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ABSTRACT 
Practical workflow systems need to be able to toler- 
ate deviations from the initial process model because 
of un-anticipated situations. They should also be able 
to accommodate deviations in the format of the forms 
and data being manipulated. We offer a framework for 
treating both kinds of deviations uniformly, by apply- 
ing ideas from programming languages (with workflow 
agents as potential on-line exception handlers) to work- 
flows that have been reified as objects in classes with 
special attributes. As a result, only a small number 
of new constructs, which can be applied orthogonally, 
need to be introduced. Special run-time checks are used 
to deal with the consequences of permitting deviations 
from the norm to persist as violations of constraints. 

Keywords 
Exception handling, deviations, reified process model, 
safety. 

1 INTRODUCTION 
Suppose an organization is attempting to achieve some 
goal by carrying out a collection of activities/tasks. In 
order to analyze and support by computer the work 
to be done, it is necessary to record a description of 
these organizational action patterns. The formal lan- 
guage used for this will be called a process model- 
ing/description language (PML). A PML needs to cap- 
ture the way in which the steps of a process (called 
tasks or activities) are coordinated, as well as the effect 
of the activities, which may be carried out by humans 
or computers. 

The process model describes a schema of the actions to 
be carried out, while a specific execution (enactment) 
of it is an instance (workcase) which unfolds over time. 
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A process support system (PSS), containing the work- 
jIow engine, ensures that the enactment conforms to 
the schema. 

Process models have found application and have been 
studied in a variety of fields, including office informa- 
tion systems, databases (focusing on complex transac- 
tion models) and software engineering (focusing on soft- 
ware process management) ‘. 

From the beginning, a major source of problems has 
been the prescriptive nature of the workflow specifica- 
tions, which does not allow for unanticipated variations. 
For example, in order to overcome/avoid delays or sim- 
ply expedite processing, in certain circumstances it may 
be desired to start a task (e.g., billing) before all of its 
immediate predecessors are completed; or start in par- 
allel several tasks (e.g., shipping and billing), although 
the schema indicate that they are to be done in order; 
or even exchange the order of steps in a workflow. A 
more extreme deviation would be performing an entirely 
unusual sequence of actions, such as replacing the en- 
tire billing and payment process by a barter for some 
product or service. 

Many workflow products do in fact support deviations 
from the process model. For example, INCONCERT al- 
lows a workcase to be modified by allowing tasks or 
dependencies to be added/removed, roles reassigned, 
etc. [l]. However, we believe that most proposals do 
not find a middle ground between requiring exceptional 
cases to be anticipated, and allowing ad-hoc actions that 
are either too specialized (e.g., restricted to forms han- 
dling [24]) or too powerful (e.g., arbitrary editing of the 
schema). Furthermore, the consequences of continuing 
after exceptions/deviations are mostly ignored. 

In addition, almost all activities manipulate typed 
object (like forms and database objects), and these 
type constraints are subject to unanticipated deviations 
just as much as the process descriptions themselves. 
For example, the forms may need additional annota- 
tions/fields, may require multiple values where a single 
one is originally allowed for, may contain values of dif- 

‘See [33] for an inter-disciplinary workshop on this topic. 
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ferent type than the one anticipated (e.g., French Francs 
instead of US dollars). 

The aim of the present paper is to propose a mechanism 
for handling exceptional occurrences in workflows which 
(i) integrates d a a and process deviation handling; (ii) t 
provides a clear, precise definition of the notion of excep- 
tion and a disciplined approach to handling exceptions 
in context; (iii) addresses the problems of allowing de- 
viations from the norm to persist; (iv) introduces only a 
small number of new ideas/language constructs, which 
can be combined with standard data manipulation to 
achieve the desired ends. 

To summarize the paper, these goals are accomplished 
in part by (a) reifying actions, workcases and states as 
instances of classes with attributes; (b) associating all 
exceptions with violations of constraints; (c) extend- 
ing the discipline of exception handling learned from 
programming languages, and applying it to persistent 
exceptional data and deviations [7]; (d) viewing mem- 
bership in the extents of systems classes as a temporal 
database. 

The paper first introduces the data and process model 
to be used, and then describes procedural exception 
handling mechanisms. This is adapted to accommodate 
persistent, exceptional data in Section 4, while in Sec- 
tion 5, we introduce our reified activities and processes, 
as well as the exceptions associated with them. In Sec- 
tion 6 we discuss and compare a variety of prior related 
work. 

