
www.elsevier.com/locate/datak

Data & Knowledge Engineering 50 (2004) 9–34
Correctness criteria for dynamic changes
in workflow systems––a survey q

Stefanie Rinderle *, Manfred Reichert, Peter Dadam

Department Databases and Information Systems, Faculty of Computer Science, University of Ulm,

James-Franck-Ring, 89069 Ulm, Germany

Available online 25 January 2004

Abstract

The capability to dynamically adapt in-progress workflows (WF) is an essential requirement for any

workflow management system (WfMS). This fact has been recognized by the WF community for a long time

and different approaches in the area of adaptive workflows have been developed so far. This survey sys-

tematically classifies these approaches and discusses their strengths and limitations along typical problems

related to dynamic WF change. Along this classification we present important criteria for the correct

adaptation of running workflows and analyze how actual approaches satisfy them. Furthermore, we provide

a detailed comparison of these approaches and sketch important further issues related to dynamic change.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Workflow management; Adaptive systems; Dynamic workflow changes; Correctness criteria

1. Introduction

A rapidly changing environment and a turbulent market force any company to change their
business processes ever more frequently [1]. Process changes become necessary, for example, when
new laws come into effect, optimized or restructured business processes are to be implemented,
exceptional situations occur, or reactions to a changed market are required. Therefore, a critical
qThis work was done within the research project ‘‘Change management in adaptive workflow management systems’’,

which is funded by the German Research Community (DFG).
* Corresponding author. Tel.: +49-731-50-24229; fax: +49-731-50-24134.

E-mail addresses: rinderle@informatik.uni-ulm.de (S. Rinderle), reichert@informatik.uni-ulm.de (M. Reichert),

dadam@informatik.uni-ulm.de (P. Dadam).

0169-023X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.01.002

mail to: rinderle@informatik.uni-ulm.de

10 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
challenge for the competitiveness of any enterprise is its ability to quickly react to business process
changes and to adequately deal with them [16,31].
As pointed out in [17,22,28,34], basically, WF changes can take place at two levels––the WF

type and the WF instance level. Instance-specific changes are often applied in an ad-hoc manner
and become necessary in conjunction with real-world exceptions. They usually affect only single

WF instances. As opposed to this, in conjunction with WF schema changes at the WF type level, a
collection of related instances may have to be adapted. There are many approaches supporting
such adaptive workflows [1,5,9,18,21,26,28,34]. All of them present very interesting, but partially
strongly differing ideas and solutions. Therefore, it is an important job to summarize central
correctness criteria for adaptive workflows and to compare actual approaches along them. In this
survey, we focus on three fundamental issues regarding dynamic WF changes:

(1) Completeness. Users must not be unnecessarily restricted, neither by the applied WF meta
model nor the offered change operations. Therefore, expressive control/data flow constructs
must be provided [7]. For practical purposes, at minimum, change operations for inserting
and deleting activities as well as control/data dependencies between them are needed.

(2) Correctness. The ultimate ambition of any adaptive WF approach must be correctness of dy-
namic changes [1,5,9,18,21,26,28,34]. More precisely, we need adequate correctness criteria to
check whether a WF instance I is compliant with a changed WF schema or not; i.e., whether
the respective change can be correctly propagated to I without causing inconsistencies or er-
rors (like deadlocks or improperly invoked activity programs). These criteria must not be too
restrictive, i.e., no WF instance should be needlessly excluded from being adapted to a process
change.

(3) Change realization. Assuming that a dynamic change can be correctly propagated to an instance
I (along the stated correctness criteria), it should be possible to automatically migrate I to the
new schema. In this context, one challenge is to correctly and efficiently adapt instance states.

In the following, we provide a classification of actual approaches based on the operational
semantics of the underlying WF meta models and on the kind of correctness criteria applied for
dynamic WF changes (Sections 2 and 3). Section 3 introduces a selection of typical dynamic

change problems and discusses strengths and weaknesses of the approaches when dealing with
these problems. A detailed comparison of the different approaches is presented in Section 4. We
sketch important change scenarios and existing approaches in Section 5 and close with a summary
in Section 6.
2. Workflow meta models of adaptive workflow approaches

Current approaches supporting adaptive workflows are based on different WF meta models.
Very often, the solutions offered by them are dependent on the expressiveness as well as on the
formal and operational semantics of the used formalism. Fig. 1 summarizes WF meta models for
which adaptive WF solutions have been realized. According to [15] we classify those meta models
with respect to their operational semantics and the evaluation strategies applied for executing WF
instances during runtime. The first strategy uses only one type of (control flow) token passing

Fig. 1. Meta models of approaches supporting adaptive workflow.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 11
through each WF instance (True-Tokens). The other strategy is based on two types of tokens––
True- and False-Tokens. (An early approach for True-/False-Tokens in bipolar synchronization
schemes was presented in [11].) Simplistically, True-Tokens trigger activities that are to be exe-
cuted next and False-Tokens describe skipped activities. Formalisms which solely use True-
Tokens include, for example, Petri-Nets [1,9,28] (cf. Section 2.1). Approaches which, in addition,
use False-Tokens to represent skipped activities or skipped execution branches can be found in the
area of graph-/activity-based meta models [5,18,21,26,34] (cf. Section 2.2). They can be further
divided according to the way they represent the tokens. One possibility is to gain them from
execution histories [5], which log events like activity start and completion. Alternatively, special
(model-inherent) activity markings, which represent a consolidated view on the history logs, can be
used [21,26,34].
In the following, for each approach shown in Fig. 1, we sketch the basic formalism used for WF

modeling and execution together with its structural and dynamic properties. This background
information is useful for better understanding the criteria applied by these approaches to guar-
antee dynamic change correctness (cf. Section 3).

2.1. Approaches with true-semantics

WF Nets. A WF Net is a labeled place/transition net N ¼ ðP ; T ; F ; lÞ representing a control
flow schema [28,29]. Thereby, P denotes the set of places, T the set of transitions, F �
ðT � PÞ [ðP � T Þ the set of directed arcs, and l the labeling function, which assigns a label to each
transition. Data flow issues are excluded. A WF Net must have one initial place i and one final
place f . In [28] a soundWFNet has to be connected, safe, and deadlock free as well as free of dead
transitions. Furthermore, sound WF Nets always properly terminate, i.e., the end state––which
contains one token in f and no other tokens––is always reachable. The behavior of a WF instance
is described by a marked WF net ðN ;mÞ with marking function m and associated firing rules. A
transition t is enabled if each of its input places contains a token. If t fires, all tokens from its input
places are removed and to each output place of t a token is added.

Flow Nets. The operational semantics of Flow Nets [8–10] is comparable to (safe) WF Nets but
with one major difference: Places can be equipped with more than one token. Chautauqua [10]
offers an implementation where Flow Nets are generalized to Information Control Networks
(ICN). An ICN bases WF enactment on instance-specific data tokens. Different WF instances are
distinguished by coloured tokens and are controlled by the same ICN.

MILANO Nets. Another Petri-Net-based approach is offered by MILANO [1,2]. As opposed to
WF Nets and Flow Nets the expressiveness of MILANO Nets is restricted to marked, acyclic

12 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
Free-Choice Petri Nets (so called Net Models (NM)). Data flow is not explicitly considered. An
NM S can be mapped to a Sequential Model (SM) which represents global states and state
transitions of S. Thus, SM corresponds to the reachability graph of S.
Interestingly, the above approaches abstract from internal activity states, i.e., they only dif-

ferentiate between activated and non-activated transitions. As we will see later, this coarse clas-
sification may be unfavorable in conjunction with certain kind of dynamic changes.

