
Tolerating Exceptions in Workflows:
a Unified Framework for Data and Processes

Alex Borgida Takahiro Murata
Dept. of Computer Science

Rutgers University
New Brunswick, NJ 08903, USA

{borgida,murata}Qlcs.rutgers.edu

“It is vain to do with more what can be done with
fewer. n William of Occam (c1285-1349)

ABSTRACT
Practical workflow systems need to be able to toler-
ate deviations from the initial process model because
of un-anticipated situations. They should also be able
to accommodate deviations in the format of the forms
and data being manipulated. We offer a framework for
treating both kinds of deviations uniformly, by apply-
ing ideas from programming languages (with workflow
agents as potential on-line exception handlers) to work-
flows that have been reified as objects in classes with
special attributes. As a result, only a small number
of new constructs, which can be applied orthogonally,
need to be introduced. Special run-time checks are used
to deal with the consequences of permitting deviations
from the norm to persist as violations of constraints.

Keywords
Exception handling, deviations, reified process model,
safety.

1 INTRODUCTION
Suppose an organization is attempting to achieve some
goal by carrying out a collection of activities/tasks. In
order to analyze and support by computer the work
to be done, it is necessary to record a description of
these organizational action patterns. The formal lan-
guage used for this will be called a process model-
ing/description language (PML). A PML needs to cap-
ture the way in which the steps of a process (called
tasks or activities) are coordinated, as well as the effect
of the activities, which may be carried out by humans
or computers.

The process model describes a schema of the actions to
be carried out, while a specific execution (enactment)
of it is an instance (workcase) which unfolds over time.

permission 10 make digital or hard copies of all or part of this work for
PSE.Onat Or CksSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage end that copies bear this notice and the full citation on the first page.
70 copy otherwise. to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WACC ‘99 2/99 San Francisco, CA, USA
0 1999 ACM l-581 13-070.S/99/0002...$5.00

A process support system (PSS), containing the work-
jIow engine, ensures that the enactment conforms to
the schema.

Process models have found application and have been
studied in a variety of fields, including office informa-
tion systems, databases (focusing on complex transac-
tion models) and software engineering (focusing on soft-
ware process management) ‘.

From the beginning, a major source of problems has
been the prescriptive nature of the workflow specifica-
tions, which does not allow for unanticipated variations.
For example, in order to overcome/avoid delays or sim-
ply expedite processing, in certain circumstances it may
be desired to start a task (e.g., billing) before all of its
immediate predecessors are completed; or start in par-
allel several tasks (e.g., shipping and billing), although
the schema indicate that they are to be done in order;
or even exchange the order of steps in a workflow. A
more extreme deviation would be performing an entirely
unusual sequence of actions, such as replacing the en-
tire billing and payment process by a barter for some
product or service.

Many workflow products do in fact support deviations
from the process model. For example, INCONCERT al-
lows a workcase to be modified by allowing tasks or
dependencies to be added/removed, roles reassigned,
etc. [l]. However, we believe that most proposals do
not find a middle ground between requiring exceptional
cases to be anticipated, and allowing ad-hoc actions that
are either too specialized (e.g., restricted to forms han-
dling [24]) or too powerful (e.g., arbitrary editing of the
schema). Furthermore, the consequences of continuing
after exceptions/deviations are mostly ignored.

In addition, almost all activities manipulate typed
object (like forms and database objects), and these
type constraints are subject to unanticipated deviations
just as much as the process descriptions themselves.
For example, the forms may need additional annota-
tions/fields, may require multiple values where a single
one is originally allowed for, may contain values of dif-

‘See [33] for an inter-disciplinary workshop on this topic.

59

ferent type than the one anticipated (e.g., French Francs
instead of US dollars).

The aim of the present paper is to propose a mechanism
for handling exceptional occurrences in workflows which
(i) integrates d a a and process deviation handling; (ii) t
provides a clear, precise definition of the notion of excep-
tion and a disciplined approach to handling exceptions
in context; (iii) addresses the problems of allowing de-
viations from the norm to persist; (iv) introduces only a
small number of new ideas/language constructs, which
can be combined with standard data manipulation to
achieve the desired ends.

To summarize the paper, these goals are accomplished
in part by (a) reifying actions, workcases and states as
instances of classes with attributes; (b) associating all
exceptions with violations of constraints; (c) extend-
ing the discipline of exception handling learned from
programming languages, and applying it to persistent
exceptional data and deviations [7]; (d) viewing mem-
bership in the extents of systems classes as a temporal
database.

The paper first introduces the data and process model
to be used, and then describes procedural exception
handling mechanisms. This is adapted to accommodate
persistent, exceptional data in Section 4, while in Sec-
tion 5, we introduce our reified activities and processes,
as well as the exceptions associated with them. In Sec-
tion 6 we discuss and compare a variety of prior related
work.

2 OUR CONCEPTUAL MODEL

2.1 The Data Model
We begin with a TAXIS-like [29] object-centered data
model, where individuals are instances of classes, and
are related by attributes. The class definition specifies
domain and other kinds of constraints on the attributes.
The subclass hierarchy provides for the usual inheri-
tance of attributes, but also allows for the refinement
of the constraints on them. Attributes can be marked as
single- or set-valued, with cardinality constraints. For
example, the schema for PERSON might include
class PERSON {

firstlame: STRING;
lastlame: STRING;
age: INTEGER;
mother: PERSON [lastName = self.lastNamel;
younger!: (self.age< self.mother.age- 14) }

This example also illustrates two constraints: younger !
is a general boolean constraint, with self ranging over
all instances of the class2; mother :PERSON [lastName
= self.lastName] introduces a special equality con-

*Through quantification, such a constraint can involve objects
spanning multiple classes.