2 OUR CONCEPTUAL MODEL 

2.1 The Data Model 
We begin with a TAXIS-like [29] object-centered data 
model, where individuals are instances of classes, and 
are related by attributes. The class definition specifies 
domain and other kinds of constraints on the attributes. 
The subclass hierarchy provides for the usual inheri- 
tance of attributes, but also allows for the refinement 
of the constraints on them. Attributes can be marked as 
single- or set-valued, with cardinality constraints. For 
example, the schema for PERSON might include 
class PERSON { 

firstlame: STRING; 
lastlame: STRING; 
age: INTEGER; 
mother: PERSON [lastName = self.lastNamel; 
younger!: (self.age< self.mother.age- 14) } 

This example also illustrates two constraints: younger ! 
is a general boolean constraint, with self ranging over 
all instances of the class2; mother :PERSON [lastName 
= self.lastName] introduces a special equality con- 

*Through quantification, such a constraint can involve objects 
spanning multiple classes. 
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&raid self .mother . lastName = self. lastlame. 

Every class has an associated eztent, with the same iden- 
tifier as the class, which is the set of currently existing 
individuals in that class. There are operations for meat- 
ing and destroying individual objects in classes, as well 
as for dynamically adding and removing objects from 
classes. Of course, there are also operations for retriev- 
ing or storing values of attributes for individuals. 

2.2 The Process Model 
For specificity, we adopt in this paper the ICN (Infor- 
mation Control Net) language for describing the co- 
ordination aspects of a workflow [19]. Control ICN 
(CICN) is a sublanguage of ICN to model the flow of 
control as a node-labeled graph3. Figure 1 shows a sim- 
plified college admission procedure adapted from [27], 
represented in CICN. Large ovals stand for activity (pro- 
cessing) steps, while filled circles - and-nodes (resp. open 
circles - or-nodes), represent conjunctive/concurrent 
control flow (resp. disjunctive/alternative control flow). 
Directed edges represent precedence relations among 
(activity and control) nodes. For example, accord- 
ing to the process schema in the figure, the comple- 
tion of the Review step enables the Decision step 
(which can only start after Review is completed), while 
upon the completion of the Decision step, the suc- 
ceeding OR-fork node “fires”, enabling all three of 
its successors, DelayedDecision, FollowUpAccepted, 
and FollowUpDenied. The AND-join node preceding 
Review requires both its predecessors to be completed 
before firing. Multiple levels of abstraction in modeling 
are supported by compound activities. A more detailed 
description of the process model is given in Section 5. 

The presence of a supporting database is assumed 
throughout, in order to provide not only data storage 
but also communication between workflow participants 
and with the outside world. 

3 COMPONENTS OF AN EXCEPTION MECHA- 
NISM 
Exception handling is a programming language control 
structure that allows the normal execution of a pro- 
gram to be replaced or augmented by special exception 
handling code when certain special events or conditions 
occur [20]. We use a synthesis of a variety of ideas for 
exception handling in an object-oriented language con- 
text, described in terms of the following major steps: 

1. Exception signaling: When a special situation is dis- 
covered, an exception object is created. This object 
also belongs to one or more classes and can have at- 
tributes. The class identifier allows us to distinguish dif- 
ferent kinds of exceptions (e.g., DEADLINE-VIOLATION), 

31CN graphs also capture data flow between repositories and 
activities. For this paper, we omit the data flow aspects of process 
models. 
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Figure 1: ICN diagram of the Admission workflow 

while the attributes can pass out detailed information 
about the context. Exception classes can be orga- 
nized into subclass hierarchies (e.g., POSTPONABLE ISA 
DEADLINE-VIOLATION). 

2. Ezception handling: The raising of an exception sus- 
pends the normal flow of control, and an attempt is 
made to locate an exception handler that can be in- 
voked. One desirable feature is that exceptions be han- 
dled in a context-dependent manner, so that, for ex- 
ample, the passing of the same deadline might cause 
different reactions in different circumstances. This is 
translated into practice by the convention that when 
a function Co signals an exception of kind X, it is the 
invoker, Cl, of Co that is first given the opportunity 
to provide a handler, since the invoker knows what the 
signaler was supposed to have accomplished. Otherwise 
the exception is re-raised/propagated up the calling hi- 
erarchy, through intermediate calls to Cs, . . . till the in- 
vocation of C,, provides a handler H. An alternative is 
to associate (default) handlers directly to the exceptions 
themselves. 

A procedure that is about to be terminated may per- 
form clean-up actions on the objects that persist beyond 
its lifetime (e.g., [21]). In the database context, this 
may involve aborting a transaction or performing a pre- 
programmed compensation action [23]. One advantage 
of the workflow context will be to permit end-users to 
act as exception handlers for unanticipated exceptions. 

In summary, modern programming language exception 
mechanisms offer a controlled, structured way in which 
processes influenced by an exceptional event can partic- 
ipate in its resolution and either terminate or resume 
after appropriate repairs have been made. 

