
Designand implementation of the YAWL system

W.M.P. vanderAalst
��� �

, L. Aldred
�
, M. Dumas

�
, andA.H.M. terHofstede

�

�
Departmentof Technology Management, EindhovenUniversityof Technology

P.O.Box 513,NL-5600MB, Eindhoven, TheNetherlands.
w.m.p.v.d.aalst@tm.tue.nl�

Centrefor InformationTechnologyInnovation, Queensland Universityof Technology
P.O.Box 2434,BrisbaneQld 4001, Australia.

a.terhofstede@qut.edu.au

Abstract. Thispaperdescribestheimplementationof asystemsupportingYAWL
(YetAnotherWorkflow Language).YAWL is basedon a rigorousanalysisof ex-
isting workflow management systemsandrelatedstandardsusinga comprehen-
sive setof workflow patterns.This analysisshows that contemporary workflow
systems,relevant standards(e.g.,XPDL, BPML, BPEL4WS), but alsotheoreti-
cal modelssuchasPetri netshave problems supportingessentialpatterns.This
inspiredthedevelopmenta new language by takingPetrinetsasa startingpoint
andaddingmechanismsthatprovide directandintuitive supportof theworkflow
patternsidentified.As aproofof conceptwehavedevelopedaworkflow manage-
mentsystemsupporting YAWL. This paperdescribesthe architectureandfunc-
tionality of thesystemandzoomsinto someof themostrelevantperspectives.

1 Intr oduction

In theareaof workflow oneis confrontedwith aplethoraof products(commercial,free
andopensource)supporting languagesthat differ significantly in termsof concepts,
constructs,andtheir semantics.Oneof the contributing factorsto this problem is the
lackof acommonly agreedupon formal foundationfor workflow languages.Standard-
izationefforts, e.g.XPDL [43] proposedby theWfMC, have essentiallyfailedto gain
universalacceptanceandhave not in any caseprovidedsucha formal basisfor work-
flow specification.Thelackof well-groundedstandardsin thisareahasinducedseveral
issues,including minimal support for migration of workflow specifications,potential
for errors in specificationsdueto ambiguities,andlack of a reference framework for
comparing the relative expressive power of different languages(though somework in
this areais reportedin [23, 24]).

Theworkflow patterns initiative1 (see[9]) aimedat establishinga morestructured
approach to the issueof the specificationof control flow dependenciesin workflow
languages.Basedon ananalysisof existing workflow managementsystemsandappli-
cations,this initiativeidentifiedacollectionof patternscorresponding to typicalcontrol
flow dependenciesencounteredin workflow specifications,anddocumentedwaysof
capturing thesedependencies in existing workflow languages.Thesepatternscanbe

1 A websiteis maintainedatwww.tm.tue.nl/it/research/patterns.

Designandimplementationof theYAWL system 2

usedasabenchmarkfor comparing workflow offerings,or for determining thesuitabil-
ity of a workflow managementsystemfor a given applicationdomain.

While workflow patternsprovide a pragmatic approachto control flow specifica-
tion in workflows,Petrinetsprovide a moretheoreticalapproach.Petrinets[31] form
a modelfor concurrency with a formal foundation,anassociatedgraphical representa-
tion, anda collectionof analysistechniques.Thesefeatures, together with their direct
support for thenotionof state(required in someof theworkflow patterns), makesthem
attractive asa foundation for control flow specificationin workflows. However, even
though Petri nets(including higher-orderPetri netssuchas ColoredPetri nets[22])
support a numberof the identifiedpatterns, they do not provide direct support for the
cancellationpatterns (in particularthe cancellationof a whole caseor a region), the
synchronizingmergepattern(whereall active threadsneedto bemerged,andbranches
which cannot become active needto be ignored), andpatternsdealing with multiple
active instancesof the sameactivity in the samecase[7]. This realizationmotivated
thedevelopmentof YAWL [8] (Yet Another Workflow Language)whichcombinesthe
insightsgainedfrom theworkflow patterns with thebenefitsof Petrinets.It shouldbe
notedthough thatYAWL is not simply anextension of Petrinets.In fact,its semantics
is notdefinedin termsof Petrinetsbut ratherin termsof a transitionsystem.

As alanguagefor thespecificationof control flow in workflows,YAWL hastheben-
efit of beinghighly expressive andsuitable,in thesensethat it providesdirectsupport
for all the workflow patterns, while the reviewed workflow languagesprovide direct
support for only asubsetof them.In addition, YAWL hasaformalsemanticsandoffers
graphical representationsfor many of its concepts.Theexpressivepowerandformal se-
manticsof YAWL makeit anattractivecandidateto beusedasanintermediatelanguage
to support translationsof workflows specifiedin different languages.

WhenYAWL wasfirst proposedno implementationwasavailable.Recently, im-
plementation efforts have resultedin a first versionof a prototypesupporting YAWL.
With respectto thevarious perspectivesfrom whichworkflowscanbeconsidered(e.g.
control-flow, data,resource, andoperational [21]), YAWL initially focusedexclusively
on the control flow perspective. Subsequently, a novel approachfor dealingwith the
dataperspective hasbeendesignedandincorporatedinto theprototype.In addition, an
approachhasbeendesigned(although notyetimplemented)todealwith theoperational
perspective onthebasisof a service-orientedarchitecture.

Thispaperdiscussessalientaspectsandissuesrelatedto thedesignandimplemen-
tationof theYAWL system,including theproposedextensionsfor dealingwith thedata
andoperationalperspectives.In short,themaincontributionsof thepaperare:

– A discussionof theimplementationof thecontrol flow perspective of YAWL;
– A discussionof thedataperspectiveof YAWL andits implementation;
– A discussionof aproposalfor theincorporation of theoperationalperspective into

YAWL through theuseof a service-orientedarchitecture.

The remainder of the paper is organizedasfollows. After a brief overview of re-
latedwork we introduce the YAWL language.Section4 describesthe architecture of
theYAWL systemandmotivatesdesigndecisions.Section5 discussesthecontrol-flow,
data,andoperationalperspectivesin moredetail.Section6 briefly discussesanexam-
ple.Section7 concludesthepaper.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 3