60

&raid self .mother . lastName = self. lastlame.

Every class has an associated eztent, with the same iden-
tifier as the class, which is the set of currently existing
individuals in that class. There are operations for meat-
ing and destroying individual objects in classes, as well
as for dynamically adding and removing objects from
classes. Of course, there are also operations for retriev-
ing or storing values of attributes for individuals.

2.2 The Process Model
For specificity, we adopt in this paper the ICN (Infor-
mation Control Net) language for describing the co-
ordination aspects of a workflow [19]. Control ICN
(CICN) is a sublanguage of ICN to model the flow of
control as a node-labeled graph3. Figure 1 shows a sim-
plified college admission procedure adapted from [27],
represented in CICN. Large ovals stand for activity (pro-
cessing) steps, while filled circles - and-nodes (resp. open
circles - or-nodes), represent conjunctive/concurrent
control flow (resp. disjunctive/alternative control flow).
Directed edges represent precedence relations among
(activity and control) nodes. For example, accord-
ing to the process schema in the figure, the comple-
tion of the Review step enables the Decision step
(which can only start after Review is completed), while
upon the completion of the Decision step, the suc-
ceeding OR-fork node “fires”, enabling all three of
its successors, DelayedDecision, FollowUpAccepted,
and FollowUpDenied. The AND-join node preceding
Review requires both its predecessors to be completed
before firing. Multiple levels of abstraction in modeling
are supported by compound activities. A more detailed
description of the process model is given in Section 5.

The presence of a supporting database is assumed
throughout, in order to provide not only data storage
but also communication between workflow participants
and with the outside world.

3 COMPONENTS OF AN EXCEPTION MECHA-
NISM
Exception handling is a programming language control
structure that allows the normal execution of a pro-
gram to be replaced or augmented by special exception
handling code when certain special events or conditions
occur [20]. We use a synthesis of a variety of ideas for
exception handling in an object-oriented language con-
text, described in terms of the following major steps:

1. Exception signaling: When a special situation is dis-
covered, an exception object is created. This object
also belongs to one or more classes and can have at-
tributes. The class identifier allows us to distinguish dif-
ferent kinds of exceptions (e.g., DEADLINE-VIOLATION),

31CN graphs also capture data flow between repositories and
activities. For this paper, we omit the data flow aspects of process
models.

Delayed 0 D8cid.on

Figure 1: ICN diagram of the Admission workflow

while the attributes can pass out detailed information
about the context. Exception classes can be orga-
nized into subclass hierarchies (e.g., POSTPONABLE ISA
DEADLINE-VIOLATION).

2. Ezception handling: The raising of an exception sus-
pends the normal flow of control, and an attempt is
made to locate an exception handler that can be in-
voked. One desirable feature is that exceptions be han-
dled in a context-dependent manner, so that, for ex-
ample, the passing of the same deadline might cause
different reactions in different circumstances. This is
translated into practice by the convention that when
a function Co signals an exception of kind X, it is the
invoker, Cl, of Co that is first given the opportunity
to provide a handler, since the invoker knows what the
signaler was supposed to have accomplished. Otherwise
the exception is re-raised/propagated up the calling hi-
erarchy, through intermediate calls to Cs, . . . till the in-
vocation of C,, provides a handler H. An alternative is
to associate (default) handlers directly to the exceptions
themselves.

A procedure that is about to be terminated may per-
form clean-up actions on the objects that persist beyond
its lifetime (e.g., [21]). In the database context, this
may involve aborting a transaction or performing a pre-
programmed compensation action [23]. One advantage
of the workflow context will be to permit end-users to
act as exception handlers for unanticipated exceptions.

In summary, modern programming language exception
mechanisms offer a controlled, structured way in which
processes influenced by an exceptional event can partic-
ipate in its resolution and either terminate or resume
after appropriate repairs have been made.

4 OBJECTS AND EXCEPTIONS
A fundamental principle of our approach [7] is that an
exception OCCUM when some co&mint is violated. In
our case, every constraint is associated with a class
through an attribute, and so the constraint can be iden-
tified by the <class name, attribute name> pair. This
means that there is no need to declare a specific excep
tion object to be raised for every constraint. Instead, a
single super-class

Note that the mechanism of subclass hierarchies allows
handlers for a general exception class to be applied to
exception objects raised in any of its subclasses. Con-
versely, specialized exception subclasses can over-ride
the (default) handlers to be invoked.

class VIOLATION {
f orClass : CLASS;
forAttrib: ATTRIBUTE-ID;
signaler : OPERATION }

3. Resuming control flow: While the handler H is ex-
ecuting (usually in the environment of the procedure
C R+r, which called Cm), the procedures Ck, k 5 n, are
in a suspended state. At the end of the handler H,
there are several options: Flow of control may be spec-
ified to resume Ck for some k, which means that all
invocations of Cj, for j < k are terminated and flow

of control continues in CA with the next statement af-
ter the one that signaled/propagated the exception X.
A second alternative is to retry Ck, which restarts the
flow of control at the beginning of Ck instead. Finally,
if H does not have a resume or retry statement, then all
the invocations C,, , . . . , CO, are terminated, and flow
of control continues in C,+r after the call to C,,.

suffices. Of course, one is encouraged to declare sub-
classes of VIOLATION, such as SECURITY-CONSTRAINT-
VIOLATION, and have these be raised when any of several
constraints chosen by the modeler is violated.

