
Specification and Implementation of
Exceptions in Workflow Management
Systems

FABIO CASATI
and
STEFANO CERI, STEFANO PARABOSCHI, and GIUSEPPE POZZI
Politecnico di Milano

Although workflow management systems are most applicable when an organization follows
standard business processes and routines, any of these processes faces the need for handling
exceptions, i.e., asynchronous and anomalous situations that fall outside the normal control
flow.

In this paper we concentrate upon anomalous situations that, although unusual, are part of
the semantics of workflow applications, and should be specified and monitored coherently; in
most real-life applications, such exceptions affect a significant fraction of workflow cases.
However, very few workflow management systems are integrated with a highly expressive
language for specifying this kind of exception and with a system component capable of
handling it.

We present Chimera-Exc, a language for the specification of exceptions for workflows based on
detached active rules, and then describe the architecture of a system, called FAR, that
implements Chimera-Exc and integrates it with a commercial workflow management system
and database server. We discuss the main issues that were solved by our implementation, and
report on the performance of FAR. We also discuss design criteria for exceptions in light of the
formal properties of their execution. Finally, we focus on the portability of FAR and on its
unbundling to a generic architecture with detached active rules.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; Rule-based
databases

General Terms: Design, Languages, Management, Performance

Additional Key Words and Phrases: Active rules, asynchronous events, exceptions, workflow
management systems

The research in this paper was sponsored by the WIDE Esprit project. 20280, by CNR-
CESTIA, and by the Hewlett-Packard Internet Philanthropic Initiative.
Authors’ addresses: F. Casati; S. Ceri, S. Paraboschi, and G. Pozzi, Dipartimento di Elet-
tronica e Informazione, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano, I-20133, Italy;
email: ceri@elet.polimi.it; parabosc@elet.polimi.it; pozzi@elet.polimi.it.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0362-5915/99/0900–0405 $5.00

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999, Pages 405–451.

1. INTRODUCTION

Workflow management systems (WfMSs) are software systems for support-
ing coordination and cooperation among members of an organization,
helping them to perform complex business processes [Georgakopoulos et al.
1995]. Workflow systems represent business processes by means of elemen-
tary activities and connections among them; activities represent either
fully automated tasks executed by computers, or tasks assigned to human
actors executed with the support of a computer. WfMSs control the evolu-
tion of processes by initiating and assisting their different activities and by
checking that they are correctly performed by all the actors.

An important feature of workflow systems is the ability to represent
exceptions that alter the normal flow of processes [Dayal et al. 1990].
Among exceptions, a class which is gaining recognition and importance is
that of expected exceptions [Eder and Liebhart 1995], i.e., of those anoma-
lous situations that are known in advance to the workflow designer. When
an exception is unexpected, the exception handler typically resorts to
halting the process and invoking a human intervention. Instead, when
exceptions are expected, the exception handler can rely on the semantics of
the workflow application in order to handle the exception, typically by
means of some form of reactive processing. For instance, in a car rental
workflow, an accident to a rented car causes an exception to the regular
rental process. The accident, although expected, is an unlikely event; once
it has occurred, however, a variety of activities become needed, including,
e.g., giving assistance to the renters, scheduling the car’s repair, and
rescheduling the future rentals for the affected car. All such activities
constitute the (planned) reactions to raising the exception.

Workflows and expected exceptions capture different aspects of the
application semantics, as summarized in Table I. Workflows describe the
“normal behavior” of a process, while expected exceptions model the “occa-
sional behavior.” Expected exceptions are unpredictable, and therefore
cannot be conveniently represented in the process in the form of special
tasks and connections among tasks. They are not frequent, but once they
occur they may require special treatment, which may lead to the execution
of a completely different process. They are asynchronous (hence, initiated
at an arbitrary stage of the process) and highly influenced by external
factors. Their execution may cause the backtracking of previous steps in
the process or even sudden termination.

There is growing interest and need for languages and systems to inte-
grate workflow specifications with expected exceptions; commercial work-
flow systems typically support only a selected number of them, without
enough generality. In this paper we present a comprehensive approach to
the management of expected exceptions; we define a new language for
expressing expected exceptions, and then describe the features of a system
for integrating the exception handler with the workflow manager. For
brevity, we use the term “exception” to denote asynchronous expected

406 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

exceptions (a classification of the various kinds of exceptions can be found
in Section 7).

The exception-handling mechanism must be able to capture exceptional
events and to react to them. Each reaction must first assess the state of the
process and then, in a few cases, adopt the corrective action; in many cases
events correspond to false alarms and do not need to be followed by a
corrective action. This model has a strong similarity to the trigger manage-
ment strategy used in active databases [Ceri and Widom 1990; Widom and
Ceri 1996]. In fact, since most workflow systems execute on top of commer-
cial databases, it is quite natural to use active database functionality to
manage exceptions.

Active rules are characterized by the following components, each with an
immediate correspondence to exceptions:

—The event part defines the symptoms of an exception, e.g., database
modifications or signals coming from other components of the workflow,
that trigger the rule, i.e., put it in the set of rules to be considered by the
rule management system.

—The condition is a boolean predicate that checks that the symptoms
really identify an exception to be managed; it can also be used to select,
among several exception management alternatives, the most adequate to
deal with the current workflow state.

—The action describes the updates and procedures that must be invoked to
respond to the exception occurrence.

Each rule is executed in a new transactional context, different from the one
in which the exceptional event was generated; in terms of active databases,
rules have a detached execution mode [Dayal et al. 1990]. In most cases,
rules do not need immediate service and should interfere as little as
possible with regular workflow processing. Thus, we have engineered an
exception handler in which triggered rules are batched and considered at
given periods of time. Very few events are classified as “real time” and
cause an immediate invocation of the rule management system.

In this paper we present the design and implementation of a rule-based
exception handler for workflow management. Exceptions are specified in
Chimera-Exc, a new language specifically designed for expressing excep-
tions in a WfMS; Chimera-Exc is an extension of Chimera [Ceri et al. 1996]
for the conceptual specification of database applications incorporating
object orientation, deductive rules, and active rules. We describe the
innovative features of Chimera-Exc and the corresponding expressive
power in modeling exceptions; then we describe the implementation of the
language and its interfaces for a commercial WfMS and DBMS. Next, we
discuss the formal properties of workflow applications augmented with
exceptions, and indicate criteria for a sound use of exception handlers in
workflow management. Finally, we focus on the portability of FAR and on
its unbundling to a generic architecture with detached active rules.

Specification and Implementation of Exceptions • 407

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

(This research is part of the WIDE project, funded by the Esprit IV
program of the European Union, with the goal of developing an advanced
commercial workflow management system, called FORO. The team at
Politecnico di Milano designed and implemented FAR, the FORO Active
Rule component for exception management in the FORO environment.)

2. PRELIMINARIES

This section introduces basic workflow concepts and terminology, based on
the model and definitions of the Workflow Management Coalition (WfMC)
[Workflow Management Coalition 1996; 1998]. FORO provides several
extension to that model, but such extensions are not relevant in the context
of this paper; for a complete description, see Grefen et al. [1999]. This
section then presents a case study used throughout the paper to exemplify
the new concepts. Finally, we show the need for exceptions in the case
study, drawing requirements on the exception-specification language.

2.1 Basic Workflow Concepts

A workflow process definition (or simply workflow schema) is the formal
representation of a business process. A workflow schema is composed of
subprocesses and elementary activities (tasks) that collectively achieve the
business goal. Activities are organized into a directed graph (the flow
structure) that defines the order of execution among the activities in the
process. Arcs (transitions) in the graph may be labeled with transition
predicates defined over process data, meaning that as an activity is
completed, tasks connected to outgoing arcs are executed only if the

Table I. Comparing Flows and Exceptions

Workflow Process Exception

Essence Captures the essential
behavior of the process
(occurring more than 90

percent of the time)

Captures the occasional
behavior of the process
(occurring less than 10

percent of the time)

Time of specification Specified first Specified last

Spread It is learnt by all agents It is learnt by a few
specialized agents

Initiation Starts at a given stage of the
process

Starts at an arbitrary stage of
the process

Termination Once concluded, causes a
progression towards the end

of the process

Once concluded, may cause
the iteration of previous steps
or the sudden termination of

the process

Scope Behavior depends essentially
on local variables

Behavior depends essentially
on external factors

Expressive power Action does not use WF
control primitives

Action uses WF control
primitives

408 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

corresponding transition predicate evaluates to true. A process instance (or
simply case) is an enactment of a workflow schema. A schema may be
instantiated several times, and several instances may be running concur-
rently. WfMSs support case execution by scheduling tasks (as defined by
the flow structure) and by assigning them for execution to human or
automated agents.

A process may create and access several types of data. The WfMC
identifies three types of workflow data: workflow relevant data includes
typed data created and used by a process instance; this data can be made
available to subprocesses and activities, and accessed by the WfMS in order
to evaluate transition predicates. Application data is domain-specific, must
be processed with external tools and generally cannot be accessed by the
WfMS, although the system may control and restrict accesses to them.
System and environmental data is maintained by the local system environ-
ment or by the WfMS itself, and can also be used to evaluate transition
predicates. Activities are typically executed atomically, and data modifica-
tions are made visible as the task is completed.

A critical issue in workflow management is the assignment of tasks and
cases to the appropriate agent (also called workflow participant), in order to
execute activities or supervise their execution. The approach adopted by
most WfMSs consists in allowing the definition of an organization schema
that describes the structure of the organization relevant to workflow
management. In the organization schema, agents are grouped in several
ways, for instance, according to their skills or to the organizational unit
they belong to. In the definition of the workflow schema, processes and
activities are (statically) bound to elements of the organization schema (e.g,
to roles or organizational units) rather than to individual agents. This
approach decouples the definition of the process from the definition of the
organization, and provides more flexibility, since changes in the organiza-
tion schema may not affect process definitions.

At runtime, as a task is scheduled for execution, the WfMS determines
all the agents allowed to execute it and inserts the task into their worklists.
As an agent pulls the task from his/her worklist in order to start working
on it, the task is removed from the worklists of the other agents. Once a
task execution is completed, the WfMS schedules the next task(s) to be
activated.

2.2 The Car Rental Case Study

The process model (or workflow schema) of the car rental example is shown
in Figure 1. A new process instance (or case) is started as the car rental
company receives a car reservation request. The first activity (or task)
collects the customer data along with the desired car size and rental day
(getRentalData), updating the corresponding workflow relevant data. The
next activity chooseCar is then started, to find a car of the requested size
available on the requested day; the execution of the task may involve
dealing with the customer in order to adapt the request as a function of car

Specification and Implementation of Exceptions • 409

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

availability. If, after termination of the task, no suitable car is found
(variable carReserved is false), then the task rejectBooking is activated and
causes the end of the case: otherwise, task confirmBooking is started,
causing the confirmation to the customer that the reservation is accepted.

After the confirmation, the precondition of the task prepareDocuments—
delimited by a dashed line inside the task rectangle in Figure 1—waits
until the morning of the rental day, when the documents of rentals for the
day are prepared by the agents at the local rental site: The precondition is

chooseCar
Customer selects the car

carRental

getRentalData
Customer registers

rejectBooking
Booking is rejected

confirmBooking
Booking is confirmed

prepareDocuments
Documents are prepared

giveCar
Customer gets the car

precondition
day=rentalDay,
time=09:00AM

returnCar
Customer returns the car

carReserved = FALSE carReserved = TRUE

Fig. 1. The carRental process model. The dashed line for the prepareDocuments activity
delimits the preconditions from the body of the activity.

410 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

an expression that must be satisfied before the activity can start. The
subsequent task (giveCar) is pulled by an agent when the customer shows
up. The final task (returnCar) is pulled by an agent when the customer
returns the car.

2.3 Need for Exceptions

The car rental schema models the typical car rental process; the flow
structure corresponds to the sequence of operations that must be performed
in order to achieve the business goal, i.e., renting the car and satisfying the
customer. This process is very simple, but in reality business processes can
be quite complex, and the corresponding workflow schemas can be very
intricate. However, it frequently happens that a particular execution of a
process needs to deviate from the normal behavior defined by the flow
structure. The typical exceptions to the car rental process can be summa-
rized as:

—Changes to shared variables stored in the database; for example, a delay
in returning a car as perceived by another case where that same car is
booked to a different customer.

—Violation of time-related constraints or alarms, such as deadlines for the
execution of tasks and cases; for example, the no-show of a client two
hours after the agreed reservation time.

—Asynchronous external events, notified to the WfMS by a human or
automated agent; for example, the cancellation of a car reservation or the
notification of a car accident.

—Violation of constraints over workflow data; for example, booking the
same car to two different customers during overlapping time intervals.

—Changes in the process organization; for example, the sudden unavail-
ability of agents at the local rental company.

Such situations cannot be efficiently modeled and handled within the flow
structure, since they are asynchronous and their occurrence is not related
to the completion of other tasks in the case. For instance, consider an
exception related to a late car return, causing the rescheduling of the
rentals for that car: the rescheduling is an intrinsically asynchronous
event, but in order to take it into account it has to be checked at all stages
of the flow following car selection and prior to giving the car to the
customer. Figure 2 shows the impact of such a modification upon the
workflow schema in Figure 1; clearly, the resulting schema is more complex
and less effective in conveying the semantics of the application.