2 Relatedwork

YAWL [8] is basedon a line of researchgroundedin Petrinettheory [1,3,24] andthe
20workflow patternsdocumentedin [6,9,45]. In previouspublicationswehaveevalu-
atedcontemporarysystems,languagesandstandards usingthesepatterns.An analysis
of 13commercialworkflow offeringscanbefound in [9] while ananalysisof 10work-
flow languagesproposedby theacademic community is describedin [8]. Commercial
systemsthathave beenevaluatedinclude COSA(Ley GmbH,[36]) , VisualWorkflow
(Filenet, [14]), Forté Conductor (SUN, [16]), Lotus Domino Workflow (IBM/Lotus,
[29]), MQSeries/Workflow (IBM, [20]), Staffware(StaffwarePlc, [37]), Verve Work-
flow (Versata,[39]), I-Flow (Fujitsu,[17]), InConcert (TIBCO,[38]), Changengine(HP,
[19]), SAPR/3 Workflow (SAP, [33]), Eastman(Eastman,[35]), andFLOWer (Pallas
Athena,[11]). Examplesof academicprototypesthathavebeenevaluatedusingthepat-
ternsareMeteor[34]), Mobile [21], ADEPTflex [32], OPENflow [18], Mentor [44,28,
27], andWASA [40–42].For ananalysisof UML activity diagrams in termsof (some
of) thepatterns,wereferto [13]. BPEL4WS,aproposedstandard for webservicecom-
position,hasbeenanalysedin [45], while anothersuchproposedstandard, BPML, has
beenanalysedin [4]. In [2] WfMC’s XPDL is assessedin termsof thepatterns.In total
morethan30languages/systemshavebeenevaluatedandtheseevaluationshavedriven
the development of the YAWL language. Given that this paper focuseson the design
andimplementation of theYAWL system,we will not discusstheanalysisof these30
languages/systems,referring thereaderto theabovereferences.

As an opensourceworkflow system,the YAWL systemjoins the ranks of a sig-
nificantnumberof previous initiatives:18 opensourceworkflow systemsarereported
in [30]. Again, thedistinctive featureof YAWL with respectto thesesystemsis in the
combinationof its expressive power, formal foundation,andsupport for graphical de-
sign, complementedby its novel approachto dealwith the dataand the operational
perspective of workflow by leveraging emerging XML andWebservicestechnologies.

3 YAWL language

Beforedescribingthe architecture and implementation of the YAWL system,we in-
troducethedistinguishing featuresof YAWL. As indicatedin theintroduction,YAWL
is basedon Petri nets.However, to overcomethe limitationsof Petri nets,YAWL has
beenextendedwith featuresto facilitatepatternsinvolvingmultipleinstances,advanced
synchronizationpatterns,andcancellationpatterns.Moreover, YAWL allows for hier-
archicaldecompositionandhandlesarbitrarilycomplex data.

Figure1 showsthemodelling elementsof YAWL. YAWL extendstheclassof work-
flow netsdescribedin [1,5] with multipleinstances,compositetasks,OR-joins,removal
of tokens,anddirectly connectedtransitions.YAWL is inspiredby Petrinetsbut is not
just a macropackagebuilt on top of high-level Petri nets:It is a completely new lan-
guage with independentsemantics.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 4

A workflowspecification in YAWL is a setof processdefinitions which form a hi-
erarchy. Tasks2 areeitheratomictasksor compositetasks. Eachcomposite taskrefers
to aprocessdefinitionata lower level in thehierarchy (alsoreferredto asits decompo-
sition). Atomic tasksform the leavesof thegraph-like structure.Thereis oneprocess
definition without a composite task referring to it. This processdefinition is named
the top level workflowandforms the root of the graph-like structurerepresenting the
hierarchy of processdefinitions.

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances

of an atomic task

Multiple instances

of a composite task

OR-split task

AND-join task

XOR-join task

OR-join task

...
 remove tokens

Fig.1. Symbolsusedin YAWL.

Eachprocessdefinition consistsof tasks(eithercompositeor atomic)andcondi-
tionswhich canbeinterpretedasplaces.Eachprocessdefinitionhasoneunique input
condition andoneunique output condition (seeFigure1). In contrast to Petri nets,it
is possibleto connect ‘transition-like objects’ like compositeandatomictasksdirectly
to eachother without usinga ‘place-like object’ (i.e., conditions) in-between.For the
semanticsthis construct canbeinterpreted asa hiddencondition, i.e., an implicit con-
dition is added for everydirectconnection.

Eachtask(eithercompositeor atomic)canhave multiple instancesasindicatedin
Figure1. We adoptthe notationdescribedin [1,5] for AND/XOR-splits/joinsasalso
shown in Figure1. Moreover, we introduceOR-splitsandOR-joinscorrespondingre-
spectively to Pattern6 (Multi choice) andPattern7 (Synchronisingmerge) [9]. Finally,
Figure1 shows that YAWL providesa notationfor removing tokensfrom a specified

2 We usethe term taskratherthanactivity to remainconsistentwith earlierwork on workflow
nets[1,5].

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 5

region denotedby dashedrounded rectangles andlines.The enablingof the taskthat
will performthecancellation mayor maynotdependonthetokenswithin theregion to
be“cancelled”. In any case,themoment this taskexecutes,all tokens in this region are
removed.Thisnotationallows for variouscancellationpatterns.

To illustrate YAWL we usethe threeexamples shown in Figure2. The first ex-
ample(a) illustratesthatYAWL allows for themodeling of advancedsynchronization
patterns.Task register is an ‘OR-split’ (Pattern6: Multi-choice) and task pay is an
‘OR-join’ (Pattern7: Synchronizing merge). This implies that every registrationstep
is followed by a set of booking tasksflight, hotel, and/or car. It is possiblethat all
threebooking tasksareexecuted but it is alsopossiblethat only oneor two booking
tasksareexecuted.TheYAWL OR-joinsynchronizesonly if necessary, i.e., it will syn-
chronize only thebooking tasksthatwereactuallyselected.Note that themajority of
systemsdonotsupport theSynchronizing merge(i.e.,Pattern7).A few systemssupport
it (e.g.,IBM’ s MQSeriesWorkflow, LotusDominoWorkflow, andEastmanWorkflow)
but restrictits application. For example, in order to simplify theimplementationof the
OR-join,MQSeriesWorkflow [20] doesnotsupport loops.3.

Figure2(a)doesnotshow thedataaspect.TheYAWL specificationfor thisexample
has10variablesranging from thenameof thecustomerto flight details.For therouting
of thecasetherearethreebooleanvariables want flight, want hotel, andwant car to
selectwhichof thebooking tasksneedto beexecuted.

Figure 2(b) illustratesanother YAWL specification. In contrastto the first exam-
ple a trip mayincludemultiple stops,i.e.,anitinerarymayincludemultiple segments.
For example, a trip may go from Amsterdam to Singapore,from Singapore to Bris-
bane,from Brisbaneto Los Angeles,andfinally from Los Angelesto Amsterdamand
thusentail four itinerary segments. Eachsegmentmay include a flight (most likely)
but mayalsoincludea hotelbooking or a carbooking (at thedestination). Figure2(b)
shows thatmultiple segmentsaremodeledby multiple instancesof thecomposite task
do itinerary segment. Thiscompositetaskis linkedto theprocessdefinitionalsoshown
in Figure2(b).In thecaseof multiple instancesit is possibleto specifyupper andlower
bounds for thenumber of instances.It is alsopossibleto specifya threshold for com-
pletion that is lower thantheactualnumber of instances,i.e., theconstructcompletes
before all of its instancescomplete. In the exampleat handthis doesnot make sense
sinceeachsegmentmustbe booked.Anothersettingis availableto indicatewhether
an instancecanbe added while executing otherinstances.In this example this would
meanthatwhile booking segments,anew segmentis definedandaddedto theitinerary.
In thespecificationcorresponding to Figure2(b) we assumethemultiple instancesto
be ‘static’, i.e., aftercompleting taskregister thenumber of instancesis fixed.Again,
the diagram doesnot show the dataaspect.There aresimilar variablesas in the first
example. However, a complicating factoris thateachof the instanceswill useprivate
datawhichneedsto beaggregated. We returnto this in Section5.2. For themoment,it
sufficesto seethatYAWL indeedsupports thepatternsdealingwith multiple instances
(Patterns12-15). Notethatonly few systemssupport multiple instances.FLOWer [11]
is oneof thefew systemsdirectlysupporting multiple instances.