2.2. Approaches with true/false-semantics

As opposed to the above approaches, the following WF meta models distinguish between
different states an activity may go through. Generally, initial status of an activity is set to
NotActivated. It changes to Activated when all preconditions are met. Activity execution is
then either started automatically or corresponding worklist entries are generated. When starting
activity execution its status changes to Running. Finally, at successful termination, status passes
to Completed. In addition, some of the models assign status Skipped to activities belonging to
non-selected execution branches. Usually, in addition, an execution history PS

I ¼ he0; . . . ; eki is
maintained for each instance I with ei 2 fðSa; hvar;vali�Þ; ðEa; hvar;vali�Þg. For each started
activity X the values of process data elements read by X and for each completed activity Y the
values of data elements written by Y are logged.

2.2.1. Case 1: approaches based on history logs

WIDE Graphs: WIDE [5] uses an activity-based WF meta model which allows the modeling of
sequential, parallel, conditional, and iterative activity executions. A WF schema has to meet
several constraints to be correct: first there must be a path from the start activity to all other
activities and the end activity has to be reachable from all of them. The other constraints refer to
the correct use of splits and joins. Furthermore, each WF schema S is associated with a set of
global process variables whose values may be read or written by activity instances during runtime.
A particular instance I is described by its schema S and its execution history PS

I . As opposed to
the following approaches, WIDE only logs activity completion events.

TRAMs Graphs. In TRAMs [18]––in contrast to other graph-/activity-based approaches––
control flow is not realized by control edges. Instead, it is described in a declarative way by using
conditions for starting/finishing activities. WF schema correctness is preserved by invariants, i.e.,
schema-related conditions which must be fulfilled. Data flow is explicitly specified by connecting
output and input parameters of subsequent activities. TRAMs distinguishes between activity
states Activated, Running and Completed, and logs status changes in the execution history
PS

I of the respective instance I.

2.2.2. Case 2: approaches using model inherent markings

WASA2 Activity Nets. WASA2 [33,34] uses an activity-based meta model. A WF schema
S ¼ ðVS;CS;DSÞ is a tuple with sets of activity nodes VS, control connectors CS VS � VS, and data
connectors DS VS � VS. Similar to TRAMs, the flow of data is modeled by connectors which
map output and input parameters of subsequent activities. A WF schema S is correct iff all input
parameters are correctly mapped onto a type-conform output parameter and the graph structure
is acyclic, i.e., loops are excluded. A WF instance I is described by an instance graph

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 13
I ¼ ðVI ;CI ;DIÞ whose state is denoted by model-inherent activity markings. WASA2 distinguishes
between markings NotActivated, Activated, Running, Completed, and Skipped.

Breeze Activity Nets. Similar to TRAMs and WASA2, Breeze [25,26] uses model-inherent
activity markings. A WF schema is described by a directed acyclic graph W ¼ hN ; F i with finite
set of activity nodes N and flow relation F � N � N . It is possible to model sequences, parallel/
conditional branches and complex activities. WF data is described by a set of WF variables. A
schema is correct if there is a unique initial node ni and a unique final node nf , and for all n 2 N
there is a path from ni to nf via n. Breeze also ensures correct data provision of invoked activities.

ADEPT WSM-Nets. Another approach with model-inherent markings is offered by Well-
Structured Marking-Nets (WSM-Nets) as applied in ADEPT [21]. WF schemes are represented by
serial-parallel graphs S ¼ ðN ;D;NodeType;CtrlE; SyncE;LoopE;DataE;ECÞ with activity set N ,
data element set D, and distinguishable node/edge types. Branchings of different type and loops
are modeled in a block-oriented fashion. However, this restrictive structure can be relaxed by the
use of sync edges (SyncE), which allow to define precedence relations between activities of parallel
branches. Data flow is modeled by connecting global process variables (D) with activities (N) either
by read or write data edges (DataE). A schema is correct iff Sfwd ¼ ðN ;CtrlE; SyncEÞ is an acyclic
graph, i.e., the use of sync edges must not lead to deadlock-causing cycles [21]. An instance I
is defined by a tuple (S;NSS;ESS; ValS;PS

I) where S denotes the corresponding schema and
NSS : N 7!fNotActivated;Activated;Running;Completed;Skippedg possible node
states. ValS is a function on D. It reflects for each data element d 2 D either its current value or
UNDEFINED (if d has not been written yet). Finally, PS

I is the execution history of I.
Comparing the above formalisms we can find many differences. For example, only WF Nets,

Flow Nets, WIDE Graphs, and ADEPTWSM-Nets allow the modeling of loops. Data flow issues
are factored out by WF Nets and MILANO Nets. While WIDE only logs end entries of activities,
the execution histories in TRAMs and ADEPT store the start entries of activities as well.
3. Classification and dynamic change correctness

In this section, we present a classification of the approaches introduced in Section 2. It is based
on the correctness criteria applied in connection with dynamic WF changes. This classification is
fundamental for better understanding the different solutions as well as their strengths and limi-
tations. In doing so, we do not make a difference between changes of single instances and
adaptations of a collection of instances (e.g., due to a WF type change). Instead we focus on
fundamental correctness issues related to dynamic WF changes. In the following, let S be a WF
schema and let I be an instance based on S. Assume that S is transformed into another correct
schema S 0 by applying change D. What schema correctness exactly means depends on the struc-
tural and dynamic correctness properties of the used WF meta model (cf. Section 2).

3.1. Classification and problem framework

Fig. 2 presents a two-dimensional classification: The first dimension (marked on the vertical
axis) is grouped by the kind of correctness criteria the different approaches are based on. The
second dimension (marked on the horizontal axis) indicates on which information the different

Fig. 2. Classification of approaches along the applied correctness criteria.

14 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
approaches check their particular correctness criterion. Regarding the first dimension, we dis-
tinguish between approaches founding their correctness criteria on WF graph equivalence––WF

Nets, MILANO Nets, and WASA2 Activity Nets––and approaches with correctness criteria based
on WF trace equivalence–Flow Nets, WIDE Graphs, Breeze Activity Nets, TRAMs Graphs and
ADEPT WSM-Nets. The core idea of graph equivalence is either to compare the respective WF
schema before and after the change [28] or to map the WF instance graph of I to the changed WF
schema S 0 [1,34]. Depending on the ‘‘degree of coverage’’ it can be decided whether change D is
applicable to I or not. Generally, trace equivalence focuses on the work done by I so far
[5,18,23,26]. If it could have been achieved on S 0 as well, I can be migrated to S 0. A predictive

approach is offered by Flow Nets [9] where, in addition, future instance execution on the changed
schema is taken into account. Regarding the second dimension, approaches can be further dis-
tinguished depending on how they check their particular correctness criterion. Some of them
consider complete history information of respective instances [5] whereas others use a consoli-
dated view of previous instance execution [18,24].
We show how the approaches from Fig. 2 ensure correctness in conjunction with dynamic WF

changes. In addition, for comparison purposes, we exemplarily discuss the approaches along five
typical problems related to dynamic change (cf. Fig. 3). Due to lack of space we cannot cover all
problems arising in this context. Particularly, we do not consider side-effects of control flow
modifications on WF aspects other than control and data flow (e.g. temporal constraints). 1

Nevertheless, the following problems are very typical in the context of dynamic changes and
therefore provide a good basis for comparing existing approaches.