However, such exceptions need to be considered by the WfMS, because
their handling is part of the semantics of the process. Therefore, ad-hoc
constructs, extending those introduced in the previous sections, must be
added to the workflow model. These constructs should enable the specifica-

Specification and Implementation of Exceptions • 411

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

tion of both the conditions to be monitored by the WfMS and of the
sequence of operations to be performed in order to handle them.

3. THE EXCEPTION LANGUAGE: CHIMERA-EXC

The exceptions need to query the state of the workflow cases, which is
stored within a database shared by the workflow interpreter and the
exception handler itself. Therefore, prior to introducing the exception
language, we describe the schema definition language for managing state
information about workflows.

3.1 Class Definitions for Chimera-Exc

Chimera-Exc rules execute upon a simple, object-oriented schema, consist-
ing of object classes. Chimera-Exc does not need structural and behavioral

carRental

confirmBooking
Booking is confirmed

prepareDocuments
Documents are prepared

precondition
day=rentalDay,
time=09:00AM

rescheduleCar
Search for an available car

rescheduleCar
Search for an available car

carAvailable = FALSE

carAvailable = TRUE

rescheduleCar
Search for an available car

carAvailable = FALSE

carAvailable = TRUE

carAvailable = FALSE
carAvailable = TRUE

Fig. 2. Changes to a part of the carRental process model in absence of an exception
management system.

412 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

complexity, which is typical of object-oriented databases (and can be found
in Chimera). So an object class is just a record of attributes; each attribute
has an atomic type, chosen among the classical types supported by data-
base systems (e.g., character, string, integer, date). The names of all classes
within the database and of all attributes within classes must be different.
Each class is simply a collection of typed objects; all objects have a distinct
object identifier.1

Classes in Chimera-Exc are of three different kinds:

—Workflow management classes store metainformation about workflows
and their enactment; they are defined within the FORO WfMS.

—Exception management classes store metainformation about exceptions
and their management; they are defined in the FAR exception handler.

—Workflow-specific classes store the values of variables defined within
workflow schemas. All variables relative to a given workflow schema are
collected within one object class, whose name derives from the workflow
name. For example, a particular car reservation may be represented by
an object C of carRental class, and the expression C.reservationNumber
denotes the string variable containing the reservation number.

Note that workflow and exception management classes are workflow-
independent, hence their structure is defined once and for all in the
system;2 their content changes while flows are executed or exceptions are
managed. Workflow-specific classes are instead defined when a given
workflow is presented to the WfMS; each case is associated to an object
generated when the case is created with a unique case identifier (caseId).

Workflow-specific classes use a restricted form of inheritance: they all
inherit from the generic, workflow-independent class case. Thus, a work-
flow-specific object, e.g., belonging to the class carRental, inherits the
attributes of the class case, e.g., the case responsible; having a responsible
is a generic property that holds for all workflows.

3.2 Events, Conditions, Actions, and Priorities in Chimera-Exc

This section describes informally the characteristics of events, conditions,
actions, and priorities in Chimera-Exc. The full syntax of the language is
given in the Appendix, which appears in electronic format only; see
http://www.acm.org/pubs/contents/journals/tods/1999-24/.

3.2.1 Events. Each rule in Chimera-Exc can monitor multiple events.
Events in Chimera-Exc belong to four categories: data manipulation events,
external events, temporal events, and workflow events. Data manipulation
events are present in Chimera, but external, temporal, and workflow

1Given this simple schema, classes of Chimera-Exc can be stored within relational tables; each
tuple is provided with a system-generated object identifier.
2In the context of the WIDE project, workflow classes are defined and managed within FORO;
the exception handler has only retrieval privileges regarding workflow classes.

Specification and Implementation of Exceptions • 413

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

events are defined specifically for Chimera-Exc. These categories are
detailed in the remainder of the section.

Data manipulation events enable the monitoring of operations that
change the content of the database; these events include instantiating an
object via the create statement, removing an object via the delete statement,
or changing the value of one of the object variables via the modify
statement.3 For instance, the event modify(carRental.returnTime) is raised
as the return time of a car is modified, where carRental is the name of a
workflow and returnTime is the name of one of the variables for that
workflow.

External events are raised by external applications interacting with the
exception handler. External events must first be registered by applications;
all event names must be different. Then events can be raised by external
applications. For instance, the event carAccident can be raised by the
application that responds to calls from the renters and provides them with
assistance. With the raise primitive, external applications can provide
several application-specific parameters (e.g., the license number of the car
and the place and time of the accident). In Chimera-Exc, raise is also the
event language construct that defines the external events to which a rule is
made sensible; thus, event raise(carAccident) is raised as an external
application notifies an occurrence of the carAccident event.

Workflow events enable the monitoring of starts and completions of tasks
and cases. The progression of a given case is marked by the times of
initiation and termination of the case itself and of its tasks. These times
are expressed by means of the predefined events caseStart, caseEnd,
taskStart, and taskEnd, denoting the DateTime in which the case or a given
task is started or completed. The workflow executor notifies the exception
handler of these events.

Temporal events are classified as instant, periodic, and interval events.
Informally, an instant event occurs when a certain temporal instant is
reached (e.g., at midnight of the 31st of December 1999); an interval event
occurs when a given temporal interval elapsed from a given time (e.g., two
hours since the start of a case); and a periodic event occurs when periodic
time conditions are fulfilled (e.g., every first Monday of the month). We
next characterize each class of events more precisely.

—Instant events are expressed as DateTime constants of SQL-92 [Cannan
and Otten 1992]; partial specifications, e.g., of the date or the time, have
a default completion. An instant event can occur only once; if it has
already occurred at the time when the rule is compiled, it is disregarded.

—Periodic events are expressed using a notation taken from Leban et al.
[1986]. A period is defined by means of two components, separated by the
during keyword; the latter component indicates the time period and the
former component indicates how many units of time should be spent

3The obvious relational counterparts of these operations are insertions, deletions, and updates
to specific attributes.

414 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

waiting since the start of the period in order for the event to occur. For
instance, 1/days during weeks denotes the period of time defined by the
first day of each week; 18/hours during days is a periodic event ocurring
at 6:00 pm every day; any/hours during day denotes a periodic event at
every hour. We also enable comparison expressions for limiting periodic
events within a time window, e.g., date ’12/25/1997’ , 1/days during
weeks , date ’12/25/1998’; this expression denotes every Sunday be-
tween the days of Christmas in 1997 and 1998.4

—Interval events are defined by means of two components, a duration and a
DateTime, called the anchor time; the event occurs when the specified
duration has elapsed since the anchor time. For ease of reference,
interval events are named in the condition. Syntactically, the duration is
preceded by the keyword elapsed and followed by the keyword since,
which precedes the anchor time. For instance, elapsed (interval 60 days)
since date ’1/1/1998’, or elapsed (interval 60 days) since caseStart are
simple examples of interval events.
Legal anchor times are DateTime constants, the raising of external
events, or the start or completion of tasks and cases; when an anchor
time is not defined (because it refers to an external event that is not
raised or to a workflow event that has not occurred), the interval event is
also not defined. Durations are expressed in the notation used in SQL-92
[Cannan and Otten 1992]; partial specifications have a default comple-
tion. Predefined constants, such as the maximum or expected duration of
a case or task, can be used. Arithmetical operations on time values are
permitted, such as the addition or multiplication of durations with
constants.

3.2.2 Conditions. The condition part enables us to verify that rule
triggering really corresponds to an exception that needs to be processed:
false conditions denote false alarms, while true conditions denote an
exceptional situation that must be handled. In Chimera-Exc, conditions
and actions normally share some variables; when the evaluation of the
condition produces bindings for these variables, the condition is satisfied,
thus identifying the objects of the database that are affected by an
exception. When no bindings are produced, the condition is not satisfied
and the action is not executed. Conditions in Chimera-Exc derive their
syntax and semantics from Chimera, which in turn derives them from the
logical language Datalog, adapted to an object-oriented style. Thus, condi-
tions in Chimera-Exc have a declarative nature, are set-oriented, and use a
logic-programming style.

4The notation presented in Leban et al. [1986] allows us to specify complex periodic events,
such as the election day in the US (the first Tuesday after the first Monday of November),
which can be expressed as 1/(3/days during weeks) . (1/(2/days during weeks) during 11/
months); in Chimera-Exc, comparison expressions are only used between periodic events and
given DateTime constants representing the extremes of a time interval.

Specification and Implementation of Exceptions • 415

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

Syntactically, a condition is a conjunction of atomic formulas [Ceri et al.
1990]. Class formulas introduce variables ranging on the current extent of
an object class (e.g., carRental(C)); type formulas introduce variables of a
given type (e.g., integer(I)); comparison formulas are built by means of
comparisons between expressions, which in turn are built by means of
constants, attribute terms, or aggregate terms, composed in the usual way.
Attribute terms use the classical object-oriented notation in which the
attribute name acts as a selector of an object variable (e.g., C.bookedCar-
Plate) while aggregate terms are introduced by aggregate functions applied
to attribute terms (e.g., avg(C.carMaxSpeed)), again with a classical object-
oriented notation. The following condition binds objects of class carRental
whose customer is Italian and whose rental day is on the first of January
1998:

carRental(C), C.customer.nationality 5 “Italy”, C.rentalDay 5 1/1/1998

The condition is evaluated at a time subsequent to the time of the
triggering, and there is no guarantee that the database state has not been
changed meanwhile. The metapredicate old enables the evaluation of
attribute terms in the state prior to the operation that causes the trigger-
ing. Use of the old predicate requires logging such database states into
special object classes. The following condition binds objects of class carRen-
tal such that the boolean variable carReserved was true before the trigger-
ing and is false at the time of rule evaluation:

carRental(C), old(C.carReserved) 5 true, C.carReserved 5 false

The predicate occurred, followed by an event specification, binds a
variable defined on a given class to the objects of that class that are
affected by the event. This predicate can be used in many different
contexts, shown below:

(1) agent(A), occurred(create(agent), A)

(2) agent(A), occurred(modify(agent.name), A)

(3) agent(A), occurred(delete(agent), A)

(4) externalEvent(E), occurred(raise(“carAccident”),E)

(5) temporalEvent(T), occurred(lateCarReturn,T)

(6) task(T), occurred(taskStart(“assignCar”),T)

(7) case(C), occurred(caseEnd,C)

In Examples 1, 2, and 3, A is a workflow-specific object agent that has
been created, modified, or deleted. In Examples 4 and 5, E and T are
objects of exception-management classes externalEvent or temporalEvent,
respectively, whose events, the raising of the exception carAccident or the
temporal event lateCarReturn, have occurred. Finally, in Examples 6 and
7, T and C are objects of workflow-independent classes task and case,
which are bound by workflow events.

416 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

3.2.3 Actions. The action part of a rule consists of one or more primi-
tives executed in sequence. Unlike conditions, Chimera-Exc actions are
instance-oriented: a different primitive call is issued for every binding
produced by the condition. Primitives are divided into the following main
categories:
—data modification primitives for creating objects (create primitive), modi-

fying the value of an object’s attributes (modify primitive), or deleting
objects (delete primitive). These primitives are applied to the set of
objects that are bound by conditions; their semantics is the same as in
Chimera [Ceri et al. 1996];

—workflow management primitives for the notification of alarms to agents,
starting new tasks, cases, or subprocesses, reassigning tasks to a differ-
ent agent, rejecting or canceling tasks, or the global rollback of cases.
Alarms may refer to the values of the variables that are bound by the
condition, typically manipulated as character strings and inserted within
notification messages. Several examples of these actions are given in the
next sections, and their concrete syntax is given in the Appendix.
Active rules in Chimera-Exc must be safe, i.e., the input parameters of

the action part must appear in some positive literal (i.e., a term outside the
scope of the not operator) of the condition part.

Note that the expressive power of Chimera-Exc also enables the imple-
mentation of the basic workflow functionality (i.e., task scheduling and
assignment) by means of Chimera-Exc rules. Indeed, we have designed and
implemented a prototype workflow engine by exploiting active rules [Casati
et al. 1996; Pernici and Sanchez 1996]. However, after assessing the
performance of the prototype implementations, we decided to implement
the workflow engine in WIDE by means of an interpreter of a workflow
definition language, generated by the workflow compiler from the graphical
description of the schema.

3.2.4 Priorities. Rules have a statically defined priority, specified as an
integer (positive or negative), which is used to determine the order of
execution within a set of triggered rules. Default priority is set to zero; the
rule with the highest number has the highest priority. When two rules
have the same static priority, their relative priority is determined by their
creation time, with oldest rules having highest priority.

