
Applied Intelligence 13, 125–147, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Exception Handling in Workflow Systems

ZONGWEI LUO, AMIT SHETH, KRYS KOCHUT AND JOHN MILLER
Large Scale Distributed Information System Lab,∗415 GSRC, Computer Science Department, University of

Georgia Athens, GA 30602, USA
luo@ainge.cs.uga.edu

amit@ainge.cs.uga.edu

kochut@ainge.cs.uga.edu

jam@ainge.cs.uga.edu

Abstract. In this paper, defeasible workflow is proposed as a framework to support exception handling for work-
flow management. By using the “justified” ECA rules to capture more contexts in workflow modeling, defeasible
workflow uses context dependent reasoning to enhance the exception handling capability of workflow management
systems. In particular, this limits possible alternative exception handler candidates in dealing with exceptional
situations. Furthermore, a case-based reasoning (CBR) mechanism with integrated human involvement is used to
improve the exception handling capabilities. This involves collecting cases to capture experiences in handling ex-
ceptions, retrieving similar prior exception handling cases, and reusing the exception handling experiences captured
in those cases in new situations.

Keywords: case-based reasoning (CBR), context-dependent reasoning, exception handling, ontology, workflow
system

1. Introduction

Workflow technology is considered nowadays as an
essential technique to integrate distributed and often
heterogeneous applications and information systems
as well as to improve the effectiveness and produc-
tivity of business processes [1–4]. A workflow man-
agement system (WfMS) is a set of tools providing
support for the necessary services of workflow creation,
workflow enactment, and administration and monitor-
ing of workflow processes, which consist of a network
of tasks. These workflow processes are constructed
to conform to their workflow specifications. However,
due to foreseen or unforeseen situations, such as sys-
tem malfunctions due to failure of physical compo-
nents or changes in business environment, deviations
(exceptions) of those workflow processes from their

∗http://lsdis.cs.uga.edu

specifications are unavoidable. Workflow systems need
exception handling mechanism to deal with those de-
viations. Exception-handling constructs, as well as the
underlying mechanisms, should be sufficiently gen-
eral to cover various aspects of exception handling in
a uniform way. In addition, it helps to separate the mod-
ules for handling exceptional situations from the mod-
ules for the normal cases. We believe that designing an
integrated human-computer process may provide better
performance than moving toward an entirely automated
process in exception handling.

Let’s take a look at a motivating workflow applica-
tion to characterize the scope of exception handling (see
Fig. 1). This infant transportation application involves
the transportation of a very low birth weight infant of
less than 750 grams, at or below 25–26 weeks ges-
tation, from a rural hospital located within 100 miles
from the Neonatal Intensive Care Unit (NICU) at the
Medical College of Georgia (MCG). Such transporta-
tion usually takes up to 2.5 hours. In the ambulance



126 Luo et al.

Figure 1. High-level workflow for newborn infant transportation.

there are two or three healthcare professionals who
perform different roles. During the transport the am-
bulance personnel perform the standard procedures to
obtain medical data for the infant. The first step of this
application involves the task that allocates resources,
such as healthcare professionals, equipment, and so on.
The last step is to prepare for admission to the NICU.

If exceptions are raised during the transport, cor-
rective actions must take place. The decision of the
corrective procedures involves collaboration and co-
ordination between the ambulance personnel and the
consultants at MCG’s NICU. This application is very
dynamic because the changes to the infant’s health sta-
tus as indicated by the vital signs such as the known risk
factors may lead to changes in the treatment plan. Such
changes can occur rapidly. For example, a low weight
infant can dehydrate in as few as ten minutes while
an adult would take at least several hours to reach the
same severity. Such changes to the infant’s status are
modeled as exceptions. Consider a “normal” treatment
plan as shown at the top of Fig. 2. Occurrence of heart
murmur that is known as a risk factor related to car-
diac disease would be modeled as an exception (from
the normally expected and correspondingly modeled
process). One way of handling such an exception is

to change the process such that the cardiovascular re-
lated task is performed earlier than what was originally
planned (as shown at the bottom of Fig. 2).

This healthcare application raises several require-
ments for workflow systems to support:r The processes in this application are very dynamic.

To support coordination of such processes, a system-
atic way of workflow evolution, including dynamic
structure modifications should be worked out.r There are potential collaboration activities in this
transport process; e.g., the healthcare professionals
may need advice from specialists in the NICU. The
advice is context based. The results from the col-
laborations may affect the progress of the ongoing
process coordination.r The health professionals on board are not necessarily
experienced in every aspect of intensive care. A case
repository used in the case-based reasoning (CBR)
[5] based exception-handling system stores valuable
experience learned to help them make decisions.r Exceptions are not avoidable in such an environment.
An abnormal situation can cause special attention for
healthcare professionals. Those abnormal situations
should be resolved as soon as possible due to the



Exception Handling in Workflow Systems 127

Figure 2. Treatment plan change in infant transportation task.

nature of this application—newborn infant transport.
Prior experience gained in handling similar abnormal
situations can facilitate the exception resolution pro-
cess. At the same time the set of exception handlers
that need to be checked, can be limited by capturing
more workflow execution context.

Approaches to address the first two requirements, al-
though topics of our research are beyond the scope of
this paper. In this paper, we discuss an approach of de-
feasible workflow to address the last two requirements.
Defeasible workflows target workflow applications
in the dynamic and uncertain business environment
by modeling organizational processes through justi-
fied ECA (JECA) rules developed to support context-
dependent reasoning processes. There are three major
contributions to exception handling in workflow man-
agement systems in this approach.

1. By using the JECA rules to capture more con-
texts in workflow modeling, defeasible workflow
enhances the exception handling capabilities of
WfMSs through supporting context dependent rea-
soning in dealing with uncertainties. It can limit pos-
sible alternative exception handlers in dealing with
exceptional situations.

2. It considers workflow evolution, which is an active
research topic, a good candidate to exception han-
dling, which is usually called adaptive exception
handling. That is, possible modifications of work-
flows are considered as exception handlers, along
with other candidates such as ignore, retry, work-
flow recovery, and so on. Thus, several modification
primitives are given in defeasible workflow that will
ensure the modified workflows meet the correctness
criteria established.

3. A case-based reasoning (CBR) [5] based excep-
tion handling mechanism with integrated human
involvements is used in defeasible workflow to
support exception-handling processes. This mech-
anism enhances the exception handling capabilities
through collecting cases to capture experiences in
handling exceptions, retrieving similar prior excep-
tion handling cases, and reusing the exception han-
dling experiences captured in those cases in new
situations.

The organization of this paper is as follows: We give
a perspective on exceptions in Section 2 that provides
directions on how exception aware systems should be
built. We introduce defeasible workflow in Section 3
that is used to support such healthcare applications



128 Luo et al.

like the infant transport. In Section 4, we introduce
a CBR-based approach for the exception handling. In
Section 5, we discuss related works. Finally, Section 6
concludes this paper.

2. What is an Exception?

Exceptions in our view refer to facts or situations that
are not modeled by the information systems or devia-
tions between what we plan and what actually happen.
Exceptions are raised to signal errors, faults, failures,
and other deviations. They depend on what we want
and what we can achieve. For example, in the infant
transport application, space provided by an ambulance
is limited. So is the transport time. The exception han-
dling mechanisms might be different from that used in
NICUs because of the differences in time, space and
places. In most realistic situations and non-trivial sys-
tems, there are always interests conflicts between what
we want and what we can achieve. It is more accept-
able to design a system that can operate as best as it
can; when there is an exception, it can be handled by
the system. We call such a system an exception-aware
system.