3 Insteadof loops,MQSeriesWorkflow supportsblockswith anexit condition.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 6

register

(a) After registering the request for a trip, a flight, a hotel, and/or a car
are booked followed by a payment.

flight

hotel

car

pay

register do_itinerary_
segment

pay

register_itinerary_
segment

flight

hotel prepare_payment_
information

car

(b) A trip may consist of several legs. The sub-process is
instantiated for each leg.

register do_itinerary_
segment

pay

cancel

(c) Again the sub-process is instantiated for each leg but now it is
possible to cancel the whole trip by removing tokens from the region
indicated.

booking_in_
progress

Fig.2. ThreeYAWL specifications.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 7

Finally we considertheYAWL specificationillustratedin Figure2(c).Again com-
positetaskdo itinerary segmentis decomposedinto theprocessdefinitionshown in
Figure2(b). Now it is howeverpossibleto withdraw bookingsby executing taskcancel.
Taskcancel is enabledif thereis atokenin booking in progress. If theenvironment de-
cidesto execute cancel,everything insidetheregion indicatedby thedashedrectangle
will be removed.Clearly YAWL supports the cancellation patternsthis way (Patterns
19and20).Support for cancellation is typically missingor verylimited (e.g.,Staffware
which hasa cancellation conceptbut a cancellation canonly referto a singletaskand
not to a region of theprocess).

In this sectionwe illustratedsomeof thefeaturesof theYAWL language.Thelan-
guage hasan XML syntaxandis specifiedin termsof anXML schema.See[46] for
the XML syntaxof the language.In Section5 we will show somefragmentsof the
language. However, before going into detail, we first presentthe ‘bigger picture’ by
describing theYAWL architecture.

4 YAWL architectur e

To support theYAWL languageintroducedin theprevioussection,we have developed
asystemusingstate-of-the-arttechnology. In thissection,wedescribetheoverall archi-
tectureof thesystemusingFigure3. Thecoreof thesystemis formedby theYAWLen-
gine. TheYAWL enginecaninstantiateworkflow specifications.Theseworkflow spec-
ificationsaredesigned usingtheYAWL designer. Existingworkflow specificationsare
managed by the YAWL repository, which canbe accessedthrough the YAWL engine.
Eachcasecorrespondsto aninstantiatedworkflow specification.Casesarehandledby
theengine,i.e., basedon thestateof a caseandits specificationtheenginecalculates
whichevents it shouldoffer to theenvironment.

Theenvironmentof a YAWL systemis composedof so-calledYAWL services. In-
spiredby the“web services”paradigm, end-users,applications, andorganizations are
all abstractedasservicesin YAWL. Figure3 shows four YAWL services:(1) YAWL
worklist handler, (2) YAWL webservicesbroker, (3) YAWL interoperability broker, and
(4) customYAWL services. The YAWL worklist handler correspondsto the classical
worklist handler(alsonamed“inbox”) presentin mostworkflow managementsystems,
i.e.,it is thecomponentusedtoassignwork tousersof thesystem.Throughtheworklist
handleruserscanacceptwork itemsandsignaltheircompletion. In traditional workflow
systems,theworklist handler is embeddedin theworkflow engine. In YAWL however,
it is consideredto beaservicedecoupledfromtheengine.TheYAWL webservicesbro-
ker is thegluebetweentheengine andotherwebservices.Notethat it is unlikely that
webserviceswill beableto directlyconnect to theYAWL engine,sincethey will typi-
cally bedesignedfor moregeneral purposesthanjust interactingwith agiven workflow.
Similarly, it is desirablenot to adapttheinterfaceof theengineto suitspecificservices,
otherwise,this interfacewill needto caterfor an undeterminednumber of message
types.Accordingly, the YAWL web servicesbroker actsas a mediatorbetweenthe
YAWL engine,andexternal webservicesthatmaybeinvokedby theengineto delegate
tasks(e.g.delegatinga“payment” taskto anonlinepayment service).TheYAWL inter-
operability broker is aservicedesignedto interconnectdifferentworkflow engines.For

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 8

Y
�

AWL
e� ngine

YAWL
d
�

esigner
Y
�

AWL
manager

Y
�

AWL
repository

YAWL
w	 orklist
handler

Y
�

AWL
w	 ebservice

broker

YAWL
services

Y
�

AWL
interop
broker

custom
YAWL
service

web
service

web
service

o
 ther
e� ngine

WSDL endpoint

S
�

ervlet/JSP

d

atabase

b
�

rowser

w� orkflow
s� pecifications

c� ase data

A
�

B
�

Fig.3. YAWL architecture.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 9

example, a taskin onesystemcouldbesubcontractedto anothersystemwherethetask
correspondsto a wholeprocess.To illustratethat thereis not a fixedsetof YAWL ser-
viceswe includeda customYAWL service.A customserviceconnectstheenginewith
anentity in theenvironment of thesystem.For example acustomYAWL servicecould
offer communicationwith mobile phones,printers,assemblyrobots, etc.Note that it
is alsopossiblethattherearemultiple servicesof thesametype,e.g.multiple worklist
handlers, web servicesbrokers,andinteroperability brokers.For example, theremay
exist multiple implementationsof worklist handlers(e.g., customizedfor a specificap-
plication domainor organization) andthe sameworklist handler may be instantiated
multiple times(e.g.,oneworklist handler pergeographical region).

Workflow specificationsaremanaged by the YAWL repository andworkflow in-
stances(i.e. cases)aremanaged by theYAWL engine.Clearly, thereis alsoa needfor
amanagementtool thatcanbeusedto control workflow instancesmanually (e.g. delet-
ing a workflow instanceor a workflow specification), providing informationaboutthe
stateof running workflow instances,anddetailsor aggregateddataabout completed
instances.This is theroleof theYAWLmanager.