3.3 Examples
We show Chimera-Exc at work by means of some of the exceptions
informally introduced in Section 2.3. Trigger lateCarReturn notifies the
clerk responsible for a car rental that the car’s return is delayed.
define trigger lateCarReturn

events modify(carRental.returnTime)
condition carRental(C), occurred (modify(carRental.returnTime),C),

C.returnTime . old(C.returnTime)
actions notify (C.responsible, “Late return for car ”

1 C.bookedCarPlate)
order -2

end;

Specification and Implementation of Exceptions • 417

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

The following version of the same trigger checks whether the car that is
returned late is booked by some other customers at a time preceding the
new expected return time of the car; and, if so, the notification goes to the
agents who are responsible for these car rentals.

define trigger lateCarReturn
events modify(carRental.returnTime)
condition carRental(C1), occurred (modify(carRental.returnTime),C1),

carRental(C2), C1.bookedCarPlate 5 C2.bookedCarPlate,
C1.returnTime . C2.rentalTime

actions notify (C2.responsible, “Need of rescheduling car ”
1 C2.bookedCarPlate)

order 3
end;

The trigger customerCancel reacts after cancelling a reservation by
notifying the responsible agent and by starting the task rejectBooking,
which belongs to the workflow schema (see Figure 1). The external event
notification includes as a first parameter the reservation number of the
affected car rental.

define trigger customerCancel
events raise(“customerCancel”)
condition carRental(C), externalEvent(E), occurred(raise

(“customerCancel”), E),
C.reservationNumber 5 E.parameter1

actions notify (C.responsible, “Customer cancelled reservation: ”
1 E.parameter1),
startTask(C, rejectBooking)

order -3
end;

The realtime trigger carAccident notifies the agent responsible for the
rental of the damaged car and all the agents for future reservations of that
car of such an external event. The event also starts the execution of a new
case of another workflow, called Accident, which receives as a parameter
the plate number of the damaged car and manages its repair.

define trigger carAccident
events realtime raise(“carAccident”)
condition externalEvent(E), carRental(C1), occurred(raise

(“carAccident”), E),
E.parameter1 5 C1.reservationNumber,
carRental(C2), C1.bookedCarPlate 5 C2.bookedCarPlate

actions notify (C1.responsible, “Accident for car ”
1 C1.bookedCarPlate),
notify (C2.responsible, “Need of rescheduling car ”
1 C2.bookedCarPlate),
startCase(Accident, C1.bookedCarPlate)

order 5
end

The trigger noShow is activated every hour, and selects those car rental
reservations where the customer has not shown up two hours after the
reservation time; the customer’s name and driver’s license number are

418 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

recorded. The condition is formulated in such a way that the recording is
done only once.
define trigger noShow

events any/hours during days
condition carRental(C), C.rentalTime . sysTime - 3:00:00,

C.rentalTime ,5 sysTime - 2:00:00, C.carRented 5 false
actions notify (C.responsible, “No show for ” 1 C.reservationNumber),

create(noShowRecord,
[C.customer.name, C.customer.drivingLicence,sysDate])

order 2
end;

The trigger stopWork is activated every day at 6:00 pm, and notifies
every task executor of the carRental workflow that work-time is over.5

define trigger stopWork
events 18/hours during days
condition carRental(C), task(T), T.caseId 5C, T.status 5“running”

agent(A), T.executor 5A
actions notify (A, “Time to go home!”)

order 100
end;

Note that each agent receives at most one notification message due to the
execution of the stopWork trigger. In fact, one notification action is exe-
cuted for each agent bound to object variable A after the condition evalua-
tion. Replacing the action with the primitive notify (T.executor,
“Time to go home!”) yields slightly different semantics, where a
notification message is sent for every active task. So agents executing
several tasks will receive several notifications.

The trigger slowCaseEnd is activated two hours after the start of the
returnCar task, and checks whether the case is still running. If so, it
notifies the case responsible as to who must use a form in order to enter the
final data about the rental and creates a record reporting the delay.6

define trigger slowCaseEnd
events slowCaseEnd: elapsed (interval 2 hour)

since taskStart(returnCar)
condition temporalEvent(TE), occurred(slowCaseEnd,TE),

carRental(C), TE.dependsOnCase 5C, C.status 5“running”
actions notify(C.responsible,“Enter final data about ”

1 C.reservationNumber),
create(slowCaseRecord,
[C.responsible,C.reservationNumber,sysTime])

order 1
end;

3.4 Rule Execution Semantics

Rule execution semantics is defined operationally by explaining the mech-
anisms of rule scheduling. After their creation, rules are stored within a

5Attribute caseId of Task links each task activation to its case.
6Attribute dependsOnCase of temporalEvent links a temporal event to the case that caused the
event occurrence.

Specification and Implementation of Exceptions • 419

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

rule repository, defined next. Each rule is initially untriggered, and be-
comes triggered when any of its events occur.

The exception handler has a component called Scheduler that is activated
either periodically or when special events, tagged as realtime, are raised.
When the Scheduler is activated, it first determines which rules are
triggered; these rules are entered into the set of ready rules and the state of
these rules is set to untriggered. Building the ready rules set and changing
the state of ready rules to untriggered occurs atomically. Then, the Sched-
uler orders ready rules according to a statically defined priority, and starts
their execution according to the ordering. Rules can be executed in parallel,
so rules for different priorities can execute concurrently. When a given rule
is started, it is deleted from the set of ready rules; its condition is
evaluated, and if the condition is satisfied then its action is executed.

When the period expires or is interrupted by a realtime rule, there may
be ready rules that have not been executed; these rules carry on to the next
period, where they are executed according to their relative priority within
the set of all ready rules. Thus, a rule with low priority could, in principle,
carry on from one period to the next one, without ever being executed.
However, we make it a requirement that exceptions should normally be
considered within the period that immediately follows its triggering; in
Section 5.3 we discuss how such a result can be accomplished by suitable
parameter settings.

After the triggering of a realtime rule, the Scheduler immediately recom-
putes the set of ready rules (which now includes the realtime one) and
orders them according to their priority, then executes the rules of the new
ready set in priority order. In this way, if a realtime rule is given high
priority, it has good chances of being scheduled for execution quite rapidly
after its triggering. However, rules scheduled prior to the triggering of the
realtime rule, and which could still be executing at the end of the ordering
operation, are not preempted.

During the evaluation of the condition occurred, predicates bind suitably
typed variables to the events that have caused rule triggering. At each rule
execution, the binding of events to variables takes place for those events
that have occurred since the start of the period preceding the last execution
of the same rule and up to the start of the current period. If a triggered rule
is not considered during some scheduling periods (e.g., because the rule has
low priority), bindings to its occurred predicates include all bindings
accumulated during those periods: we informally say that bindings carry on
to the next period in the same way as rules. In this way, each event is
considered by each rule exactly at one execution; we say that the event is
consumed by the rule. The old predicate allows rules triggered by data
events to refer to the database state prior to the modification. If the same
object is modified several times between two successive rule executions,
then the old predicate binds variables to the most recent old value.

Note that the triggering and execution of an exception does not necessar-
ily suspend or abort the execution of the case in whose context the
exception was generated. However, a Chimera-Exc rule may identify the

420 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

exceptional case in the condition part, and then suspend or rollback the
execution of selected tasks or of the entire case.

Chimera-Exc rules are detached, i.e., they are executed in a different
transaction than the triggering one. The choice of a detached execution
mode is mandatory because Chimera-Exc actions must often be performed
outside the database context, and therefore cannot be rolled back. Thus, it
is essential that the triggering transaction commits before executing ac-
tions; in fact, only as the transaction commits are we guaranteed that the
exception actually occurred. The use of a detached mode allows us to
manage data events in a uniform fashion with respect to temporal, exter-
nal, and workflow events; rule detachment, coupled with set-oriented
execution semantics and periodic scheduling, is a good solution in terms of
performance, as demonstrated in Section 5.3.

3.5 Rule Execution Contexts

Several workflow schemas can be managed by the same WfMS that can
concurrently activate cases of the various workflows. Rules in Chimera-Exc
are either defined in the context of a specific workflow or are global. In the
former case, we say that rules are targeted to a workflow, and their side
effects are propagated only to the cases and tasks of that workflow.
Syntactically, we indicate the rule target in the definition, by adding the
keyword for and the workflow name, as follows:

define trigger slowCaseEnd for carRental

All the rules in Section 3.3 are targeted and should be completed with the
for clause. Once targeted, the trigger may be simplified by assuming as
context the target workflow. Thus, trigger stopWork can be simplified as
shown below, where the variable T implicitly ranges over the tasks of the
carRental workflow:
define trigger stopWork for carRental

events 18/hours during days
condition task(T), T.status 5“running”, agent(A), T.executor 5A
actions notify (A, “Time to go home!”)
order 100

end;

Untargeted rules, also called global rules, have side effects that affect all
the cases of all the workflows managed by the WfMS. They can be used for
writing generic WfMS exceptions, which monitor all the workflow schemas,
or exceptions that connect two or more workflow schemas, enabling a form
of interoperability among workflows. The following example shows a ge-
neric WfMS exception calling for the reassignment of all the agent’s tasks,
which become suddenly unavailable.
define trigger replaceAgent

events modify(agent.status)
condition agent(A), occurred(modify(agent.status),A),

old(A.status) 5 “available”, A.status 5 “unavailable”,
task(T), T.executor 5 A

actions reassign(T)
end;

Specification and Implementation of Exceptions • 421

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

The next exception relates the workflows for submitting and evaluating
proposals, and detects the situation where the proposer’s company is the
same as the evaluator’s. In such cases the evaluator must be changed.
define trigger replaceResponsible global

events caseStart(ProposalEvaluation)
condition
case(C1), case(C2),

C1.wfName 5 “ProposalSubmission”,
C2.wfName 5 “ProposalEvaluation”,
occurred(caseStart,C2),
C1.proposer.company 5 C2.evaluator.company

actions notify(C2.responsible, “Conflict of interests: Proposal ”
1 C1.proposalNumber 1 “ should have a different evaluator”

end;

4. ARCHITECTURE

Exceptions written in Chimera-Exc are processed by the FAR (FORO
Active Rule) system, implemented at Politecnico di Milano. The architec-
ture of FAR consists of four modules:

—The compiler accepts rules written in Chimera-Exc as input and produces
their translation to an internal language specifically developed within
this project. In addition, the compiler produces relational triggers for
capturing data events directly within the database.

—The time manager is responsible for the optimal management of time-
dependent events (including workflow and external events).

—The scheduler is activated periodically or in response to realtime rule
triggering; it orders the rules and then submits them to the interpreter
for execution.

—The interpreter is responsible for executing rules with a given degree of
parallelism.

The above modules interact with a database interface, called the basic
access layer (BAL), capable of executing standard SQL queries on top of a
relational server, thus providing interoperability with any relational data-
base; BAL was developed at SEMA and is used by FORO. High-level
communication with the FORO WfMS occurs through the FORO inter-
face, which informs the time manager of workflow events and receives
from the interpreter the exception management primitives. This overall
architecture is shown in Figure 3.

In the next sections we describe the more interesting features of each
module.

4.1 Compiler

The FAR compiler compiles Chimera-Exc rules by filling in the rule
repository and by translating the event, condition, and action parts of a
rule.

422 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

As a rule is submitted to the FAR for compilation, the compiler first
generates one tuple in the table RuleDictionary, storing the rule’s name
and identifier, the priority, and the timestamp of its latest execution
(initially set to the compilation time), needed to restrict rule execution to
process only those events that occurred after the previous execution of the
rule. The compiler then populates table RuleEvents by adding one tuple for
every event of every rule, each defining the characteristics of a triggering
event, such as its type (data, workflow, temporal, or external), the involved
object class and attributes (e.g., carRental and carStatus, respectively, for
event modify(carRental.carStatus)), whether the event is to be man-
aged in realtime or not, and finally the identifier of the newly compiled rule
triggered by the described event. This table enables the identification of
which rule is triggered by which event.

The event, condition, and action part of the rule are then managed by the
FAR compiler as follows:

Basic Access Layer
(library)

ORACLE

Interpreter

Compiler Time Manager

Scheduler

FORO Interface

External Event
Chimera-Exc

Rule

ORACLE
Triggers

FAR Server

FAR Program

Event Flow

Service Flow

Execution Flow

CEIL
code

WF
Event

WF
Action

Realtime
Schedule

External Application

Fig. 3. FAR architecture. The FAR compiler is activated on demand; the FAR interpreter, the
FAR scheduler, and the FAR time manager are daemon programs, i.e., they are always active
waiting for requests coming from other modules.

Specification and Implementation of Exceptions • 423

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

—Data manipulation events are captured by simple row-level granularity
triggers as currently defined in the SQL3 standard; each Chimera-Exc
data manipulation event is translated into a corresponding database
trigger [Cochrane et al. 1996]. Triggers operate in the context of transac-
tions running in the FORO environment; for each tuple inserted, up-
dated, or deleted from the underlying tables, triggers write a tuple to a
suitable table, called DataEvent, to signal that a given object has been
created, deleted, or updated. For instance, the compilation of the excep-
tions presented in Section 3.3 produce only one database trigger, needed
to detect modifications of the car return time for the lateCarReturn
exception.

—External, temporal, and workflow events are analyzed by the time man-
ager, and are described next.

—The condition is translated into a query written in standard SQL2; the
query computes a binding table that contains all the bindings of the
variables shared between the condition and the action. Thus, if the
binding table is empty, the condition is not satisfied. If an old predicate
is used in the condition, then the compiler writes a tuple in a suitable
RuleLog table that defines the characteristics of the object attribute to be
logged (the attribute’s name and type and the object’s class). Further-
more, the compiler also generates one database trigger for each old
predicate found in the condition that, before an attribute is modified or
deleted, captures the value of the attribute and logs it in suitable Log
tables. One Log table exists for each data type; the trigger adds one tuple
in the appropriate table for every rule interested in logging the value. In
the car rental example, compilation of the exceptions presented in
Section 3.3 produces only one database trigger that logs old values
needed by exception lateCarReturn in order to refer to the old value of
the returnTime attribute. Thus, compiling the carRental exceptions pro-
duces two triggers, both resulting from the compilation of exception
lateCarReturn: one to detect updates to attribute returnTime and one to
log the value of this attribute prior to the modification.
Note that native database triggers are defined only to detect data
manipulation events and to log old values. No other trigger or database-
specific construct is needed by the FAR: this is an important feature that
eases the portability of our system onto different database platforms.