Exceptions provide great opportunities for the sys-
tems to learn, correct themselves, and evolve. To build
an exception aware system, it is beneficial to clarify
the nature of exceptions to get guidelines in the sys-
tems development. As shown in Fig. 3, known, de-
tectable, and resolvable form three dimensions for the

Figure 3. Three-dimensional analyses of exceptions.

exception knowledge space. Theknowndimension is
usually captured through exception specification. Su-
pervision is one of the approaches to enlarge exception
knowledge space in thedetectabledimension. To re-
solve exceptions, capable exception handlers should
be available that make up theresolvabledimension of
the exception knowledge space. Any position in this
exception knowledge space can be represented as an
exception point. The exception knowledge of an ex-
ception aware system is the set of all those points.r Known: Every person’s knowledge is limited. The

same is true for a system. The world is governed by
rules that either we know or we are still investigat-
ing, and our knowledge continues to expand through
learning. As this learning process continues and un-
known or uncertainties become known, the decision
may be revised and other uncertainties may be con-
sidered. When a system cannot meet the new situ-
ation, exceptions occur. We call these kinds of ex-
ceptions unknown exceptions, since they are beyond
the system’s current knowledge. Otherwise, we con-
sider them known. For example, during the transport
of the newborn infant, an unknown exception may
be caused by an abnormal situation that has not been
met before. A basic solution to unknown exceptions
is to build an open system that is able to learn and
can be adapted to handle those exceptions.r Detectable: Exceptions can be classified based on a
system’s capabilities to detect an exception. If sys-
tems can notice the occurrence of an exception then



Exception Handling in Workflow Systems 129

we call it a detectable exception; otherwise we con-
sider it undetectable. An unknown exception is usu-
ally undetectable because there is no way for the
system to know about it until further improvement
to the system is accomplished to achieve that capa-
bility. Sometimes an unknown exception might be
detected as another known exception. Detection of
an exception depends on the system’s capabilities.
For example, if there is no equipment on board to
measure certain situations, e.g., neurologic checking
of the newborn infant, exceptions related to neuro-
logic situations might not be detected. Moreover,
if there is no mapping from the errors occurring in
the measuring equipment in which an equipment re-
lated exception should be raised to a workflow sys-
tem’s exception, that equipment exception will not
be detected either. If the system can notice that there
is an exception, it may be possible for the system
to derive capable exception handlers to handle such
exceptional situations.r Resolvable: Undetectable exceptions are not resolv-
able at the time of occurrence, for their occurrences
are unknown to the system. Also, there are certain
known exceptions that may be ignored during sys-
tem modeling time for certain specific reasons, such
as the frequency of their occurrences is so low, the
effect caused by the exceptions to the system can
be ignored. When such exceptions actually occur,
the system cannot handle them (e.g., the Y2K bug).
For example, on board there are necessary medicines
for commonly occurring health conditions for new-
born infants. When a medicine is not on board but
is needed for a situation that rarely occurs, then the
corresponding exception to the process is not resolv-
able at that time. Based on the system’s handling
capability, exceptions can be categorized into two
categories: resolvable and irresolvable. When ex-
ceptions occur, the system can derive a solution to
resolve the deviations. Such exceptions are called re-
solvable exceptions. When exceptions occur, but the
system cannot derive a solution to solve the deviation
to meet the requirement, then it is called irresolvable
exceptions.

Based on the above perspective, exception aware
systems should be built to have adequate initial ex-
ception knowledge represented as exception points. To
deal with exceptional situations, a system actually finds
an exception point in the exception knowledge space
through propagation and masking. Propagation allows

a system to propagate an exception to a more appropri-
ate system component to find an appropriate exception
point. Masking usually means when there are several
exception points, the one that is close to where excep-
tion is detected is the best candidate. Defeasible work-
flow is proposed in Section 3 to support a systematic
way of propagation and masking.

3. Defeasible Workflow

Organizational processes are often dynamic. They
evolve over time and often involve uncertainty. To
adapt to its environment, a workflow should be flex-
ible enough that necessary modifications to its speci-
fications and instances are allowed. They need to be
complemented with execution support or run-time so-
lutions such as dynamic scheduling, dynamic resource
binding, runtime workflow specification, and infras-
tructure reconfiguration. For example, uncertainties in
clinical decision-making processes, such as incomplete
data in the report, should be eliminated as early as pos-
sible, preferably at the design stage. However, if this is
not possible at runtime exceptions should be raised and
handled. The clinical decision-making is a process by
which alternative strategies of care are considered and
selected. Those alternatives can be potentially limited
if more useful contexts are available during the clini-
cal decision-making. Furthermore, the following basic
facts about clinical decision processes [6] have shown
that in very complicated situations, necessary contexts
should be captured in order to make correct decisions
efficiently:

r “Human and environmental influences are frequently
complex, uncertain and difficult to control.” Neces-
sary context can help analyze the complex situations.r “Decisions should be clear-cut and error-free. The
nursing and medical professions have expressed an
interest in the precision and objectivity by which de-
cisions are made, while simultaneously retaining an
individualistic, holistic approach to patient manage-
ment.” The context-dependent reasoning approach is
one of the solutions to support such decision-making
processes.r “Standardization of management plans is usually ac-
companied by paying less attention to differences in
patients’ needs.” This actually means such standard-
ization should consider individual differences that
can only be achieved by adding exceptions to the
standardization. Those exceptions are actually used



130 Luo et al.

to capture necessary context when the standardized
plans are enforced.

Defeasible workflows target workflow applications
in the dynamic and uncertain business environment
by capturing more workflow contexts and supporting
context-dependent reasoning processes. They are char-
acterized as follows:

r Organizational processes are modeled through JECA
rules (see below).r When no default consequences can be derived during
the execution, or the conflicts occur that cannot be
resolved in the default evaluation, exceptions will be
raised. WfMSs will try to derive capable handlers to
handle the raised exceptions.r If none of the derived handlers are suitable, or han-
dlers cannot be derived, past experiences in handling
exceptions will be sought and reused by retrieving
and adapting similar exception handling cases stored
in the case repository.r Human interaction will be necessary if no accept-
able solutions can be automatically derived. Solu-
tions provided by a person, who is usually a spe-
cialist, will be abstracted, and stored into the case
repository.

3.1. JECA Rules

We have extended the well known ECA rules spec-
ification as Justified Event-Condition-Action (JECA)
rules to model business logic based on work in context-
dependent reasoning [7]. There are several workflow
prototypes (e.g. [8, 9]) that have adopted ECA rules
as modeling tools. However, the contexts that can be
captured by ECA rules are limited. The C in an ECA
rule, which is used to capture rules evaluation context,
is used as a condition that should be satisfied so that the
action specified in that ECA rule can be executed. That
is, an ECA rule, once triggered, can only be denied if its
condition cannot be satisfied. This makes ECA rules
incapable in modeling workflows in uncertain busi-
ness environments. In JECA rules, justification (J) pro-
vides a reasoning context for the evaluations of ECA
rules to support context dependent reasoning processes
in dealing with uncertainties. Each JECA ruler (j, e,
c, a) consists of four parts as follows:

r Justification (j): Justification forms the reasoning
context in which evaluation of the specific JECA
rule to be performed. Usually it is specified as a dis-
qualifier, i.e., a JECA rule will be disqualified if its
justification is evaluated true.r Event (e): when event occurs, related JECA rules
will be evaluated. We say the JECA rules are trig-
gered.r Condition (c): logic constraints to be satisfied so
the action in the rule can be taken if the rule is not
disqualified.r Action (a): necessary actions to be taken if this rule
is not disqualified, and events occur, conditions are
met.

Consider a simple rule-processing algorithm given
in Algorithm 3.1. This algorithm executes JECA rules
by picking up a triggered rule one by one. When there
are no more triggered rules, execution will terminate.

while there are triggered JECA rules do:

1. find a triggered JECA rule r
2. evaluate r’s condition and justification
3. if r’s condition is true, and justification is not true

then execute r’s action

Algorithm 3.1 A simple JECA rule execution algorithm

Consider the following example of exception han-
dling rule in dealing with an exception related to cardiac
diseased. In this rule, the exception is related to certain
type of cardiac disease d, and the corrective action is to
take an initial assessment for this type of cardiac dis-
ease d. The justification provides a reasoning context
(as commonly followed in this medical specialty) that
if there are one or more blood family members of oppo-
site sex who had this type of cardiac disease d before,
then this disease cannot be this type of cardiac disease
d. The initial assessment can only be performed if the
justification doesn’t disqualify this JECA rule.

Event : Cardiac disease d related exception event
Condition : Risk factor is heart murmurs (related to
the type Cardiac Disease d)
Action : Initial Assessment for Cardiac Disease d
Justification : Blood family member of opposite sex
does have this type of Cardiac disease d

The above example, if modeled in ECA rules, can
be:



Exception Handling in Workflow Systems 131

Event : Cardiac disease d related exception event
Condition : Risk factor is heart murmur (related to
the type Cardiac Disease d) and Blood family mem-
ber of opposite sex doesn’t have this type of Cardiac
disease d
Action : Initial Assessment for Cardiac Disease d.

