
OffHandling Exceptions
Heikki Saastamoinen

Department of Computer Science
University of Colorado

Campus Box 430, Boulder CO 80309-0430
USA

George M. White
Department of Computer Science

University of Colorado
Campus Box 430, Boulder CO 80309-0430

USA

Department of Computer Science and
Information Systems, University of Jyvaskyl~i

P.O.Box 35, SF-40351 Jyv~iskylfi
Finland

Computer Science Department
University of Ottawa,

Ottawa KIN 6N5
Canada

ABSTRACT
The current literature of information systems has dealt
extensively with all kinds of exceptions. There are several
studies def ining the concept of except ion and even
providing classifications. However, no studies provide a
method for verifying the rules in order to handle exceptions
and to achieve the goals set by an organization's rules. In
this paper, a model employing a set of unique input/output
(UIO) sequences is presented for verifying such rules. The
model originally presented for Finite State Machines (FSM)
has been modif ied to include concepts of except ion
handling and will be used to form a tool usable for verifying
exception handling rules in OISs.

INTRODUCTION
Exceptions form an essential part of the behavior of offices
[1] and they are a major component of office work [24].
When concepts of office and office work are defined,
exceptions are often pointed out as a feature characterizing
those concepts [1, 8, 14, 24]. Empirical studies point out
that exception handling can sometimes take almost half of
the total working time, and that the handling of, and
recovering from, exceptions is expensive [20, 23].

Despite this, only a few OIS design methodologies, e.g.,
[8, 9, 15] consider exceptions at all. Even these studies do
not provide tools for exception handling in OISs. Even
though there are many studies of exceptions see, for
example [1-7, 10, 11, 13, 14, 16, 19-21, 23, 24] , they are
more likely to focus on the general nature of exceptions or
on some specific aspect related to them.

The concept of exception is closely related to the concept
of rule [19]. Rules can be viewed as instruments of policies
aimed at solving problems [26]. In a broad sense, rule is a
general term including concepts such as precepts,
regulations, rules of thumb, convent ions , principles,

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notme is given
that copyright is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
COOCS 95 Milpitas CA USA © 1995 ACM 0-89791-706-5/9 5/08..$3.50

guiding standards and even maxims [26]. Thus all office
information systems can be viewed as rule based systems
[19, 27]. Exceptions can then be defined as events for
which no applicable rules exist [1, 21, 19].

Office work is highly goal oriented [25, 27]. Rules stating,
for example, that all ledgers must always be kept in
balance, that all incoming invoices are to be handled so
that possible cash discounts can be achieved, that all
received stock items have to be reported to an information
system within twenty- four hours, are examples of
definitions of such goals.

We can now consider an exception raised during invoice
auditing where an invoice that partially includes items
mentioned in a corresponding order, but also refers to
products not found on the order. It is now highly likely that
the rules of an organization do not define desired actions for
this kind of a situation. In this case, an office faced with
such an exception is probably familiar with the normal case
and is well aware of the goal to be achieved: the real amount
due must be determined. However, there is a remarkable gap
between the real situation and the goal.

The literature of exception handling is well aware of this
kind of exception. There are several studies defining the
concept of exception and even providing classifications.
However, no studies provide a method for verifying the
exception handling rules and for achieving the goals set by
an organization's rules. In this paper, a model employing a
set of unique input/output (UIO) sequences is presented for
constructing such rules. The model, originally presented by
Rezaki, Ural and White [18] for Finite State Machines
(FSM) is modif ied to include concepts of exception
handling and can be used to form a tool usable for verifying
exception handling rules in OISs.

In the next section, an overview of the nature of exceptions
is presented. The third section focuses on the exception
handling by considering the general process of event
handling. In the fourth section a detailed discussion of
organizations' rule bases is provided. This discussion is
complemented by a section focusing on the dynamics of
rule bases. The sixth section discusses the checking
algorithm and goal verification. The seventh section
presents a real world example followed by this study's
conclusions.