—Actions are translated into calls to the BAL (for changing the database
content) or the FORO interface (for interacting with the WfMS). Explicit
iterators generate as many calls as the tuples of the binding table; each
tuple provides the actual input parameters of a call.

The translation of condition and actions produces a piece of code written in
an intermediate language, responsible of submitting the query to the BAL
and then retrieving its tuples and generating the action calls.

424 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

4.2 Time Manager

The time manager is sensible to external events, workflow events, and
wake up requests; it manages temporal events detected by means of the
local clock.

External and workflow events are considered as special cases of interval
events, in which the interval is set to zero and the anchor time is set equal
to the time at which the external event is raised or the workflow event
occurs. Similarly, instant events are reduced to special cases of interval
events, with the interval set to zero. Therefore, all events are reduced to
either interval or periodic events. Interval events are characterized by their
anchor time and duration, while periodic events are characterized by their
periodic duration and, possibly, two anchor times limiting the time interval
in which periodic events should be considered.

Anchor times of a given event e are either time constants or other events
that may occur in the future; in the former case we say that e is defined,
and in the latter case we say that e is undefined. Thus, a given event may
initially be undefined, then it may become defined, and finally it may occur.

The time manager keeps a list of defined events, sorted by their time of
occurrence. Insertions into the list of defined events are due to the
occurrence of workflow events and external raises or to the compilation of a
defined event. Whenever a periodic event occurs, a suitable algorithm must
inspect the periodic event definition in order to possibly enter another
event, relative to the next period, into the defined events list. Suitable data
structures hold undefined events (together with the specification of their
anchor times) and periodic events; algorithms generate defined events from
these data structures.

The time manager constantly compares the first event in the defined
events list with the current value of the clock. Whenever an event occurs,
the time manager deletes the event from the list and inserts a tuple into
the TemporalEvent table, storing the event’s identifier and timestamp. By
this act, each temporal event that has occurred is matched with an insert to
the database, and this insert causes an action of the Scheduler that will
eventually consider all the rules triggered by that event.

External applications must register events to the time manager prior to
raising them. We enable an arbitrary ordering of either the registration of
the event or the compilation of the event within a rule, but both of them
must occur before considering the external event as defined.

4.3 Scheduler

The scheduler is activated periodically or because a real-time event has
occurred. It initially copies and then empties the tables DataEvent and
TemporalEvent, which contain the events that have occurred since the last
execution of the scheduler. A copy of these tables is made to enable access
to them by rules, in particular to evaluate the occurred predicates within
conditions. Then, the scheduler determines which rules are triggered and

Specification and Implementation of Exceptions • 425

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

orders them according to their priority, writing them into the ReadyRules
table.

The motivation behind periodic scheduling is the need for batching
multiple instances of the same exception. Exceptions may be raised rather
frequently (many times as false alarms). Batching their handling and using
a set-oriented evaluation for testing all the event occurrences at once is
highly beneficial. This has been proven both experimentally and through
simulation, as described in Section 5.3. We considered both the batching of
rule executions and immediate scheduling as alternatives to periodic sched-
uling. Batching rules means activating the scheduler after a fixed number
of events. Periodic activity dominates batching rules because it yields
similar performances, but with much smaller variance in exception service
time. On the other hand, immediate scheduling would generate a much
lower throughput because every event would be followed by execution of the
corresponding rule, without any scaling advantage. In our prototype we
observed that immediate execution was infeasible even for simple work-
flows.

The scheduler is multithreaded and supports the parallel execution of
rules; each rule is independently executed. Given the maximum degree of
parallelism n, the scheduler selects the first n rules and invokes a thread
of the interpreter for each of them; rule n 1 1 is considered as soon as one
thread becomes available, and this process continues until either all
triggered rules have been considered or the period has expired. In this way,
the number of rules executed in parallel is constant, at least during the
time that follows the start of a scheduling period.

The period of activation and degree of parallelism are critical parameters
for characterizing FAR behavior; we expect them to be set so that all rules
are normally processed within one scheduler period. We consider this issue
further in Section 5.3.

4.4 Interpreter

The interpreter executes each exception as an atomic thread. Instructions
are written in CEIL (Chimera-Exc Internal Language), an intermediate
language that enables table generations, set-oriented query submission,
and tuple-oriented retrieval and update actions. These are executed by
invoking the corresponding BAL services.

5. IMPLEMENTATION OF FAR

The FORO and FAR systems operate on top of Oracle Server, a commercial
relational system. In particular, triggers generated by the FAR compiler
are written in the Oracle SQL and installed into the Oracle database;
Oracle Server must be version 7.2 or subsequent [Oracle Corporation 1996]
to enable multiple triggers on the same event.

426 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

5.1 Transactions in FAR

FAR uses transactions as provided by Oracle Server. Mapping computa-
tions to ACID transactions was carefully studied to provide the required
operational semantics and minimize the interference of FAR with the
workflow applications managed by FORO. Interference occurs in the table
DataEvent, whose content is written by Oracle triggers running in the
workflow applications context and must be copied and deleted by the
scheduler. The scheduler adds the tuples in the DataEvent table into its
own private copy, then deletes all its content and commits as an ACID
transaction; during this time, workflow applications cannot produce data
events because they conflict in the DataEvent table, which is exclusively
locked by the scheduler. However, such time is quite negligible, and the
interference is acceptable.

For similar reasons, the scheduler adds the tuples of the TemporalEvent
table into its own private copy, then deletes all its contents, and commits as
an ACID transaction; during this time, the time manager cannot produce
new temporal events. Finally, the scheduler accesses its own DataEvent
and TemporalEvent copies, determines which rules are scheduled, and
writes their rule identifiers into the ReadyRules table. Again, these opera-
tions are performed as an ACID transaction, so that the determination of
triggered rules is reliable. Each rule is then executed by the Interpreter as
an ACID transaction. Before committing the transaction, the scheduler
deletes from the ReadyRules table the tuple corresponding to the executed
rule. Exceptions may interfere with other exceptions or with workflow
applications, and such interference is properly regulated by means of
standard transactions. In particular, we assume that deadlocks are de-
tected by the underlying database server that chooses suitable victims; the
corresponding transactions are rolled back and then restarted.

The private copies of DataEvent and TemporalEvent tables are used to
evaluate the occurred predicate; given that rules and their events may
carry on from one period of scheduling to the next one, the content of these
two tables can be deleted only when the FAR becomes idle after the
execution of all the rules of a given period, since at such time all events are
certainly consumed by their relevant rules.

5.2 Interaction of FAR with FORO

The FAR environment interacts with that of FORO in the following way:

—At system generation time, CORBA-IDL classes storing the WfMS data
dictionary are generated. Translators IDL2SQL and SQL2Chimera gen-
erate the appropriate data dictionary descriptions for use in the Oracle
database and in the FAR environment. Chimera-Exc exceptions may
refer to FORO metadata, so their translation is invalidated when the
system is regenerated.

—At workflow definition time, one class definition is associated to each
workflow, storing the variables and constants associated to each case.

Specification and Implementation of Exceptions • 427

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

The workflow-specific class inherits from class case. Inheritance is imple-
mented in the underlying relational database by means of the vertical
approach [Atzeni et al. 1999]. Each case corresponds to one tuple in the
generic table case (storing the cases’ common attributes such as the
responsible or the initiator) and one tuple of the workflow-specific table
(storing the value of workflow-specific attributes such as the plate of the
rented car). Inherited attributes of a given case can be retrieved by
joining the two tuples that share the same case identifier. Again,
IDL2SQL and SQL2Chimera translators provide suitable mappings.

—Due to case execution, the FORO interface informs the time manager of
the beginning and end of cases and tasks. The time manager also
provides a WakeUpRequest service to the FORO interpreter, which
accepts requests for wakeup with a parameter DateTime. At the specified
time, the time manager raises a WakeUpCall to the FORO interpreter.

—Due to rule execution, the FAR Interpreter notifies the FORO interface of
the workflow management primitives to be executed in order to handle
exceptions.

5.3 Performance Analysis

In order to evaluate the performances of the FAR server, we ran a few
experiments on top of our prototype.7 Our first observations were concerned
with confirming the adequacy of our rule execution mode. To further
confirm the advantages of the detached execution mode over a deferred
execution mode (in which rules are executed at the task’s commit time), we
built a detailed queuing network model of our system. The model is
described in Ceri et al. [1998]. Synthetically, the model is an open queuing
network model with three service centers (CPU, disk, and exception man-
ager) and four client classes (user transactions, also called tasks; excep-
tions with true conditions; exceptions with false conditions; and an excep-
tion scheduler). The distribution of task’ interarrival times is considered
exponential, assuming a random arrival. The interarrival times for the
exception scheduler are assumed constant.

We then developed a model for a deferred execution mode for exceptions,
and compared it with the detached mode. The curves show the tasks’
execution time as a function of the tasks’ frequency of arrival; execution
times tend to the infinite when the system saturates. In Figure 4, we show
the behavior of a system with no rules, or with detached rules (as in
Chimera-Exc), or with deferred rules. Deferred rules saturate the system
much earlier than detached rules, due to the batching factor. With de-
tached execution all the event instances occurring in the same period (e.g.,
of all task starts) are processed together by a single rule execution.

7The database server was a Sun Sparc 10 with 32 MB of RAM, running the Oracle server
v. 7.3.2.1 on Solaris 2.5.1. The machine running the FAR environment was a Sun Sparc Ultra
2/140 with Solaris 2.5.1.

428 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

Therefore, we take advantage of set-oriented processing. Several ad-hoc
experiments have confirmed the results of the queueing model.

In order to obtain an adequate level of performance, we dedicated a
considerable effort to obtain a multithreaded implementation of the FAR
scheduler. In our implementation, the threads are a fixed number, each one
responsible of a connection with the database. The FAR scheduler dis-
patches exceptions to threads, monitoring the status and assigning a new
exception as soon as the thread has terminated the execution of the
previous one, until there are no more exceptions to run. The diagram in
Figure 5 illustrates the throughput of the system, measured in rules per
second, and how it correlates with the number of threads dedicated to the
execution of exceptions. The figure shows a quasilinear increase of through-
put with the increase in the number of threads;8 the flattening of the curve
of the throughput as the number of threads increases is due to the fact that
the system tends to reach saturation.

If the goal of the system was simply to maximize the exception through-
put, then a high number of threads should be selected, so as to guarantee
system saturation. Such a solution, however, would cause the system to
suddenly dedicate most of its resources to exception handling at the
beginning of a scheduling period, thereby slowing the processing of task-
originated transactions. Instead, our goal is to choose the number of
threads that offers a good throughput for exception execution, while caus-
ing marginal impact on the response time of task-originated transactions.

8This figure indicates as well that each rule requires about one second of execution time,
which is better than acceptable from an application standpoint (each “rule” is indeed a rather
complex transaction that accumulates and processes all the events occurred during a period of
time, translated to a high number of SQL calls through the BAL interface).

Fig. 4. System throughput for: (a) no rules; (b) detached rules; (c) deferred rules.

Specification and Implementation of Exceptions • 429

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

We measured the average response times of tasks and exceptions on our
prototype, increasing the number of threads. The results of these observa-
tions are shown in Figure 6. The top curve in the figure represents the sum
of both response times, whose minimum indicates a good empirical tradeoff
between exceptions and task-related user transactions. We observe that in
that particular experiment the number of threads that minimizes the top
curve is four.

The scheduling period is another parameter with a strong impact on
performance. With short scheduling periods, it is possible to shorten
exception-handling delay, thereby increasing its quality, but also increas-
ing the cumulative response time due to the lack of batching effects for
events (as discussed above, see Figure 4). Thus, the behavior of the FAR
system depends essentially on the tuning of these two parameters: the
number of threads and the length of the scheduling period. In addition, in a
real system the load changes during execution (e.g., due to peak times
during the day). To this end, we implemented an adaptive algorithm, which
monitors the load on the system. This adaptive algorithm dynamically
modifies the scheduling period, but not the number of threads. In fact, in
the Oracle implementation we experienced that dynamically changing the
number of threads does not improve throughput, due to the overhead
required in opening and closing the database channels associated with
them.We perform the fine tuning on the scheduling period instead, which
can be adapted after a previous period according to an iterative formula. A
complete description of the adaptive algorithm for setting the scheduling
period can be found in Ceri et al. [1998].

Fig. 5. Throughput of exceptions, varying the number of threads.

430 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

6. DETECTING TERMINATION IN WORKFLOW EXCEPTIONS

Although exceptions are typically designed individually, by considering the
exceptional event and by defining the appropriate reaction to it, the
designer must also consider the characteristics of the entire set of the
defined exceptions in order to verify whether undesired interactions can
occur.

Two significant properties of a set of exceptions are termination and
confluence. Informally, termination occurs when exceptions do not trigger
each other indefinitely, so that exception processing eventually terminates,
while confluence requires that the effect of exception processing be inde-
pendent of the order in which triggered rules are executed.

