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Abstract. This paper describes a novel knowledge-based approach for helping workflow process
designers and participants better manage the exceptions (deviations from an ideal collaborative work
process caused by errors, failures, resource or requirements changes etc.) that can occur during the
enactment of a workflow. This approach is based on exploiting a generic and reusable body of know-
ledge concerning what kinds of exceptions can occur in collaborative work processes, and how these
exceptions can handled (detected, diagnosed and resolved). This work builds upon previous efforts
from the MIT Process Handbook project and from research on conflict management in collaborative
design.
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1. The challenge

Workflow systems are currently ill-suited to dealing with exceptions. These sys-
tems typically institutionalize a more or less idealized preferred process. When
exceptions do occur we are often forced to “go behind the workflow system’s
back”, making the system more of a liability than an asset. Workflow models can, of
course, include conditional branches to deal with anticipated exceptions. Current
process modeling methodologies and tools (Harrington, 1991; Davenport, 1993;
Hammer and Champy, 1993; Grover and Kettinger, 1995; Kettinger et al., 1995)
do not, however, make any provision for describing exception handling procedures
separately from “main-line” processing. Inclusion of exception handling branches,
therefore, can greatly complicate process models and obscure the “preferred” pro-
cess, making it difficult to define, understand, and modify. Up-front prescription
of exception handling can also reduce or eliminate the discretion workflow par-
ticipants in precisely the cases most likely to profit from individual attention.
Current workflow technologies provide, in addition, no support for uncovering
what kinds of exceptions can occur in a given process model, and how they can be
resolved. Process designers are then forced to rely on their own, probably incom-
plete, experience and intuitions about possible exceptions and how they can be
managed.
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Figure 1. Implicit assumptions for subcontracting.

This paper describes a knowledge-based approach to meeting these challenges.
This approach provides design tools that allow designers to systematically ana-
lyze “normal” process models, anticipate possible exceptions and suggest ways
in which the “normal” process can be instrumented in order to detect or even
anticipate them. When exception manifestations occur, enactment-time tools are
provided to help diagnose their underlying causes and suggest specific interven-
tions for avoiding or resolving them. The remainder of the paper will discuss how
this approach works, what it contributes to previous efforts in this area, and some
directions for future work.

2. A knowledge-based approach to exception handling

2.1. WHAT IS AN EXCEPTION?

We define an exception as any deviation from an “ideal” collaborative process
that uses the available resources to achieve the task requirements in an optimal
way. An exception can thus include errors in enacting a task or communicating
results between agents, inadequate responses to changes in tasks or resources,
missed opportunities and so on. To make this more concrete consider the pos-
sible exceptions for the generic coordination process known as “subcontracting”.
Subcontracting can be used whenever one wants to share agents who perform
some service among requestors of that service. The requestor for a service (the
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Figure 2. A subset of the exception type taxonomy.

“Contractor”) sends out a request for bids (RFB), asking for agents (potential
“Subcontractors”) to perform a given task, the interested subcontractors respond
with bids, the Contractor awards the task to the Subcontractor with the best bid
(based, for example, on anticipated cost, quality or timeliness), at which point the
Subcontractor performs the task and returns the results to the Contractor.

This mechanism makes many implicit assumptions; violations of any one of
them can lead to exceptions (Figure 1). It assumes, for example, that the task
required by the Contractor does not change after it has sent out the RFB, that
the Subcontractor does not renege on the task it was assigned, become incapable
of doing it, make a mistake etc. Any assumption violation represents a possible
exception type. In addition to that, some exceptions take the form of dysfunctional
systemic behavior that may result even when the mechanism is followed perfectly.
Thrashing (where coordination, such as resource swapping, occurs to the exclusion
of actual work), deadlock (where several agents are each waiting for another one
to do something) and resource poaching (wherein high-priority tasks are unable
to access needed resources because these resources have already been reserved by
lower priority tasks) are all examples of systemic dysfunctions.

We have developed, as a result of analyses like that shown above, a growing
taxonomy of exception types, a subset of which is show in Figure 2. As we shall
see, the essence of our work is developing a knowledge base that captures such
exceptions and relates them to (1) the processes that they can occur in, and (2) the
processes that can be used to handle them.
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Figure 3. An example of a generic process taxonomy annotated with exceptions.

2.2. PREPARING FOR EXCEPTIONS

The first step is for a workflow designer to determine, for a given “ideal” workflow,
the ways that the process may fail and then “instrument” the workflow so that these
exceptions can be detected or even anticipated. The principal idea here is to com-
pare a process model against a taxonomy of generic process templates annotated
with possible exception modes.