When a cardiac disease d related exception event
actually occurs, necessary contexts should be available
so that the condition in that ECA rule can be checked,
i.e., the risk factor is heart murmur and blood family
member of opposite sex does have this type of cardiac
disease. If the condition “Blood family member of op-
posite sex does have this type of cardiac disease d”
cannot be checked true, then this ECA rule cannot be
satisfied. Is it correct not to model that condition of
“Blood family member of opposite sex does have this
type of cardiac disease d” in the ECA rule? The ECA
rule then becomes:

Event: Cardiac disease d related exception event
Condition: Risk factor is heart murmur (related to
the type Cardiac Disease d)
Action: Initial Assessment for Cardiac Disease d.

However, the answer is no, because this ECA rule
cannot model that the action should not be executed
when condition “Blood family member of opposite sex
does have this type of cardiac disease d” is true. In the
approach of JECA rules, the condition of “Blood family
member of opposite sex does have this type of cardiac
disease d” is a justification for that JECA rule. If the
justification cannot be evaluated true, then the JECA
rule will not be disqualified. So the action in that JECA
rule can be executed if the risk factor of heart murmur
is true.

3.2. JECA Rules Evaluation

To apply the context-dependent reasoning processes
[7], those JECA rules are transformed into a form that is
usually used in the context-dependent reasoning, called
default[7]. A default has three parts,prerequisite(P),
justification(J), andconsequence(C) specified in logic
expressions. Those defaults are constructed through
JECA rules with mappings from J to justifications, C
to prerequisite and A to consequence. Usually E in a
JECA rule is associated with the justifications and pre-
requisite in the default that the JECA rule is mapped

to. In order to apply the defaults, the prerequisite of
the defaults should be proved. It is required the de-
faults should bejustified. This means the justifications
should not deny the applicability of the default. Con-
sequence, the third part in default, forms a belief set
through extension computation [7]. Please refer to [7]
for detailed information about extension computation.
Conflicts such as inconsistencies existing in the be-
lief set should be resolved by non-monotonic reasoning
process in which reasoning results may become invalid
if more facts become available, or reasoning context
has changed. An algorithm of execution of JECA rules
through default evaluation is given in Algorithm 3.2.

while there are triggered defaults do:

1. find related defaults
2. evaluate defaults through context dependent

reasoning, resolve any conflicts in the belief set
3. actions in the belief set will be executed

Algorithm 3.2 JECA rule processing through default
evaluation

The defaults will be clustered into several sets called
domains. Each default is associated with a local rea-
soning unit. If the local reasoning unit cannot make an
acceptable decision, another reasoning unit at that do-
main that can get access to domain context will be con-
sulted. A global reasoning unit is responsible for deci-
sion making in the global context. The local reasoning
unit can also make a decision according to the partially
available information without consulting another local
unit or a unit at a higher level. This clustered reasoning
architecture is well suited in workflow management be-
cause organizational processes modeled by workflows
are clustered and/or layered in nature in which local
decisions can often be reached. The criteria used in
clustering can be either one or a combination of the
following:r Security: For security reasons, defaults must be clus-

tered so sensitive information can be exchanged in a
controlled manner. In the infant transport example
certain medical records that may contain sensitive
information, such as HIV, abnormal behavior of the
infant’s parents, should be securely controlled.r Organization: It is natural to cluster defaults into sev-
eral domains to model the organizational structure in
that organization. In the infant transport example the



132 Luo et al.

defaults can be grouped according to the organiza-
tional roles those health professionals can play.r Performance: To provide better performance, it is
necessary to cluster the defaults into several domains
in which defaults can be more efficiently found and
evaluated.

3.3. Conflict Resolution

During JECA rules evaluation, dynamic resolution is
used to select default values (resources, algorithms,
routing, numerical values, etc.) and resolve conflicts.
Inconsistent information as well as coarse rule granu-
larity in JECA rules can lead to conflicts during default
evaluation. The conflicts may lead to exceptions if the
conflicts cannot be resolved in the default evaluation.
Conflicts in default evaluation can be either one or more
of the following:r Temporal conflict: defaults formed in subsequent

time result in conflicts. For example, the healthcare
professionals make two decisions separately. The
decisions are specified in defaults that are fed into
the workflow systems in the order the decisions are
made. It is possible that the two decisions may result
in conflicts. The first decision may involve certain
kinds of drugs to be applied. The second decision
may involve drugs that should not be applied after
the drugs in the first decision are applied.r Role conflict: defaults formed or evaluated by dif-
ferent role may result in conflicts. The healthcare
professionals on board may have different opinions
about the situation of the infant. During the assign-
ment of healthcare professionals to the transport of
infant, there may exist role conflicts, such as agents
not available, an agent who can play that the care-
giver role is not suitable to attend the infant.r Semantic conflict: An example that might lead to
semantic conflicts is alternative interpretation of the
consequence of defaults. This is possible due to the
nature of non-monotonic reasoning that is context
dependent. If the contexts are different, interpreta-
tions in different contexts may also be different.

To resolve those conflicts, the defaults are assigned
priorities, or more generally, are ordered by partial or-
dering relations regulated in business policies (organi-
zational, security, etc.). That is, some defaults may be
preferable to others, and assuming they are applicable,
they should be used first. To resolve any inconsisten-
cies, polices are based on one of the following criteria:

r Special: Preference will be given to exceptions over
normal cases. For example, whenever a local deci-
sion cannot be made in the default evaluation, an
exception is always raised.r Hierarchical: Consequences derived at higher posi-
tions in the hierarchy will be favored over those at
lower positions. In the infant transport application,
if the medical situation of the infant becomes seri-
ous, the decision made from the personnel at a higher
position who can be responsible for the action taken
will be preferred.r Temporal: Consequences from latest defaults will
be favored over earlier ones. In the infant transport
application, the personnel on board may consult the
experts in the MCG’s care unit (NICU). During the
decision making process, the experts in the NICU
might give one suggestion at one time, and later they
might come up with another suggestion. The later
one might be given a higher priority during the de-
cision making process.r Semantic: Interpretations that are more plausible
will be preferred to less plausible ones. In the ex-
ample application, if a symptom is discovered and if
it might be caused by several different reasons, the
personnel on board may derive one that he believes
is the most reasonable.

3.4. Rule Graphs

In rule execution, there is a danger of non-termination.
In this section, we give a sufficient condition for the ter-
mination of rule execution over a JECA rule set by ex-
tending the rule graphs in [10]. Furthermore we adapt
the results from rule analysis [11] for workflow model-
ing. Further details about rule analysis related proofs
appear in [10, 11]. We ensure termination of evalua-
tion of J and C in JECA rule evaluation, we limit the
logic expressions used in specifying J and C compo-
nents of JECA rules to be quantifier free. Furthermore,
we assume that facts that need to be checked in rule
evaluations are finite.

Consider a JECA ruler (j, e, c, a). When event (e)
occurs,r is triggered. In other words, event (e) triggers
JECA ruler . Action of JECA rules can generate events
that can trigger other JECA rules, which may include
themselves. The action of those triggered JECA rules
may further trigger more JECA rules. This series of
JECA rules triggering forms a triggering graph. Con-
sider an arbitrary JECA rule setR. Triggering graph
(TG) overR is a directed graph where each node cor-
responds to a ruleri that belongs toR, and a directed



