring the

AssignTask to its own sequence.

Cancel Case

A complete process instance is removed. This includes currently executing tasks, those
which may execute at some future time and all sub-processes. The process instance is
recorded as having completed unsuccessfully.

00 public class CancelCase : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var task = AssignTask("Spawn a child instance?",

05 Initiator);

06

07 yield return task;

08

09 if ((bool)task.Result)

10 {

11 var spawn = Spawn("WorkflowPatterns.ControlFlow.CancelCase",

12 false);

13

14 yield return spawn;

15

16 var cancelation = AssignTask("Cancel all child instances?",

17 Initiator);

 55

18

19 yield return cancelation;

20

21 if ((bool)cancelation.Result)

22 yield return Cancel(spawn);

23

24 yield return Wait(spawn);

25 }

26 }

27 }

Code Listing 37 – Cancel Case Implementation Example

The Cancel Case pattern can be implemented with a cancellation of a new instance spawned by the parent

instance. Code Listing 37 optionally spawns a new instance of itself recursively. The resulting spawned

instances may grow to be many levels deep, depending on the user’s choices. If any parent is told to

cancel all child instances through the AssignTask created on Line 16, descendant instances are canceled

recursively.

Cancel Region

The ability to disable a set of tasks in a process instance. If any of the tasks are already
executing (or are currently enabled), then they are withdrawn. The tasks need not be a
connected subset of the overall process model.

00 public class CancelRegion : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var conditional = AssignTask("Split to a new branch?",

05 Initiator);

06

07 yield return conditional;

08

09 if ((bool)conditional.Result)

10 {

11 var split = AsyncCall(Start, (object)null);

12

13 yield return split;

14

15 var cancelation = AssignTask("Cancel all child branches?",

16 Initiator);

17

18 yield return cancelation;

19

20 if ((bool)cancelation.Result)

21 yield return Cancel(split);

22 }

23 }

24 }

Code Listing 38 – Cancel Region Implementation Example

The Cancel Region pattern can be implemented with a cancelation of some branch of an instance. Code

Listing 38 optionally creates new branches of the Start sequence recursively. The resulting split branches

 56

may grow to be many levels deep, depending on the user’s choices. If any parent branch is told to cancel

all child branches through the AssignTask created on Line 15, descendant branches are canceled

recursively.

Cancel Multiple Instance Activity

Within a given process instance, multiple instances of a task can be created. The required
number of instances is known at design time. These instances are independent of each
other and run concurrently. At any time, the multiple instance task can be cancelled and
any instances which have not completed are withdrawn. Task instances that have already
completed are unaffected.

00 public class CancelMultipleInstanceActivity : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var multiTask = AsyncCall(MultiTask);

05

06 yield return multiTask;

07

08 yield return AssignTask("Advance to cancelation", Initiator);

09

10 var cancel = Cancel(multiTask);

11

12 yield return cancel;

13 }

14

15 IEnumerable<IFavor> MultiTask()

16 {

17 // Create the assignments

18 var assignment1 = AsyncCall(Assignment, 1);

19 var assignment2 = AsyncCall(Assignment, 2);

20 var assignment3 = AsyncCall(Assignment, 3);

21

22 // Emit the assignments

23 yield return assignment1;

24 yield return assignment2;

25 yield return assignment3;

26

27 // Wait for all of the assignments to be completed (in any order)

28 yield return Wait(assignment1);

29 yield return Wait(assignment2);

30 yield return Wait(assignment3);

31 }

32

33 // Expects an int as data

34 IEnumerable<IFavor> Assignment(int assignmentNumber)

35 {

36 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

37 }

38 }

Code Listing 39 - Cancel Multiple Instance Activity Implementation Example

 57

The Cancel Multiple Instance Activity pattern can be implemented by canceling multiple branches of the

same sequence. Code Listing 39 Splits to multiple concurrent and independent branches of Assignment

within MultiTask. When the MultiTask branch is canceled, any unfinished Assignments are also

canceled but the results of finished Assignments are unaffected.

Complete Multiple Instance Activity

Within a given process instance, multiple instances of a task can be created. The required
number of instances is known at design time. These instances are independent of each
other and run concurrently. It is necessary to synchronize the instances at completion
before any subsequent tasks can be triggered. During the course of execution, it is possible
that the task needs to be forcibly completed such that any remaining instances are
withdrawn and the thread of control is passed to subsequent tasks.

00 public class CompleteMultipleInstanceActivity : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var multiTask = AsyncCall(MultiTask);

05

06 yield return multiTask;

07

08 yield return AssignTask("Force completion", Initiator);

09

10 var cancel = Cancel(multiTask);

11

12 yield return cancel;

13

14 yield return AssignTask("Finish", Initiator);

15 }

16

17 IEnumerable<IFavor> MultiTask()

18 {

19 // Create the assignments

20 var assignment1 = AsyncCall(Assignment, 1);

21 var assignment2 = AsyncCall(Assignment, 2);

22 var assignment3 = AsyncCall(Assignment, 3);

23

24 // Emit the assignments

25 yield return assignment1;

26 yield return assignment2;

27 yield return assignment3;

28

29 // Wait for all of the assignments to be completed (in any order)

30 yield return Wait(assignment1);

31 yield return Wait(assignment2);

32 yield return Wait(assignment3);

33 }

34

35 // Expects an int as data

36 IEnumerable<IFavor> Assignment(int assignmentNumber)

37 {

38 yield return AssignTask("Advance #" + assignmentNumber, Initiator);

39 }

 58

40 }

Code Listing 40 - Complete Multiple Instance Activity Implementation Example

The Complete Multiple Instance Activity pattern can be implemented as a trivial extension of the Cancel

Multiple Instance Activity pattern. Code Listing 40 extends Code Listing 39 with an explicit continuation on

Line 14 after the cancellation of MultiTask.