4 OBJECTS AND EXCEPTIONS 
A fundamental principle of our approach [7] is that an 
exception OCCUM when some co&mint is violated. In 
our case, every constraint is associated with a class 
through an attribute, and so the constraint can be iden- 
tified by the <class name, attribute name> pair. This 
means that there is no need to declare a specific excep 
tion object to be raised for every constraint. Instead, a 
single super-class 

Note that the mechanism of subclass hierarchies allows 
handlers for a general exception class to be applied to 
exception objects raised in any of its subclasses. Con- 
versely, specialized exception subclasses can over-ride 
the (default) handlers to be invoked. 

class VIOLATION { 
f orClass : CLASS; 
forAttrib: ATTRIBUTE-ID; 
signaler : OPERATION } 

3. Resuming control flow: While the handler H is ex- 
ecuting (usually in the environment of the procedure 
C R+r, which called Cm), the procedures Ck, k 5 n, are 
in a suspended state. At the end of the handler H, 
there are several options: Flow of control may be spec- 
ified to resume Ck for some k, which means that all 
invocations of Cj, for j < k are terminated and flow 

of control continues in CA with the next statement af- 
ter the one that signaled/propagated the exception X. 
A second alternative is to retry Ck, which restarts the 
flow of control at the beginning of Ck instead. Finally, 
if H does not have a resume or retry statement, then all 
the invocations C,, , . . . , CO, are terminated, and flow 
of control continues in C,+r after the call to C,,. 

suffices. Of course, one is encouraged to declare sub- 
classes of VIOLATION, such as SECURITY-CONSTRAINT- 
VIOLATION, and have these be raised when any of several 
constraints chosen by the modeler is violated. 

Constraints, such as PERSONS’ ages being INTEGER val- 
ues, are useful for catching data entry errors and for 
setting up efficient storage and access structure. In 
rare cases, we might want to store the string “young” 
as the value for some person’s age because no pre- 
cise value is known. The actual storing of the excep 
tional value is accomplished by resuming the’update 
store( jane ,age ,“young”) that was interrupted by the 
exception signal, and excusing this act. In [7], this is 
accomplished by creating an EXCUSE object that records 
(i) which violation (hence constraint) is being addressed, 
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(ii) which agent is performing the excuse and when, (iii) 
some text explaining the reasons, and (iv) an expiration 
date for the excuse. Security can be maintained by lim- 
iting who can provide excuses, and for which subclass 
of violations (and hence constraints). 

It is important to realize that future operations on these 
“persistent exceptional values” will have to be moni- 
tored closely, since programs and users assume that the 
constraints in the schema hold. Thus, a program com- 
puting the average age of instances of PERSON might 
fall into a grave error if it tried to interpret the string 
“young” as an integer value. For this reason, jane . age 
needs to be marked as exceptional. We do so using an 
instance of the special built-in class 

class EXNAL-ATTRIBUTE 
{onObj : OBJECT; 
attrib : ATTRIBUTE-ID; 
value : ANYTHING } 

and syntax like 
new EXNAL-ATTRIBUTE(onOb j : = j ane, 

attrib:=‘age,value:=“young”). 
The data manager is then extended so that any time 
such an attribute is accessed, an exception (which is 
exactly this exceptional attribute marker) is raised to 
alert the program/user, thus giving them a chance to 
decide whether to skip the value or replace it with some 
numeric equivalent appropriate for this case. 

As part of the object-centered approach, one can 
define new subclasses of EXNAL-ATTRIBUTE, to de- 
scribe common categories of persistent exceptions (e.g., 
VALUE-UNKNOWN, WRONG-UNIT-OF-MEASURE, EXTRA-AT- 
TRIBUTE, etc.) so that additional semantics can be cap 
tured. To support on-line exception handling, such ex- 
tensions to the class hierarchy can be made at run-time. 
Moreover, any violation class (including an exception 
marker) may have attached to it a procedure perform- 
ing default exception handling. This provides a way to 
avoid inundating users with unimportant exception sig- 
nals (e.g., the handler procedure could write a warning 
message to some error file, and then resume with the 
value “null”). A variety of default handlers can be writ- 
ten ahead of time, and attached to existing exception 
classes. Then the user need only indicate the appropri- 
ate superclass for their new violation class in order to 
obtain the desired reaction to exceptions being encoun- 
tered. 

scripts in Taxis, and has been independently adopted 
by others (e.g., [32]). Although we will not exploit this 
here, the above allows activity/workflow descriptions to 
be organized into subclass hierarchies, with the usual 
advantages of abbreviation, reuse and change propaga- 
tion due to inheritance. 

5.1 Activities 
Activities have several kinds of information associated 
with them. First, there is the body, which can be an 
elementary activity (not modeled here) carried out by 
a single actor (human or electronic), or a compound 
activity, whose attributes will be steps that are partially 
ordered, and which themselves are activities. 