In general, it is impossible to devise sufficient conditions for confluence
in practical workflow applications, mainly due to the difficulty of perform-
ing a semantic analysis of the effect of exception execution. In addition, the
Chimera-Exc language is intrinsically nondeterministic because it associ-
ates a set-oriented, declarative condition with a tuple-oriented imperative
action, without any language construct for imposing an order on the
bindings selected by the condition. Thus, it is sufficient that action execu-
tions on collections of objects be nonconfluent for the entire rule evaluation
to also be nonconfluent. For instance, if a collection of objects representing
selected tasks to be assigned needs to be matched with another collection of
objects representing available agents and these are not semantically re-
lated, then it is not possible to repeat the same assignment at different
executions of the same rule. This situation is not surprising, as it occurs
whenever the language supports the declarative set selection, followed by

Fig. 6. Response times for tasks and exceptions.

Specification and Implementation of Exceptions • 431

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

the individual management of each element in the set. So it occurs in most
SQL triggers and procedures of conventional database applications.

Termination has been widely studied in the context of active databases,
but the results of such analysis are not immediately applicable to workflow
exceptions. Active databases consider rules that are triggered by data
events and act within the scope of given transactions, while workflow
exceptions consider arbitrary events and are executed within separate
transactions in a detached mode. The very essence of termination has to be
understood well, since the exception handler is a nonterminating machine
that processes external and temporal events. In order to concentrate our
analysis on exceptions, we assume that all processes terminate in finite
time, and disregard the issue of process termination; the interested reader
is referred to Jensen [1992] and ter Hofstede et al. [1998].9

We introduce a Termination Analysis Machine (TAM) as an abstraction
of WfMS and exception handler that sequentially processes the exceptions
and workflows that are explicitly initiated by triggered exceptions. The
assumption of sequential processing simplifies the use of the TAM in
proving termination, but it is not restrictive because rules and tasks
execute as ACID transactions upon the same database, and their serializ-
ability is guaranteed by the underlying database server. Therefore, any
concurrent execution of rules and tasks is equivalent to some serial
execution of the same rules and tasks, and therefore to some execution of
the TAM machine. The TAM does not accept new workflow cases besides
those generated by exceptions, so it is the appropriate device for studying
pathological cases of infinite executions, which are caused by the exception-
handling behavior.

We define the State of the TAM as the triple S 5 ^DB, R, A&, where DB
represents the WfMS database state; R represents the set of triggered rules
taken from the set of workflow exceptions E; and A represents the set of
active tasks operating in the set of workflows W.

A TAM execution is a sequence of TAM states; at each step the TAM
executes either a rule or a task and removes it from either R or A; due to
execution, new rules can be triggered or tasks may become active. We
denote the sequence of executed rules and tasks as a trace of the TAM.

Definition 1. A given set of exceptions E, defined for a set of workflow
schemas W, terminates iff, for an arbitrary initial state S0, the TAM
executes and produces a final state Sf 5 ^DBf, B , B& such that no rule is
triggered and no task is active.

In the following we give sufficient conditions for termination applicable
to classes of rules; we first concentrate on data-dependent rules and then
consider workflow-dependent and time-dependent rules.

9Note that process termination is trivial if the process scheme does not include loops, and
otherwise is based on a semantic analysis of loop conditions. But semantic analysis is possible
only if the variables used in the analysis are isolated, so they cannot be subject to changes
induced by exceptions.

432 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

6.1 Data-Dependent Rules

We consider exceptions ED which are only triggered by data events and
generate only data manipulation actions. The following definitions can be
computed by a straightforward syntactic analysis over the rules in ED.

—TriggeredBy denotes a function taking a rule r in input and producing
the set of data events that trigger r.

—Performs denotes a function taking a rule r and producing the set of
database modifications that may be performed by r ’s action.

—TriggersD denotes a function taking a rule r and producing the set of
rules r9 that become triggered as a result of the data manipulation
actions of r (possibly including r itself): TriggersD~r! 5 $r9 [ED ?
Performs~r! ù TriggeredBy~r9! Þ B%.

—The Triggering Graph TGD is a directed graph whose nodes are rules in
ED; an arc from ri to rj exists iff rj [TriggersD D~ri!.

THEOREM 1. If there are no cycles in TGD, then the rules in ED are
guaranteed to terminate.

PROOF. The rule execution algorithm presented in this paper is similar
to that of Aiken et al. [1995], and the proof has the same structure. Suppose
that TGD is acyclic, and the TAM execution is still infinite. Tasks cannot be
started by rules in ED, so the number of tasks in the TAM trace is finite.
This implies that at least one rule r appears an infinite number of times in
the trace. And, in turn, that there exists an action a [TriggeredBy ~r!
performed infinitely many times. There is only a finite set of rules and
tasks that produce action a and so trigger r, and since tasks cannot execute
an infinite number of times, there must exist a rule r1 producing action
a (a [Performs ~r1!), thus triggering r (r [TriggersD ~r1!), which is
performed infinitely many times. Iterating the above reasoning, we can
prove that there is also a rule r2 that triggers r1 and appears infinitely
many times in the trace, and so on. Since we assumed that there are no
cycles in the TGD, this reasoning generates infinitely many rules, which is
a contradiction. e

6.2 Workflow-Dependent Rules

We consider exceptions EW, triggered by data or workflow events and
generating data manipulation or workflow management primitives; clearly,
this class of exceptions includes ED. When a workflow action executed by a
rule activates a new task, subprocess, or case, these may subsequently
cause the activation of several tasks, according to the workflow schema.
These tasks may generate data or workflow events. This behavior is
modeled by a function w, from workflow actions that can be generated by
rules to all the workflow and data events that actions can generate due to

Specification and Implementation of Exceptions • 433

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

workflow enactment. Determining such function in a conservative way
requires a simple syntactical analysis of the workflow schema. More
accurate analysis is possible by introducing the workflow state in the
model, but such analysis is outside the scope of this paper. Thus, the
following definitions can be computed by an extensive syntactic analysis
over the rules in EW and workflows in W:
—StartedBy denotes a function taking a rule r in input and producing the

set of workflow events that trigger r.

—Activates denotes a function taking a rule r and producing the set of
workflow actions that may be produced by r.

—TriggersW denotes a function taking a rule r in input and producing the
set of rules r9 that become triggered as a direct or indirect result (via the
workflow engine) of the actions of r (possibly including r itself);
TriggersW~r! 5 $r9 [EW ? ~Performs~r! ù TriggeredBy~r9! Þ B! ∨
~?w [W ? w!Activates~r!! ù TriggeredBy~r9! ø StartedBy~r9!) Þ B)}.
The second term evaluates the rules that can be triggered by the data or
workflow events generated by the workflows activated by r ’s workflow
actions.

—The Triggering Graph TGW is a directed graph whose nodes are rules in
EW; an arc from ri to rj exists iff rj [TriggersW~ri!.

THEOREM 2. If there are no cycles in TGW, then the rules in EW are
guaranteed to terminate.

PROOF. Suppose that TGW is acyclic, and TAM execution still does
not terminate. Given our assumptions on workflows, it is not possible
that the trace includes a finite number of rules and an infinite number
of tasks. This implies that at least one rule r appears an infinite number
of times in the trace. In turn, this means that there exists an action
a [~TriggeredBy~r! ø StartedBy~r!!, which is performed infinitely many
times. There is only a finite set of rules and tasks that produce action a,
and thus, either:
(1) there exists a rule r1 executed infinitely many times and such that

a [Performs~r1! (which also means that r [TriggersW~r1!); or

(2) there exists at least a task t that produces action a; this implies that
t is executed infinitely many times. Since we assume that workflow
processes do not include endless loops, task t is started as an effect
of a rule r1 executed infinitely many times and such that
a [w~Activates~r1!! (which also means that r [TriggersW~r1!).

Iterating the above reasoning, we can prove that there also exists a rule r2

that triggers r1 and appears infinitely many times in the trace, and so on.
Since we assume that there are no cycles in the TGW, this reasoning
generates infinitely many rules, which is a contradiction. e

434 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

6.3 Simple Time-Dependent Rules

Next, we consider exceptions ET triggered by data, workflow, or simple
time events, including instant events or interval events that are anchored
to constant times or to workflow events. As before, ET exceptions can
generate workflow or data manipulation actions, and clearly this class of
exceptions includes EW.

As concerns termination, instant events or interval events anchored to
constant times can be disregarded because they can trigger rules at most
once, and therefore cannot be the cause of infinite execution. On the other
hand, interval events anchored to workflow events trigger the rules after a
fixed delay since the workflow events themselves. Delays are not consid-
ered in termination analysis (e.g., in the proof of Theorem 2), so we can
disregard intervals provided that we include all rules of ET whose interval
event is defined into the set R # ET of triggered rules. Under this interpre-
tation, results demonstrated for rules in EW are immediately applicable to
ET.

6.4 Rules Dependent on Periodic and External Events

We finally consider rules that depend on periodic events, external events,
or interval events, which in turn are anchored to external events. When
any of these events is present, termination is not guaranteed, and indeed
not desired. To see this, consider exceptions noShow and stopWork in
Section3.3; we know that they will be indefinitely triggered every hour or
every day. The same semantics can be achieved by a permanently active
external application that periodically calls the exception handler, or by
adding an arbitrary time interval to these events.

6.5 Termination Analysis Summary

On the basis of results presented in the previous sections, the analysis of a
generic set of exceptions should be done by subtracting the rules that
depend on periodic or external events by computing the triggering graph of
residual rules and by testing its acyclicity. Rule analysis is based on
pessimistic assumptions, and therefore cycles represent only potential
causes for nontermination. Cyclic triggering graphs are thus often accept-
able, provided that each cycle is analyzed to test whether termination is in
danger. Semantic rule analysis methods described in Baralis et al. [1998];
Baralis and Widom [1994]; and Ceri et al. [1995] can be extended to our
context, although with some practical difficulties.

In many practical cases, cycles are quite simple and rule analysis is very
easy. As an example, consider the following exception:
define trigger carReassignment for carRental

events modify(carRental.selectedCar)
condition carRental (C), occurred(modify(carRental.selectedCar), C),

C.carStatus 5“unavailable”
actions modify(carRental.selectedCar, C, C.secondChoiceCar)

end;

Specification and Implementation of Exceptions • 435

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

Trigger carReselection is raised by a modification of the selectedCar
attribute of an object in the carRental class. The condition checks if the
assigned car is not actually available for rental, and in this case assigns a
different car to the customer, corresponding to his second choice. If this car
is also unavailable, the exception continuously triggers itself, repeatedly
assigning the same second-choice car. In this case, rule carReassignment
triggers itself, thus the triggering graph TGD has a ring; nontermination
can be avoided by modifying the condition, so that the second-choice car is
assigned only if it is available.

Next, we consider nontermination caused by workflow-dependent rules.
We change the action of the exception carReassignment so that it activates
the task assignCar, which selects a new car to be assigned to the customer,
thereby retriggering the exception. Again, if the task is badly designed, it
may automatically assign unavailable cars, thereby causing the trigger’s
condition to be true and endless processing: trigger carReassignment and
task assignCar are alternatively executed forever.10

define trigger carReassignment2 for carRental
events modify(carRental.selectedCar)
condition carRental (C), occurred (modify(carRental.selectedCar), C),

C.carStatus 5“unavailable”
actions startTask(C,assignCar)

end;

Note that the exception is triggered by a data event and generates a
workflow action; in turn, a task is started by a workflow action and
generates a data event. This situation also corresponds to a triggering
graph TGW with a ring.

7. RELATED WORK

In this section we first describe the use of active rules for workflow
enactment, and then describe exception management in research projects
and commercial systems, and finally overview exception handlers for
programming languages and software process languages.

7.1 Active Rules and Workflow Enactment

Active rules introduce a significant increase in the expressive power of
database languages, resulting in the enhancement of processing capabili-
ties within database servers [Ceri and Ramakrishnan 1996; Widom and
Ceri 1996]. They are supported by most relational database systems. Active
rules in these systems support basic functionality and are inspired by the
forthcoming SQL3 standard [Cochrane et al. 1996]. Triggers are also
supported in several object-oriented database prototypes (e.g., HiPAC,
Chimera, Reach, Samos, Sentinel, and many others [Widom and Ceri 1995;
Paton 1999]). Some of these research projects also aim at developing

10Note that if the task is executed by a human agent, the process will soon terminate; endless
execution occurs when the WfMS environment reacts to exceptions automatically.

436 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

detached ECA rule servers. Of these projects, HiPAC is the forerunner.
HiPAC is an active object-oriented database system that extends tradi-
tional object-oriented systems with ECA rules. In HiPAC, ECA rules may
be triggered by data, temporal, and external events. HiPAC supports
several coupling modes that allow the definition of when the condition
should be evaluated with respect to the event occurrence (event/condition
coupling), and when the action should be executed with respect to the
condition evaluation (condition/action coupling). It also supports the imme-
diate, deferred, decoupled, and causally-dependent decoupled coupling
modes. With respect to the event/condition coupling, immediate means that
the condition is evaluated immediately after the event is detected (within
the same transaction); deferred means that the condition is evaluated after
the last operation in the triggering transaction (but within transaction
boundaries); while decoupled means that the condition is to be evaluated in
a separate transaction. Condition/action coupling has the same options,
with the addition of causally-dependent decoupled mode, which further
constrains the action transaction for serialization after the one evaluating
the condition. The Chimera-Exc detached mode corresponds to a decoupled
event-condition and an immediate condition-action coupling mode, with the
difference that in Chimera-Exc the detached transaction always starts
after the triggering one has committed.