(1) Changing the Past (CP). The CP problem corresponds to the rule of thumb not to ‘‘change the
past of an instance’’. Neglecting this rule may lead to inconsistent instance states (e.g., live-
locks or deadlocks) or missing input data of subsequent activity executions (see Fig. 3(1)).

(2) Loop Tolerance (LT). The LT problem refers to an approach�s ability to correctly and reason-
ably deal with changes on loop structures (see Fig. 3(2)). In particular, approaches should not
1 For example, there is considerable work in the literature focussing on the interplay between dynamic WF changes

and the correct handling of time [20,26].

Fig. 3. Five typical problems regarding dynamic workflow change.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 15
needlessly exclude instances from migrating to a new schema solely based on the fact that the
respective changes concern loops.

(3) Dangling States (DS). The DS problem arises in conjunction with approaches not distinguish-
ing between activated and started activities (see Fig. 3(3)). As a consequence, very often
such approaches either forbid the deletion of activated activities––what is too restrictive––
or they allow the deletion of already started activities––what leads, for example, to loss of
work.

(4) Order Changing (OC). The OC problem refers to correctly adapting instance markings when
applying order changing operations like parallelization, sequentialization, and swapping of
activities (see Fig. 3(4)).

(5) Parallel Insertion (PI). As opposed to (4) the PI problem arises when inserting a new parallel
branch. Concerning Petri-Nets, for example, after such a change we may have to insert addi-
tional tokens to avoid deadlocks in the sequel (see Fig. 3(5)). The OC and PI problems are
closely related to the dynamic change bug as it has been presented in [28].

In the following we refer to these characteristic problems as the dynamic change problems, and
we show how the different approaches supporting adaptive workflows deal with them.

3.2. Approaches based on graph equivalence

The approaches discussed in this section base their particular correctness criteria on graph
equivalence [1,28,29,33,34]. Here we can further distinguish between approaches which do [1,34]
and which do not use instance execution histories [28] for checking compliance.

16 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
3.2.1. Approaches not requiring instance execution information

WF Nets. The core idea of the approach presented in [28] is as follows: An instance I on schema
S (represented by a marked WF Net) is compliant with the modified schema S0 :¼ S þ D, if S and
S0 are related to each other under given inheritance relations; i.e., either S is a subclass of S0 or vice
versa. In this context, the following two kinds of basic inheritance relations are provided [28]: A
schema S is a subclass of another schema S0 if one cannot distinguish the behaviors of S and S 0 (1)
either when only executing tasks of S which are also present in S 0 or (2) when arbitrary tasks of S
are executed but only effects of those tasks are taken into account which are present in S 0 as well.
Thus, inheritance relation (1) works by blocking and inheritance relation (2) works by hiding a
subset of tasks of S. More precisely, blocking of tasks means that these tasks are not considered
for execution. Hiding tasks implies that the tasks are renamed to the silent task s. (A silent task s
has no visible effects and is used, for example, for structuring purposes.) One example is depicted
in Fig. 5(1) where the newly inserted activities X and Y are hidden by labeling them to the silent
task s. In addition, further inheritance relations can be achieved by combining hiding and
blocking of WF tasks. Based on these inheritance relations we can state the following correctness
criterion.

Correctness Criterion 1 (Compliance under inheritance relations). Let S be a WF schema which is
correctly transformed into another WF schema S0. Then instance I on S is compliant with S 0 if S
and S0 are related to each other under inheritance (for a more formal definition see [28]).

The challenging question is how to ensure Criterion 1. In [28] van der Aalst and Basten present
an elegant way by providing special change operations which automatically preserve one of the
four presented inheritance relations between the original and the changed schema. These change
operations comprise additive and subtractive changes or, more precisely, the insertion and dele-
tion of cyclic structures, sequences, parallel and alternative branches. Let therefore again schema
S be transformed into schema S 0 by change D. In order to check whether D is an inheritance
preserving change and therefore S and S0 are related under inheritance (cf. Criterion 1) the authors
define precise conditions with respect to S and S 0.
As an example take the insertion of a cyclic structure Nc into S (resulting in S0) where Nc and S

have exactly one place in common (see Fig. 4). Then it can be ensured that S0 is a subclass of S
when hiding X and Y in Nc. Checking inheritance of arbitrary WF schemes is PSPACE-complete
Fig. 4. Inheritance preserving change.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 17
[28]. However, a powerful diagnosis tool called Woflan has been developed [28,32] to automati-
cally decide inheritance rules for two given schemes.
As it can be seen from Fig. 5(1), using Criterion 1 it is possible to change already passed WF

regions (CP problem). One problem in this context is to correctly adapt control flow tokens.
However, by using anonymous tokens (i.e., excluding data tokens) the CP problem is simplified.
Using inheritance relations as described above restricts the set of applicable changes to additive

and subtractive ones. More precisely, there is no adequate inheritance relation based on hiding or
blocking activities when applying an order-changing operation. Consequently, the OC problem
(cf. Fig. 3) is factored out. Nevertheless, van der Aalst and Basten [28] offer an original and very
important contribution by ensuring compliance for many practically relevant changes without
need for accessing instance data.
After having decided whether an instance I on S is compliant with S0 or not (cf. Criterion 1), we

need rules to adapt the marking of I on S0. For this purpose, [28] provides transfer rules based on
inheritance relations (cf. Definition 1). After inserting activities, cyclic structures or alternative
branches, necessary marking adaptations are realized by directly mapping tokens of S onto S0.
The insertion of parallel branches is more complicated since in some cases we have to insert
Fig. 5. Correctness checking and marking adaptations in [28,29].

18 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
additional tokens to avoid deadlocks. One example is given in Fig. 5(5) where we add one token to
an input place of the parallel join transition.
3.2.2. Approaches using complete execution information
WASA2 Activity Nets. WASA2 [29,33,34] also uses graph equivalence to state formal correct-

ness for dynamic changes. As opposed to WF Nets WASA2 additionally takes instance infor-
mation into account. More precisely, the execution state of an instance is described by its purged
instance graph which is derived from original schema S by deleting all activities which have not
been started yet and by removing all associated control and data edges.
Formally, a mapping m : VI 7!VS0 between WF instance I ¼ ðVI ;CI ;DIÞ and WF schema S 0 ¼

ðVS0 ;CS0 ;DS0 Þ assigns to every instance node n 2 VI a unique schema node mðnÞ 2 VS0 . With this, the
following correctness criterion based on valid mappings between instance and schema graph can be
stated:

Correctness Criterion 2 (Valid mapping). Let I ¼ ðVI ;CI ;DIÞ be a purged WF instance graph
derived from WF schema S ¼ ðVS;CS;DSÞ. Let further D be a change which correctly transforms S
into another schema S 0 ¼ ðVS0 ;CS0 ;DS0 Þ. Then: I is compliant with S 0 iff a valid mapping m: VI 7!V 0

S
exists; i.e.
ð8i0; j0 2 VS0 with 9ði0; j0Þ 2 CS0 9 i; j 2 VI : i0 ¼ mðiÞ; j0 ¼ mðjÞ ^ ði; jÞ 2 CIÞ and vice versa ^

ð8k; l0 2 VS0 with 9ðk0; l0Þ 2 DS0 9k; l 2 VI : k0 ¼ mðkÞ; 0
l ¼ mðlÞ ^ ðk; lÞ 2 DIÞ and vice versa
Intuitively, an instance I can be migrated to a changed schema S 0 if each completed activity of I
is also contained in S 0 and all control and data dependencies existing in I have counterparts in S0

(cf. Fig. 6(5)). Criterion 2 can be paraphrased using the notion of schema prefixes [33] which leads
to Criterion 3.