Constraints, such as PERSONS’ ages being INTEGER val-
ues, are useful for catching data entry errors and for
setting up efficient storage and access structure. In
rare cases, we might want to store the string “young”
as the value for some person’s age because no pre-
cise value is known. The actual storing of the excep
tional value is accomplished by resuming the’update
store(jane ,age ,“young”) that was interrupted by the
exception signal, and excusing this act. In [7], this is
accomplished by creating an EXCUSE object that records
(i) which violation (hence constraint) is being addressed,

61

(ii) which agent is performing the excuse and when, (iii)
some text explaining the reasons, and (iv) an expiration
date for the excuse. Security can be maintained by lim-
iting who can provide excuses, and for which subclass
of violations (and hence constraints).

It is important to realize that future operations on these
“persistent exceptional values” will have to be moni-
tored closely, since programs and users assume that the
constraints in the schema hold. Thus, a program com-
puting the average age of instances of PERSON might
fall into a grave error if it tried to interpret the string
“young” as an integer value. For this reason, jane . age
needs to be marked as exceptional. We do so using an
instance of the special built-in class

class EXNAL-ATTRIBUTE
{onObj : OBJECT;
attrib : ATTRIBUTE-ID;
value : ANYTHING }

and syntax like
new EXNAL-ATTRIBUTE(onOb j : = j ane,

attrib:=‘age,value:=“young”).
The data manager is then extended so that any time
such an attribute is accessed, an exception (which is
exactly this exceptional attribute marker) is raised to
alert the program/user, thus giving them a chance to
decide whether to skip the value or replace it with some
numeric equivalent appropriate for this case.

As part of the object-centered approach, one can
define new subclasses of EXNAL-ATTRIBUTE, to de-
scribe common categories of persistent exceptions (e.g.,
VALUE-UNKNOWN, WRONG-UNIT-OF-MEASURE, EXTRA-AT-
TRIBUTE, etc.) so that additional semantics can be cap
tured. To support on-line exception handling, such ex-
tensions to the class hierarchy can be made at run-time.
Moreover, any violation class (including an exception
marker) may have attached to it a procedure perform-
ing default exception handling. This provides a way to
avoid inundating users with unimportant exception sig-
nals (e.g., the handler procedure could write a warning
message to some error file, and then resume with the
value “null”). A variety of default handlers can be writ-
ten ahead of time, and attached to existing exception
classes. Then the user need only indicate the appropri-
ate superclass for their new violation class in order to
obtain the desired reaction to exceptions being encoun-
tered.

scripts in Taxis, and has been independently adopted
by others (e.g., [32]). Although we will not exploit this
here, the above allows activity/workflow descriptions to
be organized into subclass hierarchies, with the usual
advantages of abbreviation, reuse and change propaga-
tion due to inheritance.

5.1 Activities
Activities have several kinds of information associated
with them. First, there is the body, which can be an
elementary activity (not modeled here) carried out by
a single actor (human or electronic), or a compound
activity, whose attributes will be steps that are partially
ordered, and which themselves are activities.

Next, there is the responsibleAgent - to be filled by
some actor who has authority on achieving the goal of
the activity. Note that the responsibleAgent filler is
the natural agent to perform on-line exception handling.

Finally, activities have associated a variety of assertions:

(1) Tests are conditions verified at some specified point
during the action’s execution. Two specialized kinds,
initialTests and finalTests, are checked immediately
at the beginning and end of the execution. Initial tests
can anticipate the violation of integrity constraints or
check dynamic ones (e.g., that the salary values are only
increasing). Final tests are for integrity constraints that
are too expensive to check ahead of time (e.g., that the
average salary cannot exceed some threshold). In ad-
dition, inv&antTests are monitored throughout the
execution of the activity. For example, deadlines on
the completion of an activity are invariant (temporal)
assertions in this category.

(2) initialAssumptions and finalGoals are condi-
tions assumed to hold at the beginning, respectively end,
of activities. They are proof obligations for the correct
functioning of the entire process. For workflows, the
presence of appropriate data flow values (necessary in-
puts and outputs) are typical assertions of this kind. Of
course, under normal circumstances such conditions are
not evaluated at run-time because they are redundant
(assuming the program is properly written), and may
be expensive.

Following the paradigm for data objects, we shall make
all such assertions be values of attributes of the activity
class, which also has attributes for parameters and local

The above idea is extended to objects that are ea+ variables. For the Admission example, we might have
ceptional instances of classes by considering a built-in activity class ADMISSION
attribute instanceOf, which has as values the set of responsibleAgent: ADMISSIONS-OFFICER
classes to which an object belongs. input

applDoc : APPLICATION-DOCDMENT
5 ACTIVITIES AND EXCEPTIONS
Our plan is to reify activities so that they are also per-
sistent objects in classes with attributes. This general
approach began in our original work [3] on workflow-like

locals‘
awl : APPLICATION-FOLDER

initialAssumptions
haveprelim!: BOT (applDoc=nil)

62

finalGoals
haveDecision! : (appl .decision = “admitted”)

OR (appl . decision = “denied”)

Violations of the user-specified conditions, which are
attributes of elementary or compound activities, raise
exceptions, as before. These can now be dealt
with using the exception handling mechanism de-
scribed in the previous two sections. Among oth-
ers, if the responsibleAgent of one activity does
not handle the exception, it is re-raised to the
responsibleAgent of the containing/invoking com-
pound activity. And the handler can use the excuse
mechanism of EXNAL-ATTRIBUTE on activity instance
objects to permit violations of such constraints to per-
sist, and continue with the process.