TriGS [Kappel and Retschitzegger 1998]; Reach [Zimmermann and Buch-
mann 1999]; SAMOS [Gatziu et al. 1996]; and Sentinel [Chakravarthy
1997] have similar characteristics and objectives, in that they allow the
definition of ECA rules triggered by object manipulation, temporal, and
external events (in Chimera-Exc terminology), and aim to provide detached
rule execution. However, all these prototypes have several limitations, such
as reduced portability, lack of documentation and maintenance support,
which made them unsuitable for our goals. Finally, none of the above-
mentioned systems has been fully implemented. For instance, the Sentinel,
SAMOS, and Reach implementations do not support the detached rule
execution mode, while several prototypes have been developed for HiPAC,
each supporting only a subset of the planned features.

In the context of workflow management, active rules have been proposed
as a mechanism for enacting workflows in a few research prototypes such
as Casati et al. [1996]; Geppert and Tombros [1995]; and Kappel et al.
[1995]. In principle, the ECA paradigm is suitable for describing enact-
ments; for instance, task completions activate rules whose condition detects
the next task to be executed and whose action generates the appropriate
task start. In practice, active rules are not used for workflow enactment,
due to a rather low performance of the resulting workflow engine imple-
mentation. Active rules have the drawback that they must build the
current context of the workflow by inspecting the database state, while a
workflow interpreter typically maintains information about the current
context within easy-to-access state variables. However, active rules can be
used for defining a precise, albeit operational, semantics of workflow
enactment.

Specification and Implementation of Exceptions • 437

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

7.2 Exception Handling in Workflow Research Projects

Although research in workflow models and systems has been very active in
recent years, and the need for modeling exceptions in information systems
has been widely recognized (see Auramaki and Leppanen [1989]; Borgida
[1985]; Borgida et al. [1990]; Borgida et al. [1984]; and Saastamoinen
[1995]), the workflow community has only recently tackled the problem of
integrating exception-handling mechanisms in workflow models.

Eder and Liebhart [1995] provide a classification of the different types of
failures and exceptions that can occur in WfMS. Exceptional situations are
classified as basic failures, corresponding to failures at the system level
(e.g., DBMS, operating system, or network failure); application failures,
corresponding to failures of the applications implementing a given task,
and therefore to be handled at the application level; expected exceptions, to
be handled at the workflow level and corresponding to deviations from the
normal behavior of the process; and unexpected exceptions, corresponding to
the semantics of the business process, which are not properly modeled by
the corresponding workflow representation, and are to be handled at the
process-definition level. A similar classification, proposed in Heinl [1998],
divides exceptions according to the consistency constraints they violate
regarding execution semantics, application programs, the business process,
and those between the workflow and the corresponding business process.
Another classification is presented in Gray and Reuter [1994], centered on
causes for failure (environment, operations, maintenance, hardware faults,
and software faults). Failures are generally assumed to be handled at the
system and application level, typically by relying on the transactional
properties of the underlying database platform that enable forward recov-
ery (unless failures also result in a semantic failure, such as when a system
failure causes a deadline to be exceeded).

The workflow research community is mostly concerned with expected and
unexpected exceptions, since these are related to the workflow and process
modeling domain. Unexpected exceptions are caused by inconsistencies
between a business process in the real world and its corresponding work-
flow representation [Heinl 1998], due to design error, incomplete workflow
specification, or to change and improvement in the business process not yet
implemented in the workflow description. Such exceptions occur frequently
in processes that are very complex or with a high variability; they are
normally captured and managed by human agents, typically by halting
process execution and invoking human intervention.

The frequent and repeated occurrence of unexpected exceptions is an
indication that “traditional” workflow technology may be unsuited for
supporting the execution of the process under consideration and that
groupware applications or adaptive workflow systems are probably more
suitable. Adaptive systems enable the dynamic modification of workflow
definitions, and are therefore particularly suited for supporting the execu-
tion of processes whose unfolding is unknown at workflow definition time.
Such processes include ad hoc processes, i.e., processes that are to be

438 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

executed once or only a few times and whose exact form is determined as
process execution proceeds.

Unexpected exceptions are typically handled by dynamically modifying
the workflow, in order to resolve the inconsistency between the workflow
model and business process [Heinl 1998]. Dynamic modification may be
restricted to the workflow instance for which the exception occurred, or
may be extended to the workflow schema in order to prevent further
occurrences of the same exception in other workflow instances. A flexible
process support system called PROSYT is presented in Cugola [1998].
PROSYT was explicitly developed to tolerate deviations from the defined
process. The user is not forced to execute activities in the order specified by
the process definition, but may instead execute operations whose precondi-
tions for execution are not satisfied. However, depending on the process
data, some operations may be “strictly” forbidden. It is possible to define
invariants which, if violated, cause abortion of the invoked operation or a
notification message to be sent to the process manager, who will have to
intervene in order to restore a “legal“ situation. These constraints help in
limiting the degree of freedom allowed to the user, since allowing a
completely unregulated process execution is useless.

In this paper we address the handling of asynchronous expected excep-
tions (Eder and Liebhart [1995] classification) or exceptions violating the
consistency constraints of the process (Heinl [1998] classification). We deal
not only with semantic failures, but also address generic exceptional
situations that are part of the semantics of the process, but do not
correspond to “normal” process execution.

Most approaches for handling expected exceptions are based on the
integration of advanced transaction constructs into workflow models
[Worah and Sheth 1997]. We regard them as exception handlers based on
extended transactional models. In the following we briefly discuss these
approaches.

ConTracts provide an execution and failure model for long-lived transac-
tions and for workflow applications [Reuter et al. 1997]. A ConTract is a
long-lived transaction composed of steps, where the order of execution of
the steps is specified by a script. Isolation between steps is relaxed, so that
the results of completed steps are visible to other steps; in order to
guarantee semantic atomicity, each step is associated with a compensating
step (or subscript, if the compensation is a complex process) that semanti-
cally undoes the effect of the step. ConTract provides support for managing
situations in which a step is unable to fulfill its goal. At the step level,
transactional steps are rolled back while nontransactional steps must be
recovered by human intervention. At the script level, both forward and
backward recovery are provided. Backward recovery is achieved by compen-
sating completed steps, typically in reverse order of their execution. Com-
pensation may be partial, meaning that it is performed up to the point
where forward execution in the contract can be resumed, possibly along a
path that is different from the faulty one.

Specification and Implementation of Exceptions • 439

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

In Leymann and Roller [1997] a transactional model based on the notion
of compensation spheres is introduced. A compensation sphere is a group of
tasks such that all tasks have to be executed successfully or all executed
tasks must be compensated. As in the previous approach, tasks (or entire
spheres) are associated with compensating activities that are executed in
reverse order in the case of a task-semantic failure. Different behaviors can
be associated with a compensation: besides partial rollback and forward
recovery, control flow may be resumed at the start of the compensation
sphere without performing the compensation, or administrative actions
may be requested.

WAMO [Eder and Liebhart 1995] follows a similar approach for handling
failure, although it is implemented within a more flexible and expressive
model that is more suitable for workflow applications. The conceptual
workflow model is enriched by the specification of the transactional proper-
ties of each task (e.g., a task may be compensatable, it may be critical,
meaning that it cannot be undone or compensated, it might not require
compensation in case of semantic failure, or it may be forced to succeed
semantically, possibly with the help of human intervention). If a task fails
semantically, compensation is started according to the transactional prop-
erties of tasks, until a decision point is reached in the flow structure where
forward execution may be resumed by following an alternative path.
Preliminary work on WAMO was extended in Eder and Liebhart [1998],
where the model was modified so that any activity can be the turning point
from backward compensation to forward execution (based on the observa-
tion that decisions are sometimes also taken within a task, and not only in
branches in the control flow) by allowing complex activities rather than
compensating tasks only, and by providing support for dynamic workflow
instance modification when the backward compensation/forward recovery
approach does not handle the exception satisfactorily.

Within the Exotica project, methods and tools to implement advanced
transaction models on top of FlowMark (IBM’s workflow product) have been
developed [Alonso et al. 1996; 1994]. The basic idea is to provide the user
with an extended workflow model that integrates advanced transaction
concepts, allowing the definition of a compensating task for each ordinary
task. It also enables the user to translate these specifications into plain
FDL (FlowMark Definition Language) by properly inserting additional
“compensating” paths after each task or group of tasks, to be conditionally
executed upon a task failure (captured by means of the task return code).
In particular, it is shown how sagas and flexible transactions can be
implemented in FlowMark (similar approaches can be followed for other
transaction and workflow models). A preprocessor was also developed in
order to automate the mapping.

CREW [Kamath and Ramamritham 1998] extends the approaches above
by providing more flexibility in the backward compensation/forward execu-
tion process. For each step, it allows the definition of the point to which
execution should be rolled back in case of failure and the specification of
whether execution should be restarted or aborted from there; furthermore,

440 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

based on a predicate defined over workflow variables, a task involved in a
partial rollback and forward recovery may or may not be compensated or
re-executed.

The transactional approaches offer limited exception-handling capabili-
ties. In fact, there are a number of exceptional situations that cannot be
managed with backward compensation and forward recovery on a different
path. These are extreme and expensive solutions (in terms of lost work),
unnecessary in many cases. Furthermore, the WfMS is incapable of dis-
criminating among the different causes of semantic failure, which could
require different handling strategies. Chimera-Exc and the transactional
approach are orthogonal and can be combined. This is the solution adopted
in WIDE, where the workflow model includes concepts taken from sagas
and nested transactions. The rollback of a workflow instance can be
triggered explicitly by Chimera-Exc actions. Next, we review two systems
called TREX and OPERA, which extend the transactional approach, adding
more features to deal with expected exceptions.

In TREX, [van Stiphout et al. 1998] several types of task failures are
identified, including deadline expiration, unavailability of resources, inabil-
ity to access a piece of data, explicit “fail“ messages sent from a task to the
parent subprocess to indicate that it is unable to continue execution, and
“abort” messages sent from a subprocess to its component tasks to indicate
that they must abort execution. Exception handling is specified by means of
a mapping rule of the type

~task 3 exception! 3 exception handler

where a specific exception-handling strategy is associated with every type
of failure for each task. Several types of exception-handling strategies can
be defined and broadly classified as continuation handlers, which modify
the flow and then resume normal execution, allowing the insertion of new
activity, execution of an alternate activity, or the retrial of the failed
activity, and abortion handlers, which provide for partial compensation and
forward recovery mechanisms analogous to those described above. Al-
though TREX extends transactional approaches to exception handling by
allowing discrimination between several kinds of failures and transfers the
control to suitably defined exception-handling activities as the exception
occurs, it still lacks the required flexibility for handling generic exceptional
situations not related to task failures and is restricted in the class of
allowed reactions.

The OPERA process support system [Hagen and Alonso 1998] offers a
flexible exception-handling mechanism that integrates concepts developed
for programming languages with advanced transaction models. Workflows
in OPERA have a modular structure. In case a task fails, execution is
stopped and the control is transferred to the exception handler of the
parent activity (or to a default handler if none was defined in the parent
activity); in turn the handler may also propagate the exception to higher
levels in the hierarchy of activities. An exception may be signaled by

Specification and Implementation of Exceptions • 441

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

external applications (e.g., by means of the workflow API or application
return codes), it may be defined within the flow structure by a conditional
split leading to the exception handler rather than to an ordinary activity, or
it may be signaled when a given predicate on process data is satisfied.
Exception handling is specified using the same mechanism as for normal
flow by defining tasks and control/data flow among tasks. After managing
the exception, the handler may resume execution of the signaling task or
subprocess or abort (compensate) it.

Although exceptions in OPERA can be expressed in a variety of ways,
they are globally less powerful than those of FAR, for instance, in dealing
with temporal events, or in composing different kinds of events within
homogeneous expressions. Furthermore, each event must be separately
managed, and a different exception handler must be activated for every
case affected by the exception.

7.3 Exception Handling in Commercial Workflow Management Systems

Workflow management has become very popular in recent years, and
several hundred commercial products exist on the market (see Stark and
Lachal [1995] for a review of some and Mohan [1997] for a discussion of
recent trends in workflow management).11 However, very few products
provide support for managing exceptional situations; typically, only excep-
tions that are synchronous with the progression of the workflow can be
captured by the model. So alternative execution paths in the control flow
are made in reaction to exceptions, resulting in workflow specifications that
are complex and difficult to understand.

For instance, widespread products such as IBM’s FlowMark [IBM 1996]
or Hewlett Packard’s AdminFlow [Hewlett Packard 1998] are not able to
capture external, temporal, or data events, and the only support for
“exceptional” situations is the ability to define deadlines for tasks and
processes and to capture task semantic failures (e.g., by means of the task
return code). Reactions to these exceptions must be modeled by suitably
modifying the control flow. For instance, in AdminFlow the designer may
set a task deadline and specify that as the deadline expires the process
should either terminate or proceed to set the task state to TIME OUT; in the
latter case, the task state can be checked by a conditional split in order to
execute an “exceptional” path as a result of a deadline expiration. Instead,
FlowMark manages deadlines by sending warning messages to agents,
regardless of the process state or other conditions.

A few products, such as COSA, StaffWare, InConcert, and Action Request
System, offer some modeling features for capturing and reacting to events,
although with much less functionality than provided by FAR.