Correctness Criterion 3 (Schema prefix). Let I ¼ ðVI ;CI ;DIÞ be a purged WF instance graph
derived from WF schema S ¼ ðVS;CS;DSÞ. Let further D be a change which transforms S into
another schema S 0 ¼ ðVS0 ;CS0 ;DS0 Þ. Then: I is compliant with S0 iff I is a prefix of S0, i.e.,

VI � VS0 , CI � CS0 , DI � DS0 and 8ðp; qÞ 2 ðCS0 � CIÞ [ðDS0 � DIÞ : q 62 VI .

Instance graph I4 from Fig. 6(5) is a prefix of S 0 but I3 in Fig. 6(4) is not. From Fig. 6(1) we can
see that Criteria 2 and 3 prohibit changes of already passed graph regions. Thus, correct data
provision of activities and consistent instance states are guaranteed. Since WASA2 Activity Nets
are acyclic (cf. Section 2.2) the LT problem (cf. Fig. 3) is not present. Details about how Criteria 2
and 3 can be checked and instances be adapted to the changed schema have not been available.
However, a powerful prototype exists. Interestingly, for some cases Criteria 2 and 3 are too
restrictive regarding the OC problem (cf. Fig. 3). An example is depicted in Fig. 6(4) where I3
could be smoothly migrated to S 0 but no valid mapping between I3 and S 0 exists.

MILANO Nets. Only a special class of schema transformations is considered, namely parall-
elization, sequentialization and swapping of activities [1]. In doing so, special constraints (sum-
marized by the Minimal Critical Specification (MCS)) are obeyed for the underlying Sequential
Model (cf. Section 2). For these restricted changes the following correctness criterion is provided:

Fig. 6. Criteria 2 and 3 [33,34] applied to typical change problems.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 19
Correctness Criterion 4 (Safe states). Let S be a WF schema and I an instance on S. Let further D
be a change which transforms S into another correct WF schema S 0. Then: I is compliant with S 0 if
I is not in an unsafe state on S regarding S0. A state of S is unsafe regarding S 0 if this state is not
present in S0.

Potential states of S and S 0 can be determined by constructing their Sequential Models
(reachability graphs). An example for an instance with unsafe state is depicted in Fig. 7(1). For
such cases MILANO postpones instance migration until the instance will be in a safe state again.
Doing so cultivates the CP problem (cf. Fig. 3). The LT and the PI problem cannot be evaluated
since the underlying WF schemes are acyclic and parallel insertion is not supported (cf. Section
2.1). Parallelization of activities is always allowed, but no details are given how to adapt instance
markings in this context (cf. Fig. 7(5)).

3.3. Approaches based on trace equivalence

In this section we discuss approaches which base dynamic change correctness on trace equiv-

alence (cf. Fig. 2).

Fig. 7. Typical change problems in MILANO [1].

20 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
3.3.1. Predictive approaches
Flow Nets offer a first approach based on trace equivalence [8,9]. In [9], WF instance changes on

S are carried out by substituting the marked sub-net N1 of S, which is affected by D, by another
marked sub-net N2, which reflects the modifications set out by D. Thereby, N1 is referred to as the
old and N2 as the new change region (cf. Fig. 8(4)). As the authors point out, the selection of the
change regions cannot be fixed. Roughly, the old change region is defined as the smallest marked
sub-net containing all activities affected by D.
For the following considerations, please remember that �i denotes the initial and �f the final

marking of S (cf. Section 2.1). Furthermore, we formally define the FiringSequenceSet (FSS) of a
schema S as follows: Let m and m0 be two markings on S. Then FSSðS;m;m0Þ is the set of all
possible firing sequences leading from m to m0 on S.

Correctness Criterion 5 (Pre-change firing sequence). Let I be an instance on WF schema S with
marking m and let x 2 FSSðS;�i;mÞ. Let further D be a change which transforms S into another
correct WF schema S 0 and let m0 be the resulting marking of I on S0. Then I is compliant with S 0 iff

• FSSðS;m; �f Þ 6¼ ;) FSSðS 0;m0; �f Þ 6¼ ;;
• 8x0 2 FSSðS0;m0; �f Þ) ðx0 2 FSSðS;m; �f Þ _ xx0 2 FSSðS 0;�i; �f ÞÞ.

Criterion 5 presupposes that the marking m0 resulting from the migration of instance I to the
changed schema S0 is known. Then starting from m0 it has to be verified that all firing sequences x0

Fig. 8. Pre-change criterion and SCOC [9] applied to typical change problems.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 21
leading from m0 to the terminal marking on S0 are either producible on S starting from m as well
(cf. Fig. 8(1)) or firing sequence x leading to m on S can be continued on S 0 by x0 (cf. Fig. 8(2)).
Criterion 5 is very interesting in the context of the CP problem (cf. Fig. 3): On the one hand it
allows ‘‘pure’’ changes of the past (cf. Fig. 8(1), i). On the other hand, it forbids changes which
affect both already passed regions and regions which will be entered in the sequel (cf. Fig. 8(1), ii).
Whether Criterion 5 is loop tolerant or not depends on the definition of the pre-change firing
sequence x (cf. Fig. 8(2)).
Regarding the OC problem (cf. Fig. 3) the authors present two kinds of change operations and

a special change class, the Synthetic Cut-Over Change (SCOC). Applying SCOC, the old change
region N1 is maintained in S0 together with N2 (for an example see Fig. 8(4)); i.e., S 0 contains two

22 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
versions of the modified subnet. How this ‘‘fusion’’ of old and new change region is carried out
depends on the applied change. In [9] two change scenarios––Upsizing and Downsizing––are
introduced. Upsizing means that N2 can ‘‘do more’’ than N1, i.e., the set of all valid firing se-
quences on N1 is a subset of all valid firing sequences on N2. Downsizing is the dual counterpart of
upsizing, i.e., N2 can ‘‘do less’’ than N1. For example, Fig. 8(4) shows an upsizing. In this case, the
SCOC can be constructed by sticking N1 and N2 together over flow-jumpers (cf. Fig. 8(4)). Flow-
jumpers are transitions, which map each marking of N1 to a marking of N2 [8]. This way of
constructing the SCOC in conjunction with upsizing operations is correct regarding Criterion 5.
In the other case––downsizing––the SCOC is constructed by merging N1 and N2 over one output
place, i.e., instances with tokens in N1 are further executed according to the old net.

3.3.2. Using complete history information

WIDE Graphs. A widely-used correctness property is the compliance criterion introduced by [5].
Intuitively, change D of schema S can be correctly propagated to WF instance I on S iff the
execution of I, taken place so far, can be ‘‘simulated’’ on the modified schema S 0 as well. Since
WIDE works with a history-based execution model, compliance is based on trying to replay the

execution history PS
I of instance I on the changed schema S0. Formally

Correctness Criterion 6 (Restrictive compliance criterion). Let S be a WF schema and I be a WF
instance on S with execution history PS

I . Let further S be transformed into another schema S0 by
change operation D. Then I is compliant with S0 if PS

I can be replayed on S ¼ S þ D as well, i.e., all
events stored in PS

I could also have been logged by an instance on S0 in the same order as set out
by PS

I .