A process taxonomy can be defined as a hierarchy of process templates, with
very generic processes at the top and increasinglyspecializedprocesses below.
Each process can have attributes that define the challenges for which it is well-
suited. Note that processspecializationis different from decomposition, which
involves breaking a process down (i.e. “decomposing it”) into subactivities. While
a subactivity represents a part of a process, a specialization represents a “subtype”
or “way of” doing the process (Malone et al., 1997).

Generic process templates are annotated, in our approach, with the ways in
which they can fail, i.e. with their characteristicexception types(see Figure 3)
which can be uncovered using failure mode analysis (Raheja, 1990). Each pro-
cess template in a taxonomy inherits all characteristic exceptions of its parent
(generalization) and may contain additional exceptions which are specific to it.

Given an “ideal” process model like that shown above in Figure 4, to identify
possible exceptions we need only identify the generic process templates that match
(components of) the process. The potentially applicable exception types will then
consist of the union of the exceptions inherited from the matching generic tem-
plates. The workflow above consists of a subprocess for allocating design tasks
(performed in this case by subcontracting), a subprocess for allocating shared
resources such as mainframe computer time to design groups (allocated first-
come first-served based on requests), followed by subprocesses where the different
subcomponent designs are consolidated and then sent on to be manufactured,
delivered, and inspected. We can see, for example, that the “distribute shared
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Figure 4. An example “ideal” workflow process.

design resources” subprocess in our example is a subtype of the generic “pull-based
sharing” process template in Figure 3, since the resources are “pulled” by their
consumers rather than “pushed” (i.e. allocated) by their producers or managers.
This template includes “resource poaching”, which we have already encountered,
among its characteristic exceptions. The “consolidate sub-designs” subprocess is
a specialization of the “manage fit” template and thereby inherits the “design
conflict” exception. The “deliver product” subprocess is a specialization of the
“manage flow” template, with characteristic exceptions such as “item delayed”,
“item lost” and so on. All the subprocesses also inherit exception modes, such as
“agent unavailable”, from the generalizations of these matching templates.

Every exception type has an associated knowledge base entry that gives its
definition, what situations it is known to be especially critical in, and how it can be
handled. The entry for the “resource poaching” exception (Figure 5).

The workflow designer can use the definition and criticality information to help
select, from the list ofpossibleexception types, the ones that seem mostimportant
in his/her particular context. He/she might know, for example, that the “deliver
product” process is already highly robust and that there is no need to augment it to
handle the “lost item” exception.

For each exception type of interest, the workflow designer can then decide
how to augment the workflow models to prepare for (anticipate or detect) these
exceptions. Every exception type includes pointers to “exception detection” pro-
cess templates in the Handbook repository that specify how to detect the symptoms
manifested by that exception type. These templates, once incorporated into the
workflow by the workflow designer, play the role of “sentinels” that check for
signs of actual or impending exceptions. The template fordetectingthe “resource
poaching” exception, for example, operates by comparing the priority of the tasks
that have the resources they need vs the priority of those that do not. The template
for anticipating the resource poaching exception, by contrast, looks for situations
where the potential subcontractor population is busy and a set of high-priority tasks
is expected or at hand.
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Exception resource poaching

For Process subcontracting

Definition One or more high-priority tasks are unable to access needed sub-
contractors because they already have been ‘grabbed’ by lower
priority tasks

Criticality This exception can have a high impact when there is a signi-
ficant variation in task priority and the available subcontractors
population can be oversubscribed.

Anticipation Processes Anticipation-Process-1(The potential subcontractor population
is currently busy with low priority tasks, and a set of high-priority
tasks is expected)

Detection Processes Detection-Process-1(The priority of the tasks that have the
resources they need is less than the priority of those that do not)

Detection-Process-2(A contractor does not get any bids for an
offered task within time-out period)

Avoidance Processes Avoidance-Process-1(Require that subcontractors collect sev-
eral request-for-bids before bidding, and respond preferentially
to higher-priority bids)

Resolution Processes Resolution-Process-1(Allow subcontractors to suspend lower-
priority tasks and bid on later higher-priority tasks)

Figure 5. The knowledge base entry for the ‘resource poaching’ exception.

An exception can have more than one candidate handler process for anticipa-
tion, detection and so on. All handler processes are annotated with their character-
istic preconditions and performance properties to help the workflow designer select
among them. Figure 6 gives, as an example, the information captured for the two
different detection processes listed in Figure 5 for resource poaching.