Iteration

Arbitrary Cycles

The ability to represent cycles in a process model that have more than one entry or exit
point. It must be possible for individual entry and exit points to be associated with distinct
branches.

00 public class ArbitraryCycles : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 Step1:

05 // First Task

06 var task1 = AssignTask("Step 1: Jump to Step3?", Initiator);

07 yield return task1;

08 if ((bool)task1.Result) goto Step3;

09

10 Step2:

11 // Second Task

12 var task2 = AssignTask("Step 2: Jump to Step1?", Initiator);

13 yield return task2;

14 if ((bool)task2.Result) goto Step1;

15

16 Step3:

17 // Third Task

18 var task3 = AssignTask("Step 3: Jump to Step2?", Initiator);

19 yield return task3;

20 if ((bool)task3.Result) goto Step2;

21 }

22 }

Code Listing 41 - Arbitrary Cycles Implementation Example

The Arbitrary Cycles pattern can be implemented using labels and C# goto statements. Code Listing 41

allows each section of code to conditionally Jump to another step in an unstructured fashion as illustrated

by the demonstration for this pattern by van der Aalst et al.[1].

Structured Loop

The ability to execute a task or sub-process repeatedly. The loop has either a pre-test or
post-test condition associated with it that is either evaluated at the beginning or end of
the loop to determine whether it should continue. The looping structure has a single entry
and exit point.

00 public class StructuredLoop : ProcessBase

01 {

 59

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 IAssignTask task;

05

06 do

07 {

08 task = AssignTask("Repeat?", Initiator);

09

10 yield return task;

11 } while ((bool)task.Result);

12 }

13 }

Code Listing 42 – Structured Loop Implementation Example

The Structured Loop pattern can be implemented with any standard C# looping construct such as while

or for loops. Code Listing 42 uses a do-while loop conditional on the result of an assigned task.

Recursion

The ability of a task to invoke itself during its execution or an ancestor in terms of the
overall decomposition structure with which it is associated.

00 public class Recursion : ProcessBase

01 {

02 public override IEnumerable<IFavor> Start(object data)

03 {

04 var conditional = AssignTask("Call to a new branch?", Initiator);

05

06 yield return conditional;

07

08 if ((bool)conditional.Result)

09 {

10 yield return Call(Start, (object)null);

11 }

12 }

13 }

Code Listing 43 – Recursion Implementation Example

The Recursion pattern can be implemented with a Call to a new branch of the calling sequence. Code

Listing 43 calls back onto Start optionally. Emitting the Call pops the calling sequence from the stack

and moves it to the wait-list and then pushes a new branch of the called sequence on to the stack for

immediate execution. Parent branches remain in the wait-list until the called branch completes.

Termination

Implicit Termination

A given process (or sub-process) instance should terminate when there are no remaining
work items that are able to be done either now or at any time in the future and the process
instance is not in deadlock. There is an objective means of determining that the process
instance has successfully completed.

0 public class ImplicitTermination : ProcessBase

 60

1 {

2 public override IEnumerable<IFavor> Start(object data)

3 {

4 yield return AssignTask("Finish", Initiator);

5 }

6 }

Code Listing 44 – Implicit Termination Implementation Example

The Implicit Termination pattern is implemented by abstaining from providing more instructions for a

process to follow. When no work remains, the instance is considered terminated. In Code Listing 44,

following Line 4, there are no remaining instructions to follow and nothing left to do.

Explicit Termination

A given process (or sub-process) instance should terminate when it reaches a nominated
state. Typically this is denoted by a specific end node. When this end node is reached, any
remaining work in the process instance is cancelled and the overall process instance is
recorded as having completed successfully, regardless of whether there are any tasks in
progress or remaining to be executed.

0 public class ExplicitTermination : ProcessBase

1 {

2 public override IEnumerable<IFavor> Start(object data)

3 {

4 yield return ForceTerminate();

5 }

6 }

Code Listing 45 – Explicit Termination Implementation Example

The Explicit Termination pattern can be implemented with ForceTerminate. ForceTerminate

instructs the engine to immediately dump all state, including the execution of other branches, and mark

the instance as finished. Code Listing 45 is a simple such implementation.

Trigger

Transient Trigger

The ability for a task instance to be triggered by a signal from another part of the process
or from the external environment. These triggers are transient in nature and are lost if not
acted on immediately by the receiving task. A trigger can only be utilized if there is a task
instance waiting for it at the time it is received.

00 public class TransientTrigger : ProcessBase

01 {

02 ISubscribe externalTrigger;

03

04 public override IEnumerable<IFavor> Start(object data)

05 {

06 externalTrigger = Subscribe("TRIGGER", null, EventHandler);

07

08 yield return externalTrigger;

09

 61

10 IAssignTask task;

11

12 do

13 {

14 task = AssignTask("Internally trigger", Initiator, true);

15

16 yield return task;

17

18 if ((bool)task.Result)

19 yield return AsyncCall(EventHandler, (object)null);

20 } while ((bool)task.Result);

21

22 yield return Unsubscribe(externalTrigger);

23 externalTrigger = null;

24 }

25

26 IEnumerable<IFavor> EventHandler(object data)

27 {

28 if (externalTrigger != null)

29 yield return AssignTask("Triggered!", Initiator);

30 }

31 }

Code Listing 46 – Transient Trigger Implementation Example

The Transient Trigger pattern can be implemented with a subscription and AsyncCalls for internal calls.

Code Listing 46 opens a subscription and an event loop for both external and internal calls to

EventHandler. Calls are only processed while the subscription is open (and for the benefit of

synchronizing the internal calls, when externalTrigger is not null).

Persistent Trigger

The ability for a task to be triggered by a signal from another part of the process or from
the external environment. These triggers are persistent in form and are retained by the
process until they can be acted on by the receiving task.