Figure 3 alsoshows the various interfacesof YAWL. The YAWL enginehastwo
groups of interfaces:(A) interfacescapturing the interactions betweentheYAWL de-
signerandtheYAWL manager ontheonehand, andtheYAWL engineontheother; and
(B) interfacescapturing theinteractionsbetweentheYAWL servicesandtheYAWL en-
gine.Thegroup of interfaces(A) correspondsto Interface1 (ProcessDefinition tools)
andInterface 5 (Administration andMonitoring tools) of the reference modelof the
Workflow ManagementCoalition (WfMC) [26,15]. The group set of interfaces(B)
correspondsto WfMC’s Interface 2-3 (Workflow Client ApplicationsandInvokedAp-
plications),andInterface4 (Workflow Interoperability). Both interfaces (A andB) are
specifiedin WSDL. Usersinteractwith theYAWL systemthrough a Webbrowser, i.e.
boththeYAWL manager andtheYAWL worklist handler offer HTML front-ends.

WhenconsideringtheYAWL architecture thereis onefundamentaldesignchoice
compared to existing workflow managementsystems:The YAWL engine dealswith
control-flow anddatabut not explicitly with users,i.e., theengineabstractsfrom dif-
ferences betweenusers,applications, organizations, etc. Insteadit usesthe web ser-
vicesparadigm: external entitieseitheroffer servicesor requireservices.In atraditional
workflow managementsystem,theenginetakescareof the‘What’, ‘When’, ‘How’, and
‘By whom’. In YAWL theenginetakescareof the‘What’ and‘When’ while theYAWL
servicestakecareof the‘How’ and‘By whom’. By separatingtheseconcernsit is possi-
ble to implement a highly efficientenginewhile allowing for customizedfunctionality.
For example, it is possibleto build worklist handlers supporting specificorganizations
or domains, e.g., processeswhere a teamof professionalsworks on thesameactivity
at the sametime. It shouldbe notedthat the architecture of YAWL is similar to the
architectureenvisionedin thecontext of webservicecompositionor choreography lan-
guages like BPEL4WS,WSCI, BPML, etc. However, theselanguagestypically only
considertheenginewhile we do not limit thescopeto this singlecomponentandalso
wantto addressissuessuchaswork distributionandmanagement.

Although the current implementation of YAWL is completein the sensethat it is
able to run workflow instances,it doesnot provide all the functionality describedin

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 10

Figure3. The YAWL engineis fully implemented.The YAWL designer is under de-
velopment.TheYAWL managerhasnotbeenimplementedyet.Of theYAWL services
only theYAWL worklist handler is realized,but it is still tightly coupled to theengine
(i.e. it runsin thememory spaceof theengineratherthanasaseparateservice)anddoes
notyet provideanHTML front-end.ThesystemhasbeenimplementedusingJava and
usesXML-basedstandards suchasXPath,XQuery, andXML Schema.The designer
is implementedusingJgraph, anopen-sourcegraphical library (www.jgraph.com).
YAWL relies on JDom (www.jdom.org) for evaluating XPath expressions,Saxon
(saxon.sourceforge.net) for XQuerysupport, andXerces(xml.apache.org/
xerces-j) for XML schemasupport.

5 YAWL perspectives

Thissectiondiscussesthethreedominantperspectives:(1) thecontrol-flow perspective,
(2) thedataperspective,and(3) theoperationalperspective.Thefirst two perspectives
arefully implemented andaresupported by the YAWL engine. The operational per-
spective correspondsto the YAWL servicesidentified in the previous sectionand is
only partly realized.

5.1 Control-flow perspective

Thecontrol-flow perspective of YAWL focuseson theordering of tasks.Thebuilding
blocksofferedby YAWL have beenbriefly discussedin Section3 andaredepictedin
Figure1. Therearethreefeatures offeredby YAWL not presentin mostworkflow lan-
guages: (1) the OR-join task,(2) multiple instancesof a task(atomicor composite),
and(3) the “remove tokens” task(i.e., cancellationof a region). Therefore,we focus
on thesethree.Let us first focuson the realizationof the OR-join. Listing 1 shows
the definition of taskregister in Figure2(a).Thenameelementprovidesthe nameof
the task,the threeflowsInto elementscorrespond to the threeoutgoing arcs,the join
elementshows that the taskis an AND-join4, the split element shows that the taskis
anOR-split, thestartingMappingselement lists thedataelements thatareinput to the
task,thecompletedMappingselementlists thedataelementsthatareprovidedasoutput
by the task,andthe decomposesTo element refersto the actualdefinition of the task
(which we call its “decomposition”). Notethateachtaskelementrefers to a decompo-
sition element.The decompositionelementcandefinean atomictaskor a composite
task.Multiple taskelements canrefer to thesamedecompositionelementto allow for
reuse.Listing 2 shows the taskelement for thecorresponding OR-join.Although from
a syntacticalpoint of view theOR-join is easyto realize,it is far from trivial to realize
thecorrespondingfunctionality. In theclassicalXOR-join theflow continuesafter the
first input. In the classicalAND-join the flow waits for all inputs.The complicating
factor is that the OR-join sometimeshasto synchronizeandsometimesnot (or only
partially). In theexample shown in Figure2(a)it is fairly easyto seewhento synchro-
nize,e.g.,simply count the number of bookings enabledandthencountbackto zero

4 Notethatthis is not relevantsincethereis only oneingoingarc

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 11

Listing 1

1 <task id="register">
2 <name>Collect information
3 from customer</name>
4 <flowsInto>
5 <nextElementRef
6 id="flight"/>
7 <predicate>
8 /data/want_flight
9 = ’true’

10 </predicate>
11 <isDefaultFlow/>
12 </flowsInto>
13 <flowsInto>
14 <nextElementRef id="hotel"/>
15 <predicate>/data/want_hotel = ’true’</predicate>
16 </flowsInto>
17 <flowsInto>
18 <nextElementRef id="car"/>
19 <predicate>/data/want_car = ’true’</predicate>
20 </flowsInto>
21 <join code="and"/>
22 <split code="or"/>
23 <startingMappings>
24 <mapping>
25 <expression query="/data/customer"/>
26 <mapsTo>customer</mapsTo>
27 </mapping>
28 </startingMappings>
29 <completedMappings>
30 <mapping>
31 <expression query="/data/customer"/>
32 <mapsTo>customer</mapsTo>
33 </mapping>
34 <mapping>
35 <expression query="/data/want_flight"/>
36 <mapsTo>want_flight</mapsTo>
37 </mapping>
38
39 </completedMappings>
40 <decomposesTo id="register"/>
41 </task>

Listing 2

1 <task id="pay">
2 <name>Book flight</name>
3 <flowsInto>
4 <nextElementRef id="end"/>
5 </flowsInto>
6 <join code="or"/>
7 <split code="and"/>
8 <startingMappings>
9 ...