A workflow designer can use process design tools already included in the Pro-
cess Handbook, such as tradeoff tables (Malone et al., 1997) and recombinant
design techniques (Herman et al., 1998) to help find existing exception handlers
or even generate new variants customized for particular contexts. Note that, cur-
rently, exception handler processes are captured informally as textual descriptions
sometimes augmented with task decompositions and data/control flow diagrams.
The workflow participant is responsible for implementing the ideas these represent
into the current workflow process.

2.3. DIAGNOSING EXCEPTIONS

The next step is to figure out how to react when an exception is anticipated or
detected during the enactment of the workflow process. A key challenge here is that
the symptoms revealed by the exception detection/anticipation processes can often
result from a wide variety of possible underlying causes. Many different exceptions
(e.g. “agent not available”, “item misrouted”, “resource poaching” etc.) typically
manifest themselves, for example, as missed deadlines. Just as in medical domains,
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Handler Detection-process-1

Definition Look for cases where the priority of the tasks that have the
resources they need is less than the priority of those that do not

Preconditions Task priority info is used and available

Overhead Relatively high

False Positives Zero

Best For Low volume processes

Handler Detection-process-2

Definition Look for cases where a contractor does not get any bids for an
offered task within time-out period

Preconditions There are deadlines for request for bid responses

Overhead Relatively low

False Positives> Zero

Best For High volume processes

Figure 6. Knowledge base entries for handler (detection) processes.

selecting an appropriate intervention requires diagnosing the underlying cause of
the presenting symptoms.

Our approach for diagnosing exception causes is based on heuristic classifica-
tion (Clancey, 1984). This approach works by traversing the exception taxonomy
(introduced in Figure 2 above). Every exception, as we have seen, includes defin-
ing characteristics that need to be true in order to make that diagnosis potentially
applicable to the current situation. When an exception is detected, the respons-
ible workflow participant traverses the exception type taxonomy top-down like a
decision tree, iteratively refining the specificity of the diagnoses by eliminating
exception types whose defining characteristics are not satisfied. Distinguishing
among candidate diagnosis will often require that the user get additional infor-
mation about the current exception and its context, just as medical diagnosis often
involves performing additional tests.

Imagine, for example, that we have detected a time-out in the “allocate
design tasks” step. The exceptions that can manifest this way include “agent
unavailable” (e.g. the agent responsible for contracting is unavailable), “item mis-
routed/delayed/lost” (the request for bid or actual bids are lost, misrouted or
delayed), “resource poaching” (as defined above) and so on. We can distinguish
among these possibilities by such means as contacting the contractor agent, check-
ing whether the subcontractors received the request for bids and sent any responses,
checking task priorities and so on. In the current implementation of our approach,
the workflow participant is responsible for making these queries by his or herself;
the exception taxonomy serves as a guide to what kinds of problems can occur and
how they can be distinguished.

Heuristic classification is a “shallow model” (Chandrasekaran and Mittal, 1999)
form of diagnosis because it is based on compiled empirical and heuristic exper-
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tise rather than first principles. This approach is appropriate for domains, such as
medical diagnosis, where complete and consistent behavioral models do not exist.
This, we would argue, is also true for workflows with human and complex software
agents. An important characteristic of heuristic classification is that the diagnoses
representhypothesesrather than guaranteeddeductions: multiple diagnoses may
be suggested by the same symptoms, and often the only way to verify a diagnosis
is to see if the associated prescriptions are effective.

2.4. RESOLVING EXCEPTIONS

Once an exception has been detected, and at least tentatively diagnosed, one is
ready to define anprescription that responds appropriately to the anticipated or
actual exception. This can be achieved, in our approach, by selecting and enact-
ing one of the exception avoidance/resolution handler processes associated with
the exception. Imagine, for example, that we have diagnosed either the actual or
impending occurrence of a resource poaching exception. If the exception isanti-
cipated, the workflow user can implement Avoidance-process-1 (i.e. that requires
that subcontractors collect several request-for-bids before bidding, and respond
preferentially to higher-priority bids). If the exception is actual, the workflow user
can implement Resolution-process-1 (instruct the subcontractors to suspend lower-
priority tasks and bid on the current higher-priority tasks). Some other examples of
exception handling strategies captured in our knowledge base include:

• IF a subprocess fails, THEN try a different process for achieving the same
goal.