00 public class PersistentTrigger : ProcessBase

01 {

02 int count;

03 ISubscribe externalTrigger;

04

05 public override IEnumerable<IFavor> Start(object data)

06 {

07 externalTrigger = Subscribe("TRIGGER", null, EventHandler);

08

09 yield return externalTrigger;

10

11 IAssignTask task = null;

12

13 do

14 {

15 task = AssignTask("Internally trigger", Initiator, true);

16

17 yield return task;

18

19 if ((bool)task.Result)

 62

20 yield return AsyncCall(EventHandler, (object)null);

21 } while ((bool)task.Result);

22

23 yield return Unsubscribe(externalTrigger);

24 externalTrigger = null;

25

26 yield return AssignTask("Advance", Initiator);

27

28 for (int i = 0; i < count; i++)

29 {

30 yield return AssignTask("Handle deferred event", Initiator);

31 }

32 }

33

34 IEnumerable<IFavor> EventHandler(object data)

35 {

36 if (externalTrigger != null)

37 count++;

38

39 yield break; // Required by C# compiler

40 }

41 }

Code Listing 47 – Persistent Trigger Implementation Example

The Persistent Trigger pattern can be implemented with a subscription and a trigger queuing mechanism.

Code Listing 47 opens a subscription to EventHandler as in Code Listing 46 but queues up triggers with a

counter, count. The internal call loop also serves to keep the subscription open. Once the subscription

is closed, the deferred queue of work (count occurrences, in this example) can be processed in sequence.

Data Patterns
BindFlow supports 34 of the 40 Data Patterns.

Data Visibility

Task Data

Data elements can be defined by tasks which are accessible only within the context of
individual execution instances of that task.

The Task Data pattern can be implemented with local variables which are scoped only to a particular task,

such as at the C# method level or code block level. Code Listing 10 uses this pattern to track references to

child branches of One and Two – data which is not available by other areas of the workflow. Ever narrower

scoping can be achieved with C# block scoping.

Block Data

Block tasks (i.e. tasks which can be described in terms of a corresponding subprocess) are
able to define data elements which are accessible by each of the components of the
corresponding subprocess.

 63

The Block Data pattern can be implemented by passing the data by value first to a branch of a sequence.

The Value variation, of the variations described by van der Aalst et al.[1], is achieved by passing values to

sequences as parameters as in Code Listing 16. The Global Reference and Reference variations are achieved

by passing context objects to sequences as parameters as in Code Listing 20.

Scope Data

Data elements can be defined which are accessible by a subset of the tasks in a case.

The Scope Data pattern can be implemented by passing (push) or referencing (pull) data selectively within

tasks.

Multiple Instance Data

Tasks which are able to execute multiple times within a single case can define data
elements which are specific to an individual execution instance.

The Multiple Instance Data pattern can be implemented by branching to a single sequence multiple times

at runtime, as in Code Listing 16. Each branch maintains a private state.

Case Data

Data elements can be defined by tasks which are accessible only within the context of
individual execution instances of that task.

The Case Data pattern can be implemented with data fields at the class-level (process-global) as in Code

Listing 24.

Folder Data

Data elements can be defined which are accessible by multiple cases on a selective basis.
They are accessible to all components of the cases to which they are bound.

The Folder Data pattern is not natively supported.

Workflow Data

Data elements are supported which are accessible to all components in each and every
case of the process and are within the context of the process itself.

Workflow Data is provided by the ConfigVariableAttribute, configuration variables, and the

IO.IOGetConfigValue favor. Configured data is read-only from within a process.

Environment Data

Data elements which exist in the external operating environment are able to be accessed
by components of processes during execution.

 64

Environment data from any source is accessible through custom IO. Within the IO.Perform method,

any serializable data can be written to or read from the real world. Written data could be from or

influenced by any data stored in the IO object during construction within the instance. Read data is

passed back to the instance through the return value of the Perform method. The engine, which called

the Perform method, writes any result to the instance’s log before setting the IO’s Result property

and resuming the instance. In subsequent sessions, the engine places the stored result in the IO’s

Result property, bypassing the Perform method.

Internal Data Interaction

Task to Task

The ability to communicate data elements between one task instance and another within
the same case. The communication of data elements between two tasks is specified in a
form that is independent of the task definitions themselves.

The Task to Task data pattern can be implemented as the Integrated Control and Data Channel (passing

data to sequences through parameters) or the Global Data Store (instance-level data) variations of van

der Aalst et al.[1].

Block Task to Sub-Workflow Decomposition

The ability to pass data elements from a block task instance to the corresponding
subprocess that defines its implementation. Any data elements that are available to a
block task are able to be passed to (or be accessed) in the associated subprocess although
only a specifically nominated subset of those data elements are actually passed to the
subprocess.

The Block Task to Sub-Workflow Decomposition pattern is supported by the Explicit data passing via

parameters by van der Aalst et al.[1].

Sub-Workflow Decomposition to Block Task

The ability to pass data elements from the underlying subprocess back to the
corresponding block task. Only nominated data elements defined as part of the subprocess
are made available to the (parent) block task.

The Sub-Workflow Decomposition to Block Task pattern is supported by the Return favor. The value

passed to the host as part of the Return favor is copied to any Call, AsyncCall, or Waits relevant to

the terminated branch.

To Multiple Instance Task

The ability to pass data elements from a preceding task instance to a subsequent task
which is able to support multiple execution instances. This may involve passing the data
elements to all instances of the multiple instance task or distributing them on a selective
basis. The data passing occurs when the multiple instance task is enabled.

 65

The To Multiple Instance Task pattern is supported by the Shared Data Passed by Reference (passing data

by reference as sequence parameters), Instance Specific Data Passed by Value (passing data by value as

sequence parameters), and Instance Specific Data Passed by Reference (passing instance specific objects

by reference as sequence parameters) variations by van der Aalst et al.[1].