Next, there is the responsibleAgent - to be filled by 
some actor who has authority on achieving the goal of 
the activity. Note that the responsibleAgent filler is 
the natural agent to perform on-line exception handling. 

Finally, activities have associated a variety of assertions: 

(1) Tests are conditions verified at some specified point 
during the action’s execution. Two specialized kinds, 
initialTests and finalTests, are checked immediately 
at the beginning and end of the execution. Initial tests 
can anticipate the violation of integrity constraints or 
check dynamic ones (e.g., that the salary values are only 
increasing). Final tests are for integrity constraints that 
are too expensive to check ahead of time (e.g., that the 
average salary cannot exceed some threshold). In ad- 
dition, inv&antTests are monitored throughout the 
execution of the activity. For example, deadlines on 
the completion of an activity are invariant (temporal) 
assertions in this category. 

(2) initialAssumptions and finalGoals are condi- 
tions assumed to hold at the beginning, respectively end, 
of activities. They are proof obligations for the correct 
functioning of the entire process. For workflows, the 
presence of appropriate data flow values (necessary in- 
puts and outputs) are typical assertions of this kind. Of 
course, under normal circumstances such conditions are 
not evaluated at run-time because they are redundant 
(assuming the program is properly written), and may 
be expensive. 

Following the paradigm for data objects, we shall make 
all such assertions be values of attributes of the activity 
class, which also has attributes for parameters and local 

The above idea is extended to objects that are ea+ variables. For the Admission example, we might have 
ceptional instances of classes by considering a built-in activity class ADMISSION 
attribute instanceOf, which has as values the set of responsibleAgent: ADMISSIONS-OFFICER 
classes to which an object belongs. input 

applDoc : APPLICATION-DOCDMENT 
5 ACTIVITIES AND EXCEPTIONS 
Our plan is to reify activities so that they are also per- 
sistent objects in classes with attributes. This general 
approach began in our original work [3] on workflow-like 

locals‘ 
awl : APPLICATION-FOLDER 

initialAssumptions 
haveprelim!: BOT (applDoc=nil) 
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finalGoals 
haveDecision! : (appl .decision = “admitted”) 

OR (appl . decision = “denied”) 

Violations of the user-specified conditions, which are 
attributes of elementary or compound activities, raise 
exceptions, as before. These can now be dealt 
with using the exception handling mechanism de- 
scribed in the previous two sections. Among oth- 
ers, if the responsibleAgent of one activity does 
not handle the exception, it is re-raised to the 
responsibleAgent of the containing/invoking com- 
pound activity. And the handler can use the excuse 
mechanism of EXNAL-ATTRIBUTE on activity instance 
objects to permit violations of such constraints to per- 
sist, and continue with the process. 

5.2 Workflow Steps 
An activity being carried out as a step in a workflow has 
an &enactment life-cycle”. Figure 2 is our elaboration 
of the state transition diagram in [lo]. 

Figure 2: State diagram for workflow steps 

According to the diagram, the workflow engine/PSS is 
in charge of moving the activity step between various 
stages: 

From INERT to ENABLED, when the corresponding 
CICN node becomes enabled (according to the for- 
mal model in [19]). 

From ENABLED to READY when the trigger con- 
ditions associated with the step become true. A 
trigger is an additional kind of condition associated 
with an action step, which needs to be true before 
an enabled action is offered to an actor for execu- 
tion. Among others, this is used to implement con- 
ditional branches in workflows in conjunction with 
an OR-fork. 

Once ready, a step is offered to an actor for ex- 
ecution. If the task is automated, the transition 
to ACTIVE is immediate; otherwise the responsible 
person has to first signal that (s)he accepts. 

l When the activity is finished (ensuring the 
f inalGoals), the transition to ENDED is taken, and 
the enablement relation is recomputed in the CICN. 

l The responsibleAgent or someone in higher au- 
thority may suspend the activity, thus putting it 
in the SUSPENDED state, and a resume puts it back 
into ACTIVE. 

l A cancel action terminates the activity, with no 
assurance that the f inalGoals are true, and with- 
out enabling its successor step(s) in the CICN. 

In the spirit of object-centered reification, we 
make classes of activities INERT , -1 READY 

m,&knd[re FL 
uentering/leaving a state” beco’mes synonymous’ with 
“being added/removed from the class eztent as an in- 
stance”. 

The control steps in CICNs have a similar lifecycle, 
except that they go from ENABLED to ENDED directly. 
The AND-join node requires special treatment: an ad- 
ditional class (PARTIALLY-ENABLED) is inserted between 
INERT and ENABLED in order to represent the case when 
some, but not yet all of the node’s predecessors have 
ended. 