• IF a highly serial process is operating too slowly to meet an impending dead-
line, THEN pipeline (i.e. releasing partial results to allow later tasks to start
earlier) or parallelization to increase concurrency.

• IF an agent receives garbled data, THEN trace back to the original source of
the faulty data, eliminate all decisions that were corrupted by this error and
start again.

• IF an agent may be late in producing a time-critical output, THEN see whether
the consumer agent will accept a less accurate output in exchange for a quicker
response.

• IF multiple agents are causing wasteful overhead by frequently trading the use
of a scarce shared resource, THEN change the resource sharing policy such
that each agent gets to use the resource for a longer time.

• IF a new high-performance resource applicable to a time-critical task becomes
available, THEN reallocate the task from its current agent to the new agent.

• IF an agent in a serial production line fails to perform a task, THEN re-allocate
the task to an appropriately skilled agent further down the line.
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Figure 7. Summary of exception management approach.

As with the anticipation/detection handler processes, one can select among mul-
tiple candidate avoidance/resolution handler processes using performance and
precondition information stored with the handler processes. Also as above, in
the current implementation a human workflow participant is responsible for actu-
ally changing the workflow process in a way that implements the suggested
avoidance/resolution strategy.

2.5. SUMMARY

Our exception handling approach can be summarized as Figure 7. An “ideal” work-
flow model is checked at design time, using a process taxonomy augmented with
exception mode information, to see the ways it can fail. It is then augmented by the
workflow designer with “sentinels” that check for anticipatory/actual manifesta-
tions of these exceptions. When the process is enacted, these sentinels flag any
exception manifestations that they encounter. The notified workflow participant
can then use the Handbook’s knowledge base of exception types and associated
exception handler processes to uncover the underlying cause for the problem, and
select the appropriate handler. The user then modifies the workflow process as
suggested by the handler, allowing the process to continue.

Our project has captured, to date, roughly 100 exception types and 200 excep-
tion handler processes in the Process Handbook repository. We have focused the
bulk of our effort on acquiring exception handling information relevant to generic
“coordination processes” (i.e. processes used for managing the flow of resources
among tasks and agents) rather than “core processes” (i.e. domain-specific tasks
such as filling out an invoice) because information about coordination exceptions
can be highly leveraged; it is our experience that a relatively small set of coordi-



408 MARK KLEIN & CHRYSANTHOS DELLAROCAS

nation mechanisms is used in a very wide range of real-world collaborative work
processes.

3. Contributions to previous work

The approach described here builds upon two long-standing lines of MIT research:
one addressing coordination science principles about how to represent and utilize
process knowledge, another addressing how artificial intelligence techniques can
be applied to detecting and resolving conflicts in collaborative design settings.

One component is a body of work pursued over the past five years by the
Process Handbook project at the MIT Center for Coordination Science (Malone
et al., 1993; Dellarocas et al., 1994; Malone and Crowston, 1994; Malone et al.,
1997). The goal of this project is to produce a repository of process knowledge and
associated tools/techniques that help people to (among other things) better redesign
organizational processes, learn about organizations, and automatically generate
software. The Handbook database continues to grow and currently includes over
4000 models covering a broad range of business processes. We have developed
a mature Windows-based tool for editing the Handbook database contents, as
well as a Web-based tool for read-only access. Both are being actively used by
a highly distributed set of scientists, students and sponsors from government and
industry. A key insight from this work is that a repository of business process
templates, structured as a taxonomy, can help people design qualitatively more
innovative processes more quickly by allowing them to retrieve, contrast and cus-
tomize interesting examples, make “distant analogies”, and utilize “recombinant”
(mix-and-match) design techniques (Herman et al., 1998).

The other key component of this work is nearly a decade of development and
evaluation of systems for handling multi-agent conflicts in collaborative design
(Klein, 1989, 1991, 1993) and collaborative requirements capture (Klein, 1997).
This work resulted in principles and technology for automatically detecting, dia-
gnosing and resolving design conflicts between both human and computational
agents, building upon a knowledge base of roughly 300 conflict types and resolu-
tion strategies. This technology has been applied successfully in several domains
including architectural, local area network and fluid sensor design. A key insight
from this work is that design conflicts can be detected and resolved using a
knowledge base of generic and highly reusable conflict management strategies,
structured using diagnostic principles originally applied to medical expert systems.
Our experience to date suggests that this knowledge is relatively easy to acquire and
can be applied unchanged to multiple domains.