From Multiple Instance Task

The ability to pass data elements from a task which supports multiple execution instances
to a subsequent task. The data passing occurs at the conclusion of the multiple instance
task. It involves aggregating data elements from all instances of the task and passing them
to a subsequent task.

The From Multiple Instance Task pattern is supported by through the Return favor or by modifying some

commonly referenced context object. The Join construct may perform the aggregation or the context

object may on-write or on-read aggregation functionality.

Case to Case

The passing of data elements from one case of a process during its execution to another
case that is executing concurrently.

The Case to Case pattern is supported through the IO.IOCompleteTask and the

IO.IONotifySubscriber favors which, as the names suggest, complete the tasks or notify on the

subscriptions of other instances.

External Data Interaction

The ability of a task to initiate the passing of data elements to a resource or service in the
operating environment.

Environment data from any source is accessible through custom IO. Within the IO.Perform method,

any serializable data can be written to or read from the real world. Written data could be from or

influenced by any data stored in the IO object during construction within the instance. Read data is

passed back to the instance through the return value of the Perform method. The engine, which called

the Perform method, writes any result to the instance’s log before setting the IO’s Result property

and resuming the instance. In subsequent sessions, the engine places the stored result in the IO’s

Result property, bypassing the Perform method.

Task to Environment - Push-Oriented

The ability of a task to initiate the passing of data elements to a resource or service in the
operating environment.

The Task to Environment pattern is supported through AssignTask, Subscribe, and any custom IO, as

previously described.

 66

Environment to Task - Pull-Oriented

The ability of a task to request data elements from resources or services in the operational
environment.

The Environment to Task - Pull-Oriented pattern is supported through any custom IO, as previously

described.

Environment to Task - Push-Oriented

The ability for a task to receive and utilise data elements passed to it from services and
resources in the operating environment on an unscheduled basis.

The Environment to Task – Push-Oriented pattern is supported through AssignTask.

Task to Environment - Pull-Oriented

The ability of a task to receive and respond to requests for data elements from services
and resources in the operational environment.

The Task to Environment - Pull-Oriented pattern is not supported.

Case to Environment - Push-Oriented

The ability of a case to initiate the passing of data elements to a resource or service in the
operational environment.

The Case to Environment pattern is supported through AssignTask, Subscribe, and any custom IO, as

previously described. Here, the instance (case) is understood to necessarily include its component parts

– a process can be designed with branches of execution that act on behalf of the instance in a singleton

fashion.

Environment to Case - Pull-Oriented

The ability of a case to request data from services or resources in the operational
environment.

The Environment to Case - Pull-Oriented pattern is supported through any custom IO, as previously

described.

Environment to Case - Push-Oriented

The ability of a case to accept data elements passed to it from services or resources in the
operating environment.

The Environment to Case - Push-Oriented pattern is supported through AssignTask and Subscribe.

 67

Case to Environment - Pull-Oriented

The ability of a case to respond to requests for data elements from a service or resource
in the operating environment.

The Case to Environment - Pull-Oriented pattern is supported through the selected data published to the

environment through an instance’s Summarize method and it’s collection of Milestones.

Workflow to Environment - Push-Oriented

The ability of a process environment to pass data elements to resources or services in the
operational environment.

The Workflow to Environment – Push-Oriented pattern is not supported.

Environment to Workflow - Pull-Oriented

The ability of a process environment to request global data elements from external
applications.

The Environment to Workflow - Pull-Oriented pattern is not supported.

Environment to Workflow - Push-Oriented

The ability of services or resources in the operating environment to pass global data to a
process.

The Environment to Workflow - Push-Oriented pattern is supported through the configuration value

mechanism, either through a management console or through the APIs programmatically.

Workflow to Environment - Pull-Oriented

The ability of the process environment to handle requests for global data from external
applications.

The Workflow to Environment - Pull-Oriented pattern is supported through the configuration value

mechanism, either through a management console or through the APIs programmatically.

Data Transfer Patterns

By Value - Incoming

The ability of a process component to receive incoming data elements by value avoiding
the need to have shared names or common address space with the component(s) from
which it receives them.

The By Value - Incoming pattern is supported through the serialization of data objects inbound through

new instances, completed tasks, notified subscriptions, or IO.

 68

By Value - Outgoing

The ability of a process component to pass data elements to subsequent components as
values avoiding the need to have shared names or common address space with the
component(s) to which it is passing them.

The By Value - Outgoing pattern is supported through the serialization of data objects outbound through

AssignTasks, Subscribes, IO, the optional ProcessBase.Summarize overload or a set of

ProcessBase.Result.

Copy In/Copy Out

The ability of a process component to copy the values of a set of data elements from an
external source (either within or outside the process environment) into its address space
at the commencement of execution and to copy their final values back at completion.

The Copy In/Copy Out pattern is supported through the serialization of data objects inbound or outbound,

as previously discussed.

By Reference - Unlocked

The ability to communicate data elements between process components by utilizing a
reference to the location of the data element in some mutually accessible location. No
concurrency restrictions apply to the shared data element.

The By Reference - Unlocked pattern is supported by passing a pointer, such as a database key value, as

data by value. IO must be employed to access the referenced data.

By Reference - With Lock

The ability to communicate data elements between process components by passing a
reference to the location of the data element in some mutually accessible location.
Concurrency restrictions are implied with the receiving component receiving the privilege
of read-only or dedicated access to the data element. The required lock is declaratively
specified as part of the data passing request.

The By Reference - With Lock is not supported natively, however, a locking mechanism at the application

level is practical.

Data Transformation - Input

The ability to apply a transformation function to a data element prior to it being passed
to a process component. The transformation function has access to the same data
elements as the receiving process component.

The Data Transformation - Input pattern is supported by leveraging the standard C# data transformation

capabilities within a process.

 69

Data Transformation - Output

The ability to apply a transformation function to a data element immediately prior to it
being passed out of a process component. The transformation function has access to the
same data elements as the process component that initiates it.