Criterion 6 forbids changes of the past (cf. Fig. 9(1)). However, it is too restrictive in conjunction
with loops, i.e., it is not loop tolerant as can be seen from Fig. 9(2). Obviously, PS

I2 cannot be
produced on S0. Therefore, I2 is excluded from migration to S 0 though there would be no problems
when proceeding execution of I2 based on S0. Since [5] gives no information about how to check
Criterion 6, we assume that compliance is ensured by trying to replay the whole execution history
on the changed schema. Thus, we get the necessary marking adaptations automatically when
checking compliance without additional effort. However, doing so causes an overhead due to the
possibly extensive volume of history data which is normally not kept in main memory [18].
Similarly, several other approaches [26,27] exist which propose correctness criteria based on

instance execution information.

3.3.3. Using a consolidated view on the execution history

TRAMs [18] uses Criterion 6 as well. However, replaying each history entry of an instance on
the changed schema is considered as too inefficient, especially when a large number of instances
has to be migrated. Therefore, TRAMs provides migration conditions based on which compliance
of a WF instance with the changed schema can be checked more efficiently (cf. Table 1).
Due to the declarative control flow definition and the absence of explicit control edges, the

insertion of activities is a complex change; i.e., first a new activity node A is inserted and then it is
embedded into the control flow by setting the start conditions of A (‘‘incoming edges’’) and the
intended successors (‘‘outgoing edges’’). Fig. 10(1) depicts the aggregated migration conditions for

Fig. 9. Checking compliance by replaying the complete execution history [5].

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 23
the insertion of two activities and a data dependency between them. Fig. 10(4) shows the par-
allelization of activities. To our best knowledge TRAMs Graphs are acyclic and consequently
problem LT cannot be decided on.

3.3.4. Using model-inherent markings

WSM-Nets. ADEPT [21,24] is based on a correctness criterion which works in conjunction with
loop-related and data flow changes as well. It takes up Criterion 6 but modifies it to be loop-
tolerant. Here, the key to solution is to differentiate between previous and current/future loop
iterations; i.e., considerations are restricted to the relevant parts of the execution history (cf.
Definition 1).

Definition 1 (Reduced Execution History PS
I red). Let I be a WF instance with execution history

PS
I . The reduced execution history PS

I red is obtained as follows: In the absence of loops PS
I red is

identical to PS
I . Otherwise, it is derived from PS

I by discarding all history entries related to other
loop iterations than the last one (completed loop) or the actual iteration (running loop). (Note
that PS

I red can be easily produced at the presence of nested loops as well.)

Table 1

Examples of migration conditions in TRAMs (cf. [18])

Change D Migration condition for instance I

Insertion of activity A None

Modifying start condition scA of activity A ðSA 62 PS
I Þ _ ðSA 2 PS

I ^ scA holdsÞ
Deletion of activity A SA 62 PS

I

Insertion of read (write) data edge for Activity A SA 62 PS
I ðEA 62 PS

I Þ
Underline: PS

I denotes execution history of I on S; SA=EA: start/end event of activity A

Fig. 10. Migration conditions of TRAMs.

24 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
As an example take Fig. 11(2). It shows the reduced execution history of instance I2 on S.
Taking Definition 1 an instance I on S is compliant with a changed schema S 0 iff the reduced
execution history of I can be produced on S0 as well.

Correctness Criterion 7 (Comprehensive compliance criterion). Let I be a WF instance on WF
schema S with execution history PS

I and reduced execution history PS
I red respectively. Assume

further that change D transforms S into the correct WF schema S0. Then

• I is compliant with S0 iff PS
I red can be replayed on S 0 as well.

• In case of compliance the resulting marking of I on S 0 is correct.

The challenging question is how to check Criterion 7 without accessing voluminous history
data. To guarantee compliance, for each kind of change ADEPT uses quickly checkable marking

Fig. 11. Analyzing the ADEPT/WSM-Net approach [22–24].

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 25
conditions on WSM-Nets. Table 2 exemplarily summarizes conditions for the change operations
applied in Fig. 11.
To efficiently adapt markings of compliant instances when migrating them to the changed

schema, ADEPT restricts the necessary re-evaluations to those nodes and edges which constitute
the context of the change region [22]. For each change operation initial node and edge sets to be
evaluated are determined. Depending on the result of their marking evaluation the inspection of
additional nodes and edges may become necessary. In this context, ADEPT benefits from well-
defined marking rules as well as the way node markings are represented in WSM-Nets (preserving
markings of passed regions). As an example take change D in Fig. 11(2). In the course of the

Table 2

Examples of migration conditions for WSM-Nets (cf. [24])

Change operation D Migration condition for instance

I (I compliant with S0 ())

Control flow change operations

D inserts an activity ninsert with associated

control and sync edges

8n 2 fx 2 N jninsert ! x 2 ðCtrlE0 [SyncE0Þg :
NSðnÞ 2 fNotActivated;Activated;Skippedg_
ninsert is inserted into an already skipped branch of an

XOR-branching

Data flow change operations

D inserts a data element d None

D deletes a data element d No read or write access on d by an activity with state

Running or Completed

D inserts/deletes a read edge d ! n NSðnÞ 2 fNotActivated;Activated;Skippedg
D inserts/deletes a write edge n ! d NSðnÞ 6¼ Completed

Complex change operations

D inserts/deletes a set of control or sync

edges AddedEdges/DeletedEdges

8e ¼ nsrc ! ndest 2 AddedEdges : NSðndestÞ 2
fNotActivated;Activated;Skippedg_
ðNSðndestÞ 2 fRunning;Completedg^
NSðnsrcÞ ¼ Completed^
ðð9ei ¼ Ensrc ; ej ¼ Sndest Þ 2 PS

I red ^ i < jÞÞ

26 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
following adaptation, X has to be marked as Activated and marking of C is re-evaluated to
NotActivated. Both, the migration conditions (cf. Table 2) and the marking adaptation
algorithm have been implemented in a powerful prototype.
3.4. Coping with non-compliant instances

Breeze [25,26] introduces a 3-phase modification process for WF schema evolution. The first
phase refers to change definition. In the second one, it is tried to bring the affected instances into
conformity with the changed schema. In doing so, instances are grouped with respect to their
compliance with the changed schema (cf. Criterion 6). For non-compliant instances the compliance

graph is constructed which serves to migrate these instances to the changed schema as well. This
graph consists of compensation activities based on which non-compliant instances are par-
tially rolled back into a compliant state. The third phase handles instance migration. To our
best knowledge, a detailed discussion about how compliance of instances can be checked is
missing.
An alternative approach supporting delayed migrations of non-compliant instances is offered by

Flow Nets [9]. As an example consider Fig. 8(2). Even if instance I on S is not compliant with S0

within the actual iteration of a loop, a delayed migration of I to the new change region is possible
when another loop iteration takes place. ADEPT has adopted this concept and suggests keeping
such (temporarily) non-compliant instances pending to migrate [24].
Finally, in MOKASSIN [13], application programmers as well as users are burdened with the

job to deal with non-compliant WF instances.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 27
4. Exterminating dynamic change problems––a comparison