11Some web sites maintain references to the home pages of the most popular commercial
WfMSs. The interested reader may visit the following URLs:
http://www.do.isst.fhg.de/workflow/pages/Produkte_Englisch.html and
http://www.ifi.unizh.ch/groups/dbtg/Workflow/workflow_sites.html

442 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

COSA, from Cosa Solutions [Software-Ley GmbH 1996], includes in its
workflow model the notion of a trigger, defined as an event-action rule that
can be triggered by external events, workflow events, or deadline expira-
tion, and can react to the triggering event by activating a task or a new
(sub)process instance. InConcert, from InConcert Inc. [McCarthy 1993],
also includes event-action triggers in its workflow model. Triggering events
can be process state changes (e.g., a task becomes ready for execution),
external (user-defined) events, or temporal events. Allowed actions include
notification of messages to agents, activation of a new process, or invoca-
tion of a user-supplied procedure. In Staffware, from Staffware Corporation
[Staffware Corporation 1997], a special kind of task, called an event step,
can be defined. The event step suspends case execution until a defined
event occurs. Event notifications must include the specification of the
workflow, case, and step identifier in order to identify the event step.

Although COSA, InConcert, and Staffware provide some exception-han-
dling support, they have several limitations with respect to WIDE. They
support a subset of Chimera-Exc events and actions (being particularly
weak in detecting data events), and in addition they share the same
limitations as OPERA; in particular, each event must be managed sepa-
rately by the exception-handling mechanism. The reaction can only affect a
single case, with the above-mentioned disadvantages in performance and
expressive power. Furthermore, notifications of external events must ex-
plicitly indicate the affected case, while a Chimera-Exc rule can automati-
cally determine the set of cases (often more than one) interested in a given
external event and manage it for all affected cases, as in the carAccident
event example.

Finally, Action Request System, from Remedy Corporation [1996], takes a
different approach to workflow modeling, where the emphasis is on data
rather than on activities. The designer models a process by defining the
data items and the operations that can be performed on the data. The
workflow and task assignments to agents are then defined by a set of ECA
rules capable of reacting to operations executed over workflow data by
notifying messages to selected agents and presenting the work to them (i.e.,
the data and the set of operations that can be performed next). Rules can
also monitor predicates over data and time and can react to them (possibly
depending on conditions over time and over the process state) by modifying
process data or activating external applications. Thus, the rules in the
Action Request System allow several types of events to be monitored and
several actions to be performed as the event occurs and as a defined
condition is satisfied. The drawback is that it offers low-level constructs for
workflow modeling, so that it is difficult to have a global view of the process
that is entirely modeled by means of rules. Thus, a considerable effort is
required in order to define and maintain the workflow, and although
exceptions can be defined, the specification of normal and exceptional
behaviors are undistinguishable within the set of workflow rules.

Specification and Implementation of Exceptions • 443

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

7.4 Exception Handling in Programming Languages

The notions of exception and exception handling are part of many program-
ming languages, e.g., Smalltalk, Ada, C11, Java, and PL/SQL. However,
although we recognize similar concepts, the domain and purpose of excep-
tions in programming languages are quite different from exceptions in
workflows. In the following, we describe the exception-handling support
offered by Ada and then analyze the differences with respect to our
approach. Similar considerations hold for the other programming lan-
guages mentioned above.

In Ada, an exception denotes an event that suspends the ordinary
program execution [Booch 1983]. Events can be predefined or declared by
the user. The first category includes events that can be raised by the
runtime system such as NUMERIC ERROR, raised when an operation
produces a result outside the implemented domain (e.g., a division by zero),
or STORAGE ERROR, raised when storage limits are exceeded. User-
defined exceptions, qualified by their names, must instead be raised
explicitly within the application code by means of the raise statement.

A handler for every exception can be defined in any block or body of a
subprogram, package, or task. As an exception is raised, normal execution
is suspended and the code associated with the corresponding handler
within the same block/unit is executed. If no handler is found, the exception
is propagated to the containing block. Finally, if no handler has been
defined, the exception is passed to the operating system, which halts
program execution. After the execution of the exception-handler code,
program execution proceeds from the end of the block in which the
exception was handled. Raising an exception provides no parameters to the
handling part, which can only operate on the variables that are in the scope
of the unit in which the handler is defined. Furthermore, no assumption
can in general be made on the values of these variables nor on the
instruction that raised the exception.

Exceptions in Ada (and in other programming languages) are mainly
intended to detect erroneous conditions and avoid abnormal program
termination in order to recover the error or at least allow a graceful
degradation. Typical reactions involve abandoning the execution of the unit
in which the exception was raised, retrying an operation, using an alterna-
tive approach to perform an operation, or repairing the cause of the error
when possible [Booch 1983]. This is different from exceptions in workflow
systems, which operate at a higher level of abstraction, since they are not
intended to protect from system or programming errors, but rather to
enable the specification of a complex behavior that is anomalous with
respect to the “normal” semantics of the business process, but yet driven by
the application semantics.

7.5 Exception Handling in Software Process Modeling Languages

Languages developed for software processes could be applicable to work-
flow management because they are intended to drive the software process

444 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

whose flow requires a complex sequence of steps and uses sophisticated
automatic tools. These environments make use of rich, process modeling
languages, which are often based on rule-based paradigms, and typically
integrate reactive and asynchronous elements as part of their normal
behavior. Thus, process languages offer high-level paradigms that have
comparable semantics with (and even include the semantics of) Chimera-
Exc. However, such languages are not currently integrated with WfMS, and
therefore do not provide a solution to the problem of adding the manage-
ment of expected exceptions to existing WfMS systems, which is the
primary motivation of our work. A major shortcoming of process languages
in our context is that the above languages are often not fully and robustly
implemented, especially concerning integration with transactional systems.
It is however interesting to review their features.

APPL/A [Sutton, Jr. et al. 1995] is a software process language that
extends Ada with relations, triggers, constraints, and transactions. In
APPL/A, the reactive component is integrated with the imperative para-
digm of the programming language; emphasis is given to the management
of consistency, giving the designer the flexibility to adapt the consistency-
checking mechanism to the context (disabling it, enforcing it, or only
partially enabling it). Other process languages are built directly on top of
the rule paradigm. Alf [Canals et al. 1994] uses active rules as the main
paradigm to represent the software construction process; Merlin [Junker-
mann et al. 1994] uses Prolog-based rules as the foundation of its environ-
ment. Epos [Conradi et al. 1994] integrates the procedural and reactive
paradigms in its description language. The seamless integration of rules for
the specification of exceptions within the rule paradigm of the above
languages is very attractive. However, it may generate solutions that are
hardly managed, due to the complexity of the interactions between a large
number of rules.

8. UNBUNDLING ACTIVE FUNCTIONALITIES FROM FORO

A new direction for development of database systems is to “break the
database box” [Silberschatz and Zdonik 1997]. Databases offer services that
are typically integrated within a complex DBMS, and many applications
require only a fraction of such functionality. Thus, there is a trend to
“unbundle” the DBMS components and let applications combine the mod-
ules they need in arbitrary ways. This trend is applicable to the FAR
system, which is separable from the WIDE architecture, and can provide a
module for specifying and executing detached rules without being con-
nected to the FORO WfMS.

We have followed a strategy presented in Gatziu et al. [1998] for
unbundling the active component of a DBMS. Clearly, unbundling active
functionalities requires the separation of the active component from the
underlying data source, which may or may not be a DBMS. Such separation
is present in the WIDE architecture, which is based on the Oracle DBMS.
Further, unbundling requires the separation of an event service, responsible

Specification and Implementation of Exceptions • 445

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

for managing complex and heterogeneous events, and a rule service, respon-
sible for scheduling and executing rules. Such separation is also present in
the FAR architecture, since the former is provided by the time manager,
and the latter by the chain of the compiler, scheduler, and interpreter.

We experimented with the use of the WIDE architecture in combination
with an arbitrary Oracle application. Such unbundling was relatively
simple, since FAR has a bidirectional interface with FORO, which was
introduced in order to support the separate development of FORO and
FAR. We therefore achieved unbundling by disconnecting FAR from FORO
by connecting it directly to Oracle and adapting the FORO interface. We
used the Sql2Chimera translator to make an Oracle schema definition
available to FAR (this corresponds to building a wrapper; see Garcia
Molina et al. [1997]), and extended the FAR action language so it can
launch arbitrarily named stored procedures with parameters. One invoca-
tion is performed for each binding produced by the condition. These calls
are channeled by the adapted FORO interface directly to the Oracle server.
In this way the FAR environment provides detached active rules that run
in the context of a generic Oracle application; in particular, we experienced
its use with an application that provides access to the Car Rental informa-
tion, though not managed by a WfMS.

The most critical point of this architecture is the detection of data events.
In Gatziu et al. [1998], event detection is delegated to a subsystem that
interacts with a passive DBMS. Instead, in the FAR solution, data events
are captured by means of native Oracle triggers, which are automatically
generated by the rule compiler and then installed in the Oracle DBMS.
This solution is not portable because there is no published standard for
triggers [Widom and Ceri 1996], and so Oracle triggers differ from those of
other vendors. We, however, limited the trigger generation code to a portion
of the rule compiler that can be easily separated and recoded.

9. CONCLUSIONS

This paper first introduced exception handling in workflow management as
a new and interesting problem, and then showed the solution of the
problem by means of a specifically designed language (Chimera-Exc) and
architecture (FAR). In the following, we summarize the main contributions
of our work:

(1) With the support of our partners in the WIDE project, we have
identified the user requirements on expected exceptions, identifying the
different types of exceptional events and of exception-handling strate-
gies.

(2) We have proposed a rich exception-specification language, supporting
an expressive event language, detached evaluation of conditions and
actions, declarative set-oriented conditions, and imperative tuple-ori-
ented actions for interacting with the workflow manager.

446 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

(3) We have developed formal methods for proving the termination of the
exception handler in interaction with workflow management, showing
that sufficient conditions for termination can be reduced to testing the
acyclicity of suitable triggering graphs.

(4) We have performed a full implementation of an exception handler,
facing a number of architectural choices concerning, e.g., the efficient
management of temporal events, selective logging of past states, use of
native relational triggers to detect data changes, periodic rule schedul-
ing with an adaptive setting of the period of execution, and so on.

(5) We have designed and engineered the system’s components in order to
emphasize its portability. Our dependence on a given DBMS is limited
to the use of triggers for capturing data events. All other database
accesses are performed through the Basic Access Layer that guarantees
platform independence. Interfaces are specified in IDL, and the system
executes on top of CORBA.

(6) We have guaranteed interoperability between the FAR and the work-
flow engine by preserving the autonomy of each system and guarantee-
ing minimal interference (and delay) with the processing of normal
workflow execution. Portability and interoperability are essential for
unbundling the FAR system from FORO.

The first version of FAR, integrated with FORO, has been available since
July 1997 to partners of WIDE: the ING Bank Group in Holland, HGM, and
the Hospitàl General de Manresa, Catalunya, Spain. Exceptions, written in
Chimera-Exc, were specified and then implemented in the context of
workflows for claim management (by ING) and patient admission (by
HGM). The specification process led to the careful redesign of several
features of the language, so as to increase its expressive power and simplify
the trigger code, reported in this paper. Experiments have shown several
performance bottlenecks, but also provided us with a positive assessment of
our architectural choices. Based on these feedbacks, the final version of
FAR was delivered in June 1998. Some residual efforts in WIDE are being
dedicated to developing a design interface for specifying exceptions based
on patterns, and also to developing a methodology for building workflow
applications. Such a methodology includes exceptions as an important
ingredient, and will be integrated with Sema’s “Iteor” methodology for
business process reengineering.

ACKNOWLEDGMENTS

The overall architecture of FAR and its integration with FORO and with
advanced transactional services was jointly designed by the teams at Sema,
Twente University, and the Politecnico di Milano. We are particularly
grateful to Paul Grefen and Gabriel Sànchez Gutierrez for their contribu-
tion in the design of the architecture, and to Carlos Lopez Alonso for his
role as chairman of the software integration board. We also acknowledge

Specification and Implementation of Exceptions • 447

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

the contributions of Barbara Pernici and Giuseppe Psaila to the language
design, and thank Alex Borgida and Alfonso Fuggetta for the fruitful
discussions that helped us in the revision of the first version of this paper.

Fifteen masters’ students, from the Politecnico di Milano and the Univer-
sit a Statale di Milano, participated in the implementation of FAR: Luca
Barozzi, Davide Benvenuti, Dario Canepari, Patrizio Ferlito, Roberto Fer-
rari, Maurizio Manni, Cristian Mauri, Luca Moltrasio, Simone Rodigari,
Marcello Ronco, Riccardo Sabadini, Lazzaro Santamaria, Franco Varano,
Alberto Villa, and Daniele Zampariolo.

REFERENCES

AIKEN, A., HELLERSTEIN, J. M., AND WIDOM, J. 1995. Static analysis techniques for predicting
the behavior of active database rules. ACM Trans. Database Syst. 20, 1 (Mar. 1995), 3–41.

ALONSO, G., AGRAWAL, D., ABBADI, A. E., KAMATH, M., KAMATH, M., GUNTHOR, R., AND MOHAN,
C. 1996. Advanced transaction model in workflow context. In Proceedings of the 12th IEEE
International Conference on Data Engineering (New Orleans, LA) IEEE Press, Piscataway,
NJ.

ALONSO, G., KAMATH, M., AGRAWAL, D., ABBAD, A. E., GUNTHOR, R., AND MOHAN,
C. 1994. Failure handling in large scale workflow management systems. Tech. Rep.
RJ9913. IBM Almaden Research Center.

ATZENI, P., CERI, S., PARABOSCHI, S., AND TORLONE, R. 1999. Database Systems: Concepts,
Languages and Architectures. McGraw-Hill, Inc., Hightstown, NJ.