The Data Transformation - Output pattern is supported by leveraging the standard C# data

transformation capabilities within a process.

Data-based Routing

Task Precondition - Data Existence

Data-based preconditions can be specified for tasks based on the presence of data
elements at the time of execution. The preconditions can utilize any data elements
available to the task with which they are associated. A task can only proceed if the
associated precondition evaluates positively.

The Task Precondition – Data Existence pattern is supported through typical programming data existence

test such as testing for null.

Task Precondition - Data Value

Data-based preconditions can be specified for tasks based on the value of specific
parameters at the time of execution. The preconditions can utilize any data elements
available to the task with which they are associated. A task can only proceed if the
associated precondition evaluates positively.

The Task Precondition – Data Value pattern is supported through arbitrary data validations written in C#

within a process.

Task Postcondition - Data Existence

Data-based postconditions can be specified for tasks based on the existence of specific
parameters at the time of task completion. The postconditions can utilize any data
elements available to the task with which they are associated. A task can only proceed if
the associated postcondition evaluates positively.

The Task Postcondition – Data Existence pattern is supported through typical programming data

existence test such as testing for null. Postcondition failure may involve throwing a .Net exception or

some alternative code path.

Task Postcondition - Data Value

Data-based postconditions can be specified for tasks based on the value of specific
parameters at the time of execution. The postconditions can utilize any data elements
available to the task with which they are associated. A task can only proceed if the
associated postcondition evaluates positively.

 70

The Task Postcondition – Data Value pattern is supported through arbitrary data validations written in

C# within a process. Postcondition failure may involve throwing a .Net exception or some alternative code

path.

Event-based Task Trigger

The ability for an external event to initiate a task and to pass data elements to it.

The Event-based Task Trigger pattern is supported through tasks and subscriptions.

Data-based Task Trigger

Data-based task triggers provide the ability to trigger a specific task when an expression
based on data elements in the process instance evaluates to true. Any data element
accessible within a process instance can be used as part of a data-based trigger
expression.

The Data-based Task Trigger pattern is not supported.

Data-based Routing

Data-based routing provides the ability to alter the control-flow within a case based on
the evaluation of data-based expressions. A data-based routing expression is associated
with each outgoing arc of an OR-split or XOR-split. It can be composed of any data-values,
expressions and functions available in the process environment providing it can be
evaluated at the time the split construct with which it is associated completes. Depending
on whether the construct is an XOR-split or OR-split, a mechanism is available to select
one or several outgoing arcs to which the thread of control should be passed based on the
evaluation of the expressions associated with the arcs.

The Data-based Routing pattern is supported by selecting one or more routes through standard C#

control-flow mechanisms.

Resource Patterns
AssignTask assignments in the code examples above use the convenient ProcessBase.Initiator

to assign the task back to the initiator of the process. Assigning to other accounts requires only knowing

the name of the account to assign with the Account constructor new Account("TAG",

"ACCOUNT_NAME") where "TAG" is the provider prefix for a configured user manager, such as Active

Directory, and "ACCOUNT_NAME" is the unique identifier of a user or group within that user manager’s

scope. In BindFlow, the provider prefix can be omitted, defaulting to Active Directory. new

Account("[TAG]ACCOUNT_NAME") formatting is also supported.

Furthermore, role-membership, permissions, and organizational hierarchy queries against Active

Directory or other user managers is available through IO. The built-in IOActiveDirectory IO factory

implements several user and group queries.

 71

While most of the Control-Flow and Data patterns are supported from within process code, the BindFlow

Development Kit, many of the Resource patterns are realized through the external Client API.

BindFlow fully-supports 39 of the 43 Resource Patterns and at least partially supports all 43 Resource

Patterns.

Creation

Direct Distribution

The ability to specify at design time the identity of the resource(s) to which instances of
this task will be distributed at runtime.

The Direct Distribution pattern is supported by assigning a task to a particular user within a configured

user manager’s scope.

Role-Based Distribution

The ability to specify at design-time one or more roles to which instances of this task will
be distributed at runtime. Roles serve as a means of grouping resources with similar
characteristics. Where an instance of a task is distributed in this way, it is distributed to
all resources that are members of the role(s) associated with the task.

The Role-Based Distribution pattern is supported to a particular group within a configured user manager’s

scope.

Deferred Distribution

The ability to specify at design-time that the identification of the resource(s) to which
instances of this task will be distributed will be deferred until runtime.

The Deferred Distribution pattern is supported by using variable data to create the Account object at

runtime.

Authorization

The ability to specify the range of privileges that a resource possesses in regard to the
execution of a process. In the main, these privileges define the range of actions that a
resource can initiate when undertaking work items associated with tasks in a process.

The Authorization pattern is supported by querying user managers through IO or by embedding some

scheme of authorization tables within a process.

Separation of Duties

The ability to specify that two tasks must be executed by different resources in a given
case.

 72

The Separation of Duties pattern is supported by enforcing such rules in process code.

Case Handling

The ability to allocate the work items within a given case to the same resource at the time
that the case is commenced.

The Case Handling pattern is supported by enforcing such rules in process code.

Retain Familiar

Where several resources are available to undertake a work item, the ability to allocate a
work item within a given case to the same resource that undertook a preceding work item.

The Retain Familiar pattern is supported by enforcing such rules in process code. Familiarity among cases

is not natively supported, but can be implemented with an application-level external data store.

Capability-Based Distribution

The ability to distribute work items to resources based on specific capabilities that they
possess. Capabilities (and their associated values) are recorded for individual resources as
part of the organizational model.

The Capability-Based pattern is supported by querying user managers through IO or by embedding some

scheme of capability tables within a process.

History-Based Distribution

The ability to distribute work items to resources on the basis of their previous execution
history.

The History-Based pattern is supported by enforcing such rules in process code. History among cases is

not natively supported.