Exception Handling in Workflow Systems 133

arc (ri , rk) means that the execution of ruleri generates
events that trigger rulerk. Consider two JECA rules
ri (j, e, c, a) andr j (j, e, c, a). When condition (c) of
ri is true, JECA ruleri is activated. If action (a) ofr j

can change the condition (c) ofri from false to true,
we sayri is activated byr j , or r j activatesri . When
justification (j) of ri is not true, JECA ruleri is justi-
fied. If action (a) ofr j can not change the justification
(j) of ri from false to true, we sayri is justified byr j ,
or r j justifiesri . Consider an arbitrary JECA rule set
R. Activation graph (AG) overR is a directed graph
where each node corresponds to a ruleri that belongs
to R, and a directed arc (ri , rk) means ruleri activates
rule rk. Justification graph (JG) overR is a directed
graph where each node corresponds to a ruleri that
belongs toR, and a directed arc (ri , rk) means ruler j

justifies rulerk.
Consider a JECA rule setR, and TG, AG and JG over

R. An irreducible rule set overR is a subset ofR, and
includes only those JECA rules whose incoming arcs
are in all the directed graphs, TG, AG and JG. This irre-
ducible rule set is generated by iterations of discarding
a rule that does not have an incoming arc in TG, or AG,
or JG, and remove all its outgoing arcs. The iterations
continue until all the rules have been removed, or until
al the remaining rules have incoming arcs in all the di-
rected graphs, TG, AG, and JG. If the irreducible rule
set overR is empty, then rule execution onR is guaran-
teed to terminate [11]. This is a sufficient condition for
termination of rule execution over rule setR. Assume
that rule execution will not terminate if the irreducible
rule set overR is empty. If rule execution will not
terminate, according to the rule execution algorithm in
Algorithm 3.1 or 3.2, there are always triggered rules,
and some of those triggered rules’ condition must be
true and justification must not be true. There must ex-
ist at least one triggering cycle, activation cycle and
justification cycle involving the same rules, sayr 1 and
r 2, in the same direction. That is,r 1 trigger r 2, r 1
activatesr 2, andr 1 justifiesr 2. Thus, bothr 1 andr 2
have incoming arcs in all directed graph, TG, AG, and
JG. So the irreducible set overR is not empty. This
contradicts with the assumption.

3.5. Workflow Modeling

In our approach, a workflow system is considered as a
reactive system that maintains an ongoing interaction
with its environment. It is assumed the all variables
that describe the properties of workflows are taken
from a set of variables, called workflow variable set

or vocabulary. Instances of those variables form the
workflow environment. Situation of the activities in
workflows at a certain point of time is called aworkflow
statethat is specified through task states and data states
and the status of workflow environment. Inter-state
dependence constraints are enforced throughworkflow
transitionsthat are specified in JECA rules. Thus, each
workflow stateS is associated with a JECA rule setR
specifying workflow transitions. An initial workflow
state is where a workflow starts. It has a special in-
coming transition, specified by a special JECA rule,
called initial rule. The initial rule only triggers those
rules associated with initial workflow states. A final
workflow state is where a workflow terminates. It is
associated with a special JECA rule, calledfinal rule.
The final rule cannot trigger any rules. Aworkflowis
a series of workflow states linked by workflow transi-
tions, starting from an initial workflow state, ending at
a final workflow state.

Consider a JECA ruler and the workflow transition
δ specified byr . If r is triggered, activated, and justi-
fied, r is enabled.δ is enabled ifr is enabled. Given
JECA rulesri , rk andr j , if ri enablesrk andrk enables
r j , thenri transitively enablesr j . Given JECA rules
r1, r2, . . . , rn, (n >= 3) r1 transitively enablesrn if
ri enablesri+1, 1<= i < n. A workflow execution se-
quence consists of a series of workflow states linked by
enabled JECA rules. The workflow execution is said to
be in adeadlockif the last workflow state is not final.
A workflow execution sequence is an execution his-
tory of a workflow instance. Each workflow instance
is associated with aworkflow specification(also called
workflow type).

Consider a workflow specification, and associated
JECA rule setR. Workflow graph (WG) is a directed
graph, wherer each node corresponds to a ruleri belongs toR.r A directed arc (ri , rk) means ruleri enables rulerk.r If ri in a direct arc (ri , rk) does not have incoming

arcs,ri is the initial rule.r If rk in a direct arc (ri , rk) does not have outgoing
arcs,rk is the final rule.r Initial rule transitively enables final rule.r Irreducible rule set obtained fromR is empty.

A workflow specification is correct if all possible
workflow execution sequences start from an initial
workflow state, and end at a final state. Consider a
workflow specification, and associated JECA rule set
R. If a workflow graph exists, the initial rule tran-
sitively enables the final rule. All workflow execution



134 Luo et al.

sequences can only start from initial workflow state be-
cause the initial rule is the only node in workflow graph
that does not have any incoming arcs, but has outgoing
arcs. Similarly, all workflow execution sequences can
only end at final workflow state because the final rule is
the only node in workflow graph that does not have any
outgoing arcs, but has incoming arcs. Since irreducible
rule set obtained fromR is empty, rule execution is
guaranteed to terminate. Thus, all workflow execution
sequences can only start from an initial workflow state,
and will end at a final state. So if a workflow graph can
be obtained from its associated workflow specification,
the specification is correct.

3.6. Exception Modeling

To handle exceptions, JECA rules are used to model the
exception handling process. Event part captures excep-
tional events. Condition and justification part identifies
the context. Action part specifies the operations to
handle the exceptions. Possible operations that can be
specified in the action part are as follows.

r Masking. It includes corrective actions such as ig-
nore, retry, workflow recovery operations, modifica-
tions of workflows, etc.r Propagation. It sends out warnings and/or propa-
gates the exceptions.

Figure 4. Three layered exception model.

r Recording. It records the exception situations for
future reference

We characterize the types of exceptions into three
broad categories (see Fig. 4) based on our early work
in error handling [12]. The infrastructure exceptions
and application exceptions are mapped to workflow ex-
ceptions that include system exceptions and user excep-
tions. That is, an exception that occurs at infrastructure
layer will trigger a mapped exception at workflow layer.
The same is true for an application exception. This
mapping scheme is adopted due to the heterogeneous
nature of exceptions in applications and infrastructure.r Infrastructure exceptions: these exceptions result

from the malfunctioning of the underlying infras-
tructure that supports the WfMSs. These exceptions
include hardware errors such as computer system
crashes, errors resulting from network partitioning
problems, errors resulting from interaction with the
Web, errors returned due to failures within the Object
Request Broker (ORB) environment, etc. In the new-
born infant transport workflow, an infrastructure ex-
ception can be caused by an error in the telecommu-
nication media between the ambulance and NICU.r Workflow exceptions: All exceptions form a hier-
archy rooted at class Exception. Two basic groups
of exceptions include system exceptions and user-
defined exceptions. A variety of system excep-
tions identify a number of possible system-related



Exception Handling in Workflow Systems 135

deviations in the services provided by the workflow
system. Examples of this include a crash of the work-
flow enactment component that could lead to errors
in enforcing inter-task dependencies, or errors in re-
covering failed workflow component after a crash,
etc. User-defined exceptions are specified by the
workflow designer and identify possible application-
dependent deviations in task realizations. Specific
user-defined exceptions depend on the specific work-
flow application. An exception handler is a de-
scription of action(s) that workflow runtime compo-
nent(s), or possibly a workflow application, is going
to perform in order to respond to the exception.r Application exceptions: these exceptions are closely
tied to each of the tasks, or groups of tasks within
the workflow. Due to its dependency on application
level semantics, these exceptions are also termed as
logical exceptions. For example, one such exception
could involve database login errors that might be
returned to a workflow task that tries to execute a
transaction without having permission to do so at
a particular DBMS. A runtime exception within a
task that is caused due to memory leaks is another
example of application exception. In the newborn
infant transport workflow, an application exception
can be caused by an error in health professionals
assignment such as agents could not be found for the
roles required.

3.7. Exception Detection

One of the important tasks in exception handling is to
detect exceptional situations. The objective of excep-
tion detection is to capture deviations in the systems.
Exception detection can be achieved by supervising the
workflow system components’ external inputs and out-
puts, and comparing their behavior with the specified
behavior of the system. In this approach, the supervi-
sor predicts a single likely behavior of the system and,
if the observed behavior does not match the prediction,
rolls back and creates a new prediction of the valid
behavior. An exceptional situation is identified when
the supervisor has explored all valid behaviors without
matching the observed behavior, resulted from which
an exception is raised. In the following, we are going
to discuss several supervision techniques.r Under-specified specification supervision: Under-

specified specification often results in a non-deter-
ministic system specification. Non-determinism in

specification is advantageous because the specifica-
tion writers can avoid stating irrelevant behavior as
mandatory, freeing the software designer to choose
a behavioral alternative that would yield a more de-
sirable implementation. The major difficulty in su-
pervising such systems is that the supervisor must
account for all possible behaviors that are permissi-
ble under the non-determinism present in the speci-
fication.r Hierarchical supervision: this type of supervisions
is very natural due to the hierarchical construction
of WfMSs. The hierarchical approach differs from
common one-layer approaches in that supervision is
split into several sub problems such as tracking the
external behavior of the target system and detailed
internal behavior checking.r Time supervision: In time critical software, a cor-
rect output that is not produced within a specified
response time interval may also constitute an excep-
tion. Automatic detection of time-related exceptions
is achieved through tracking the state of a workflow
as well as the elapsed times between specified re-
quest and response pairs. System’s time behavior
is derived directly from the workflow application’s
requirement specifications. Time supervision allows
exceptions in a workflow system to be detected in
real-time based the specification of its external be-
havior. This feature is of particular benefit because a
WfMS often needs to integrate legacy systems, soft-
ware component purchased from other vendors, and
tasks developed by third parties.