AURAMAKI, E. AND LEPPANEN, M. 1989. Exceptions and office information systems. In Office
Information System: the Design Process Elsevier Sci. Pub. B. V., Amsterdam, The Nether-
lands.

BARALIS, E., CERI, S., AND PARABOSCHI, S. 1998. Compile-time and run-time analysis of active
behaviors. IEEE Trans. Knowl. Data Eng. 10, 3 (May-June), 353–370.

BARALIS, E. AND WIDOM, J. 1994. An algebraic approach to rule analysis in expert database
systems. In Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB’94, Santiago, Chile, Sept.) VLDB Endowment, Berkeley, CA, 475–486.

BOOCH, G. 1983. Software Engineering with Ada. Benjamin/Cummings series in computing
and information sciences. Benjamin-Cummings Publ. Co., Inc., Redwood City, CA.

BORGIDA, A. 1985. Language features for flexible handling of exceptions in information
systems. ACM Trans. Database Syst. 10, 4 (Dec. 1985), 565–603.

BORGIDA, A., MYLOPOULOS, J., SCHMIDT, J., AND WETZEL, I. 1990. Support for data-intensive
applications: Conceptual design and software development. In Proceedings of the Second
International Workshop on Database Programming Languages (San Mateo, CA) Morgan
Kaufmann Publishers Inc., San Francisco, CA, 258–280.

BORGIDA, A., MYLOPOULOS, J., AND WONG, H. 1984. Generalization as a basis for software
specification. In On Conceptual Modeling Springer-Verlag, New York, NY, 87–114.

CANALS, G., BOUDJLIDA, N., DERNIAME, J.-C., GODART, C., AND LONCHAMP, J. 1994. ALF: A
framework for building process-centred software engineering environments. In Software
Process Modelling and Technology, A. Finkelstein, J. Kramer, and B. Nuseibeh, Eds.
Research Studies Press Advanced Software Development Series. Research Studies Press
Ltd., Taunton, UK, 153–185.

CANNAN, S. J. AND OTTEN, G. A. M. 1992. SQL-The Standard Handbook. McGraw-Hill, Inc.,
Hightstown, NJ.

CASATI, F., CERI, S., PERNICI, B., AND POZZI, G. 1996. Deriving active rules for workflow
enactment. In Proceedings of the Seventh International Conference on Database and Expert
Systems Applications (DEXA ’96, Zurich, Switzerland, Sept.), R. Wagner and H. Thoma,
Eds. Springer-Verlag, New York, 94–115.

CASATI, F., CERI, S., PERNICI, B., AND POZZI, G. 1998. Workflow evolution. Data Knowl. Eng.
24, 3, 211–238.

448 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

CERI, S., BARALIS, E., FRATERNALI, P., AND PARABOSCHI, S. 1995. Design of active rule
applications: Issues and approaches. In Proceedings of the 4th International Conference on
Deductive and Object-Oriented Databases (Singapore, Dec.) Springer-Verlag, Berlin, Ger-
many, 1–18.

CERI, S., FRATERNALI, P., PARABOSCHI, S., AND TANCA, L. 1996. Active rule management in
Chimera. In Active Database Systems, J. Widom and S. Ceri, Eds. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 151–176.

CERI, S., GENNARO, C., PARABOSCHI, S., AND SERAZZI, G. 1998. Scheduling exceptions in a
workflow management system. Tech. Rep. TR-98.27. Dip. di Elettronica e Informazione,
Politecnico di Milano, Milan, Italy.

CERI, S., GOTTLOB, G., AND TANCA, L. 1990. Logic Programming and Databases.
Springer-Verlag, New York, NY.

CERI, S. AND RAMAKRISHNAN, R. 1996. Rules in database systems. ACM Comput. Surv. 28, 1,
109–111.

CERI, S. AND WIDOM, J. 1990. Deriving production rules for constraint maintenance. In
Proceedings of the 16th International Conference on Very Large Data Bases (VLDB, Bris-
bane, Australia, Aug.) VLDB Endowment, Berkeley, CA, 566–577.

CHAKRAVARTHY, S. 1997. Sentinel: an object-oriented DBMS with event-based
rules. SIGMOD Rec. 26, 2, 572–575.

COCHRANE, R., PIRAHESH, H., AND MENDONÇA MATTOS, N. 1996. Integrating triggers and
declarative constraints in SQL database sytems. In Proceedings of the 22nd International
Conference on Very Large Data Bases (VLDB ’96, Mumbai, India, Sept.) 567–578.

CONRADI, R., HAGASETH, M., LARSEN, J.-O., NGUYÊN, M. N., MUNCH, B. P., WESTBY, P. H., ZHU,
W., JACCHERI, M. L., AND LIU, C. 1994. EPOS: Object-oriented cooperative process
modelling. In Software Process Modelling and Technology, A. Finkelstein, J. Kramer, and B.
Nuseibeh, Eds. Research Studies Press Advanced Software Development Series. Research
Studies Press Ltd., Taunton, UK, 33–70.

CUGOLA, G. 1998. Inconsistencies and deviations in process support systems. Ph.D.
Dissertation. Dip. di Elettronica e Informazione, Politecnico di Milano, Milan, Italy.

DAYAL, U., HSU, M., AND LADIN, R. 1990. Organizing long-running activities with triggers and
transactions. In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’90, Atlantic City, NJ, May 23–25, 1990), H. Garcia-Molina,
Ed. ACM Press, New York, NY, 204–214.

DENNIS, R. AND MCCARTHY, S. K. S. 1993. Workflow and transactions in InConcert. IEEE
Data Eng. 16, 2 (June), 53–56.

EDER, J. AND LIEBHART, W. 1995. The workflow activity model WAMO. In Proceedings of the
International Conference on Cooperative Information Systems (Vienna, Austria, May)

EDER, J. AND LIEBHART, W. 1998. Contributions to exception handling in workflow
management. In Proceedings of the Sixth International Conference on Extending Database
Technology (Valencia, Spain, Mar.), H. -J. Schek, F. Saltor, I. Ramos, and G. Alonso, Eds.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J.,
VASSALOS, V., AND WIDOM, J. 1997. The TSIMMIS approach to mediation: Data models and
languages. J. Intell. Inf. Syst. 8, 2, 117–132.

GATZIU, S., FRITSCHI, H., AND VADUVA, A. 1996. SAMOS. An active object-oriented database
system: Manual. Tech. Rep. 96.02. University of Zurich, Zurich, Switzerland.

GATZIU, S., KOSCHEL, A., VON BÜLTZINGSLOEWEN, G., AND FRITSCHI, H. 1998. Unbundling active
functionality. SIGMOD Rec. 27, 1, 35–40.

GEORGAKOPOULOS, D., HORNICK, M., AND SHETH, A. 1995. An overview of workflow manage-
ment: from process modeling to workflow automation infrastructure. Distrib. Parallel
Databases 3, 2 (Apr. 1995), 119–153.

GEPPERT, A. AND TOMBROS, D. 1995. Event-based distributed workflow execution with
EVE. Tech. Rep. 96.05. University of Zurich, Zurich, Switzerland.

GRAY, J. AND REUTER, A. 1994. Transaction Processing Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA.

GREFEN, P., PERNICI, B., AND SANCHEZ, G. 1999. Database Support for Workflow Management:
the WIDE Project. Kluwer Academic Publishers, Hingham, MA.

Specification and Implementation of Exceptions • 449

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

HAGEN, C. AND ALONSO, G. 1998. Flexible exception handling in the Opera process support
system. In Proceedings of the 18th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS98, AAmsterdam, The Netherlands, May)

HEINL, P. 1998. Exceptions during workflow execution. In Proceedings of the Sixth
International Conference on Extending Database Technology (Valencia, Spain, Mar.), H. -J.
Schek, F. Saltor, I. Ramos, and G. Alonso, Eds.

HEWLETT-PACKARD. 1998. Changengine Admin Edition (AdminFlow) Process Design
Guide. Hewlett-Packard, Fort Collins, CO.

IBM. 1996. IBM FlowMark - Modeling Workflows. IBM Corp., Riverton, NJ.
JENSEN, K. 1992. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Springer-Verlag, New York, NY.
JUNKERMANN, G., PEUSCHEL, B., SCHÄFER, W., AND WOLF, S. 1994. MERLIN: Supporting

cooperation in software development through a knowledge-based environment. In Software
Process Modelling and Technology, A. Finkelstein, J. Kramer, and B. Nuseibeh, Eds.
Research Studies Press Advanced Software Development Series. Research Studies Press
Ltd., Taunton, UK, 103–129.

KAMATH, M. AND RAMAMRITHAM, K. 1998. Failure handling and coordinated execution of
concurrent workflows. In Proceedings of the 14th International Conference on Data
Engineering (Orlando, FL, Feb.) IEEE Computer Society Press, Los Alamitos, CA.

KAPPEL, G., LANG, P., RAUSCH-SCHOTT, S., AND RETSCHITZEGGER, W. 1995. Workflow manage-
ment based on objects, rules, and roles. IEEE Data Eng. 18, 1 (Mar.), 11–18.

KAPPEL, G. AND RETSCHITZEGGER, W., Eds. 1998. The TriGS active object-oriented database
system— an overview. SIGMOD Rec. 27, 3, 36–41.

LEBAN, B., MCDONALD, D. D., AND FORSTER, D. R. 1986. A representation for collections of
temporal intervals. In Proceedings of the Conference on AAA-I (AAAI’86, Philadelphia,
PA) 367–371.

LEYMANN, F. AND ROLLER, D. 1997. Workflow-based applications. IBM Syst. J. 36, 1, 102–123.
MOHAN, C. 1997. Recent trends in workflow management products, standards, and

research. In Proceedings of the NATO Advanced Study Institute on Workflow Management
Systems and Interoperability (Aug.)

ORACLE CORP. 1996. Oracle 7 Server Concepts Manual. Oracle Corp., Redwood City, CA.
PATON, N. 1999. Active Rules in Database Systems. Springer-Verlag, New York, NY.
PERNICI, B., Ed. 1989. Office Information System: the Design Process. Elsevier Sci. Pub. B. V.,

Amsterdam, The Netherlands.
PERNICI, B. AND SANCHEZ, G. 1996. The WIDE workflow model. Tech. Rep. 3002-3, WIDE

Consortium.
REMEDY CORP. 1996. Action Request System 3.0 Administrator’s Guide. Remedy Corp..
REUTER, A., SCHNEIDER, K., AND SCHWENKREIS, F. 1997. Contracts revisited. In Advanced

Transaction Models and Architectures, S. Jajodia and L. Kerschberg, Eds. Kluwer Academic
Publishers, Hingham, MA.

SAASTAMOINEN, H. 1995. On the handling of exceptions in information systems. Ph.D.
Dissertation. University of Jyvaskyla.

SILBERSCHATZ, A. AND ZDONIK, S. 1997. Database systems—breaking out of the box. SIGMOD
Rec. 26, 3, 36–50.

SOFTWARE-LEY, GMBH. 1996. Cosa Reference Manual. Software-Ley GmbH.
STAFFWARE, CORP. 1997. Staffware Global-Staffware for Intranet based Workflow Automa-

tion.
STARK, H. AND LACHAL, L. 1995. Ovum Evaluates: Workflow. Ovum, London, UK.
SUTTON, S. M., JR., OSTERWEIL, L. J., AND HEIMBIGNER, D. 1995. APPL/A: A language for

software process programming. ACM Trans. Softw. Eng. Methodol. 4, 3 (July), 221–286.
TER HOFSTEDE, A. H. M., ORLOWSKA, M. E., AND RAJAPAKSE, J. 1998. Verification problems in

conceptual workflow specifications. Data Knowl. Eng. 24, 3, 239–256.
VAN STIPHOUT, R., MEIJLER, T. D., AERTS, A., HAMMER, D., AND LE COMTE, R. 1998. Trex:

Workflow transaction by means of exceptions. In Proceedings of the Sixth International
Conference on Extending Database Technology (Valencia, Spain, Mar.), H. -J. Schek, F.
Saltor, I. Ramos, and G. Alonso, Eds.

450 • F. Casati et al.

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

WIDOM, J. AND CERI, S., Eds 1996. Active Database Systems. Morgan Kaufmann Publishers
Inc., San Francisco, CA.

WODTKE, D., WEISSENFELS, J., WEIKUM, G., AND KOTZ DITTRICH, A. 1996. The Mentor project:
Steps toward enterprise-wide workflow management. In Proceedings of the 12th IEEE
International Conference on Data Engineering (New Orleans, LA) IEEE Press, Piscataway,
NJ, 556–565.

WORAH, D. AND SHETH, A. 1997. Transactions in transactional workflows. In Advanced
Transaction Models and Architectures, S. Jajodia and L. Kerschberg, Eds. Kluwer Academic
Publishers, Hingham, MA.

WORKFLOW MANAGEMENT COALITION. 1996. Terminology and glossary. Tech. Rep.
WFMC-TC-1011. Workflow Management Coalition.

WORKFLOW MANAGEMENT COALITION. 1998. Process definition interchange v 1.0. Tech. Rep.
WfMC-TC-1016-P. Workflow Management Coalition.

ZIMMERMANN, J. AND BUCHMANN, A. 1999. REACH. In Active Rules in Database
Systems Springer-Verlag, New York, NY.

Received: September 1998; revised: February 1999; accepted: May 1999

Specification and Implementation of Exceptions • 451

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.