Organizational Distribution

The ability to distribute work items to resources based their position within the
organization and their relationship with other resources.

The Organizational Distribution pattern is supported by querying some organizational hierarchy through

IO or by embedding it within a process.

Automatic Execution

The ability for an instance of a task to execute without needing to utilize the services of a
resource.

 73

The Automatic Execution pattern is supported as many steps in process code and IO do not require human

intervention. Furthermore, a built-in system timer can be used to delay automated execution until some

statically or dynamically chosen future date.

Push

Single Distribution by Offer

The ability to distribute a work item to a selected individual resource on a non-binding
basis.

The Single Distribution by Offer pattern is supported. An assigned task may be delegated or reassigned

as allowed by system permissions.

Multiple Distribution by Offer

The ability to distribute a work item to a group of selected resources on a non-binding
basis.

The Multiple Distribution by Offer pattern is supported by assigning work to an Account representing a

group.

Single Distribution by Allocation

The ability to distribute a work item to a specific resource for execution on a binding basis.

The Single Distribution by Allocation pattern is supported. An assigned task may be delegated or

reassigned as allowed by system permissions.

Random Allocation

The ability to allocate work items to a selected resource chosen from a group of eligible
resources on a random basis.

The Random Allocation pattern is supported through the use of IO.IORandom or similar IO.

Round Robin Allocation

The ability to allocate a work item to a selected resource chosen from a group of eligible
resources on a cyclic basis.

The Round Robin Allocation within a single instance is supported. Round Robin Allocation among

instances is not natively supported.

Shortest Queue

The ability to allocate a work item to a selected resource chosen from a group of eligible
resources on the basis of having the shortest work queue.

 74

The Shortest Queue pattern within a single instance is supported. The Shortest Queue pattern among

instances is not natively supported.

Early Distribution

The ability to advertise and potentially distribute a work items to resources ahead of the
moment at which it is actually enabled.

The Early Distribution pattern is supported. The allocation of a task prior to its enablement may be

achieved in many ways such as sending an advisory email or assigning a task early with a low priority

setting and later upgrading the priority at intended enablement.

Distribution on Enablement

The ability to advertise and distribute a work items to resources at the moment that the
task to which it corresponds is enabled for execution.

The Distribution on Enablement pattern is supported as the default.

Late Distribution

The ability to advertise and distribute work items to resources after the task to which the
work item corresponds has been enabled for execution.

The Late Distribution pattern is supported. An email reminder or upgrade of task priority are two possible

approaches.

Pull

Resource-Initiated Allocation

The ability for a resource to commit to undertake a work item without needing to
commence working on it immediately.

The Resource-Initiated Allocation pattern is supported. Work assigned to one or more assignees may be

Claimed by one of them.

Resource-Initiated Execution - Allocated Work Item

The ability for a resource to commence work on a work item that is allocated to it.

The Resource-Initiated Execution – Allocated Work Item pattern is supported.

Resource-Initiated Execution - Offered Work Item

The ability for a resource to select a work item offered to it and commence work on it
immediately.

 75

The Resource-Initiated Execution - Offered Work Item pattern is supported. A task opened by a user will

be immediately claimed.

System-Determined Work Queue Content

The ability of the system to order the content and sequence in which work items are
presented to a resource for execution.

The System-Determined Work Queue Content pattern is supported. Tasks are delivered to the user

sorted by some default ordering, such as by task age.

Resource-Determined Work Queue Content

The ability for resources to specify the format and content of work items listed in the work
queue for execution.

The Resource-Determined Work Queue Content pattern is supported. Tasks are delivered to the user

sorted by some default ordering, such as by task age; however, the resource may choose other

presentation formats, if allowed by configuration.

Selection Autonomy

The ability for resources to select a work item for execution based on its characteristics
and their own preferences.

The Selection Autonomy pattern is supported. By default, resources are presented with a list of active

tasks from which they are free to select.

Detour

Delegation

The ability for a resource to allocate an unstarted work item previously allocated to it (but
not yet commenced) to another resource.

The Delegation pattern is supported. In BindFlow, it is called “Reassign” to differentiate it from a similar

feature called “Delegation” which allows the original assignee to maintain ownership of the item and

recall it if desired.

Escalation

The ability of a system to distribute a work item to a resource or group of resources other
than those it has previously been distributed to in an attempt to expedite the completion
of the work item.

00 public class Escalation : ProcessBase

01 {

02 string summary;

03 public override string Summarize() { return summary; }

 76

04

05 public override IEnumerable<IFavor> Start(object data)

06 {

07 // Do nothing for one day

08 yield return Delay(TimeSpan.FromHours(24));

09

10 var call = Call<Sequence<Account, TaskPriority>>(Escalate,

11 EscalatedStep);

12

13 yield return call;

14

15 summary = (string)call.Result;

16 }

17

18 IEnumerable<IFavor> Escalate(

19 Sequence<Account, TaskPriority> escalatedStep)

20 {

21 var escalatedStepBranch = AsyncCall(escalatedStep,

22 Initiator, TaskPriority.NORMAL);

23

24 var delay = AsyncDelay(TimeSpan.FromHours(4));

25 var wait = Wait(escalatedStepBranch, delay);

26

27 yield return escalatedStepBranch;

28 yield return delay;

29 yield return wait;

30

31 if (wait.Completed.Single() == delay)

32 {

33 yield return Cancel(escalatedStepBranch);

34

35 var call = Call(escalatedStep,

36 new Account("Supervisors"), TaskPriority.HIGH);

37

38 yield return call;

39

40 yield return Return(call.Result);

41 }

42 else

43 {

44 yield return Cancel(delay);

45

46 yield return Return(escalatedStepBranch.Result);

47 }

48 }

49

50 IEnumerable<IFavor> EscalatedStep(

51 Account assignee, TaskPriority priority)

52 {

53 var task = AssignTask(priority, "Complete Me",

54 "http://intranet/run?task={TASK}", assignee, null);

55

56 yield return task;

57

58 yield return Return(task.Result);

59 }

60 }

 77

Code Listing 48 – Escalation Implementation Example

The Escalation pattern is supported through a combination of AsyncCalls, delay timer tasks, and

cancelations. Code Listing 48 implements the escalation of EscalatedStep to a Supervisors group.