302

THE NATURE OF EXCEPTIONS
Since there are papers going into great detail on this matter,
the discussion on the nature of exceptions presented in the
following is only an overview of the phenomenon. For
further details, please refer especially to [22]. Other papers
[1, 19, 21, 23] address the real nature of exceptions as well.

The basic characteristic of exceptionality is the degree of
difference when compared to the corresponding normal
case. This dimension of exceptionality was first discussed
by Auram~iki and Lepp~inen [1] and was further defined in
[19, 23]. This characteristic is derived from the rule base. It
is important to see the difference between the existence of a
single rule and the existence of a complete event handling
rule. The latter guides the handling of an event as such,
while the former is actually only apart of it.

An es tabl i shed except ion is an event where appropriate
event handling rules basically exist, but the rules of the
organization are incomplete and they cannot pinpoint the
exact set of rules to be applied.

An otherwise exception is an event where the organization
has no applicable rules. However, the organization has
rules for the handling of corresponding normal cases and
knows the goal to be achieved as a result of handling this
kind of exception.

A true except ion is an event so unanticipated, that the
organization has not been able to prepare for it at all. In
other words, the organization can only recognize the case
as an exception and knows neither the corresponding
normal case nor the specific goal or state to be achieved as a
result of handling such an exception.

Another important dimension of exceptions is their effect
on organizations' rules. Like exceptionality, this dimen-
sion was first discussed by Auram~iki and Lepp~inen [1] and
further defined in [19, 23]. By using this criteria, three
kinds of exceptions can be distinguished:

Exceptions with no effect on the rule base: the handling of
such exceptions does not change the rules of the organiza-
tion in any way.

Exceptions causing instance level updates: such updates are
strongly related to the precise event to be handled, e.g., to a
specific incoming invoice and have no effect on other
events handled or to be handled in the future.

Exceptions causing type level updates: such exceptions
cause updates to rules applied to certain types of events. An
example of this kind of update would be the setting up of
new rules for handling incoming invoices from some
specific company.

In addition, exceptions differ, e.g. , by their primary
sources, acceptability, laboriousness, frequency, organiza-
tional influence area, and handling delays. Those dimension
of exceptionality are beyond the scope of this paper and are
not further discussed here.

THE HANDLING OF EXCEPTIONS
Office work is processed by office actors by handing events
as they arrive. Here, we define an event [21] as a detected
phenomenon that is to be handled by the information
system. These may be high level events such as a change in
the environment in which the organization is immersed or a
low level event such as the arrival of a purchase order in the
sales office. High level events are typically dealt with by
the higher levels of the organization while the lower level
events are handled by the office staff, usually in a
predictable way within a well ordered structure.

Events are said to be handled by first identifying the event
and then by selecting the appropriate procedures to process
it. This may be very easy in the case of routine events that
can be handled by clerical staff or it maybe very difficult and
complex requiring long study and hard decisions by the
senior levels of management. The basic mechanism for
handing events is shown by the Petri-net of figure 1.

T 2 P6

[\ T 4 \ J

~ P @ 3 ~ 4

Fig. 1. The basic structure of event handling.

The event is first analyzed to see whether it is an instance of
a recognized type. If it is, it is handled directly and dis-
missed. If not, it is analyzed to determine the degree by
which it differs from a recognized type. This version of
Petri-net is sometimes called the predicate/transition net,
[12] augmented with explicit time dependencies as discussed
in [17]
• T o models the entrance of events into the system. They

are generated at random and have varying characteris-
tics.

• T I takes these events in some order when the informa-
tion system is ready to treat them.

• T 2 is a recognizer which analyzes the properties of the
event and if it recognizes the event type, it handles the
event according to the contents of its rule bases. If it
cannot recognize the rule, it does not fire and does not
handle the event.

• T 3 fires if T 2 has not previously fired, i.e., T 2 has a
priority over T 3 not visible in figure I. In so doing it
accepts the event, not recognized by T 2 and therefore an
exception. It then either creates a new rule to handle the
event or dismisses the event as unhandleable. In both
cases, it passes the token to P5 either as a processed
event or an unprocessed one to be resubmitted.