If an exception occurs during a task execution, the ac- 
tivity is suspended, and is in fact inserted into a sub- 
class SUSPENDED-BY-EXN. For elementary activities, this 
means that no further updates may occur under the 
aegis of this task, but querying is allowed in order to 
investigate possible reasons for the exception. Resump 
tion after an exception corresponds to a move of the in- 
stance to class ACTIVE, while termination causes a move 
to a subclass CANCELED-BY-EXN. When a compound ac- 
tivity instance C raises an exception, then the execution 
of the workcase C itself is suspended (so that the en- 
gine makes no further moves in enabling actions, etc.) 
but the individual steps are not automatically suspended 
(unless they raised the exceptions). They can, of course, 
be selectively suspended by the exception handler. 

Essentially, the above approach moves towards a re- 
flective architecture for workflow enactment, but only 
the data for the workflow engine is available for modi- 
fication, not the engine itself. It provides a number of 
advantages: First, suppose we keep track of the times 
when an activity becomes or stops being an instance 
of each state class. Using an appropriate (temporal) 
query language, it is then possible to retrieve or con- 
strain workcases with a wide variety of time-related con- 
ditions, such as how long an activity/step has been “ac- 
tiven, “active or suspended”, “enabled but not fired”, 
“waiting to have an exception handled”, etc. For exam- 
ple, it is possible to assert about an activity step B that 
“once B is enabled, it must be started by r/20/1998”, 
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by stating as an invariant that if it is in class ENABLED, 

then the current date must be less than 7/20/1998. This 
approach provides a clear advantage in flexibility and 
uniformity over one with a fixed, built-in set of special 
temporal expressions, such as “delay”. 

Second, during exception handling, the handler itself 
can explicitly move some activity instance from one 
state to another. For example, when the previous asser- 
tion is violated because today is 7/20/1998, the handler 
may decide that activity B cannot be delayed any fur- 
ther, and may then move the object from class ENABLED 

to READY. This will raise an exception since only the 
workflow engine is supposed to move objects between 
these classes, and this gives the responsibleAgent an 
opportunity to give an appropriate excuse. When excep- 
tion handling is finished, the workflow engine resumes 
the suspended workcase and it will then start the ac- 
tivity instance (supposing it is automated) as part of 
its regular cycle. Once again, this is more parsimonious 
than providing special names for operations that per- 
form all possible pairs of moves between states in the 
diagram. 

5.3 Reifying CICN Graphs 
We have considered above the life-cycle of a single step 
of the workflow. To reify the control aspects, we make 
control graphs be objects with the steps as attributes. 
The names of the attributes can be arbitrary (though 
they might be chosen to describe the action or the state 
reached after the step completes). For example, the 
control graph ICNl 

CC+p-@-j-O 
may have the following (preliminary) class definition: 

class ICI1 ISA CICN { 
step-a: A; 
step2 : OR; step-b: B; step4 : OR; 
step-c: C; 1 

As suggested by the example, in addition to activity 
classes A, B and C, there are built-in classes OR and I 
m for control nodes. To model the actual sequencing 
constraints (the edges in the graph), we require step 
values to be instances of a special class (STEPI, which has 
an attribute Fl, whose value will be the successor 
step to be enabled by the workflow engine once this 
step ends successfully. This attribute is single valued 
for activity steps (members of class [ACTSTEP I), but 
set-valued for control steps. Therefore we have a class 
hierarchy of the form 

CONTROL-STEP ACT-STEP(cardinality(next)=l) 

In addition, we need to mark the starting step (by con- 
vention, it will be the first one mentioned) and the end 
steps (by convention, the ones having next equal to the 
special step end). Therefore, the complete specification 
of ICNl is 

class ICNI ISA CICN { 
step-a: A and ACTSTEPCnext=self .stepZl ; 
step2 : OR Cnext=self . step-b] ; 
step-b: B and ACT-STEP [next=self . step41 ; 
step4 : OR [next={self.step-c,self.step2}1; 
step-c: C and ACTSTEP[next=self .endl } 

PSS implementation. 
When enacting a workflow containing ICNl as a body, 
the PSS engine creates an instance object uf i of class 
ICNl, with wf 1. step-a initialized to a new A object, 
which is also placed in classes ACTSTEP and ENABLED. 
The other step attributes have null values at this point. 
Thereafter, (conceptually) the PSS cycles through each 
step attribute of workflow wf that has a non-null value 
sv, performing procedure Advance(wf ,step ,sv). The 
main novelty is the case when sv E ACTIVE and sv 
has just finished. As shown in the pseudo-code below, 
normally one would clear wf . step (though maintaining 
it in a temporal data base) and create an instance of 
the successor step in the workcase. However, the PSS 
behaves in a special manner, to be exploited later, if 
sv . next had been exceptionally pre-set. 