As can be seen from Table 3 all presented approaches are based on formal correctness criteria.
Obviously, there is a trade-off between complexity of the used WF meta model and the flexibility
offered by the system during runtime. The more powerful the meta model is the more complex
dynamic WF changes are to handle. Agostini and De Michelis [1] have realized this in a very early
stage and therefore vote to keep the meta model as simple as possible in order to achieve a
maximum of flexibility. For this reason, for example, loops cannot be modeled in MILANO, but
must be handled dynamically (via backward jumps) if need be. Furthermore, MILANO limits
adaptability to control flow changes, while data flow is managed at the level of single activities.
Obviously, this simplifies the users�s view on the process. However, in general, control flow
changes cannot be treated in a isolated manner and independently from data flow and other
workflow aspects.
Furthermore, Table 3 gives a comparison of the different approaches regarding compliance

checking and marking adaptations. In [28], an elegant way for checking compliance as well as for
automatically adapting instance markings is presented. WASA2 [34] does not explicitly provide
compliance checks. We assume that a valid mapping (cf. Definition 2) is determined by comparing
nodes, control flow and data flow edges of the purged instance graph for each instance. Though
both, replaying whole execution history (WIDE) and checking migration conditions (TRAMs,
ADEPT) can be done with the same complexity, generally, there is a giant different in real effort.
Reason is that one has to cope with probably extensive data [18] usually not kept in primary
storage. However, replaying the complete history information on the changed schema [5] we get
the necessary instance markings free to the door whereas in ADEPT, for example, a marking
adaptation algorithm has to be applied.
Table 4 compares the different approaches from Fig. 1 with respect to their ability to solve the

dynamic change problems (cf. Fig. 3).
(1) Changing the Past (CP). From Fig. 4 it can be seen that all Petri-Net based approaches with

True-Semantics (WF Nets, MILANO Nets, and Flow Nets) allow changes of already passed
regions of an instance. As mentioned in Section 3 doing so may cause two problems––incomplete
input data when invoking activities and inconsistent instance execution. Such problems have been
Table 3

Comparison of meta models, correctness criteria and marking adaptation

Expressiveness Completeness

of changes

Formal

criteria

Compliance

checks

Marking

adaptationsGeneral Loops DF

WF Nets + + n.a.) + ++ +

WASA2 + n.a. + + + n.a. n.a.

MILANO � n.a. n.a.) + n.a. n.a.

Flow Nets + + + + + n.a. +

WIDE + + + + + + +

Breeze 0 n.a. + + 0 n.a. n.a.

TRAMs + n.a. + + 0 + n.a.

ADEPT 0 + + + + + +

DF: data flow; n.a.: ‘‘not addressed’’; �: ‘‘simplicity issues’’.

Table 4

Comparison by means of five typical change problems (cf. Fig. 3)

(1) CP (2) LT (3) DS (4) OC (5) PI

WF Nets Possibly critical + Possibly critical + +

WASA2 Prevented) Prevented 0 +

MILANO Possibly critical) Possibly critical +)
Flow Nets Possibly critical ? Possibly critical + +

WIDE Prevented) Possibly critical + +

Breeze Prevented) ? + +

TRAMs Prevented) Prevented + +

ADEPT Prevented + Prevented + +

28 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
partially factored out in the presented approaches since data flow is not considered. As an
example take instance I1 on S0 in Fig. 5(1). Obviously, the newly inserted activity X will never be
executed, i.e., the execution state of I1 is not clearly defined. Assume that WF Nets do not exclude
data flow and therefore activities X and Y can be inserted with the data dependency between them
(see Fig. 5(1)). This change would be considered as insertion of a parallel branch (projection
inheritance) and a token be added to place data, but with unclear data semantics. Interestingly,
this problem is excluded by Flow Nets since common changes of the past and the future are
forbidden (cf. Fig. 8(1), ii). Therefore, only the problem of inconsistent instance execution states
remains.
(2) Loop Tolerance (LT). Many of the presented approaches use acyclic WF models whereby

problem LT is factored out. The exclusion of loops, however, is out of touch with practical
requirements. As discussed in Section 3, it depends on the exact definition of the pre-change firing
sequence (cf. Criterion 5) whether Flow Nets are loop-tolerant or not. Anyway, Criterion 6 is too
restrictive in conjunction with loops. Therefore ADEPT uses Criterion 7, which is loop-tolerant.
(3) Dangling States (DS). This problem of being unable to distinguish between activated and

running activities is mainly present in Petri-Net based approaches. Transitions usually represent
real-world tasks and consume a certain piece of time. If one of them is deleted the challenging
question is how to handle in-progress work associated with this transition. In contrast, ap-
proaches which explicitly differ between activity states Activated and Running like WASA2,
TRAMs and ADEPT take care of this and ensure that running activities are not disturbed by
dynamic changes.
(4) Order-Changing (OC). This problem appears in conjunction with correctness criteria where

certain WF instances are needlessly excluded from migrating to the changed schema. As shown in
Section 3.2.2, strict graph equivalence is too restrictive in certain cases.
(5) Parallel-Insertion (PI). This problem refers to the necessary marking adaptations when

inserting a parallel branch such that no deadlocks occur. The only Petri-Net based approach
which presents concrete adaptation rules in this context is offered by WF Nets. The suggested
strategies ensure a correct control flow in the sequel. However, with respect to data flow,
semantics of the newly inserted tokens remains unclear. In ADEPT, markings are automatically
adapted when migrating compliant instances to the changed schema. The respective algorithms
[22] are based on the marking and execution rules of WSM Nets with their True/False-Semantics.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 29
5. Change scenarios and their realization in existing approaches

In the previous sections emphasis has been put on fundamental correctness issues related to
dynamic WF changes. So far it has been circumstantial whether a single WF instance or a col-
lection of instances is subject to change. In this section we have a closer look at different change
scenarios and related requirements. We provide a short categorization of adaptive research WF
engines which includes Chautauqua [10], WASA2 [34], Breeze [26], and ADEPT [21] whose basics
have been already described in Sections 2–4. In addition, we consider the respective approaches
followed by AgentWork [20], EPOS [19], and DYNAMITE [12] as well as the flexibility offered by
commercial tools.

5.1. Changes of single WF instances

Adaptations of single WF instances become necessary when exceptional situations occur or the
structure of a WF dynamically evolves. Both scenarios can be found, for example, in hospital and
engineering environments [12,20]. Besides state-related correctness properties instance-specific
changes pose several challenging issues. In particular, change predictability influences the way how
WF instances are adapted during runtime. Regarding evolving workflows, for example, necessary
changes and their scope are often known at buildtime [12,19,20]. Consequently, respective
adaptations can be pre-planned and automated. In contrast ad-hoc changes have to be applied as
response to unforeseen exceptions [21]. Usually, user interaction becomes necessary in order to
define the respective runtime change. Of course, we cannot always see WF instance changes in
terms of black and white, but the distinction between pre-planned and ad-hoc change contributes
to classify existing approaches.

5.1.1. Approaches supporting ad-hoc instance changes
In Breeze and WASA2, instance changes can be defined by the use of a graphical WF editor.

Using a WF editor for change definition, however, is only conceivable for expert users. If changes
shall be definable by end users as well, application-tailored user interfaces must be offered to them.
Obviously, this requires comprehensive programming interfaces. Only few approaches provide
such interfaces [21,34]. ADEPT, for example, offers a change API which enables change definition
on WSM Nets at a high semantic level, e.g., to jump forward in the flow or to insert a new step
between two sets of activities [21]. Very important in this context is to ensure that none of the
guarantees which have been achieved by formal checks at buildtime are violated due to the ad hoc
change. Note that this does not only require compliance checks and marking adaptations, but also
checks with impact to correctness properties of the WF schema itself (e.g. regarding data flow).
Therefore ADEPT uses well-defined correctness properties for WF models, formal pre- and
postconditions for change operations, and advanced change protocols [21].