10 </startingMappings>
11 <decomposesTo id="pay"/>
12 </task>

for every booking thatis completed. However, in a generalsensethis strategy doesnot
work, becausetherecanbemultiple splits (of all types)correspondingto anOR-join.
The semanticsadoptedby YAWL is that an OR-join waits until no more inputs can
arriveat thejoin. To makesurethatthesemanticsarewell defined,i.e.,haveafixpoint,
weexcludeotherOR-joinsasindicatedin [8]. See[25] for amoreelaboratediscussion
on the topic. As far aswe know, YAWL is thefirst engineimplementing this strategy
withoutadding additionalconstraintssuchasexcludingloops,etc.Fromaperformance

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 12

point of view, theOR-join is quiteexpensive (thesystemneedsto calculateall possi-
ble futures from thecurrent state).To improve performance,theOR-join condition is
evaluatedonly if strictly necessary.

A secondfeature which distinguishesYAWL from many existing languagesis the
ability to have multiple instancesof atomic/compositetasks.Figure2(b) shows anex-
ampleof this. The composite task do itinerary segmenthasadditional elementsto
control the number of instances(minimum, maximum, threshold, andcreationmode)
andelementsto control the dataflow. Again the syntaxis fairly straightforward but
the realizationin theYAWL engine is not. Note thatmultiple instancescanbenested
arbitrarily deepandit becomesquitedifficult to separateandsynchronizeinstances.

A third feature worth noting is the cancellationof a region, i.e., removing tokens
from selectedpartsof the specification.In Figure2(c) task cancel containsfour re-
movesTokenselementsto empty the part of the specificationshown. The cancellation
functionality is easyto realizein the engine. The biggest challengeis to allow for an
easywayto indicatearegionin theYAWL designer. At thispoint in timeweareexper-
imentingwith various interaction mechanismsto allow for a generic yet intuitive way
to demarcatesuchregions.Conditionbooking in processin Figure2(c)alsoillustrates
that YAWL supports the Deferredchoice pattern. Note that the decisionto cancelis
madeby theexternal entity executing taskcancel, andnot by theworkflow engine. In
traditional workflow systems,such“deferred” or “environment-driven” choicesarenot
possible:all decisionsaremadeby thesystembasedondataastheXOR-split andOR-
split constructs do.Thenotionof deferredchoicehasbeenadoptedby new languages
likeBPEL (seepick construct in [12]) andBPML (seechoiceconstructin [10]).

5.2 Data perspective

Although theinitial focus of YAWL wason control flow, it hasbeenextendedto offer
full support for thedataperspective. It is possibleto definedataelementsandusethem
for conditional routing, for thecreationof multiple instances,for exchanginginforma-
tion with the environment, etc. Most of the existing workflow managementsystems
usea propriety languagefor dealingwith data.YAWL is oneof thefew languagesthat
completely reliesonXML-basedstandards like XPathandXQuery.

Listing 3 shows thedeclarationof variables for theexample shown in Figure2(a).
UsingtheelementlocalVariable it is possibleto introducetypedvariablesinto thetop-
level workflow. For example, lines 2-7 definethevariablefor storingthenameof the
customer. Thetypeof thisvariableis stringandaninitial valueis defined.Eachdecom-
positionof a taskinto a workflow mayalsohave localVariable elements.Variables at
thehigherlevel canbepassedontothelower level. Listing 4 shows thedecomposition
of taskregisterreferredto in Figure2(a).As shown in lines3-6of Listing 4, thereis an
input parameternamedcustomer. Taskregister maps dataresidingat the higher level
ontothis inputparameteratthelowerlevel (i.e.,in thedecomposition)asshown in lines
23-28 of Listing 1. After completingthetask,dataat thelower level is passedon to the
higherlevel. For example, lines24-27 of Listing 4 declaretheparameterwant flight.
Thedatafor this parameteris determinedin lines12-13of Listing 4. After completing
thedecomposition,thisresultis mappedontothevariable want flight at thehigher level
(seelines35-36 of Listing 1).Notethattheexpressionshown in line 35of Listing 1 and

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 13

Listing 3

1 <rootNet id="make_trip">
2 <localVariable
3 name="customer">
4 <type>xs:string</type>
5 <initialValue>
6 Type name of customer
7 </initialValue>
8 </localVariable>
9 <localVariable name=

10 "payment_account_number">
11 <type>xs:string</type>
12 </localVariable>
13 ...
14 <localVariable name=
15 "want_flight">
16 <type>xs:boolean</type>
17 </localVariable>
18 <localVariable name=
19 "want_hotel">
20 <type>xs:boolean</type>
21 </localVariable>
22 <localVariable name=
23 "want_car">
24 <type>xs:boolean</type>
25 </localVariable>
26 <localVariable name=
27 "flightDetails">
28 <type>xs:string</type>
29 </localVariable>
30 ...

Listing 4

1 <decomposition id="register"
2 xsi:type=
3 "WebServiceBrokerFactsType">
4 <inputParam name="customer">
5 <type>xs:string</type>
6 </inputParam>
7 <outputExpression query=
8 "/data/customer"/>
9 <outputExpression query=

10 "/data/start_date"/>
11 ...
12 <outputExpression query=
13 "/data/want_flight"/>
14 ...
15 <outputParam name=
16 "customer">
17 <type>xs:string</type>
18 </outputParam>
19 <outputParam name=
20 "start_date">
21 <type>xs:dateTime</type>
22 </outputParam>
23 ...
24 <outputParam name=
25 "want_flight">
26 <type>xs:boolean</type>
27 </outputParam>
28 ...
29 </decomposition>

theexpressionshown in line 12-13 of Listing 4 areXPathexpressionsto accessanode.
However, arbitrarily complex transformationsarepermittedhere, usingthefull expres-
sive power of XQuery. Moreover, unlike otherlanguages,parameters maybeoptional
or mandatory.

If ataskis anOR-splitor XOR-split,predicateelementsareusedto specifyboolean
expressions.Lines7-10, line15,andline 19in Listing1specifytheoutput conditionsof
taskregister(onefor eachoutgoing arc).In thecaseof anOR-splitor XOR-split, there
is alwaysa default indicatedby the element isDefaultFlow (cf. line 10 in Listing 1).
If all predicatesevaluateto false,this arcis chosen, thereby actinglike an“otherwise”
branch. In theexample of Figure2(a),at leastoneof thethreebooking tasksshouldbe
executed.To ensurethis, a flight is booked if none of thepredicatesevaluatesto true.
To allow thepossibilitythatnoneof thethreebooking tasksis executed,oneshouldadd
anarcdirectly from taskregister to eitherpayor theoutputcondition. Thiswould then
besetto bethedefault arc.For anXOR-split eachpredicate needsto haveanordering
attribute that is usedin casemultiple predicatesevaluateto true. If predicatesarenot
mutuallyexclusive, theonewith thelowestnumber thatevaluatesto trueis selected.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 14

Fromthe viewpoint of data,the handling of multiple instancesis far from trivial.
Considerfor example Figure2(b), thesubprocessis executed for eachsegment of the
itineraryandthusthereis datafor eachsegment (destination,start date,flight details,
etc.).Thenumberof instancescreatedbut alsothemaximum, minimum,andthreshold
mayall depend ondata.Dataat thehigher level needsto besplit overtheinstancesand
aftercompletionof theinstancesaggregatedto dataelements at thehigher level. Again
XQueryis usedto mapdatafrom thehigher level to thelower level andviceversa.