Line 10 involves high-level programming features of C# Generics and C# Delegates. To demonstrate some

of the advanced capabilities of the model, we generalize the Escalate method to accept any

Sequence<Account, TaskPriority>. The type parameters of Call are often discovered by the C#

type-inferencer, but in this case the C# compiler needs our assistance.

The Escalate sequence employs the Deferred Choice pattern between the passed in escalatedStep

and a Delay timer step, triggered by the system timer. If the timer fires first, the still blocked

escalatedStep is canceled and replaced with a new one escalated to “Supervisors” with high priority.

Otherwise, the timer is canceled. In either case, the eventual completion of either of the assignments is

returned back to the waiting Start branch.

Deallocation

The ability of a resource (or group of resources) to relinquish a work item which is allocated
to it (but not yet commenced) and make it available for distribution to another resource
or group of resources.

The Deallocation pattern is supported. The allocation or “Claim” of a work item can be revoked by

“Releasing” the claim.

Stateful Reallocation

The ability of a resource to allocate a work item that they are currently executing to
another resource without loss of state data.

The Stateful Reallocation pattern is supported. Task progress, such as filling out only some of an

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.

During reassignment, the reassigner has the option of retaining that saved progress.

Stateless Reallocation

The ability for a resource to reallocate a work item that it is currently executing to another
resource without retention of state.

The Stateless Reallocation pattern is supported. Task progress, such as filling out only some of an

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.

During reassignment, the reassigner has the option of deleting that saved progress.

Suspension-Resumption

The ability for a resource to suspend and resume execution of a work item.

 78

The Suspension-Resumption pattern is supported. Task progress, such as filling out only some of an

application’s form, can be stored in BindFlow attached to the task without submitting it for completion.

It can be recalled later to continue the assignment.

Skip

The ability for a resource to skip a work item allocated to it and mark the work item as
complete.

The Skip pattern behavior can be implemented by completing a task with some result data signaling the

desire to skip the work, but is not a distinct mechanism.

Redo

The ability for a resource to redo a work item that has previously been completed in a
case. Any subsequent work items (i.e. work items that correspond to subsequent tasks in
the process) must also be repeated.

The Redo pattern can be implemented as a follow-up step giving a user the option of recalling any future

work, but is not a distinct mechanism.

Pre-Do

The ability for a resource to execute a work item ahead of the time that it has been offered
or allocated to resources working on a given case. Only work items that do not depend on
data elements from preceding work items can be "pre-done".

The Pre-do pattern can be implemented by careful design of a process similar to the Early Distribution

Resource Allocation pattern, but is not a distinct mechanism.

Auto-Start

Commencement on Creation

The ability for a resource to commence execution on a work item as soon as it is created.

The Commencement on Creation pattern is supported. Tasks assigned to an individual rather than to a

group do not need to be allocated.

Commencement on Allocation

The ability to commence execution on a work item as soon as it is allocated to a resource.

The Commencement on Allocation pattern is supported. Tasks assigned to a group are first allocated to

an individual by claim, delegation, or reassignment before being commenced.

 79

Piled Execution

The ability to initiate the next instance of a task (perhaps in a different case) once the
previous one has completed with all associated work items being allocated to the same
resource. The transition to Piled Execution mode is at the instigation of an individual
resource. Only one resource can be in Piled Execution mode for a given task at any time.

The Piled Execution pattern is supported through the Client API calls within an application.

Chained Execution

The ability to automatically start the next work item in a case once the previous one has
completed. The transition to Chained Execution mode is at the instigation of the resource.

The Chained Execution pattern is supported. Upon completing a task or notifying on a subscription, the

engine tracks the applicable thread of execution and returns relevant follow-up tasks from the same

thread, if available.

Visibility

Configurable Unallocated Work Item Visibility

The ability to configure the visibility of unallocated work items by process participants.

The Configurable Unallocated Work Item Visibility pattern is supported through group membership of

the allocation pool or supervisory and process-oversight permissions on the task-list.

Configurable Allocated Work Item Visibility

The ability to configure the visibility of allocated work items by process participants.

The Configurable Allocated Work Item Visibility pattern is supported through supervisory and process-

oversight permissions on the task-list.

Multiple Resource

Simultaneous Execution

The ability for a resource to execute more than one work item simultaneously.

The Simultaneous Execution pattern is supported. Multiple assignments can be outstanding

simultaneously and can be completed any order, according to the control-flow pattern at work.

Additional Resources

The ability for a given resource to request additional resources to assist in the execution
of a work item that it is currently undertaking.

 80

The Additional Resources pattern is supported through “Delegation” which allows the original assignee

to maintain ownership of the item and recall it if desired.

Exception Handling
Exception handling in workflow is supported at the low level, step-by-step through traditional exception

handling mechanisms in C#. Exceptions can be handled in deterministic transformation steps and in

nondeterministic IO steps, but cannot span multiple steps. Code Listing 49 demonstrates several exception

handling examples.