303

T 4 is a t imed event, absorbing the token on P3 and
emitting a token to P4 after some delay. It is the only
transmission which does not fire instantaneously.

The initial marking has one token on P4.

The transition T 3 is a complex one. It is enabled only when
an event is not recognized by T 2 and therefore must either
result in the creation of a new rule to handle the event or
dismiss it as unhandleable. The decision process attached to
the transition must consult the rule bases, discussed below,
to decide how to dispose of the event, adding to the rules or
modifying some part of the rule bases. Depending on the
exact nature of the exception, this may involve either the
individual actor changing an informal rule, or groups of
actors changing their respective rule bases. This, in turn,
may involve clerical s taff or the h igher levels of the
organizat ions involved.

THE RULE BASE
The rules consulted by organizational actors while process-
ing events are der ived from a number of sources, both
within and wi thout the organiza t ion . Dif ferent actors
consult different rule bases at different t imes for different
purposes. The organizat ional memory and procedures are
contained in these rule bases. They reflect the open nature
of offices by being malleable in interpretation and subject
to rapid and frequent changes with time.

There are three major classes of rules; the organizational
rule base, the individual rule bases and the group rule bases.
The three are derived from different sources and contain a
rich variety of contradictions, both internally and with each
other. It should be emphas ized that the event handl ing
rules, as contained in the rule bases, are different from those
used to change the rules in the rule bases.

The Organizational Rule Base
This is the main rule base used by the entire organization. It
has the following properties:
• There are formal ways of creating, amending, destroying

and enforcing compliance with the rules. Examples of
such rules are civil const i tut ions, laws, internat ional
treaties and governmenta l regulations. The ways of
creat ing and changing the rules are general ly well
known.

• The rules are publicly available. Al though the rules
themselves may change in their interpretation from time
to t ime due to court rulings, for example, the text of the
rules can be obtained in publicly accessible data banks.

• The rules are (in principle) well known. Organizational
actors are generally assumed to know of their existence.
There are often formal channels of rule distribution.

• The rules come from multiple sources. In a legal sense, a
commercial organization is bound by rules from senior
and junior levels of government , international treaties
and formal business agreements concluded with other
organizat ions. These rules can conflict . This is not
exclusively due to problems of interpretation. Often,
different levels of jurisdict ion have differing goals and
the laws they make can be in direct conflict with each
other .

The rules are not created by those who must administer
them. There are usually bodies created for the specific
purpose of adminis ter ing the rules, separate from the
bodies that created them.

The Individual Rule Bases
These rule bases are the sets of rules used by individuals or
small groups of individuals in the per formance of their
duties. They are largely specific to the individual concerned
and when an individual changes jobs, the rules used by the
new incumbent change accordingly. They have the follow-
ing properties:
• The rules belong to the individual processing the event

in question.
• The rules are not formally codified. The rules are usually

not even created until some event occurs which requires a
rule. It is then created on the spot and after application
to the circumstance which required it, may be added to
the individual rule base or may be forgotten.

• They are not publicly available. Their existence may not
even be known by anyone other than the actor using
them. The actor may even hide or deny their existence.

• The rules in this base are used rather infrequently. They
are typically used to handle small numbers of exceptions
occurr ing infrequent ly. If large numbers of s imilar
exceptions occur, the rules used tend to become formal-
ized and thus leave this classification.

• The rules are derived from one source, the individual
per forming the task. They are easily changed and
because of this, they are not contradictory.

• The rules are made by the same person who implements
them. It is problems in applicat ion of the other rule
bases that cause them to be created. The rules frequently
confl ic t with those in the other two classes of rule
bases. They are usually created to resolve conflicts or
uncertainties in the more formal rule bases.

The Group Rule Bases
The third class of rule bases consists of those developed by
groups of actors to deal with except ions that cannot be
handled by other means. Typically this is done to handle
the contradictions in the more formal organization rule base
or to formalize procedures that were previously handled by
actors using individual rule bases. They have the following
propert ies .
• The rules apply to larger numbers of exceptions. An

individual except ion is often handled in an ad hoc
manner by an individual actor. Large numbers of excep-
tions usually require a higher level of handling.