5.3 Operational perspective

As discussedin Section4, theYAWL engine interactswith its environment by means
of acollectionof “YAWL services”,whichareresponsiblefor handling theoperational
andtheresourceperspectivesof workflow specifications,aswell asfor supportingcom-
municationbetweendifferent YAWL engines.A deploymentof theYAWL systemis ex-
pectedto includea numberof pre-built YAWL services.TheYAWL worklist handler,
web servicebroker, andinteroperability broker mentioned in Section4 areexamples
of suchpre-built services.Importantly, all YAWL servicesarerequired to implement a
common WSDL interface5, andreciprocally, theYAWL engineprovidesa singleinter-
facefor all YAWL services.Theseinterfacesdefinemessagetypesfor:

– Atomic taskdecompositionmanagement:registeringandunregisteringtaskdecom-
positionsinto YAWL services.

– Atomic taskinstancemanagement:creatingtaskinstances,notifying thestartand
completion (whethersuccessfulor not)of taskinstances,cancellingtaskinstances,
andprobing thestatusof a taskinstance.

– Workflow instancemanagement:creating, monitoring, andinteractingwith work-
flow instances.

– YAWL servicesconnection management:registeringandunregisteringYAWL ser-
vices,reporting andprobing theavailability of YAWL services.

Whenanew YAWL workflow specificationis deployed,theYAWL engineregisters
eachof theatomictaskdecompositionsincludedin this specification,with at leastone
YAWL service.EachtaskdecompositionindicatestheYAWL service(s)with which it
hasto beregistered. In thesettingof thetravel preparationexample, onepossiblesce-
nario is that the tasksregister, flight, andhotel areto be registered with the worklist
service,while thetaskpay is to beregisteredwith theYAWL webservicesbroker (e.g.
thepayment is handled by anexternal payment service). If theseregistrations aresuc-
cessful,theYAWL engineis thenableto createinstancesof thesetasks.Unsuccessful
taskregistrations leadto errors andtheYAWL engine reports backtheseerrors to the
YAWL designeror theYAWL manager. Thedeploymentof aworkflow specificationis
only considered to be successfulif all the registrationsof taskdecompositionsin the
specification,aresuccessful.Otherwise,thedeployment is abortedandany registered
taskdecompositions areunregistered.

Asaminimum, ataskdecompositionspecifiesthetask’sinput andoutputdatatypes.
It may specifyother informationdepending on the natureof the YAWL servicewith

5 Notethatwe usetheterminologyof WSDL version2.0ratherthan1.1.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 15

whichthetaskwill beregistered. In thecaseof tasksthatare registeredwith a worklist
service, thetaskdecompositionmustspecifytherole(s)thatareableto view instances
of this taskandtherole(s)thatareableto pick instancesof this taskfrom theworklist.

In thecaseof a webservicebroker, thetaskdecompositionmustinclude:

1. A WSDL interfaceandSOAP bindingof thewebserviceWSthatthebroker must
invoke whendispatching aninstanceof this task.

2. A mapping betweenthe taskmanagementoperationsof theYAWL servicesinter-
faceandtheoperationsin theinterfaceof WS. Usingthis information,thewebser-
vice broker canexploit thefunctionality providedby theWebServicesInvocation
Framework (http://ws.apache.org/wsif), in order to interactwith WS.

In thesettingof the travel preparationworkflow, andassumingthat the taskpay is
delegated to a paymentservice(sayPS), thedecompositionof this taskmustprovide
theWSDL interfaceandbinding for PS, anda tableindicatingthatfor example:

– OperationCreateTaskInstanceof thecommonYAWL servicesinterfaceis mapped
to operationInitiateOnlinePayment of PSservice.

– OperationOnlinePaymentInitiatedof PSmapstooperationTaskStartedof theYAWL
servicesinterface.

– OperationOnlinePaymentCompletedof PSmapsto operation TaskCompletedof
theYAWL servicesinterface.

– OperationCancelTaskof thecommonYAWL servicesinterfacemapsto operation
CancelPayment of PS.

Note that thesemappingsshouldalsospecifyhow the input dataof oneoperation
mapsto theinput dataof theotheroperation,andsamefor theoutputdata.

To be registered with a YAWL interoperability broker service, a task decomposi-
tion TD mustspecify:(i) the identifierof theYAWL engineto which instancesof this
taskwill bedelegated; (ii) thenameof theYAWL processto be instantiatedwhenan
instanceof thetaskis created;(iii) amapping betweentheinputdataof theCreateTask-
Instanceoperation andtheinput dataof theprocessto beinstantiated;and(iv) asimilar
mapping for the output data.Whenan instanceof TD is created,the interoperability
brokercreatesaninstanceof thedesignatedprocessin apossiblyremoteYAWL engine
(usingtheworkflow instancemanagementoperations of thecommon YAWL services
interfaces).Whenthis processinstancecompletes,the interoperability broker collects
theoutput data,convertsit according to themapping givenwhenthe taskdecomposi-
tion wasregistered,andreturnsit to theYAWL enginethat triggered the instantiation
of TD.

Notethatin this processinteroperabilitymodel,theexecutionof aprocessinstance
is seenas“atomic”, i.e. no communicationoccurs betweenthe creationandcomple-
tion of theprocessinstance.It is envisagedthat theYAWL systemwill beextendedto
support communicationbetweenrunningprocessinstances.

6 Example and on-line demonstration

Thissectionillustratesthecurrent implementation of YAWL usingasmallexample that
canbedownloadedandrun from theYAWL site [46]. Figure4 shows thelife-cycle of

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 16

a musicianfrom theviewpoint of a recordcompany. Thegoalof this playful example
is not to show a realisticbusinessscenariobut an easyto understandexampleshow-
ing the main concepts.The top-level processstartswith a choicebetweendoing an
auditionor first learning to playaninstrument (Pattern4: Exclusivechoice). Themusi-
ciancanlearnmultiple instrumentsin parallel(Pattern15: Multiple instanceswithout
a priori runtimeknowledge)followedby thedecisionto join a band or to gosolo(Pat-
tern16: Deferred choice). In bothcases,multiple songsmaybewritten (againPattern
15) and/or a live performanceis given after which the musiciangetsa contract(Pat-
tern6: Multi-choice/Pattern7: Synchronizingmerge).Theauditioncanfail and,if so,
the musiciantries againor continues learningto play instruments (Pattern5: Simple
merge/Pattern16: Deferredchoice/Pattern 10: Arbitrary cycles).Eventually themusi-
cian endsup making a record. This is modelled by a composite task (Make Record)
containing a loop in which multiple songscanberecorded(seelower-level processin
Figure4). ThesubprocessusesPattern5: Simplemerge, Pattern16: Deferred choice,
andPattern15: Multiple instanceswithout a priori runtime knowledge.After complet-
ing the subprocessin parallela choiceis madeanda sequenceis executed, followed
by a synchronization (Pattern2: Parallel split/Pattern16: Deferred choice/Pattern 1:
Sequence/Pattern7: Synchronizingmerge) thuscompleting theYAWL specification.