The work described in this paper integrates and extends these two lines of
research in an innovative and, we believe, powerful way. This integration is based
on the insights that (1) the exception handling expertise applicable to a given pro-
cess can be identified via annotations on generic process templates in a process
taxonomy, and (2) diagnostic techniques based on those applicable to collaborative
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design conflict management can be applied to workflow exceptions (a conflict, after
all, is just one type of exception).

This work also constitutes, we believe, a substantive and novel contribution to
previous efforts on exception handling, which have been pursued in the context
of workflow (Kunin, 1982; Kreifelts and Woetzel, 1987; Auramaki and Leppanen,
1989; Karbe and Ramsberger, 1990; Strong, 1992; Mi and Scacchi, 1993; Ellis et
al., 1995; Klein, 1998), manufacturing control (Parthasarathy, 1989; Katz, 1993;
Visser, 1995), model-based fault diagnosis (DeKleer and Williams, 1986; Krish-
namurthi and Underbrink Jr., 1989; Birnbaum et al., 1990; Friedrich et al., 1990),
planning (Sussman, 1973; Goldstein, 1975; Broverman and Croft, 1987; Birnbaum
et al., 1990), and failure mode analysis research (Raheja, 1990). Most workflow
research has focused on languages for expressing correctness-preserving trans-
forms on workflow models, providing no guidance, however, concerningwhich
transforms to use for a given situation. There has been some manufacturing and
workflow research on providing guidance for how to handle exceptions, but this
has been applied to a few narrow domains (mainly software engineering and flex-
ible manufacturing cell control) and/or has addressed a small handful of exception
types. The planning work, by contrast, has developed powerful computational mod-
els but they are only applicable if the planning technology was used to develop the
original work process. This is typically not the case for workflow settings where
processes are defined by people rather than automated planning tools. Model-based
fault diagnosis approaches use a single generic algorithm to uncover the causes of
faults in a system without the need for a knowledge base of failure modes and
resolution heuristics. This approach is predicated, however, on the availability of a
complete and correct model of the system’s behavior, which is possible for some
domains (e.g. the analysis of electrical circuits), but not for many others includ-
ing, I would argue, most collaborative work settings that include human beings
and/or complex computer systems as participants. Model-based fault diagnosis
also typically assumes that resolution, once a fault has been diagnosed, is trivial
(e.g. just replace the faulty component) and thus does not provide context-specific
suggestions for how to resolve the problem. Current work on failure mode ana-
lysis describes a systematic process, but the actual work must be done by people
based on their experience and intuitions. This is potentially quite expensive, to the
extent that this analysis is rarely done, and can miss important failure modes due
to limitations in the experience of the analyst(s) (Raheja, 1990).

The contribution of the work described herein, therefore, is that it provides a
systematic approach for helping workflow designers and users decidewhichexcep-
tions to be concerned about, andhow to anticipate/detect/avoid/resolve them, in a
way that is realistic for workflow settings, building on a substantive and growing
knowledge base of generic exception handling expertise.
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4. Future work

Our efforts to date have focused on developing the appropriate schemas for capture
of exception handling expertise, accumulating a substantive knowledge base of this
expertise, and developing methodologies for applying this expertise to workflow
design. Our goal is to create increasingly capableexception handling enginesthat
interface directly with workflow controllers, and (at least semi-) automatically dia-
gnosing and fixing routine exceptions (e.g. by automating the data-gathering and
precondition-checking activities), thereby reducing the exception handling burden
on human workflow participants. The key challenges here include formalizing and
standardizing (1) the queries that must be made in order to identify and instan-
tiate exception handler processes, as well as (2) the transforms that modify the
workflow process model as appropriate to respond to the exception. We have made
significant progress towards the first challenge. We have found, in particular, that a
relatively small set of question types get used again and again when describing
the preconditions for different exception types and handlers. Examples include
questions about the status of a task, the status of a resource, the rationale for a task
(e.g. its underlying goals) and so on. We are formalizing this set of questions into
what we call the “query language” (Klein, 1989, 1993), with the goal of defining
a fully capable query language that will be simple enough to allow substantial
automation of the exception diagnosis process, i.e. where most or all questions
are answerable by software systems. We plan to take advantage of the substantial
emerging body of research of specification languages for correctness-preserving
workflow transformation (Ellis et al., 1995) to address the second challenge.

For further information about our work, see the Adaptive Systems and Evolu-
tionary Software web site athttp://ccs.mit.edu/ases/. For further information on the
Process Handbook, seehttp://ccs.mit.edu/
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