• The rules are not formally codified. If they were, they
would be part of the organizational rule base. They may
or may not be written down, or minuted but they don't
constitute a formal set of rules.

• There is no procedure to ensure compliance with these
rules.

• The rules are not publicly available. The actors them-
selves are usually made aware of the rules but there are no
formal ways of making them known publicly. The actors
may not want the rules known widely or their existence
realized at all.

• The rules are often widely known or suspected. They may
exist only very informally.

• The rules are very strongly influenced by the implemen-
tors. Often it is the implementors who create them in
order to realize some local goal or to facil i tate the
handling of events.

304

Although the rule bases are conceptually distinct, there may
be considerable overlap in practice within an organization.
An individual actor may use rules from all three bases
depending on whether or not that actor works alone on a
task or as part of a group, and, on the nature of the task. The
so-called "unwritten rules" of an organization appear as part
of the group and individual rule bases. The dist inct ions
between them are not always clear and different organiza-
tions may have their rules classified in different bases. Such
things as dress codes may be found in the formal rules of
one organization and in the group rules of another. In either
case they can directly conflict with state legislation in such
matters.

This view of the role and structure of group rule bases differs
from that proposed by some other studies, e.g., [27]. We
emphasize that the group rule base is only quasi-structured
and often does not appear in written form, making it qualita-
tively different from the organizational rule base.

The rule bases are dynamic. They change frequently. The
changes are ini t iated by the economic and regulatory
environment and by the nature of the events and exceptions
that are detected. The nature of these changes is discussed in
the next section.

THE DYNAMICS OF RULE BASES
The contents of the three rule bases change constantly due
to changes in the operating environment or personnel.

When actors change responsibilities, the rules by which an
event is handled change as well. This is due to the new set of
individual rules a ccom pany i ng the actor which will
influence not only the performance of the actor in individ-
ual duties but also the performance of bodies on which that
actor sits.

Even if there are no personnel changes, the rules migrate
between classes and change their structure. An "individual"
rule which is used and seen to work well tends to become
part of the group rules. This is particularly true if the excep-
tion which caused the rule to be created increases in
frequency. The individual rule will tend to diffuse and spread
among other actors and related groups. Several things may
happen:
• An "individual" rule may be deemed to be undesirable.

The rule may be dropped or modified to appear more
favourable.

• A "group" rule which is seen to work well may become
codified by some competent authority and become part
of the formal organizational rule base.

• Similarly, a rule which is thought to have undesirable
effects may be prohibited by an authority.

The process by which the contents of the rule bases is
changed runs in parallel with the processes implementing
the regular business of the organization. The changes are
created and implemented as side effects of regular business.
These concepts are shown in figure 2.

GOAL VE RIFICATIO N
During the processing of routine events the contents of the
rule bases are not usually changed. If a change occurs, it is
generally because of a change in the organization's operat-

• V

R u l e b a s e

Fig. 2. The dynamics of rule base changes.

ing envi ronment rather than something due to the events
themselves .

When a true exception is recognized, the rule bases are
updated by the appropriate actor or actors, and the event is
re-handled. When processed by the new rules, the event is
either handled by the new rules or discarded. The question
then arises whether or not the goal can actually be attained
by the revised set of rules.

The result of the recognizer transition T 2 is either t r u e or
false. In practice, it is often found that the decision is cal-
culated over a compound predicate that may contain a large
number of conditions to be checked. For example T 2 may be
a composite of several transitions shown in figure 3.

b

a

d

Fig. 3. T 2 as a composite transition.

If a, b, c, d are elementary predicates such as "the amount of
the invoice is less than 500 dollars", or "the date of the
submission was previous to Jan. 4, 1995", then the value of
the predicate, when evaluated, indicates whether the amount
of the invoice really was less than 500 dollars, etc. The
goal state is at tainable if some sequence of t ransi t ions
forms a path leading to it. This the goal state in figure 3 is
attainable if the event in question has properties satisfying
the predicate

305

a b + a c + d + a b = a + d

Note the redundancy with the first and last terms in the
expression. This redundancy is deliberate and reflects the
fact that, in this example, the processing of events at the
stages where predicate b is considered is done by two
different actors.