In top

Decide

to make

�
music

Do

audition

Learn to

play

instrument

[1, 4, 3, d]

Join

band

Decide

to go

�
solo

Write

song

[1, 10,10, d]

Initial live

performance

Get

recording

contract

Make

Record

Rehearse

tour

�Do tour

Out

top

Choose

path

Develop

as artist

Develop

bad

habits

Audition

passed

Audition

failed

Do

everything

you are told
�

In Make

Record

Choose

songs
 Send recording

to marketing

�

dept

Record

song

[1, 5, 3, d]

Done

Out

Make

Record

Visual Composition For

MakeMusic.xml

Deferred

Choice

Multiple Instances without

apriori runtime knowledge.

Synchronising merge

Cycles

Parallel split

Simple merge
 Exclusive choice

Sequence

Fig.4. Exampleof a YAWL process.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 17

Figure 4 does not show the dataperspective (which is specifiedseparately). The
dataperspectiveof thisworkflow specificationstatesthatmusicianshaveaname, songs
haveatitle, etc.Additionally, in thecaseof thecompositetaskMakeRecord whichwill
be instantiatedmultiple times,the dataperspective specifiesthe effective parameters
thatwill bepassedto eachinstance(e.g.anexpressionfor computing theactualname
andotherpropertiesof agivensong).

Figure 5 shows somescreenshotsof the tool while executing several instancesof
the YAWL specificationof Figure4. The worklist of ‘Wil vander Aalst’ is shown in
the bottomwindow. The left window shows the current YAWL manager showing the
activeworkflows,activecases,andusers.Theright window showsaninterfaceto enter
data.This is still ratherprimitive. Futureversionsof YAWL areexpectedto support
interactive forms.

7 Conclusion

In this paperwe presented the designandimplementationof the YAWL system.The
YAWL systemfully supports the YAWL languagewhich is basedon an analysisof
morethan30workflow systems,languagesandstandards.Theexpressivenessof YAWL
leadsto challenging implementationproblemssuchasdealingwith multiple instances,
advancedsynchronizationmechanisms,andcancellation capabilities. We considerthe
current versionof YAWL asa proof of conceptfor the language introducedin [8]. In
ouropinion any proposedlanguageshouldbesupportedby at leastarunning prototype
anda formaldefinition. Too many standards/languageshavebeenproposedwhich turn
out to havesemanticproblems.

At this point in time we arerealizingthearchitecture shown in Figure3. As indi-
catedin Section4, theprototypeis a full-fledgedworkflow systembut thearchitecture
hasonly partly beenrealized.One of the most challenging problemsis to fine-tune
the interaction betweenthe engine andthe YAWL services.Another topic for future
researchis thedevelopment of dedicatedanalysistools.

References

1. W.M.P. vanderAalst. TheApplicationof PetriNetsto Workflow Management.TheJournal
of Circuits,SystemsandComputers, 8(1):21–66, 1998.

2. W.M.P. vanderAalst. PatternsandXPDL: A Critical Evaluationof theXML ProcessDef-
inition Language. QUT Technicalreport,FIT-TR-2003-06, http://www.citi.qut.
edu.au/pubs/ce-xpdl.pdf, QueenslandUniversityof Technology, Brisbane,2003.

3. W.M.P. van der Aalst andT. Basten. Inheritanceof Workflows: An Approach to Tackling
ProblemsRelatedto Change.Theoretical ComputerScience, 270(1-2):125–203, 2002.

4. W.M.P. vanderAalst,M. Dumas,A.H.M. terHofstede,andP. Wohed.Pattern-BasedAnaly-
sisof BPML (andWSCI). QUT Technicalreport,FIT-TR-2002-05,http://www.citi.
qut.edu.au/pubs/technical/pattern_based_analysis_BPML.p%df,
QueenslandUniversityof Technology, Brisbane,2002.

5. W.M.P. van der Aalst andK.M. van Hee. Workflow Management:Models,Methods,and
Systems. MIT press,Cambridge,MA, 2002.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 18

Fig.5. Screenshotsof thecurrentYAWL manager, YAWL worklist handler, anda form to fill in
data.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 19

6. W.M.P. vanderAalstandA.H.M. terHofstede.Verificationof Workflow TaskStructures:A
Petri-net-basedApproach. InformationSystems, 25(1):43–69, 2000.

7. W.M.P. vanderAalstandA.H.M. terHofstede.Workflow Patterns:OntheExpressivePower
of (Petri-net-based)Workflow Languages. In K. Jensen,editor, Proceedingsof the Fourth
Workshop on thePractical Useof ColouredPetri NetsandCPNTools(CPN2002), volume
560of DAIMI, pages1–20,Aarhus,Denmark,August2002.Universityof Aarhus.

8. W.M.P. van der Aalst andA.H.M. ter Hofstede. YAWL: Yet AnotherWorkflow Language
(RevisedVersion). QUT Technicalreport,FIT-TR-2003-04,http://www.citi.qut.
edu.au/pubs/technical/yawlrevtech.pdf, QueenslandUniversityof Technol-
ogy, Brisbane,2003.

9. W.M.P. van der Aalst, A.H.M. ter Hofstede,B. Kiepuszewski, andA.P. Barros. Workflow
Patterns.DistributedandParallel Databases, 14(1):5–51, 2003.

10. A. Arkin et al. BusinessProcessModelingLanguage(BPML), Version1.0,2002.
11. PallasAthena.FlowerUserManual. PallasAthenaBV, Apeldoorn, TheNetherlands,2002.
12. F. Curbera,Y. Goland,J. Klein, F. Leymann,D. Roller, S. Thatte,and S. Weerawarana.

BusinessProcessExecutionLanguage for Web Services,Version1.0. Standardproposal
by BEA Systems,InternationalBusinessMachinesCorporation,andMicrosoftCorporation,
2002.

13. M. DumasandA.H.M. ter Hofstede. UML activity diagramsasa workflow specification
language. In M. GogollaandC.Kobryn, editors,Proc.of the4th Int. Conferenceon theUni-
fied ModelingLanguage (UML01), volume2185of LNCS, pages76–90,Toronto,Canada,
October2001. SpringerVerlag.