5.2 Workflow Steps
An activity being carried out as a step in a workflow has
an &enactment life-cycle”. Figure 2 is our elaboration
of the state transition diagram in [lo].

Figure 2: State diagram for workflow steps

According to the diagram, the workflow engine/PSS is
in charge of moving the activity step between various
stages:

From INERT to ENABLED, when the corresponding
CICN node becomes enabled (according to the for-
mal model in [19]).

From ENABLED to READY when the trigger con-
ditions associated with the step become true. A
trigger is an additional kind of condition associated
with an action step, which needs to be true before
an enabled action is offered to an actor for execu-
tion. Among others, this is used to implement con-
ditional branches in workflows in conjunction with
an OR-fork.

Once ready, a step is offered to an actor for ex-
ecution. If the task is automated, the transition
to ACTIVE is immediate; otherwise the responsible
person has to first signal that (s)he accepts.

l When the activity is finished (ensuring the
f inalGoals), the transition to ENDED is taken, and
the enablement relation is recomputed in the CICN.

l The responsibleAgent or someone in higher au-
thority may suspend the activity, thus putting it
in the SUSPENDED state, and a resume puts it back
into ACTIVE.

l A cancel action terminates the activity, with no
assurance that the f inalGoals are true, and with-
out enabling its successor step(s) in the CICN.

In the spirit of object-centered reification, we
make classes of activities INERT , -1 READY

m,&knd[re FL
uentering/leaving a state” beco’mes synonymous’ with
“being added/removed from the class eztent as an in-
stance”.

The control steps in CICNs have a similar lifecycle,
except that they go from ENABLED to ENDED directly.
The AND-join node requires special treatment: an ad-
ditional class (PARTIALLY-ENABLED) is inserted between
INERT and ENABLED in order to represent the case when
some, but not yet all of the node’s predecessors have
ended.

If an exception occurs during a task execution, the ac-
tivity is suspended, and is in fact inserted into a sub-
class SUSPENDED-BY-EXN. For elementary activities, this
means that no further updates may occur under the
aegis of this task, but querying is allowed in order to
investigate possible reasons for the exception. Resump
tion after an exception corresponds to a move of the in-
stance to class ACTIVE, while termination causes a move
to a subclass CANCELED-BY-EXN. When a compound ac-
tivity instance C raises an exception, then the execution
of the workcase C itself is suspended (so that the en-
gine makes no further moves in enabling actions, etc.)
but the individual steps are not automatically suspended
(unless they raised the exceptions). They can, of course,
be selectively suspended by the exception handler.

Essentially, the above approach moves towards a re-
flective architecture for workflow enactment, but only
the data for the workflow engine is available for modi-
fication, not the engine itself. It provides a number of
advantages: First, suppose we keep track of the times
when an activity becomes or stops being an instance
of each state class. Using an appropriate (temporal)
query language, it is then possible to retrieve or con-
strain workcases with a wide variety of time-related con-
ditions, such as how long an activity/step has been “ac-
tiven, “active or suspended”, “enabled but not fired”,
“waiting to have an exception handled”, etc. For exam-
ple, it is possible to assert about an activity step B that
“once B is enabled, it must be started by r/20/1998”,

63

by stating as an invariant that if it is in class ENABLED,

then the current date must be less than 7/20/1998. This
approach provides a clear advantage in flexibility and
uniformity over one with a fixed, built-in set of special
temporal expressions, such as “delay”.

Second, during exception handling, the handler itself
can explicitly move some activity instance from one
state to another. For example, when the previous asser-
tion is violated because today is 7/20/1998, the handler
may decide that activity B cannot be delayed any fur-
ther, and may then move the object from class ENABLED

to READY. This will raise an exception since only the
workflow engine is supposed to move objects between
these classes, and this gives the responsibleAgent an
opportunity to give an appropriate excuse. When excep-
tion handling is finished, the workflow engine resumes
the suspended workcase and it will then start the ac-
tivity instance (supposing it is automated) as part of
its regular cycle. Once again, this is more parsimonious
than providing special names for operations that per-
form all possible pairs of moves between states in the
diagram.

5.3 Reifying CICN Graphs
We have considered above the life-cycle of a single step
of the workflow. To reify the control aspects, we make
control graphs be objects with the steps as attributes.
The names of the attributes can be arbitrary (though
they might be chosen to describe the action or the state
reached after the step completes). For example, the
control graph ICNl

CC+p-@-j-O
may have the following (preliminary) class definition:

class ICI1 ISA CICN {
step-a: A;
step2 : OR; step-b: B; step4 : OR;
step-c: C; 1

As suggested by the example, in addition to activity
classes A, B and C, there are built-in classes OR and I
m for control nodes. To model the actual sequencing
constraints (the edges in the graph), we require step
values to be instances of a special class (STEPI, which has
an attribute Fl, whose value will be the successor
step to be enabled by the workflow engine once this
step ends successfully. This attribute is single valued
for activity steps (members of class [ACTSTEP I), but
set-valued for control steps. Therefore we have a class
hierarchy of the form