3.8. Exception Handling

We have conducted several workflow projects such as
modeling and development for real-world workflow ap-
plications (e.g., the statewide immunization tracking
application [13]), and in using flexible transactions in
multi-system telecommunication applications [14]. In
the following, we formulate some of the essential re-
quirements for exception handling based on our prior
experiences and our understanding of the current state
of workflow technology and its real-world or realistic
applications [2, 15].

r Support specification for exception handling: We al-
low an application developer to specify various types
of user-defined exceptions to catch anticipated fail-
ures or deviations.



136 Luo et al.

r Support task-specific exception handling: Tasks are
viewed as black boxes for a WfMS. The workflow
enactment service doesn’t have to be concerned with
the realization of the tasks. The workflow tasks, in
general, are more complex than database transac-
tions, and represent a logical activity in the overall
organizational workflow. It is therefore critical to
be able to detect the exceptions returned by arbitrary
tasks.r Localize exceptions: The first attempt to handle ex-
ceptions is to isolate and mask them. This can pre-
vent the problem affecting other parts of the system.r Support exception handling by forward recovery: we
give a general discussion about exception handling
through workflow recovery.r Support human-assisted exception handling: It is
impossible to guarantee the success of exception
handling mechanism due to the non-deterministic
nature of exceptions. Therefore, the involvement of a
human is critical for resolving erroneous conditions
that could not be dealt with by the WfMS automati-
cally. Thus, human involvement is a very important
element for exception handling.

We adopt an exception handling mechanism that in-
volves exception masking and propagation (see Fig. 5).
As shown in Fig. 5, a task has four states,initial , exe-
cute, fail, andcomplete[16]. In theexecutestate, the
task is actually being executed. When the execution
finishes, the task either entersfail state orcomplete

Figure 5. Exception masking and propagation in defeasible workflow.

state. The task can throw many exceptions. An excep-
tion is masked if a local exception handler can handle
it. Otherwise, the exception will be propagated. There
are two types of exception propagation:structural ex-
ception propagationand knowledge based exception
propagation. The structural exception propagation fol-
lows the control (or calling) structure of the workflow
inter-task dependencies enforcement. The knowledge
based exception propagation can directly propagate ex-
ceptions to knowledgeable workflow components such
as a CBR based exception handling component and
human agents.

Exception masking prevents an exception in one part
of the workflow systems from affecting other parts of
the systems. Our intention of masking exceptions tries
to capture an exception as close to its point of occur-
rence as possible, and a suitable handler at the same
level of that point will first handle this exception. Ex-
ception masking includes corrective actions such as
ignore, warnings, retry, procedural actions, workflow
recovery, workflow modifications, suspend/stop, and
so on. In the following, two categories of exception-
masking techniques (hierarchical and grouping) are
discussed that are used to organize the corrective
actions.

r Hierarchical exception masking: If a component de-
pends on lower-level components to correctly pro-
vide its service, then an exception of a certain type at
a lower level of abstraction can result in an exception



Exception Handling in Workflow Systems 137

of a different type at a higher level of abstraction. Ex-
ception propagation among components situated at
different abstraction levels of the hierarchy can be a
complex phenomenon. For example, if WfMS needs
services provided by infrastructure, such as ORB,
Internet, with arbitrary exception semantics, WfMS
will likely have arbitrary exception semantics, un-
less it has some means to check the correctness of
the results provided by infrastructure. In such hierar-
chical systems exception handling provides a conve-
nient way to propagate information about exception
detection across abstraction levels and to mask low-
level exceptions from higher-level components.r Group exception masking: One way to ensure that
a service remains available to clients despite server
failures is to implement the service by a group of
redundant, physically independent servers, so that if
some of these fail, the remaining ones can provide
the service. Group masking can mask the excep-
tions of an individual member, whenever the group
responds as specified to service requestors despite
the individual’s exceptional situation. With group
masking, individual member exceptions are entirely
hidden from service requestors by the group manage-
ment mechanisms. Group masking uses redundant
information to deliverer the correct service.

3.8.1. Exception Handling Through Workflow Recov-
ery. Like [17], we believe that ignore, retry, back-
ward recovery are good exception handling candidates
that can be used in different situations. For exam-
ple, retry is not applicable if the workflow applica-
tions cannot be retried. Serious exceptional situations
cannot be ignored. Furthermore, in real-world work-
flow applications we have seen that most tasks are
non-transactional, and often involve long-lived tasks,
thereby not supporting the strict ACID properties of
transactions [18]. Hence, although desirable, it might
not be possible to recover failed non-transactional tasks
using backward recovery. The use of backward re-
covery for most human-oriented tasks is not a viable
solution since most erroneous actions once performed
cannot be undone. It might be possible for the hu-
man to rectify all the inconsistencies caused due to
the error and redo the actions without affecting other
tasks or data objects within the workflow; however, it
would be rare to expect this behavior for most real-
world human-tasks. Backward recovery is useful for
purely data-oriented tasks that are transactional tasks
or networks. Besides we also need a forward recovery

based exception handling mechanism that would se-
mantically undo, or compensate a partially failed task.

3.8.2. Exception Handling Through Dynamic Work-
flow Changes. Due to foreseen and unforeseen sit-
uations, i.e., exceptions, pre-defined workflows may
need to be modified to adapt to such exceptional events.
However, the resulted workflows must be correct even-
tually, i.e., the workflow graph should exist after cor-
rective actions are performed. Possible modifications
to workflows can be at instance level or at model level.
The ways of modifications that will result in correct
workflows are as follows.r Modifying JECA rules: It can modify any part in a

JECA rule. To ensure a workflow graph exists in the
resulted workflow, the enabling relationships should
be kept.r Inserting JECA rules: There are two ways of inser-
tions. One way is to insert the rules parallel to an
existing rule. If the inserted rules have same en-
abling relationship as the existing rule, the resulted
workflow remains correct. The other way is to insert
a new ruler between two existing rulesr1 andr2 that
r1 enablesr2. Ther1 andr2 must be modified such
thatr1 enablesr , andr enablesr2.r Removing JECA rules: If the removal of a rule does
not modify the enabling relationship, the resulted
workflow remains correct. Otherwise, if ruler is re-
moved from two rulesr1 andr2 that thatr1 enablesr ,
andr enablesr2, rulesr1 andr2 need to be modified
such that rulesr1 enablesr2.r Commutative change: For example, if enabling re-
lationship between rulesr1 andr2 is commutative,
r1 enablesr2 can be changed tor2 enablesr1.r Combination of the above.

3.8.3. User Exception Support.Users can antici-
pate and provide solutions to deal with certain excep-
tional situations. To support user exception handling,
we provide tools to allow workflow application de-
signers to define their own exceptions, called user ex-
ceptions. In the exception design, it is necessary to
provide mappings between exceptions and exception
sources (see Fig. 6). Exception sources include er-
rors, faults, failures, and other exceptional situations.
Like [19], we view constraints as exception sources
too. That is, when constraints are broken, exceptions
may be raised. By providing such a mapping mecha-
nism, workflow application designers can decide which



138 Luo et al.

Figure 6. Mappings between exceptions, exception sources, and exception handlers.

exceptions should be raised when those abnormal sit-
uations occur.

Also, workflow application designers can provide
mappings from exceptions to exception handlers so
that when such exceptions are raised, systems can
know which exception handlers are good candidates.
The candidates for exception handlers are ignoring,
warning, retry, suspend/stop/resume, workflow recov-
ery operations (e.g., backward recovery, forward re-
covery, alternative tasks, etc.), workflow modifications
and evolutions, and other exception masking and prop-
agation operations. Those mappings will be specified
in JECA rules.