Changing the rule base during the handling of a true excep-
tion will not merely change the handling for the event in
question, it may also change the way all subsequent events
are handled. For example, if the order of processing events
is modified such that a and b change position, the net of
figure 4 is produced and the goal state is changed to

ab+bc+d

On the other hand, if the order is modified such that a and d
change places, figure 5 is produced and the goal state is
changed to a + d the same as the goal state of figure 3.

a

d

Fig. 4. a and b change positions.

b

a

Fig. 5. a and d change positions.

Thus a modification of the rule bases changing the order in
which the a and b predicates is evaluated would also change
the value of the goal state while a similar change involving
the a and d predicates would preserve this value. We would
like to find a procedure which can determine whether a
change to an office system in response to a change in the
rule bases, will preserve the defined goal state.

In the rest of this section, we present an procedure for
determining whether a change in the rule bases preserves
the finite state diagram of the underlying net with a given
initial marking. In so doing, we can guaranty that a given

change in the rule bases will lead to the same goal state.
This is accomplished by constructing a checking sequence
for the FSM corresponding to the rule bases and to the net
describing how they are used. This checking sequence is
then applied to the net and its response is recorded. If this
response corresponds to the response expected for the
desired case, the rule bases will lead to the correct goal
state.

In
1

2)

3)

this treatment it is assumed that:
The recognizer 's finite state machine M is minimal,
deterministic and represented by a strongly connected
directed graph. The system is deterministic in that all
other things being equal, a given input will always
produce the same output. It is indeterministic in that the
choice of inputs is governed by higher level considera-
tion and may appear random.
After a change in the rule bases, the resulting finite state
machine M ' has the same input set and, at most, the
same number of states as M.
M accepts a reset input r which produces no output and
sends the machine back to its input state.

The new machine M' is thought of as a black box and is not
observed directly. It has limited controllability and observ-
ability. The procedure starts by calculating the unique I/O
sequences, UlOi for each state i, i.e., the sequence of I/O
symbols such that the response to the input portion is
unique to that state.

After this, a second sequence, the Ea sequence, consisting
of the UIO sequences UlOi concatenated together, each one
separated from the others by the reset input, is formed.

Thirdly, the El3 sequences are calculated. To form these
sequences, the transition sequence leading from the initial
state to each of the other states is prefixed to each member
of the UIO sequences in turn, and the resulting augmented
sequences are concatenated together separated by the reset
sequence as before.

The fourth calculation is performed by considering each
ordered pair of states in M. For each pair, the input sequence
leading from the first member to the second member is
prefixed to the UIO sequence for the second member. These
sequences are concatenated together separated by the reset
sequence. These are called the E c sequences.

The fifth calculation uses the results from above. A new
FSM is constructed using the states of M and the edges
derived from the E a, El3 and the E c sequences. If a rural
postman tour can be traversed on this graph, then the
checking sequence for M is obtained by recording the input
and output portions of the edges of the tour. If such a tour
cannot be traversed, sufficient edges are added from the
edges of M such that the tour can be made. The checking
sequence is then formed as before.

By using the checking sequence as input to the graph M '
and by observing the output sequence, it can be determined
whether M' is similar to M or not. In particular, if the two
are not the same, the goal states are not identical.

A detailed explanation of the procedure described above and
an example can be found in [18].

306

EXAMPLE
In this section, a real world example [20] of one kind of
purchasing process in a large paper machinery factory is
provided:

The process is initiated by the engineering or manufactur-
ing departments. When a need for a purchase arises, they
normally request a purchase number from the computer
system, then manually fill a purchase order and send it to a
purchaser responsible for such items in the purchasing
department. Even though the manufacturing departments

()
¢

()

()

have access to the purchasing system, they are not allowed
to place orders. This task is left to purchasers, who know
how to do it in accordance with organizational policy. A
Petri-net representation of the process is shown in figure 6.