5.1.2. Approaches supporting pre-planned instance changes
Support for automatic WF changes is provided by AgentWork [20], DYNAMITE [12], and

EPOS [19], but may be realizable on top of adaptive WfMS like WASA2, ADEPT, or InConcert
as well. The overall aim is to reduce error-prone and costly manual WF adaptations. In order to
realize automatic WF adaptations, firstly, the WfMS must be able to detect logical failures in

30 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
which WF instance changes become necessary. Second, it must determine necessary adaptations,
identify the instances to be adapted, correctly introduce the change to them, and notify respec-
tive users. This poses many additional issues ranging from the consistent specification of pre-
planned changes at buildtime up to their concrete realization during runtime. Existing approaches
supporting automatic WF instance changes can be classified according to different criteria. The
most important one concerns the basic method used for automatic failure detection and for
change realization. We distinguish between rule-based, process-driven, and goal-based ap-
proaches.

Rule-based approaches use ECA (Event/Condition/Action) models to automatically detect
logical failures and to determine necessary WF changes. However, most of them limit adaptations
to currently executed activities [4,6]. In contrast, AgentWork [20] enables automatic adaptations
of the yet unexecuted regions of running WF instances as well. Basic to this is a temporal ECA
rule model which allows to specify adaptations at an abstract level and independently of concrete
WF models. When an ECA rule fires, temporal estimates are used to determine which parts of the
running WF instance are affected by the detected exception. Respective WF regions are either
adapted immediately (predictive change) or––if this is not possible––at the time they are entered
(reactive change).

Goal-based approaches formalize process goals (e.g., process outputs). In ACT [3], necessary
instance adaptations (e.g., substituting the failed activity by an alternative one) are automatically
performed if an activity failure leads to goal violation. EPOS [19], in addition, automatically
adapts WF instances when process goals themselves change. Both approaches apply planning
techniques to automatically ‘‘repair’’ workflows in such cases. However, current planning
methods do not provide complete solutions since important aspects (e.g., treatment of loops) are
not considered.

Process-driven approaches restrict the possible variants of WF schemes as well as WF changes in
advance. DYNAMITE, for example, uses graph grammars and graph reduction rules for this [12].
Automatic adaptations are performed depending on the outcomes of previous activity executions.
Interestingly, process-driven as well as goal-based approaches have been primarily applied in the
field of engineering workflows. Both DYNAMITE and EPOS provide build-in functions to
support dynamically evolving WF instances.
Instance-specific changes pose several other challenges. For example, one must decide on the

duration of an instance change. Concerning loop-related adaptations, ADEPT differentiates be-
tween loop-permanent and loop-temporary changes [21]. The latter are only valid for the current
loop iteration. The handling of such temporary changes is not trivial since permanent changes
must not depend on them in order to avoid potential errors. AgentWork [20] even follows a more
advanced approach by allowing rule designers to specify temporal constraints indicating how long
WF adaptations shall be valid.

5.1.3. Ad-hoc changes in commercial tools
Production WFMS like WebSphere MQWorkflow and Staffware [14] provide powerful process

support functions but tend to be very inflexible. Particularly, ad-hoc changes of running WF
instances are not supported. Unlike these WFMS, engines such as TIBCO InConcert, SER
Workflow, and FileNet Ensemble allow on-the-fly adaptations of in-progress instances. For
example, users may dynamically insert or delete activities for a given instance in such a way that

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 31
the past of this instance cannot be changed. 2 Though ad-hoc WFMS provide high flexibility, they
have failed to adequately support end users. Particularly, they do not support them in defining
changes and in dealing with potential side-effects resulting from them (e.g., missing input data of
an activity due to the deletion of a preceding step). Since one cannot expect from the end user to
cope with such problems, this increases the number of errors and therefore limits the practical
usability of respective WFMS.
Case handling systems like FLOWer (Pallas Athena) [30] try to address flexibility issues from

another viewpoint. Unlike traditional WFMS, case handling provides a higher operational flex-
ibility and aims at avoiding dynamic changes. More precisely, users are allowed to inspect, add or
modify data elements before the activities, which normally produce them, are started. Conse-
quently, the decision about which activities can be executed next is based on the available data
rather than on information about the activities executed so far. Since FLOWer allows to dis-
tinguish between optional and mandatory data elements, a broad spectrum of processes can be
covered with this data-driven approach. FLOWer also enables the definition of causal depen-
dencies between activities. The question remains, whether this mixed view on processes (process-
driven, data-driven) contributes to completely avoid dynamic changes.

5.2. Workflow type changes and change propagation

WF schema changes at the type level may become necessary, for example, to adapt business
processes to a new law or to realize process optimizations. In any case we are confronted with the
problem of how to migrate a potentially large number of WF instances I1; . . . ; In running on the
old schema S to the new schema S0. Basically, things seem to be the same as for dynamic changes
of single WF instances. However, in addition, we are confronted with the problem that the WF
type change may have to be propagated to WF instances whose current execution schema
SI :¼ S þ D does not completely correspond to S (due to a previous instance change D). To ex-
clude such instances from migrating to the new schema S0, however, is out of touch with reality,
particularly in case of long-running flows. Interestingly, none of the WF engines supporting WF
type changes and change propagation has dealt with this problem so far. In WASA2, for example,
individually modified instances cannot be further adapted to later type change. Chautauqua [10]
even does not support changes of single instances at all, since instances of a particular type are
always connected to the same Flow Net.
Usually, commercial WfMS do not allow change propagation to in-progress instances when a

WF schema is modified at the type level. Instead, simple versioning concepts are used to ensure
that already running instances can be finished according to the old schema. One exception is
offered by Staffware [14]. However, there are several critical aspects arising in this context. For
example, running activities can be deleted without any user information. If the deleted activity is
finished the returned results disappear to the nirvana. Furthermore, Staffware suffers from the CP
problem which may lead to missing input data and activity program crashes at runtime. Finally,
Staffware is by far too restrictive (e.g., insertions before activated tasks are forbidden).
2 In order to avoid undesired side-effects on other cases, for each instance a private schema is kept.

32 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
6. Summary

In this paper we have systematically compared approaches supporting adaptive workflows. We
have elaborated their strengths and weaknesses along typical dynamic change problems. In doing
so, main emphasis has been put on model properties and correctness criteria since they provide the
basis for any adaptive WfMS. Furthermore we have sketched different change scenarios and
categorized existing approaches supporting them. Though there has been substantial progress in
the field of adaptive WfMS during the last years, there is still enough room for further research.
Particularly, usability and implementation issues have not been addressed in sufficient detail.
Furthermore, many non-trivial interdependencies among different kind of changes exist which
must be carefully understood before we come to a complete solution. For example, current
adaptive WfMS do not allow propagating WF type changes to individually modified WF in-
stances. As discussed, however, this is very important for the adequate support of long-running
workflows [22].
References

[1] A. Agostini, G. DeMichelis, Improving flexibility of workflow management systems. In: BPM�00, LNCS, vol. 1806,
2000, pp. 218–234.

[2] A. Agostini, G. DeMichelis, A light workflow management system using simple process models, Int. J. Collab.

Comp. [16] 335–363.

[3] C. Beckstein, J. Klausner, A planning framework for workflow management, in Proceedings of Workshop

Intelligent Workflow and Process Management, Stockholm, 1999.

[4] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification and implementation of exceptions in workflow

management systems, ACM TODS 24 (3) (1999) 405–451.

[5] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Workflow evolution, Data and Knowledge Engineering 24 (3) (1998) 211–

238.