The following JECA rule,

Event: taskAssignException
Condition: agent not available and task priority

is urgent
Action: task-reassignment
Justification: newborn infant transport to NICU,

shows a mapping example of a task assignment excep-
tion in the infant transport application. In the resource
allocation step, if there are no human agents avail-
able who can play the health professional role, then
taskAssignException exception will be raised. Since
the infant should be transported immediately, another
qualified healthcare professional for the healthcare pro-
fessional role must be found.

Figure 7 shows an example of user exception-
handling scenario that involves taskAssignException
exception. This exception will be declared as a taskAs-
signException class. By using the mappings designed,
workflow systems will register the exception detector
and handler for that taskAssignException exception.
When the task assignment exceptional situation as de-
fined by users is detected, a taskAssignException is
raised. The taskAssignException exception object will
be forwarded to the registered exception handler via
the exception adapter. The exception adapter in this
scenario act as a bridge that de-couples exception de-
tectors and handlers.

3.8.4. Knowledge Based Exception Handling.Ex-
ceptional situations are usually very complicated. A
knowledge-based approach is a good candidate in
dealing with such complicated situations. It can help
workflow designers and participants better manage the
exceptions that can occur during the enactment of a
workflow by capturing and managing the knowledge
about what types of exceptions can occur in workflows,
how these exceptions can be detected, and how they
can be resolved. Exception knowledge bases should
be generic and reusable. This approach should allow
the users to navigate through that knowledge base to
find support for his decision on how to handle a cer-
tain exception. An explanatory module could also be



Exception Handling in Workflow Systems 139

Figure 7. User exception handling scenario.

incorporated into the knowledge systems to explain
the exceptional situation and solutions. We proposed
a CBR-based exception handling mechanism that ad-
dresses these requirements.

4. CBR-Based Exception Handling

In this section, we pay more attention on dealing with
uncertainties, experience acquisition, and supporting
human involvement in exception handling through a
CBR-based exception handling mechanism. In the in-
fant transport application, when an exceptional situa-
tion is discovered the personnel on board should make
decisions, assisted by the process automation mecha-
nism, as to which tasks should be taken. A CBR-based
exception handling mechanism with integrated human-
computer processes is used to facilitate such decision-
makings in handling exceptions. When the case-based
reasoning component is notified about the exceptional
situation of the infant, similar cases stored in the case
repository will be retrieved and analyzed. The result
from the analysis will be reused to facilitate the deci-
sion making process in exception handling.

4.1. Case Resolution

The CBR based approach models how reuse of stored
experiences contributes to expertise [5]. In this ap-
proach, new problems are solved by retrieving stored
information about previous problem solving steps and
adapting it to suggest solutions to the new problems.
The results are then added to the case repository for
future use. A case usually consists of three parts: prob-
lem, solution, and effect as illustrated in Fig. 8. Prob-
lems will be obtained through user or system input.
There are solution candidates for those problems. The
selection of the output solution will be based on the
analysis of the effects of those solutions.

During the workflow execution, if an exception is
propagated to the CBR based exception-handling com-
ponent, the case-based reasoning process is used to de-
rive an acceptable exception handler. Human involve-
ment is needed when acceptable exception handlers
cannot be automatically obtained. Solutions given by
a person will also be incorporated into the case repos-
itory. Effects of the exception handler candidates on
the workflow system and applications will be evaluated.



140 Luo et al.

Figure 8. Exception handling via CBR based mechanism.

Thus, when the exception is handled, necessary modifi-
cations to the workflow systems or applications may be
made. There are four steps in the exception handling by
exception handler that involve case-based reasoning:r Retrieval of the most similar cases to the identified

exceptional situation,r Analysis of the solution from the most similar cases,r Adaptation of the most similar cases, andr Updating of the system by adding the verified solu-
tion to the case repository.

4.2. Case-Based Reasoning Architecture

As shown in Fig. 9, the case-based reasoning architec-
ture consists of the following components.r Abstractor: abstracts the exceptional situation based

on ontology.r Retrieval component: retrieves related cases from
case repository.r Analyzer: analyzes the solution in the cases, and
tries to derive a possible solution.r Retainer: writes back the new case into the reposi-
tory and outputs the solutions.r Case repository: it is the place where cases are
stored.r Editor: provides GUI interface to modify cases.r Browser: provides GUI interface to allow users to
browse the case repository.r Explainer: explains the cases to users through GUI
interface. This component facilitates users to under-
stand cases, such as what the cases are, why the
solutions are effective, and their effects.

r Ontology & Concept component: manages the con-
cept in multiple domains.r Similarity Measure component: provides similar-
ity measure algorithms during case retrieval. Cases
are often heterogeneous. Different cases need differ-
ent similarity measure algorithm. This is achieved
through separation of this component from retrieval
component.

When exceptions occur, the abstractor identifies the
exceptional situation via input (system input or user
input). It extracts information from input. Output of
abstractor is fed to retrieval component. It retrieves sim-
ilar cases for analysis by the case analyzer. An accept-
able solution may be derived at this stage. That is, the
solution of a similar case can be applied. The new de-
rived case will be forwarded to retainer. Retainer may
write back the new case and will construct solutions
and supply it to systems or users. In some situations
no similar cases can be found or the analyzer is not
confident about the similarity measurement. That is,
the value of the similarity measure is too low. In such
situations, the case editor will allow users to interact in
deriving acceptable solutions. During the interaction,
the explainer helps users to understand the cases.

4.3. Ontology-Based Case Management

Since this case-based reasoning system needs to apply
in various domains (such as healthcare, telecommuni-
cation, finance, etc.), we use ontology to describe the
concepts used in various domains. Figure 10 shows
an example of a high level ontology for disorders in
medical intensive care we developed for the healthcare



Exception Handling in Workflow Systems 141

Figure 9. Case-based reasoning architecture in defeasible workflow.

Figure 10. A high level ontology for disorders in medical intensive care.

workflow application. In this CBR based exception-
handling approach, we usually need to acquire, repre-
sent, index and adapt existing cases to effectively apply
the case-based reasoning process. In this paper, we ac-
quire new cases by learning through exceptions. That
is, we create new cases when exceptions occur. We
adopt an ontology-based case management:

r Abstraction: we extract information from excep-
tional situations and represent them as cases via
ontology.

r Retrieval: we use ontology to organize cases. The
retrieval of similar cases is based on ontology-based
similarity measurement.r Adaptation: adaptation increases the usability of ex-
isting cases.

4.3.1. Case Abstraction. Cases are derived from ex-
ception instances. An instance of the class Exception,
or one of its subclasses, represents an exception. The
exception instance or object should carry informa-
tion from the point at which exception occurs to the



142 Luo et al.

component that detects it. Due to exception masking
and propagation, an exception object may pass among
different components situated at the same or at different
layers. During the propagation, information contained
in the exception object may increase to record the han-
dling history.

That is, an exception object may change during the
propagation. An instance of an exception can be serial-
ized when necessary to achieve a persistent exception
object. In situations when case-based reasoning com-
ponent is called to derive a handler for an exception,
the information contained in that exception object is
used in case-based reasoning to identify the exceptional
situation.

Case abstraction involves two processes: determina-
tion of facts about exceptional situations and extraction
of texts that can be used to summarize an exception
based on ontology. The goal of extraction is to identify
exceptional situations and extract index terms that will
go into case repository. Rather than trying to determine
specific facts, the goal for user input or text summariza-
tion is to extract a summary of an exceptional situation.
The abstraction is used to represent the exceptional sit-
uations for search purposes or as a way to enhance the
ability to browse a case repository. It is worth noticing
that the abstraction usually is not necessarily complete.
It may be just a partial description about the exceptional
situation.

4.3.2. Case Retrieval. The retrieval procedure of sim-
ilar previous cases is based on the similarity measure

Figure 11. Example of two retrieved similar cases.

that takes into account both semantic and structural
similarities and differences between the cases. A simi-
larity measure can be achieved by computing the near-
est neighborhood function of the quantified degrees of
those semantic similarities (e.g., risk factors, age) be-
tween cases and structural similarities (e.g., AND, OR
building blocks) between workflow specifications. To
conduct a similarity based case retrieval, the similar-
ities should be computed between targeted case (new
situation) and old cases for three components: prob-
lem, context and resolutions. Each component may
have its attributes that are application dependent. They
are weighted according to the similarity measure algo-
rithms used. The quantified value of similarity about
each attribute between two cases is based on the on-
tology, for example, shown in Fig. 10. Such similarity
measure setting up information is stored in the simi-
larity measure, and ontology and concept components
(see Fig. 9).