14. FileNet. Visual WorkFlo DesignGuide. FileNetCorporation,CostaMesa,CA, USA, 1997.
15. L. Fischer, editor. Workflow Handbook 2001, Workflow ManagementCoalition. Future

Strategies,LighthousePoint,Florida,2001.
16. Forté. Forté Conductor ProcessDevelopmentGuide. Forté Software,Inc, Oakland,CA,

USA, 1998.
17. Fujitsu. i-Flow Developers Guide. FujitsuSoftwareCorporation,SanJose,CA, USA, 1999.
18. J.J.Halliday, S.K. Shrivastava, andS.M. Wheater. Flexible Workflow Management in the

OPENflow System.In 4th International EnterpriseDistributedObjectComputingConfer-
ence(EDOC 2001), 4-7 September2001,Seattle, Washington,Proceedings, pages82–92.
IEEEComputerSociety, 2001.

19. HP. HP Changengine ProcessDesignGuide. Hewlett-PackardCompany, Palo Alto, CA,
USA, 2000.

20. IBM. IBM MQSeriesWorkflow - GettingStartedWith Buildtime. IBM DeutschlandEn-
twicklung GmbH,Boeblingen, Germany, 1999.

21. S.JablonskiandC. Bussler. WorkflowManagement:ModelingConcepts,Architecture, and
Implementation. InternationalThomsonComputerPress,London,UK, 1996.

22. K. Jensen. Coloured Petri Nets.Basic Concepts, AnalysisMethodsand Practical Use.
EATCSmonographson TheoreticalComputerScience.Springer-Verlag,Berlin, 1992.

23. B. Kiepuszewski. ExpressivenessandSuitabilityof Languagesfor Control Flow Modelling
in Workflows. PhDthesis,QueenslandUniversityof Technology, Brisbane,Australia,2003.
Availablevia http://www.tm.tue.nl/it/research/patterns.

24. B. Kiepuszewski, A.H.M. ter Hofstede,andW.M.P. vanderAalst. Fundamentalsof Control
Flow in Workflows. ActaInformatica, 39(3):143–209,2003.

25. E. Kindler. On theSemanticsof EPCs:A Framework for ResolvingtheViciousCircle (Ex-
tendedAbstract). In M. NüttgensandF.J.Rump,editors,Proceedingsof theGI-Workshop
EPK 2003: BusinessProcessManagementusing EPCs, pages7–18, Bamberg, Germany,
October2003. Gesellschaftfür Informatik,Bonn.

26. P. Lawrence,editor. Workflow Handbook 1997, Workflow ManagementCoalition. John
Wiley andSons,New York, 1997.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 20

27. P. Muth, J.Weissenfels,M. Gillmann,andG. Weikum. IntegratingLight-WeightWorkflow
ManagementSystemswithin Existing BusinessEnvironments. In Proceedingsof the 15th
International ConferenceonDataEngineering, 23-26March 1999, Sydney, Australia, pages
286–293. IEEEComputerSociety, 1999.

28. P. Muth, J. Weissenfels,M. Gillmann,andG. Weikum. Workflow History Managementin
Virtual EnterprisesUsing a Light-Weight Workflow ManagementSystem. In Proceedings
of theNinth International Workshop on Research Issueson Data Engineering: Information
Technology for Virtual Enterprises,23-24March, 1999, Sydney, Australia, pages148–155,
1999.

29. S.P. Nielsen,C. Easthope,P. Gosselink,K. Gutsze,andJ.Roele.UsingLotusDominoWork-
flow 2.0,RedbookSG24-5963-00. IBM, Poughkeepsie,USA, 2000.

30. OpenSourceWorkflow EnginesWritten in Java (maintainedby CarlosE. Perez).http:
//www.manageability.org/blog/stuff/workflow_in_java.

31. C.A. Petri. Kommunikationmit Automaten. PhD thesis,Institut für instrumentelleMathe-
matik,Bonn,1962.

32. M. ReichertandP. Dadam.ADEPTflex: SupportingDynamicChangesof Workflow without
LoosingControl. Journal of IntelligentInformationSystems, 10(2):93–129,1998.

33. SAP. WF SAPBusinessWorkflow. SAPAG, Walldorf, Germany, 1997.
34. A. Sheth,K. Kochut,andJ. Miller. Large ScaleDistributedInformationSystems(LSDIS)

laboratory, METEORprojectpage.http://lsdis.cs.uga.edu/proj/meteor/meteor.html.
35. EastmanSoftware.RouteBuilderTool User’s Guide. EastmanSoftware,Inc, Billerica, MA,

USA, 1998.
36. Software-Ley. COSA3.0UserManual. Software-Ley GmbH,Pullheim,Germany, 1999.
37. Staffware.Staffware 2000/ GWDUserManual. Staffwareplc, Berkshire,UnitedKingdom,

2000.
38. Tibco. TIB/InConcertProcessDesignerUser’s Guide. Tibco SoftwareInc., Palo Alto, CA,

USA, 2000.
39. Verve. VerveComponent Workflow EngineConcepts. Verve, Inc.,SanFrancisco,CA, USA,

2000.
40. G. VossenandM. Weske. TheWASA2 Object-OrientedWorkflow ManagementSystem.In

A. Delis,C. Faloutsos,andS.Ghandeharizadeh,editors,SIGMOD1999, ProceedingsACM
SIGMODInternationalConferenceon Managementof Data, June1-3, 1999,Philadelphia,
Pennsylvania, USA, pages587–589.ACM Press,1999.

41. M. Weske. Formal Foundation, Conceptual Design,and PrototypicalImplementationof
Workflow Management Systems. Habilitation’s thesis,University of Münster, Germany,
2000.

42. M. Weske. FormalFoundationandConceptual Designof DynamicAdaptationsin a Work-
flow ManagementSystem.In R. Sprague,editor, Proceedingsof the Thirty-Fourth Annual
Hawaii InternationalConference on SystemScience(HICSS-34). IEEE ComputerSociety
Press,Los Alamitos,California,2001.

43. WFMC. Workflow ManagementCoalition Workflow Standard:Workflow ProcessDefini-
tion Interface– XML ProcessDefinition Language (XPDL) (WFMC-TC-1025).Technical
report,Workflow Management Coalition,LighthousePoint,Florida,USA, 2002.

44. D. Wodtke, J. Weissenfels,G. Weikum,andA.K. Dittrich. The Mentor Project:StepsTo-
wardEnterprise-Wide Workflow Management. In Proceedingsof theTwelfth International
Conferenceon Data Engineering, February26 - March 1, 1996,New Orleans,Louisiana.
IEEEComputerSociety, 1996.

45. P. Wohed,W.M.P. van der Aalst, M. Dumas,andA.H.M. ter Hofstede. Analysisof Web
ServicesCompositionLanguages:TheCaseof BPEL4WS. In I.Y. Song,S.W. Liddle, T.W.
Ling, andP. Scheuermann, editors,22ndInternationalConferenceon Conceptual Modeling

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

Designandimplementationof theYAWL system 21

(ER2003), volume2813of Lecture Notesin ComputerScience, pages200–215.Springer-
Verlag,Berlin, 2003.

46. YAWL HomePage.http://www.citi.qut.edu.au/yawl.

TechnicalReportFIT-TR-2003-07,Centrefor IT Innovation, QUT