CONTROL-STEP ACT-STEP(cardinality(next)=l)

In addition, we need to mark the starting step (by con-
vention, it will be the first one mentioned) and the end
steps (by convention, the ones having next equal to the
special step end). Therefore, the complete specification
of ICNl is

class ICNI ISA CICN {
step-a: A and ACTSTEPCnext=self .stepZl ;
step2 : OR Cnext=self . step-b] ;
step-b: B and ACT-STEP [next=self . step41 ;
step4 : OR [next={self.step-c,self.step2}1;
step-c: C and ACTSTEP[next=self .endl }

PSS implementation.
When enacting a workflow containing ICNl as a body,
the PSS engine creates an instance object uf i of class
ICNl, with wf 1. step-a initialized to a new A object,
which is also placed in classes ACTSTEP and ENABLED.
The other step attributes have null values at this point.
Thereafter, (conceptually) the PSS cycles through each
step attribute of workflow wf that has a non-null value
sv, performing procedure Advance(wf ,step ,sv). The
main novelty is the case when sv E ACTIVE and sv
has just finished. As shown in the pseudo-code below,
normally one would clear wf . step (though maintaining
it in a temporal data base) and create an instance of
the successor step in the workcase. However, the PSS
behaves in a special manner, to be exploited later, if
sv . next had been exceptionally pre-set.

wf .step : = null //but record in temporal db
if sv.next==nullthen { //normalcase

step1 := fromconstraint Cnext=salf.stepll in schera(wf);
Kind1 := from constraint stepl:Kindlin schema(vf);
uf.stepi := new Kindlabo in ENABLED;
sv.nert := wf.stepl; //to recordhistory

1
if sv.next!=null then //sv.next exceptionally pre-set

if sv.nextE INERT then
{move sv.nextfrom1NERTtoENABW.D; }

To save space, we omit the rather obvious actions for
steps becoming active, suspended, etc., and for the con-
trol steps of the CICN.4

Finally, the PSS must also react to changes in the data
values in the database (including the clock), by verifying
that no tests associated with objects (including activi-
ties!) are violated, and that triggers becoming true for
enabled actions cause appropriate transitions.

5.4 Exceptional Coordination
We explore next the ways in which our techniques for
handling exceptional data objects (Section 4) can be ap-
plied to the above representation of workflow instances
in order to deal with a variety of exceptional occur-
rences. Consider a simple sequential net ICN2 of the

4 We note that nondete rminismcrestestechnical difficulties in
computing the “enabled step” relationship for CICN workfIows,
as formally specified in [19].

64

form
A-->B-->C-->D

with steps called step-a,step-b,step-c,step-d.
Suppose ICN2 has a constraint specifying a deadline by
which step-b must be enabled or activated. Let wf2 be
an enacted instance of ICN2, and consider various sce-
narios of the responsibleAgent reacting to a violation
of this constraint:

(1) Suppose step-a is the only step currently active in
wf 2, and the responsibleAgent decides to start step B
before step A is finished. She therefore creates an in-
stance (say b45) of activity class B that is enabled (i.e., is
also in class ENABLED), and assigns b45 to wf 2. step-b.
However, notice a subtle problem: when step-a fin-
ishes, it would normally lead to the enablement of an-
other, unwanted instance of activity B. To prevent this,
assign b45 to wf2.step-a.next; the workflow engine
(as described above) manages the rest appropriately.
Note that the assignment of b45 to wf2.step-b and to
wf 2. step-a. next above raise violations of the built-in
authorization constraint stating that only the PSS en-
gine should change values of a step attribute for an ICN,
or its next attribute. The responsibleAgent must
therefore excuse these violations by associating appro-
priate EXIAL-ATTRIBUTE markers to the attributes, and
creating an excuse that explains the situation.

(2) Suppose that now step A is ended, and step B is
enabled, but the deadline for activating B has passed
without the trigger becoming true. This time the
responsibleAgent decides to skip step B altogether.
This is done by moving wf 2. step-b from class ENABLED
to CANCELED, to prevent it from firing. At the same time,
we need to manually enable step-c because it does not
have any predecessor activity instance:
wf2.step-c : = new C also in ACTSTEP ,ENABLED ;

(3) If, instead, before the end of A, the responsible-
Agent wants to exchange the order of execution of steps
B and C, she can perform the following updates

wf2.step-c := new C also in ACTSTEP, INERT;
wf2.step-a.next := wf2.step-c;
wf2.step-c.next := wf2.step-b;
wfa.step-d : = new D also in ACT-STEP, INERT ;
wf2.step-b.next:=wf2.step-d;

(4) Finally, th e responsibleAgent decides to allow
steps B and C to be carried out in parallel. First, we
start step-c going:

wf2.step-c := new C also in ACTSTEP, ENABLED ;
Then, we force an additional attribute for a conjunctive

control node simulating the following graph

by performing the following updates
wf 2. extra-and : = new AND also in INERT ;
wf2.step-b.next := wf2.extra-and;
wf2.step-c.next := wf2.extra-and;
wf2.step-d : = new D also in INERT ;
wf2.extra-and.next:={wf2.step-d};

Again, each update causes an authorization viola-
tion; in addition, the updates to extra-and and
step-b/c . next also violate the original type constraints
for ICNB. Appropriate exceptional-attribute markers
and one excuse explaining them are needed.

Observe the way in which we have added the new AND
control node as the value of extra-and; this illustrates
how one can add arbitrary new steps as attributes to a
workflow.