For example, there is a new situation that a newborn
infant Mike Clinton needs initial intravenous mainte-
nance. His age is about 15 days. To derive the actual
solution, similar cases are retrieved. In this case, there
are two attributes that can describe the exceptional sit-
uation, age and risk factor. Suppose there are two
similar cases retrieved as shown in Fig. 11. Case a
is retrieved because the new situation is described by
the same term as case A—intravenous maintenance.
Case B is similar to the new situation because the heart
murmur is a kind of cardiovascular risk factor. Both
intravenous maintenance and heart murmur are related



Exception Handling in Workflow Systems 143

Figure 12. Example of parameterized adaptation.

to the cardiovascular concept. In determining which
case is more similar, a smaller weight is put on age
(weight 1) than on the intravenous maintenance (50).
That is, the risk factor is more important than age if the
age difference is less than 2 weeks. By using the one
level ontology tree (see Fig. 10), the problem difference
between case A and new situation is 0, while the differ-
ence between case B and new situation is at least 1 (be-
cause there is at least one level concept difference in the
ontology tree). The similarity measure result between
case A and new situation is 36((15− 9)2∗1+ 0∗1).
The similarity measure result between case b and new
situation is 50((15− 15)2∗1+ 1∗50). Thus, case A is
the most similar case.

4.3.3. Case Adaptation. There are two main ap-
proaches to realize case adaptation:r Problem adaptation: One way to adapt a case is to

enhance the partial description about the problem.
Another way is to substitute conception realization
in a case.r Solution adaptation: There are two ways associated
with solution adaptation [5]: (1) reuse the past case
solution (transformational reuse), and (2) reuse the
past methods that constructed the solution (deriva-
tional reuse).

There might be combinations of the above two
approaches. However, a case can be used without
any modification, which is usually called NULL

adaptation. Partial matching during case retrieval is also
one way to realize case adaptation. There are usually
two approaches to case modifications: parameterized
modification and substitution modification. An exam-
ple for parameterized modification is a physician might
change the dose of a drug or other solutions according
to the situations of a baby such as age or weight (see
Fig. 12). Modification of a case by substitution usu-
ally results from the fact that the case or part of the
case is not applicable in new situations or not avail-
able. In the healthcare domain, a physician usually can
prescribe different drugs to patients with similar symp-
toms according to either patients’ demand or situations
of the drugs market (for example, a new, more effec-
tive drug has come into the market). Figure 13 shows
another example for adaptation (modification) by
substitution.

4.4. Integration of Case Management

There are two approaches for the integration of the
CBR-based system into a WfMS. One is to integrate
it as a built-in component. In this approach, an ex-
ception can be propagated to the CBR-based compo-
nent through knowledge based exception propagation
(See Fig. 5). Since CBR-based system usually does
not participate the workflow inter-task dependencies
enforcement, structural exception propagation that re-
lies on control structures can also propagate the ex-
ception to CBR-based system usually as the last re-
sort to handle exceptions. The other approach is to



144 Luo et al.

Figure 13. Example of adaptation by substitution.

Figure 14. Cooperation between WfMSs in two different organizations.

outsource the CBR-based system in the context of
inter-organizational workflows (See Fig. 14). Assume
the CBR-based system has been integrated using the
first approach in a workflow system. The solution of
outsourcing the CBR-based system to other workflow
systems becomes the cooperation between two work-
flow systems.

When an exception occurs in the organization B, or-
ganization B may want to document the exception han-
dling process. The enactment component of WfMS in
organization B needs to acquire a reference to the ser-
vice requestor of the CBR-based service of organiza-
tion A. Such a handshaking is accomplished through
the inter-operable gateway as shown in Fig. 13. This
gateway specifies how a service requestor can be ob-
tained, how a service can be activated once service

requestor is obtained and how the required acknowl-
edgement is to be returned. An example of such a gate-
way is jFlow [20], a proposal admitted by OMG to meet
the request for workflow interoperability. A more com-
plicated gateway is proposed in [21]. The requestor
is responsible for identifying the correct CBR-based
service process. The process manager who acts as a
process factory creates the process. The Requester is
associated with the process when it is created and will
receive states change notifications from the process.

5. Related Work

The importance of incorporating the exception han-
dling mechanism into WfMSs has been identified by
researchers and projects (e.g., METEOR [16], WAMO



Exception Handling in Workflow Systems 145

[17]). The role of exceptions in office information sys-
tems has been discussed at length in [22]. The author
presents a theoretical basis, based on Petri-Net, for
dealing with different types of exceptions. This tax-
onomy presented is purely driven by organizational se-
mantics rather that being driven by a workflow process
model. [23] reports several works in workflow ex-
ception handling, which includes using ECA-rules to
model expected exceptions [24], a general discussion
about exceptions in systems based on objected oriented
databases [25]. [23] also reports taxonomy for excep-
tions in workflow systems. That exception taxonomy
can be reused in our CBR based exception-handling
system to help measure the similarities among cases
during case retrieval and analysis. Since exceptional
situations are often very complicated, knowledge based
systems are good candidates in such situations.

An exception is usually raised to signal exceptional
situations like errors and failures. Error handling in
database systems has typically been achieved by abort-
ing transactions that result in an error [26]. In [27]
a failure handling mechanism uses a combination of
programming language concepts and transaction pro-
cessing techniques. However, aborting or canceling a
workflow task would not always be appropriate or nec-
essary in a workflow environment. Tasks could encap-
sulate diverse operations unlike a database transaction;
the nature of the business process could be forgiven to
some errors thereby not requiring an undo operation.
Therefore, the error handling semantics of traditional
transactional processing systems are too rigid for work-
flow systems.

“Ad-hoc” workflows [28, 29] solve problems case
by case. Our approach proposed in this paper support
more than “ad-hoc” workflows. In the first place, we
use a context-dependent approach to support adaptive
exception handling. We support “ad-hoc” workflows in
the sense when exceptions occur, non-standard excep-
tion handlers are not derivable, CBR-based approach is
used as the last resort. In addition to solving problems
as in ad-hoc workflows, the CBR-based exception han-
dling system collects exception-handling cases, derives
exception-handling patterns from the experiences cap-
tured in exception handling, and tries to reuse the prior
gained exception handling experiences in the future.

6. Conclusions

Exceptional situations can be very complicated phe-
nomena. Fully automated exception handling processes
generally are not possible [30]. Mechanisms based only

on “ad-hoc” exception handling are not acceptable ei-
ther. An integrated human-computer exception han-
dling mechanism should be present to support a sys-
tematic way of exception masking and propagation.

In this paper, we have given a three-dimensional per-
spective of exceptions that gives directions to build
exception-aware workflow systems. We have formu-
lated a defeasible workflow based exception handling
approach. We identified the requirements for dealing
with exceptions in heterogeneous workflow environ-
ments. Our exception handling mechanism involves
mapping heterogeneous infrastructure and application
specific exceptions into workflow exceptions. Ignore,
task retries, alternate tasks, workflow recovery, work-
flow modifications, and other exception handlers have
been integrated with the exception model to provide
a complete solution that involves masking and propa-
gation for dealing with exceptions encountered during
workflow enactment. In addition, we propose a CBR-
based system, enhanced by ontology based knowledge
management, to learn from experience to provide a
system assisted decision-making method to facilitate
the understanding of exceptions and derivation of ac-
ceptable exception handlers. This involves reusing the
experiences captured in prior exception handling cases.

Acknowledgments

Special thanks goes to Tarcisio Lima for providing
background materials in developing ontology. We also
have held discussions with our METOER team mem-
bers Jorge Cardoso and Zhonqiao Li, etc. This work
is partially supported by the NIST Advanced Techno-
logy Program in Healthcare Information Infrastruc-
ture Technology (under the HIIT contract, number
70NANB5H1011) in partnership with Healthcare Open
Systems and Trials (HOST) consortium.