00 public class ExceptionHandling : ProcessBase

01 {

02 string summary;

03 public override string Summarize() { return summary; }

04

05 public override IEnumerable<IFavor> Start(object data)

06 {

07 int i;

08

09 try

10 {

11 i = int.Parse((string)data);

12 }

13 catch (InvalidCastException ex)

14 {

15 summary = "Data could not be cast to a string";

16 i = 0;

17 }

18 catch (ArgumentNullException ex)

19 {

20 summary = "String could not be null";

21 i = 0;

22 }

23 catch (FormatException ex)

24 {

25 summary = "String could not be interpreted as a Int32";

26 i = 0;

27 }

28 catch (OverflowException ex)

29 {

30 summary = "String represents a value out of range of a Int32";

31 i = 0;

32 }

33 catch

34 {

35 throw;

36 }

37 finally

38 {

39 summary = summary.ToUpper();

40 }

41

42 var breakMe = new IOBroken(i) { TreatErrorsAsData = true };

43 yield return breakMe;

44 if (!breakMe.Succeeded)

 81

45 {

46 throw breakMe.UnhandledException;

47 }

48

49 yield return AssignTask("i = " + i.ToString(), Initiator);

50 }

51 }

52

53 class IOBroken : IO

54 {

55 int i;

56

57 public IOBroken(int i)

58 {

59 this.i = i;

60 }

61

62 protected override object Perform()

63 {

64 int x = 0;

65

66 return DateTime.Now.Second * (i / x);

67 }

68 }

Code Listing 49 – Exception Handling Implementation Examples

Future Work
Additional work can be done to further support the few remaining Workflow Patterns. We are not aware

of any fundamental issues with the model that prevent these patterns from being supported by the engine

or the hosting server environment.

 82

Code Listings
Code Listing 1 – The trivial process ... 11

Code Listing 2 – The trivial IO .. 13

Code Listing 3 – Implementation and use of a less trivial custom IO. ... 14

Code Listing 4 – Example Process .. 14

Code Listing 5 – Sequence Implementation Example .. 21

Code Listing 6 – Parallel Split Implementation Example ... 21

Code Listing 7 – Synchronization Implementation Example .. 23

Code Listing 8 – Exclusive Choice Implementation Example ... 24

Code Listing 9 – Simple Merge Implementation Example ... 24

Code Listing 10 – Multi-Choice Implementation Example ... 25

Code Listing 11 – Structured Synchronizing Merge Implementation Example 26

Code Listing 12 – Multi-Merge Implementation Example ... 27

Code Listing 13 – Structured Discriminator Implementation Example .. 28

Code Listing 14 – Blocking Discriminator Implementation Example ... 29

Code Listing 15 – Cancelling Discriminator Implementation Example ... 31

Code Listing 16 – Structured Partial Join Implementation Example .. 31

Code Listing 17 – Blocking Partial Join Implementation Example ... 33

Code Listing 18 – Canceling Partial Join Implementation Example.. 34

Code Listing 19 – Generalized AND-Join Implementation Example ... 35

Code Listing 20 - Local Synchronizing Merge Implementation Example .. 37

Code Listing 21 - General Synchronizing Merge Implementation Example ... 39

Code Listing 22 – Thread Merge Implementation Example ... 39

Code Listing 23 – Thread Split Implementation Example .. 40

Code Listing 24 – Multiple Instances Without Synchronization Implementation Example.................... 41

Code Listing 25 – Multiple Instances with a Priori Design-Time Knowledge Implementation Example. 42

Code Listing 26 – Multiple Instances with a Priori Run-Time Knowledge Implementation Example 42

Code Listing 27 - Multiple Instances without a Priori Run-Time Knowledge Implementation Example 44

Code Listing 28 - Static Partial Join for Multiple Instances Implementation Example 45

Code Listing 29 - Cancelling Partial Join for Multiple Instances Implementation Example 46

Code Listing 30 - Dynamic Partial Join for Multiple Instances Implementation Example 48

Code Listing 31 - Deferred Choice Implementation Example .. 49

Code Listing 32 – Interleaved Parallel Routing Implementation Example ... 50

Code Listing 33 – Milestone Implementation Example ... 51

Code Listing 34 – Critical Section Implementation Example .. 52

Code Listing 35 - Interleaved Routing Implementation Example .. 53

Code Listing 36 – Cancel Task Implementation Example ... 54

Code Listing 37 – Cancel Case Implementation Example... 55

Code Listing 38 – Cancel Region Implementation Example ... 55

Code Listing 39 - Cancel Multiple Instance Activity Implementation Example 56

Code Listing 40 - Complete Multiple Instance Activity Implementation Example 58

 83

Code Listing 41 - Arbitrary Cycles Implementation Example ... 58

Code Listing 42 – Structured Loop Implementation Example .. 59

Code Listing 43 – Recursion Implementation Example ... 59

Code Listing 44 – Implicit Termination Implementation Example ... 60

Code Listing 45 – Explicit Termination Implementation Example ... 60

Code Listing 46 – Transient Trigger Implementation Example .. 61

Code Listing 47 – Persistent Trigger Implementation Example ... 62

Code Listing 48 – Escalation Implementation Example ... 77

Code Listing 49 – Exception Handling Implementation Examples ... 81

 84

References
[1] van der Aalst, Russell, ter Hofstede, et al. “Workflow Patterns,” April, 2009

<http://www.workflowpatterns.com>

[2] Peter Thiemann “WASH Server Pages,” Lecture Notes in Computer Science, Functional and Logic

Programming, 2006, Volume 3945/2006, 277-293

[3] Alessandro Orso and Bryan Kennedy “Selective capture and replay of program executions,” SIGSOFT

Softw. Eng. Notes 30, 4. May 1-7, 2005

[4] Steven Osman, Dinesh Subhraveti, Gong Su, Jason Nieh “The Design and Implementation of Zap: A

System for Migrating Computing Environments,” Proceedings of the Fifth Symposium on Operating

Systems Design and Implementation (OSDI 2002). December 9–11, 2002, Boston, MA.

[5] Diimitrios Georgakopoulos, Mark Hornick, Amit Sheth "An Overview of Workflow Management: From

Process Modeling to Workflow Automation Infrastructure," Distributed and Parallel Databases, 1995

[6] Microsoft Corporation “Iterators (C# Programming Guide),” April, 2009

<http://msdn.microsoft.com/en-us/library/dscyy5s0.aspx>