Note that the above description is not just an imple-
mentation view, but is in fact the conceptual view that
we would like the workflow participants to have. On the
other hand, it is too much to expect end-users to write
program fragments such as the ones above. A partial
solution is to take taxonomies of exception kinds and
frequently observed reactions to them, such as those
offered in [12, 151, and to pre-program these as param-
eterized patterns, making them available to users via a
menu. A more general fallback is to use a visual formal-
ism (e.g., APEL [IS]), in which such “programming” can
be achieved graphically.

Above, the exceptional occurrence was partly antic-
ipated since there was a constraint whose violation
alerted us to something being amiss. If a handler had
been specified ahead of time, this would have been a
pre-programmed special case. As it was, we allowed
dynamic, context-sensitive handling of the violation.
At the other extreme, the process specification may
not have had any assertion about the (relative) time
when activity B was supposed to take place, but the
responsibleAgent of wf2 might have noticed at run-
time an abnormally long delay. For this purpose, we
need to allow the responsibleAgent to place a work-
case into SUSPENDED-BY-EXN, and then carry out the
special handling actions. In this case, she is required
to create a violation - and this gives her an opportu-
nity to record for the first time a previously un-noted
constraint.

5.5 Repercussions of Deviations.
Consider some of the effects of allowing users to mod-
ify the state of activities and their successors. Suppose
that some activity instance b was enabled either (i) by
a user, as part of exceptional actions, or (ii) by a step
p such that p.next is exceptional. In these cases the
normal predecessor of b in the workflow did not get a
chance to establish its goal, and the current step might
have depended on that goal. We believe that in such
situations b’s initialAssumptions need to be checked

65

explicitly, and b . responsibleAgent should also be no-
tified of the deviation. Let us call this part of the safety
policy. For example, in the first scenario above, when
starting B before A is completed, the system should
verify step-b’s initialAssumptions. Or, in the Ad-
mission workflow, if a deviation wants to skip over the
Review step (because, say, the applicant already has of-
fers from elsewhere) then according to the above policy
the responsibleAgent of Decision would be alerted
that the input data normally expected is not complete.
(Thus, the responsibleAgent can review the Decision
activity, and if it is automated, probably carry it out by
hand.)

Similarly, an additional part of the safety policy is the
run-time verification of the finalGoals of an activity
when (i) it is manually moved to the ENDED state, (ii)
when it is exceptionally resumed after a failed initial-
Test or initialAssumption, or (iii) when a compound
activity’s coordination has been exceptionally changed.
Both [19] and [14] g’ rve examples where during on-line
changes of step ordering, one has to make sure that nei-
ther of the steps is omitted in the end. In our case,
such a condition should be expressed as a temporal as-
sertion (involving possibly former values of the respec-
tive step attributes) for the workflow. The advantage
of our approach is that even this (meta-)constraint may
be violated with suitable excusing privileges.

6 RELATED WORK AND CONCLUSIONS
To begin with, there have been many papers on the
evolution of workflow and process models, including
[l, 2, 4, 11, 18, 19, 26, 32, 341. We believe there is a dis-
tinction to be made between deviations during workflow
enactment (the topic of this paper) and workflow evo-
lution. The difference is analogous to the one between
allowing exceptional individuals in a database (e.g., [7])
and schema evolution in a database (e.g., [5]). The lat-
ter task might be prompted by multiple occurrences of
the former, and work on machine learning may help in
such evolution [g].

Our framework does support a structured additive form
of evolution by codifying exception handling into pro-
cedural handlers that are suitably placed, possibly as
default handlers attached to the violations, as discussed
in [7].

Representative of the works cited above is [19], which
also applies to the CICN formalism. It proposes a tech-
nique whose core is a mapping function from the tokens
in the state of the original CICN to those of the modified
CICN. In our examples (see Section 5.4), this mapping
is essentially simulated by the creation of activity nodes
for steps placed in the ENABLED class. The other Petri-
net like approaches to modifying workflow models (e.g.,
[2, 341) bear a similar relationship to our work. In fact,

in [9] we show how the present framework can be ap-
plied to the workflow coordination model in [2], which
has the nice theoretical property that one can analyze
when it is safe to make changes.

A second class of work, which usually deals with an-
ticipated ezceptions, involves so-called “advanced trans-
action models”. From the seminal work in [17] to such
recent papers as [23] and [35], this work has normallyad-
dressed issues such as failure recovery and co-ordination
between multiple workflows. Following the example
of the WIDE project [13], we have chosen to separate
these issues from the more local exceptional occurrences
studied in this paper. However, we plan to return to
this problem, particularly in light of the combination
of transactional notions and programming language ex-
ceptions recently explored in [22].

Several other research efforts bear a closer look.

The WIDE workflow system [lo, 131, has a conceptual
model resembling ours, based on CICN. It facilitates
the declarative specification of constraints and their er-
ror handling by associating condition-Teaction pairs to
each activity. A taxonomy of different kinds of events
that can be exceptional is given in [12]. These rules
provide an essentially static mechanism for exception
handler association, in contrast with our dynamic ap
preach, which uses the invocation hierarchy. Also, ex-
ceptional events in WIDE have to be identified at design
time, while we are interested in ad-hoc deviations, in-
cluding the ability to resume.

The ADEPT [30] workflow project is concerned, like
we are, with ad-hoc changes to individual workcases,
and controlling them to avoid undesirable consequences.
The most notable advances are made in using the data
flow constraints expressed in the workflow to evaluate
proposed changes. This nicely complements our work
on enforcing assumptions and goals, which deal with
control flow.