The purchaser first determines whether the order should be
sent to tender or whether there is an appropriate agreement
with some supplier about delivering such items. If no such
supplier is available and there is plenty of time before the
requested delivery, tenders are sent to potential suppliers.
When offers are received, they are reviewed and the most
appropriate supplier is selected. After this, the process goes

need

request a purchase
number

fill out a purchase
order form

send purchase order
to purchase office

send request
to tender - - choose supplier

receive offers
and select
supplier

input order

input order

purchase purchase

__• goods

report received
goods to
storage data base

invoice

receive
invoice

verify transaction

Fig. 6. Petri-net representation of purchasing system.

307

on as if there had not been a tendering process at all.

Next, an order will be produced and will be sent to the sup-
plier. This updates the order database. When the requested
goods arrive, information about them will be input to the
storage database. When a corresponding invoice is
received, its details will be input and transaction verifica-
tion can take place. This is shown by the left branch of
figure 6. If the order is not sent to tender, the path follows
the right branch of figure 6.

Such a process involving several people from several
organizational units is likely to suffer from exceptions. The
following is a real world example of one of them detected
during a case study:

In one of the manufacturing workshops a crucial tool
breaks. Similar tools are used in other workshops, but they
are all in heavy use. The foreman of the workshop knows a
local hardware supplier carrying such tools and decides to
pick one up there in order to keep the work going. Before
going to the store, he requests a purchase number. The store
will use this number as a reference when it later invoices the
factory. When the foreman comes back, he notifies the
purchasing department by filling out a purchase order. He
sends the order to a purchaser. To make transaction verifica-
tion possible, he also inputs his purchase to the storage
database.

When the purchaser's secretary starts handling the purchase
order, she is surprised to notice that the purchase number
has already storage items attached to it. After a conversa-
tion with another secretary and the purchaser, they figure
out what has happened. When the situation becomes clear to
the purchasing department, they can start gathering more
information and later are able to fill out a purchase order and
thus make the forthcoming transaction verification possi-
ble. This requires a change to the organizational rule bases.

A change, however, may cause the system to work in unpre-
dictable and inconsistent ways if the changes are not done
carefully. The algorithm described earlier can be used to
determine whether the changes in the rule bases brought
about by resolution of the exception will cause undesirable
effects elsewhere in the system.

The Petri-net of figure 6 is first reduced to its essential
features by elimination of those transactions which provide
no useful state space knowledge. The reduced net is shown
in figure 7.

With one initial token in P0, the finite state diagram, FSD,
shown in figure 8 shows the behaviour of the net. To ensure
net liveness, the output of the last transaction is fed back to
place 0.

There are seven vertices in the net, v0 v6 and 14 edges.
Each vertex contains 8 digits denoting whether the
corresponding position in the reduced Petri-net holds a
token or not. Thus v5 contains the digits 00010011,
indicating that positions 3, 6 and 7 hold tokens in that
particular state. The 14 edges are labeled input/output. The
inpu t portion denotes the choice that can be made as to
which way a token can be absorbed by a transition. There is
a maximum of two choices at any point in this example,
labeled a and b.

63

Fig. 7. Reduced Petri-net of figure 6.

The output portion denotes an observable result of a transi-
tion. This is typically a piece of paper or an electronic
entry or something similar. To simplify matters they are
represented here by the integers 0 9.

A redundant edge has been added from v6 to v0 emphasizing
the continuous nature of the purchasing process studied
here.

T h e U I O s e q u e n c e s f o r t h i s e x a m p l e
a / O , a / 1 , a / 2 , a / 3 , a / 4 , a / 5 , a / 6 all have the same input
portions, simplifying the analysis greatly. Using the calcu-
lation sequence described in [18] the value of the input
portion of Ec~ is: r a r where r is the reset input described
earlier.