[6] D. Chiu, Q. Li, K. Karlapalem, Web interface-driven cooperative exception handling in ADOME, Informations

Systems 26 (2) (2001) 93–120.

[7] D. Edmond, A.H.M. ter Hofstede, A reflective infrastructure for workflow adaptability, Data and Knowledge

Engineering 34 (3) (2000) 271–304.

[8] C. Ellis, K. Keddara, A workflow change is a workflow, in: BPM �00, LNCS, vol. 1806, 2000, pp. 516–534.
[9] C.A. Ellis, K. Keddara, G. Rozenberg, Dynamic change within workflow systems, in: Proceedings of International

ACM Conference COOCS �95, Milpitas, CA, August 1995, pp. 10–21.

[10] C.A. Ellis, C. Maltzahn, The Chautauqua workflow system, in: Proceedings of the International Conference on

System Science, Maui, HI, 1997.

[11] H.J. Genrich, P.S. Thiagarajan, A theory of bipolar synchronization schemes, Theoret. Comput. Sci. 30 (3) (1984)

241–318.

[12] P. Heimann, G. Joeris, C. Krapp, B. Westfechtel, DYNAMITE: dynamic task nets for software process

management, in: Proceedings of the 18th International Conference Software Engineering (ICSE), Berlin, March

1996, pp. 331–341.

[13] G. Joeris, O. Herzog, Managing evolving workflow specifications, in: Proceedings of International Conference on

CoopIS �98, New York City, 1998, pp. 310–321.

[14] B. Kiepuszewski, Expressiveness and suitability of languages for control flow modelling in workflows, Ph.D.

Thesis, Queensland University of Technology, Brisbane, 2002. Available from <http://www.tm.tue.nl/it/research/

patterns>.

[15] B. Kiepuszewski, A.H.M. ter Hofstede, C.J. Bussler, On structured workflow modelling, in: CAiSE�00, LNCS, vol.
1789, 2000, pp. 431–445.

http://www.tm.tue.nl/it/research/patterns
http://www.tm.tue.nl/it/research/patterns

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 33
[16] M. Klein, C. Dellarocas, A. Bernstein (Eds.), Int. J. Collab. Comp. 9 (3–4) (2000) 346–456 (Special issue on

adaptive workflow systems).

[17] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, J. Cardoso, IntelliGEN: a distributed

workflow system for discovering protein–protein interactions, Distrib. Parallel Databases 13 (1) (2003) 43–

72.

[18] M. Kradolfer, A. Geppert, Dynamic workflow schema evolution based on workflow type versioning and workflow

migration, in: CoopIS �99, Edinburgh, 1999, pp. 104–114.
[19] C. Liu, R. Conradi, Automatic replanning of task networks for process model evolution, in: Proceedings

of European Software Engineers Conference, Garmisch-Partenkirchen, Germany, 1993, pp. 434–450.

[20] R. M€uller, Event-oriented dynamic adaptation of workflows. Ph.D. Thesis, University of Leipzig, Germany,

2002.

[21] M. Reichert, P. Dadam, ADEPTflex-supporting dynamic changes of workflows without losing control, JIIS 10 (2)

(1998) 93–129.

[22] M. Reichert, S. Rinderle, P. Dadam, On the common support of workflow type and instance changes under

correctness constraints, in: CoopIS �03, LNCS, vol. 2888, Catania, Italy, 2003, pp. 407–425.
[23] S. Rinderle, M. Reichert, P. Dadam, Evaluation of correctness criteria for dynamic workflow changes, in: BPM�03,

LNCS, vol. 2678, Eindhoven, The Netherlands, 2003, pp. 41–57.

[24] S. Rinderle, M. Reichert, P. Dadam, Flexible support of team processes by adaptive workflow systems, Distribut.

Parallel Databases 2004 (to appear).

[25] S. Sadiq, Handling dynamic schema changes in workflow processes, in: Proceedings of the 11th Australian

Database Conference 2000.

[26] S. Sadiq, O. Marjanovic, M. Orlowska, Managing change and time in dynamic workflow processes, IJCIS 9 (1–2)

(2000) 93–116.

[27] W.M.P.v.d. Aalst, Exterminating the dynamic change bug: a concrete approach to support worfklow change,

Inform. Syst. Frontiers 3 (3) (2001) 297–317.

[28] W.M.P.v.d. Aalst, T. Basten, Inheritance of workflows: an approach to tackling problems related to change,

Theoret Comp. Sci. 270 (1–2) (2002) 125–203.

[29] W.M.P.v.d. Aalst, M. Weske, G. Wirtz, Advanced topics in workflow management: Issues, requirements, and

solutions, Int. J. Integrat. Design Process Sci. 7 (3) (2003).

[30] W.M.P.v.d. Aalst, P. Berens, Beyond workflow management: product-driven case handling, in: Proceedings of the

Conference on Supp. Group Work, New York, 2001, pp. 42–51.

[31] W.M.P.v.d. Aalst, S. Jablonski (Eds.), Flexible workflow technology driving the networked economy, Int. Comp.

Syst.: Sci. Eng. 15 (5) (2000).

[32] H.M.W. Verbeek, W.M.P.v.d. Aalst, Woflan 2.0 A petri-net-based workflow diagnosis tool, in: ICATPN �00,
LNCS, vol. 1825, pp. 455–464, Aarhus, June 2000.

[33] M. Weske, Workflow management systems: Formal foundation, Conceptual design, implementation aspects,

University of M€unster, Germany, 2000. Habilitation Thesis.

[34] M. Weske, Formal foundation and conceptual design of dynamic adaptations in a workflow management system,

in: HICSS-34, 2001.
Stefanie Rinderle studied Mathematics and Economy at the University of Augsburg, Germany. At present she
is a Ph.D. candidate of the Databases and Information Systems Department of the University of Ulm,
Germany. Her research interests include change management in adaptive workflow management systems,
workflow schema evolution, and business process modeling.

34 S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34
Peter Dadam has been full professor at the University of Ulm and director of the Department Databases and
Information Systems since 1990. Before he came to the University he had been director of the research
department for Advanced Information Management (AIM) at the IBM Heidelberg Science Center (HDSC).
At the HDSC he managed the AIM-P project on advanced database technology and applications. Current
reserach areas include distributed, cooperative information systems, workflow management, and database
technology and its use in advanced application areas.
Manfred Reichert is assistant professor at the Department Databases and Information Systems at the Uni-
versity of Ulm. He finished his Ph.D. thesis on adaptive workflow systems in May 2000. Current research
topics include enterprise-wide workflows, enterprise application integration and workflow, process visuali-
zation, and different aspects related to workflow technology.

	Correctness criteria for dynamic changes in workflow systems--a survey
	Introduction
	Workflow meta models of adaptive workflow approaches
	Approaches with true-semantics
	Approaches with true/false-semantics
	Case 1: approaches based on history logs
	Case 2: approaches using model inherent markings

	Classification and dynamic change correctness
	Classification and problem framework
	Approaches based on graph equivalence
	Approaches not requiring instance execution information
	Approaches using complete execution information

	Approaches based on trace equivalence
	Predictive approaches
	Using complete history information
	Using a consolidated view on the execution history
	Using model-inherent markings

	Coping with non-compliant instances

	Exterminating dynamic change problems--a comparison
	Change scenarios and their realization in existing approaches
	Changes of single WF instances
	Approaches supporting ad-hoc instance changes
	Approaches supporting pre-planned instance changes
	Ad-hoc changes in commercial tools

	Workflow type changes and change propagation

	Summary
	References