Cugola and colleagues investigate deviations during en-
actment of software processes [14], distinguishing as-
sertions of invariance and triggers of state transitions;
deviations are then tolerated only for the later. The
remainder of [14] is devoted to analyzing, using tem-
poral logic, the propagation of “possibly polluted in-
formation* when deviations are allowed, assuming that
any deviant action produces suspect data. Shifting
to an “artifact’‘-centered model, [15] extends the above
work by (i) proposing a fixed set of reactions to invariant
violations, and (ii) providing a detailed analysis and cat-
egorization of deviations and actions for handling them,
collectively called “deviation policies”. The taxonomy
of exceptions and ways of handling them is of consid-
erable interest to us, since it provides the basis for a

66

library of exceptions and handlers, which would greatly
facilitate the task of users faced with run-time devia-
tions. Once again, this can be achieved in our model by
refining the subclass hierarchy of violations, and associ-
ating appropriate default handlers to them.

In contrast to our more technical focus, several papers
have addressed the organizational aspects of exceptions.
In the early 1980’s, Kunin [27] distinguished between
the main-line of a business process descriptions, and
deviations from it, and provided a language to support
a methodology for using this form of abstraction. In
[25], an approach is reported toward effective exception
resolution that achieves “organizational integrity” based
on taxonomies of exceptions, mapping them to poten-
tial diagnoses, and resolution strategies, all housed in a
knowledge base. Along similar lines, and supported by a
substantial empirical study, [31] suggests a meta-model
for exceptional event handling based on “degree of ex-
ceptionality”. Finally, in the situated work camp, [6] de-
scribes a workflow system where activities are modeled
as an executable network of obligations, with flexible
placement of tokens.

6.1 Contributions
We have laid out a computational framework that pro-
vides generic, flexible, and disciplined means of excep-
tion handling in workflow/process enactment, based on
a precise account of deviations as violations of con-
straints. It is uniform since it deals with deviations, an-
ticipated or unanticipated, from both data schema and
process schema, each causing a violation of either a user-
specified constraint or one inherent in the data/process
model itself. It is parsimonious since it uses standard
data manipulation operations on class extents and at-
tribute values, augmented by the ability to resume after
an exception, to describe deviations of both kinds.

The framework relies on three ideas: (1) Activities and
workflows are conceptually reified as objects whose at-
tribute values and class memberships encode the in-
formation and constraints maintained by the workflow
engine for each workcase enactment (e.g., the current
state, the trigger, the next step). As such, they resem-
ble the data and forms manipulated by workflows. (2)
The technique for handling exceptions, and especially
for permitting ezceptional values to persist, described in
[7], is extended so that it can be used to support all the
desired kinds of deviations from the norm in process
descriptions (e.g., specifying an exceptional, alternate
next step). (3) Responsible agents, or other authorized
users, are allowed to act as on-line exception handlers,
in order to exercise judgment in coping with unantici-
pated situations or when encountering “persistent vio-
lations” left by others. To facilitate this, a taxonomy
of exception kinds, as well as pre-programmed handlers
attachable to exceptions, can be made available.

To deal with the consequences of allowing deviations
to persist, “persistent violations” raise exceptions when
accessed later (as in [7]); in addition, our safety policies
suggest expressing constraints such as initialAssump-
tions and finalGoals, whose run-time checking may
be activated in order to protect the workcase from per-
forming illegal or non-sensical operations after ad-hoc
changes in the workcase.

To limit the set of constraints that can be violated, or
the persons who can allow these violations to persist,
one can apply standard authorization policies to the
creation of excuses, which must accompany every de-
viation. (See [28] for a declarative language to state
such authorizations.)

In addition to a prototype implementation of the PSS,
our future plans include developing a logical seman-
tics of workflows and their exceptions, a connection to
higher-level goals and plans (which are the true clues of
what is a permitted deviation), integration with trans-
actional workflows, and retrieving and learning generic
handlers for deviations.

ACKNOWLEDGEMENTS:
This research is supported by NSF Grant IRI-9619979.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

K.R. Abbott, S.K. Sarin. “Experiences with Work-
flow Management: Issues for the Next Generation”,
CSCW’94, Chapel Hill, NC, 1994.

A. Agostini, G. De Michelis. “Simple Workflow
Models” PTOC. Workshop on Workflow Management,
June 1998, pp. 146-164.

J.Barron. “Dialogue and process design for Interac-
tive Information Systems Using Taxis”, PTOC. SIGOA
Conf, on Ofice Information Systems, June 1982

S. Bandinelli, A. Fuggetta, and C. Ghezzi. “Soft-
ware Process Model Evolution in the SPADE En-
vironment.” IEEE Trans. on Softw. Eng., Dec. 1993.

J. Banerjee, W. Kim, H. Kim, H.F. Korth: “Se-
mantics and Implementation of Schema Evolution
in Object-Oriented Databases.” PTOC. ACM SIG-
MOD’87, pp.311-322

D.P. Bogia, S.M. Kaplan. “Flexibility and Control
for Dynamic Workflows in the worlds Environment”,
in Proc. Conf. Organizational Computing Systems,
Milpitas, CA, November 1995.

A. Borgida. “Language Features for Flexible Han-
dling of Exceptions in Information Systems”, ACM
Trans. on Database Systems, 10(4), Dec. 1985, 565-
603.