wf .step : = null //but record in temporal db 
if sv.next==nullthen { //normalcase 

step1 := fromconstraint Cnext=salf.stepll in schera(wf); 
Kind1 := from constraint stepl:Kindlin schema(vf); 
uf.stepi := new Kindlabo in ENABLED; 
sv.nert := wf.stepl; //to recordhistory 

1 
if sv.next!=null then //sv.next exceptionally pre-set 

if sv.nextE INERT then 
{move sv.nextfrom1NERTtoENABW.D; } 

To save space, we omit the rather obvious actions for 
steps becoming active, suspended, etc., and for the con- 
trol steps of the CICN.4 

Finally, the PSS must also react to changes in the data 
values in the database (including the clock), by verifying 
that no tests associated with objects (including activi- 
ties!) are violated, and that triggers becoming true for 
enabled actions cause appropriate transitions. 

5.4 Exceptional Coordination 
We explore next the ways in which our techniques for 
handling exceptional data objects (Section 4) can be ap- 
plied to the above representation of workflow instances 
in order to deal with a variety of exceptional occur- 
rences. Consider a simple sequential net ICN2 of the 

4 We note that nondete rminismcrestestechnical difficulties in 
computing the “enabled step” relationship for CICN workfIows, 
as formally specified in [19]. 
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form 
A-->B-->C-->D 

with steps called step-a,step-b,step-c,step-d. 
Suppose ICN2 has a constraint specifying a deadline by 
which step-b must be enabled or activated. Let wf2 be 
an enacted instance of ICN2, and consider various sce- 
narios of the responsibleAgent reacting to a violation 
of this constraint: 

(1) Suppose step-a is the only step currently active in 
wf 2, and the responsibleAgent decides to start step B 
before step A is finished. She therefore creates an in- 
stance (say b45) of activity class B that is enabled (i.e., is 
also in class ENABLED), and assigns b45 to wf 2. step-b. 
However, notice a subtle problem: when step-a fin- 
ishes, it would normally lead to the enablement of an- 
other, unwanted instance of activity B. To prevent this, 
assign b45 to wf2.step-a.next; the workflow engine 
(as described above) manages the rest appropriately. 
Note that the assignment of b45 to wf2.step-b and to 
wf 2. step-a. next above raise violations of the built-in 
authorization constraint stating that only the PSS en- 
gine should change values of a step attribute for an ICN, 
or its next attribute. The responsibleAgent must 
therefore excuse these violations by associating appro- 
priate EXIAL-ATTRIBUTE markers to the attributes, and 
creating an excuse that explains the situation. 

(2) Suppose that now step A is ended, and step B is 
enabled, but the deadline for activating B has passed 
without the trigger becoming true. This time the 
responsibleAgent decides to skip step B altogether. 
This is done by moving wf 2. step-b from class ENABLED 
to CANCELED, to prevent it from firing. At the same time, 
we need to manually enable step-c because it does not 
have any predecessor activity instance: 
wf2.step-c : = new C also in ACTSTEP ,ENABLED ; 

(3) If, instead, before the end of A, the responsible- 
Agent wants to exchange the order of execution of steps 
B and C, she can perform the following updates 

wf2.step-c := new C also in ACTSTEP, INERT; 
wf2.step-a.next := wf2.step-c; 
wf2.step-c.next := wf2.step-b; 
wfa.step-d : = new D also in ACT-STEP, INERT ; 
wf2.step-b.next:=wf2.step-d; 

(4) Finally, th e responsibleAgent decides to allow 
steps B and C to be carried out in parallel. First, we 
start step-c going: 

wf2.step-c := new C also in ACTSTEP, ENABLED ; 
Then, we force an additional attribute for a conjunctive 

control node simulating the following graph 

by performing the following updates 
wf 2. extra-and : = new AND also in INERT ; 
wf2.step-b.next := wf2.extra-and; 
wf2.step-c.next := wf2.extra-and; 
wf2.step-d : = new D also in INERT ; 
wf2.extra-and.next:={wf2.step-d}; 

Again, each update causes an authorization viola- 
tion; in addition, the updates to extra-and and 
step-b/c . next also violate the original type constraints 
for ICNB. Appropriate exceptional-attribute markers 
and one excuse explaining them are needed. 

Observe the way in which we have added the new AND 
control node as the value of extra-and; this illustrates 
how one can add arbitrary new steps as attributes to a 
workflow. 

Note that the above description is not just an imple- 
mentation view, but is in fact the conceptual view that 
we would like the workflow participants to have. On the 
other hand, it is too much to expect end-users to write 
program fragments such as the ones above. A partial 
solution is to take taxonomies of exception kinds and 
frequently observed reactions to them, such as those 
offered in [12, 151, and to pre-program these as param- 
eterized patterns, making them available to users via a 
menu. A more general fallback is to use a visual formal- 
ism (e.g., APEL [IS]), in which such “programming” can 
be achieved graphically. 