The input portions of the Eft sequences, when concatenated
together, yield the string

aar bar aaar aaaar aabar oaaaar

The Ec sequences are calculated from the transition paths
from each state to each successor state including those
paths which are simple loops. There are 14 such paths and
their input portions are:

oar bar bar oar bar oar oar bar bar oar bar aar oar bar

The next step consists in calculating E 3 = E a u E 6 ~ E c. The
graph formed from the set of nodes, V! and E 3 is then
modified such that it is strongly connected by selecting
addit ional edges, E " , from the original FSD. This
augmented set of edges, E', is used to form a new graph G' =
(V, E'). This is shown in figure 9.

308

0•.__._..--------------• 10000000

01000000
~ . 2

b/2

00100000

b/0

b/0

a/5

00001101

00011001

5
)

6 L 00000111

a/4

00010011

a/8

b/0

b/0

b/0 ~ a/9

Fig. 8. Finite state diagram of figure 7.

The final step consists in calculating a tour on G', starting
and ending at VO, and traversing all the edges E'. This is
sometimes called a rural pos tman tour. The sequence of
inputs required to implement the tour is the checking
sequence which characterizes the system. For this example,
it has the value

rar aar bar aaar aaaar aabar aaaaar abar bbar baar aaabar
aabbar aabaar aaaaaar aaaabar

bar
aar

aar /)a bar
ba r aa r

r a r

aar aaaa
bar aar
aaar bar
aaaar
aabar a a ~
aaaaar

i } aar
l~ar aaal bar
aar

bar
aar

b

aa

Fig. 9. The states and the E' edges and their input
sequences.

and when it is input to the system, it produces an unique
input output which characterizes it. A change which does
not modify the output will not create any undesired or unex-
pected states.

CONCLUSION
The source of exceptions can be traced to a change of some
kind in the operating environment of an organization or to
some unexpected events whose handling may cause a
change in the rule bases. These exceptions are extremely
important in any study of OIS because of their potential
cost and the possibility that their handling may obscure or
inhibit the attaining of office goals.

The events that enter offices are analyzed to recognize their
type and treatment and handled according to the rules in the
office rule bases. These rule bases originate in the formal
organization rules, the informal group rules and individual
rules. These rules may conflict and overlap and they will
change with time.

A procedure, based on the finite state machine representa-
tion of the Petri-net description of event handling using
rules, was introduced to provide a method of determining
whether the goal of the office procedures in question could
still be attained after change. A positive result arising from
this algorithm is sufficient, although not necessary, to
ensure that the process goal can still be reached after a rule
base change has been effected.

ACKNOWLEDGEMENT
We would like to thank Professor Clarence (Skip) Ellis for
his suggestions and the hospitality offered to us at the
University of Colorado at Boulder.

309

REFERENCES
1. Auram~iki, E. and Lepp~inen M. Exceptions and Office

Information Systems. In P. Pernici, A. A.. Verrijn-
Stuart Ed. Office Information Systems: The Design
Process, Elsevier Science Publishers B. V. (North-
Holland), IFIP, 1989, pp. 167-182

2. Borgida A. Exceptions in Object Oriented Languages.
SIGPLAN Notices, 21, 10 (1986), 107-119

3. Borgida, A. Language Features for Flexible Handling of
Exceptions in Information Systems. ACM Trans.
Database Syst. I0, 4 (Dec. 1985), 565-603

4. Broverman, C.A. Constructive Interpretation of
Human-generated Exceptions During Plan Execution.
Ph.D. Dissertation Thesis, University of
Massachusetts, 1991

5. Cheriton, D. Making Exceptions Simplify the Rule and
Justify Their Handling. Information Processing 86, H.
J. Kugler Ed. North-Holland, 1986

6. Cox, B. Exception Handling and Object Oriented
Programming. Workshop-paper presented at
ECOOP'91, Geneva, July, 1991

7. Dony, C. Exception Handling and Object Oriented
Programming: Towards a Synthesis. Proceedings of
OOPSLA/ECOOP '90, ACM Press, New York, 1990