67

8.

9.

A. Borgida, K.E. Williamson. “Accommodating Ex-
ceptions In Database, and Refining the Schema By
Learning From Them”, Proc. VLDB’85,pp.72-80.

A. Borgida, T. Murata. “Workflows as Persistent Ob-
jects with Persistent Exceptions”, CSCW-98 Work-
shop:Towards Adaptive Workflow Systems (obtain-
able from http://ccs.mit.edu/klein/cscw-ws.html).

10. F. Casati, S. Ceri, B. Pernici, G. Pozzi. “Conceptual
modeling of workflows”, 0- 0 ER ‘95, 341-354, Gold
Coast, Australia, Springer Verlag, Dec. 1995.

11. F. Casati, S. Ceri, B. Pernici, G. Pozzi. “Workflow
Evolution”, Data and Knowledge Engineering Q(3),
1998, pp.211-238.

12. F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, “Speci-
fication and Implementation of Exceptions in Work-
flow Management Systems”, TR 98.81, Dipt. di Elet-
tronica e Informazione, Politecnico di Milano, Au-
gust 1998.

13. S. Ceri, P.W.P.J. Grefen, and G. Sanchez. “WIDE:
A distributed architecture for workflow manage-
merit*, in Proc. RIDE ‘97, Birmingham, UK, Apr.
1997.

14. G. Cugola, E. Di Nitto, C. Ghezzi, M. Man-
tione, “How To Deal With Deviations During Pro-
cess Model Enactment”, PTOC. ICSE’95, Seattle, WA,
May 1995.

15. G. Cugola. “Tolerating Deviations in Process Sup-
port Systems Via Flexible Enactment of Process
Models”, IEEE Trans. Softw. Eng., Special issue on
Managing Inconsistency in Software Development (to
appear).

16. S. Dami, J. Estublier, M. Amiour. “APEL: A
Graphical Yet Executable Formalism for Process
Modeling”, Automated Software Engineering 5(l),
1998, pp.61-96.

17. U. Dayal, M. Hsu, R. Ladin: “A Transac-
tional Model for Long-Running Activities”. PTOC.
VLDB’91: 113-122.

18. P. Dourish, J. Holmes, A. McLean, P. Marqvard-
sen, A. Zbyslaw. *Freeflow: Mediating between Rep-
resentation and Action in Workflow Systems”, PTOC.
CSCW’96, 1996, pp.190-198.

19. C. Ellis, K. Keddara, G.Rozenberg. “Dynamic
Change within Workflow Systems,” PTOC. Conf. on
Organizational Computing Systems, 1995.

20. C. Ghezzi, M. Jazayeri, Programming Language
Concepts, 3rd Edition , J. Wiley and Sons, 1997.

21. J.Goslin, B.Joy, G.Steele, The Java Language Spec-
ification, Addison-Wesley, 1996.

22. C. Hagen, G. Alonso. “Flexible Exception Han-
dling in the Opera Process Support System”, Proc.
ICDCS’98, Amsterdam, May 1998.

23. M. Kamath, K. Ramamritham. “Failure handling
and coordinated execution of concurrent workflows”,
PTOC. ICDE’98, Orlando, FL, Feb. 1998, pp.334341.

24. B.H. Karbe, N.G. Ramsperger. “Influence of Ex-
ception Handling on the Support of Cooperative Of-
fice Work”, Multi- User Interfaces and Applications,
S. Gibbs and A.A. Verrijn-Stuart Eds., Elsevier ,
pp.355-370, 1990

25. M. Klein. “Exception Handling in Process Enact-
ment Systems”, PTOC. ECAI’96, 1996.

26. M. Kradolfer, A. Geppert “Dynamic Workflow
Schema Evolution based on Workflow Type Version-
ing and Workflow Migration”, TR 98.02, Dept. of
Computer Science, University of Zurich, April 1998

27. J.Kunin. “Analysis and Specification of Office Pro
cedures”, MIT/LCS/TR-275,1982.

28. N. Minsky, V. Ungureanu. “Unified Support for
Heterogeneous Security Policies in Distributed Sy5
terns”, USENIX Security Symposium, January 1998,
San Antonio, Texas.

29. J. Mylopoulos, P. A. Bernstein, H.K.T. Wong. “A
Language Facility for Designing Database-Intensive
Applications.” ACM !Prans. Database Systems 5(2):
185-207 (1980)

30. M. Reichert, P. Dadam. “ADEPT - supporting dy-
namic changes of workflows without loosing control”,
J. Intelligent Information Systems, 10(2), March
1998, pp.93-130.

31. H.T. Saastamoinen. “On the handling of excep
tions” , Ph.D. Thesis, University of Jyvaskyla, Jy-
vaskyla, 194 pages, 1995.

32. S.K. Sarin: “Object-Oriented Workflow Technology
in InConcert”. Proc. COMPCON’96, pp.446-450.

33. A.Sheth editor, NSF Workshop on Workflow and
Process Automation in Information Systems, May
1996, Athens, Georgia.

34. M. Voorhoeve, W. van der Aalst. “Ad-hoc Work-
flow: Problems and Solutions”, Proc. Workshop
Databases and Ezpert Systems, 1997, pp.36-41.

35. D. Worah, A. Sheth. “Transactions in Transac-
tional Workflows” in Advanced Transaction Models
and Architectures, S. Jajodia and L. Kerschberg,
Eds., Kluwer, 1997.

68