Above, the exceptional occurrence was partly antic- 
ipated since there was a constraint whose violation 
alerted us to something being amiss. If a handler had 
been specified ahead of time, this would have been a 
pre-programmed special case. As it was, we allowed 
dynamic, context-sensitive handling of the violation. 
At the other extreme, the process specification may 
not have had any assertion about the (relative) time 
when activity B was supposed to take place, but the 
responsibleAgent of wf2 might have noticed at run- 
time an abnormally long delay. For this purpose, we 
need to allow the responsibleAgent to place a work- 
case into SUSPENDED-BY-EXN, and then carry out the 
special handling actions. In this case, she is required 
to create a violation - and this gives her an opportu- 
nity to record for the first time a previously un-noted 
constraint. 

5.5 Repercussions of Deviations. 
Consider some of the effects of allowing users to mod- 
ify the state of activities and their successors. Suppose 
that some activity instance b was enabled either (i) by 
a user, as part of exceptional actions, or (ii) by a step 
p such that p.next is exceptional. In these cases the 
normal predecessor of b in the workflow did not get a 
chance to establish its goal, and the current step might 
have depended on that goal. We believe that in such 
situations b’s initialAssumptions need to be checked 
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explicitly, and b . responsibleAgent should also be no- 
tified of the deviation. Let us call this part of the safety 
policy. For example, in the first scenario above, when 
starting B before A is completed, the system should 
verify step-b’s initialAssumptions. Or, in the Ad- 
mission workflow, if a deviation wants to skip over the 
Review step (because, say, the applicant already has of- 
fers from elsewhere) then according to the above policy 
the responsibleAgent of Decision would be alerted 
that the input data normally expected is not complete. 
(Thus, the responsibleAgent can review the Decision 
activity, and if it is automated, probably carry it out by 
hand.) 

Similarly, an additional part of the safety policy is the 
run-time verification of the finalGoals of an activity 
when (i) it is manually moved to the ENDED state, (ii) 
when it is exceptionally resumed after a failed initial- 
Test or initialAssumption, or (iii) when a compound 
activity’s coordination has been exceptionally changed. 
Both [19] and [14] g’ rve examples where during on-line 
changes of step ordering, one has to make sure that nei- 
ther of the steps is omitted in the end. In our case, 
such a condition should be expressed as a temporal as- 
sertion (involving possibly former values of the respec- 
tive step attributes) for the workflow. The advantage 
of our approach is that even this (meta-)constraint may 
be violated with suitable excusing privileges. 

6 RELATED WORK AND CONCLUSIONS 
To begin with, there have been many papers on the 
evolution of workflow and process models, including 
[l, 2, 4, 11, 18, 19, 26, 32, 341. We believe there is a dis- 
tinction to be made between deviations during workflow 
enactment (the topic of this paper) and workflow evo- 
lution. The difference is analogous to the one between 
allowing exceptional individuals in a database (e.g., [7]) 
and schema evolution in a database (e.g., [5]). The lat- 
ter task might be prompted by multiple occurrences of 
the former, and work on machine learning may help in 
such evolution [g]. 

Our framework does support a structured additive form 
of evolution by codifying exception handling into pro- 
cedural handlers that are suitably placed, possibly as 
default handlers attached to the violations, as discussed 
in [7]. 

Representative of the works cited above is [19], which 
also applies to the CICN formalism. It proposes a tech- 
nique whose core is a mapping function from the tokens 
in the state of the original CICN to those of the modified 
CICN. In our examples (see Section 5.4), this mapping 
is essentially simulated by the creation of activity nodes 
for steps placed in the ENABLED class. The other Petri- 
net like approaches to modifying workflow models (e.g., 
[2, 341) bear a similar relationship to our work. In fact, 

in [9] we show how the present framework can be ap- 
plied to the workflow coordination model in [2], which 
has the nice theoretical property that one can analyze 
when it is safe to make changes. 

A second class of work, which usually deals with an- 
ticipated ezceptions, involves so-called “advanced trans- 
action models”. From the seminal work in [17] to such 
recent papers as [23] and [35], this work has normallyad- 
dressed issues such as failure recovery and co-ordination 
between multiple workflows. Following the example 
of the WIDE project [13], we have chosen to separate 
these issues from the more local exceptional occurrences 
studied in this paper. However, we plan to return to 
this problem, particularly in light of the combination 
of transactional notions and programming language ex- 
ceptions recently explored in [22]. 

Several other research efforts bear a closer look. 

The WIDE workflow system [lo, 131, has a conceptual 
model resembling ours, based on CICN. It facilitates 
the declarative specification of constraints and their er- 
ror handling by associating condition-Teaction pairs to 
each activity. A taxonomy of different kinds of events 
that can be exceptional is given in [12]. These rules 
provide an essentially static mechanism for exception 
handler association, in contrast with our dynamic ap 
preach, which uses the invocation hierarchy. Also, ex- 
ceptional events in WIDE have to be identified at design 
time, while we are interested in ad-hoc deviations, in- 
cluding the ability to resume. 