8. Ellis, C.A. Formal and Informal Models of Office
Activity. Information Processing 83, R. E. A, Mason
Ed. Elsevier Science Publishers B. V. (North-Holland),
IFIP, 1983, pp. 11-22

9. Ellis C.A. Information Control Nets: A Mathematical
Model of Office Information Flow. Proceedings of
ACM conference on Simulation, Measurement and
Modeling of Computer Systems, 1979, pp. 225-239

10. Galbraith, J. R. Designing Complex Organizations,
The European Institute for Advanced Studies in
M a n a g e m e n t , A d d i s o n - W e s l e y , R e a d i n g ,
Massachusetts, 1973

11. Galbraith, J. R. Organization Design, The Wharton
School, University of Pennsylvania, Addison-Wesley,
Reading, Massachusetts, 1977

12. Genrich, H. Predicate/Transition Nets. Advances in
Petri Nets, Lecture Notes in Computer Science, Vol.
254, W. Reisig and G. Rozenberg Ed. Springer-Verlag,
Berlin, 1987, pp. 207 - 247

13. Goodenough, J. Exception Handling: Issues and a
Proposed Notation. Comm. ACM, 18, 12 (Dec. 1975),
683-696

14. Karbe, B. K and Ramsberger, N. G. Influence of Excep-
tion Handling on the Support of Cooperative Office

Work. ACM SIGOIS, 11, 4 (Dec. 1990), 2-15
15. Kunin, J. Analysis and Specification of Office

Procedures. Massachusetts Institute of Technology,
Laboratory for Computer Science, MIT/LCS/TR-275,
1982

16. Liskov, B. A. and Snyder, A. Exception Handling in
CLU. IEEE Transactions on Software Engineering, SE-
5, 6 (Nov. 1979), 546-558

17. Masapati, G. H., White, G. M., TP Nets: A Computer
Based Tool for Office System Design. Proc of IFIP
WG8.4 Working Conference on Office System Design,
Linz, Austria, Aug. 15 - 17, 1988, pp. 116-t29

18. Rezaki, A., Ural, H., White, G. Construction of Check-
ing Sequences Based on UIO Sequences. Proc. of Ninth
Int. Symp. on Computer and Information Sciences,
Antalya, Turkey, Nov. 7-9, 1994, pp. 319-326

19. Saastamoinen,. H. T. Rules and Exceptions. Informa-
tion Modeling and Knowledge Bases IV: Concepts,
Methods and Systems, H. Kangassalo, H. Jaakkola, K.
Hori, T. Kitashi Eds. lOS Press, Amsterdam, 1993, pp.
271-286

20. Saastamoinen, H. T. Significance of Exceptions in
Office Information Systems - A Case Study in Valmet
Paper Machinery, preprint, 1994

21. Saastamoinen, H. T., Savolainen, V. V. Exception
Handling in Office Information Systems, Proc. of the
Third Intl. Conf. on Dynamic Modeling of lnJbrmation
Systems, Noordwijkerhout, The Netherlands, 1992,
pp. 345-363

22. Saastamoinen, H. T., Exceptions: Three Views and a
Taxonomy, preprint, 1995

23. Saastamoinen, H. T., Markkanen, M. V., and
Savolainen, V, V. Survey on Exceptions in Office
Information Systems, Univ of Colorado at Boulder
Tech. Report CU-CS-712-94, 1994

24. Strong, D. A. and Miller, S. M. Exception Handling
and Quality Control in Office Operations, Boston
University School of Management Working Paper
Number 89-16, Boston, MA, 1989

25. Suchman, L. A. Office Procedure as Practical Action:
Models of Work and System Design. ACM Trans. on
Office Information Syst. 1, 4 (Oct. 1983), 320-328

26. Twining, W. and Miers, D. How to Do Things with
Rules, A Primer of Interpretation, Weidenfeld and
Nicolson, London, 1976

27. Williams, L. J. and Lochovsky, F. H., Supporting
Knowledge Migration in Organizations, Information
Processing 89, Ritter, G. X. Ed., Elsevier Science
Publishers B.V., Amsterdam, 1989, 259-264

310