References

1. D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview
of workflow management: From process modeling to workflow
automation infrastructure,”Distributed and Parallel Databases,
vol. 3, no. 2, pp. 119–154, 1995.

2. A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W.
Scacchi, J. Wileden, and A. Wolf, “Report from the NSF work-
shop on workflow and process automation in information sys-
tems,” Technical Report, University of Georgia, UGA-CS-TR-
96-003, 1996.

3. S. Jablonski and C. Bussler,Workflow Management: Model-
ing Concepts, Architecture and Implementation, International
Thomson Publishing, 1996.



146 Luo et al.

4. A. Cichocki, A. Helal, M. Rusinkiewicz, and D. Woelk,Work-
flow and Process Automation: Concepts and Technology,
Kluwer Academic Publishers, 1997. ISBN 0-7923-8099-1.

5. A. Aamodt, “Case-based reasoning: Foundational issues, metho-
dological variations, and system approaches,”Artificial Intelli-
gence Communications, vol. 7, no. 1, IOS Press, 1994.

6. P. Meier and J. Paton,Clinical Decision Making in Neonatal
Intensive Care, Grune & Stratton: Orlando, Florida, 1984.

7. V. Marek and M. Truszczynski,Non-Monotonic Logic, Context-
Dependent Reasoning, Springer-Verlag, 1993.

8. S. Ceri, P. Grefen, and G. Sanchez, “WIDE: A distributed ar-
chitecture for workflow management,” inProceedings of RIDE
1997, Birmingham, UK, April 1997.

9. G. Kappel, S. Rausch-Schott, and W. Retschitzegger,Coordi-
nation in Workflow Management Systems—A Rule-based Ap-
proach, Springer, 1998. LNCS 1364.

10. E. Baralist, S. Ceri, and S. Paraboschi, “Improved rule analy-
sis by means of triggering and activation graphs,” inProc. of
the Second Workshop on Rules in Database Systems, Athens,
Greece, September 1995, edited by T. Sellis, vol. LNCS 985,
pp. 165–181.

11. N. Paton (ed.),Active Rules in Database Systems, Springer,
1999.

12. D. Worah, A. Sheth, K. Kochut, and J. Miller, “An error handling
framework for the ORBWork workflow enactment service of
METEOR,” Technical Report, Dept. of Computer Science, Univ.
of Georgia, 1997.

13. A. Sheth, K.J. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D.
Palaniswami, J. Lynch, and Shevchenko, “Supporting state-wide
immunization tracking using multi-paradigm workflow technol-
ogy,” in Proc. of the 22nd. Intnl. Conference on Very Large Data
Bases, Bombay, India, September 1996.

14. M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth, “Using
flexible transactions to support multi-system telecommunication
applications,” inProc. of the 18th Intl. Conference on Very Large
Data Bases, Vancouver, Canada, August 1992, pp. 65–76.

15. A. Sheth and S. Joosten (eds.), inWorkshop on Workflow Man-
agement: Research, Technology, Products, Applications and
Experiences, Athens, GA, August 1996.

16. N. Krishnakumars and A. Sheth, “Managing heterogeneous
multi-system tasks to support enterprise-wide operations,”Jour-
nal of Distributed and Parallel Database Systems, vol. 3, no. 2,
1995.

17. J. Eder and W. Liebhart, “Contributions to exception handling
in workflow systems,” inEDBT Workshop on Workflow Man-
agement Systems, Valencia, Spain, 1998.

18. D. Worah and A. Sheth, “Transactions in transactional work-
flows,” in Advanced Transaction Models and Architectures,
edited by S. Jajodia and L. Kerschberg, Kluwer Academic Pub-
lishers: Boston, 1997.

19. A. Borgida and T. Murata, “Tolerating exceptions in workflows:
A unified framework for data and processes,” inProceedings of
the International Joint Conference on Work Activities Coordina-
tion and Collaboration, WACC’99, San Francisco, CA, February
22–25, 1999.

20. Joint Workflow Management Facility Revised Submission to
BODTF RFP #2 Workflow Management Facility—CoCreate,
Concentus, CSE, DAT, DEC, DSTC, EDS, FileNet, Fujitsu,
Hitachi, Genesis, IBM, ICL, NIIIP, Oracle, Plexus, SNI, SSA,
Xerox,http://www.omg.org/cgi-bin/doc?bom/98-06-07.

21. H. Ludwig and K. Whittingham, “Virtual enterprise coordi-
nator—Agreement-driven gateways for cross-organizational
workflow management,” inProceedings of the International
Joint Conference on Work Activities Coordination and Collab-
oration, WACC’99, San Francisco, CA, Februrary 22–25, 1999.

22. H. Saastamoinen, “On the handling of exceptions in information
systems,” Ph.D. Thesis, University of Jyvaskyla, 1995.

23. M. Klein, C. Dellarocas, and A. Bernstein (eds.),Online
Proceedings of CSCW98 Workshop Towards Adaptive Workflow
Systems, Seattle, WA, 1998.

24. F. Casati, “A discussion on approaches to handling exceptions
in workflows,” in CSCW98,Towards Adaptive Workflow Work-
shop, Seattle, WA, 1998.

25. D. Chiu, K. Karlapalem, and Q. Li, “Exception handling with
workflow evolution in ADOME-WFMS: A taxonomy and res-
olution techniques,” inCSCW98, Towards Adaptive Workflow
Workshop, Seattle, WA, 1998.

26. J. Gray and A. Reuter,Transaction Processing: Concepts and
Techniques, Morgan Kaufmann Publishers: San Mateo, CA,
1993.

27. C. Hagen and G. Alonso, “Flexible exception handling in the
OPERA process support system,” in18th International Confer-
ence on Distributed Computing Systems (ICDCS), Amsterdam,
The Netherlands, May 1998.

28. M. Voorhoeve and W. Aalst, “Ad-hoc workflow: Problems and
solutions,” inDEXA Workshop, 1997.

29. H. Wedekind, “Specifying indefinite workflow functions in ad-
hoc dialogs,” inDEXA Workshop, 1997.

30. D. Strong and S. Miller, “Exceptions and exception handling in
computerized information processes,”ACM Trans. Information
System, vol. 13, no. 2, 1995, pp. 206–233.

Zongwei Luo is a Ph.D. candidate in computer science in the Univer-
sity of Georgia. He works as a research assistant in the Large Scale
Distributed Information System Lab. His research interests include
e-commerce, enterprise application integration, work coordination
and collaboration, and knowledge based systems. He is a student
member of the IEEE and ACM. He received his BS, MS degrees
in computer science and technology from Huazhong University of
Science and Technology, China.

Amit Sheth directs the Large Scale Distributed Information Sys-
tems (LSDIS) Lab and is a full Professor in the Department of Com-
puter Science. He also founded and serves as president of Infocosm
Inc. (http://www.infocosm.com). His technical interests include
enterprise integration, semantics in global information systems, dig-
ital libraries, e-commerce, and digital media. He received his BE
in electrical and electronics engineering from the Birla Institute of
Technology and Science, Phiani, India, and his MS and Ph.D. in
computer and information technology from Ohio State University.
He is a member of the IEEE and ACM.

Krys Koehut is an Associate Professor of Computer Science at the
University of Georgia. His research focus on Database systems, com-
puter systems for genome mapping, user interfaces, Computational
Genetics. Dr. Kochut obtained his Ph.D. from Louisiana State Uni-
versity in 1987. His recent course instructions include Compilers,
Software Engineering, and Advanced Software Engineering.



Exception Handling in Workflow Systems 147

John Miller is an Associate Professor and the Graduate Coordi-
nator in the Department of Computer Science at the University of
Georgia. His research interests include Database Systems, Simu-
lation and Workflow as well as Parallel and Distributed Systems.
Dr. Miller received the BS degree in Applied Mathematics from
Northwestern University in 1980, and the MS and Ph.D. in Informa-
tion and Computer Science from the Georgia Institute of Technology

in 1982 and 1986, respectively. During his undergraduate education,
he worked as a programmer at the Princeton Plasma Physics Labora-
tory. Dr. Miller is the author of over 60 technical papers in the areas
of Database, Simulation and Workflow. He has been active in the
organizational structures of research conferences in all these three
areas. He has also been a Guest Editor for the International Journal
in Computer Simulation as well as IEEE Potentials.