The ADEPT [30] workflow project is concerned, like 
we are, with ad-hoc changes to individual workcases, 
and controlling them to avoid undesirable consequences. 
The most notable advances are made in using the data 
flow constraints expressed in the workflow to evaluate 
proposed changes. This nicely complements our work 
on enforcing assumptions and goals, which deal with 
control flow. 

Cugola and colleagues investigate deviations during en- 
actment of software processes [14], distinguishing as- 
sertions of invariance and triggers of state transitions; 
deviations are then tolerated only for the later. The 
remainder of [14] is devoted to analyzing, using tem- 
poral logic, the propagation of “possibly polluted in- 
formation* when deviations are allowed, assuming that 
any deviant action produces suspect data. Shifting 
to an “artifact’‘-centered model, [15] extends the above 
work by (i) proposing a fixed set of reactions to invariant 
violations, and (ii) providing a detailed analysis and cat- 
egorization of deviations and actions for handling them, 
collectively called “deviation policies”. The taxonomy 
of exceptions and ways of handling them is of consid- 
erable interest to us, since it provides the basis for a 
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library of exceptions and handlers, which would greatly 
facilitate the task of users faced with run-time devia- 
tions. Once again, this can be achieved in our model by 
refining the subclass hierarchy of violations, and associ- 
ating appropriate default handlers to them. 

In contrast to our more technical focus, several papers 
have addressed the organizational aspects of exceptions. 
In the early 1980’s, Kunin [27] distinguished between 
the main-line of a business process descriptions, and 
deviations from it, and provided a language to support 
a methodology for using this form of abstraction. In 
[25], an approach is reported toward effective exception 
resolution that achieves “organizational integrity” based 
on taxonomies of exceptions, mapping them to poten- 
tial diagnoses, and resolution strategies, all housed in a 
knowledge base. Along similar lines, and supported by a 
substantial empirical study, [31] suggests a meta-model 
for exceptional event handling based on “degree of ex- 
ceptionality”. Finally, in the situated work camp, [6] de- 
scribes a workflow system where activities are modeled 
as an executable network of obligations, with flexible 
placement of tokens. 

6.1 Contributions 
We have laid out a computational framework that pro- 
vides generic, flexible, and disciplined means of excep- 
tion handling in workflow/process enactment, based on 
a precise account of deviations as violations of con- 
straints. It is uniform since it deals with deviations, an- 
ticipated or unanticipated, from both data schema and 
process schema, each causing a violation of either a user- 
specified constraint or one inherent in the data/process 
model itself. It is parsimonious since it uses standard 
data manipulation operations on class extents and at- 
tribute values, augmented by the ability to resume after 
an exception, to describe deviations of both kinds. 

The framework relies on three ideas: (1) Activities and 
workflows are conceptually reified as objects whose at- 
tribute values and class memberships encode the in- 
formation and constraints maintained by the workflow 
engine for each workcase enactment (e.g., the current 
state, the trigger, the next step). As such, they resem- 
ble the data and forms manipulated by workflows. (2) 
The technique for handling exceptions, and especially 
for permitting ezceptional values to persist, described in 
[7], is extended so that it can be used to support all the 
desired kinds of deviations from the norm in process 
descriptions (e.g., specifying an exceptional, alternate 
next step). (3) Responsible agents, or other authorized 
users, are allowed to act as on-line exception handlers, 
in order to exercise judgment in coping with unantici- 
pated situations or when encountering “persistent vio- 
lations” left by others. To facilitate this, a taxonomy 
of exception kinds, as well as pre-programmed handlers 
attachable to exceptions, can be made available. 

To deal with the consequences of allowing deviations 
to persist, “persistent violations” raise exceptions when 
accessed later (as in [7]); in addition, our safety policies 
suggest expressing constraints such as initialAssump- 
tions and finalGoals, whose run-time checking may 
be activated in order to protect the workcase from per- 
forming illegal or non-sensical operations after ad-hoc 
changes in the workcase. 

To limit the set of constraints that can be violated, or 
the persons who can allow these violations to persist, 
one can apply standard authorization policies to the 
creation of excuses, which must accompany every de- 
viation. (See [28] for a declarative language to state 
such authorizations.) 

In addition to a prototype implementation of the PSS, 
our future plans include developing a logical seman- 
tics of workflows and their exceptions, a connection to 
higher-level goals and plans (which are the true clues of 
what is a permitted deviation), integration with trans- 
actional workflows, and retrieving and learning generic 
handlers for deviations. 
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