Flexible Exception Handling in the OPERA Process Support System”

Claus Hagen

Gustavo Alonso

Information and Communication Systems Research Group
Institute of Information Systems, Swiss Federal Institute of Technology (ETH)
ETH Zentrum, CH-8092 Ziirich, Switzerland
{hagen,alonso }@inf.ethz.ch

Abstract

Ezxceptions are one of the most pervasive prob-
lems in process support systems. In installations ex-
pected to handle a large mumber of processes, hav-
ing exceptions is bound to be a nmormal occurrence.
Any programming tool intended for large, complex ap-
plications has to face this problem. However, cur-
rent process support systems, despite their orienta-
tion towards complex, distributed, and heterogeneous
applications, provide almost no support for exception
handling. This paper shows how flexible mechanisms
for failure handling are incorporated into the OPERA
process support system using a combination of pro-
gramming language concepts and transaction process-
ing techniques. The resulting mechanisms allow the
construction of fault-tolerant workflow processes in a
transparent and flexible way while ensuring reusability
of workflow components.

1 Introduction

A process can be defined as a sequence of program
invocations and data exchanges between distributed
and heterogeneous stand-alone systems. Workflow
management systems (WFMS) provide support for
business processes, while a process support system
(PSS) generalizes this idea to arbitrary types of pro-
cesses, acting thereby as a tool for “programming in
the large” over heterogeneous and distributed environ-
ments [4, 2] .

Programming tools intended for large, complex ap-
plications incorporate exception handling mechanisms
to separate the failure semantics from the program
logic and thus facilitate the design of readable, com-
prehensible code [14, 8, 18, 17]. Despite the similar-
ities between process support systems and program-
ming environments [2] there is little support for excep-
tion handling in current process systems. Any possible

*Part of this work has been funded by the Swiss National
Science Foundation under the TRAMS project (Transactions
and Active Database Mechanisms for Workflow Management).

exception must be encoded in the process. Exceptions
not hard-wired into the process result in either abort-
ing the process or require human intervention. Since
processes tend to be long (days, even months), involve
a considerable number of resources and personnel, and
since there might be a very large number of processes,
neither aborting nor human intervention are satisfac-
tory solutions [4, 16, 11, 7].

To address this issue, the paper describes the excep-
tion handling mechanisms implemented in the OPERA
process support system [2, 1]. The OPERA approach
to exception handling borrows its main ideas from a
combination of programming language concepts and
transaction processing techniques, adapting them to
the special characteristics of process support systems.
To our knowledge OPERA is the first system to inte-
grate language primitives for exception handling into
workflow management systems. Previous approaches
were limited to achieving atomicity, without taking
into account the need to react differently to different
types of failures and the need for a tight integration
of failure handling and modeling language. A further
contribution of the paper is the integration of pro-
gramming language concepts and transactional ideas.
We show how the semantics defined through the lan-
guage constructs are enforced through the usage of an
execution model based on advanced transaction mod-
els.

The paper is organized as follows. Section 2 pro-
vides a motivating example. Section 3 introduces
OPERA’s exception handling concepts. Section 4 dis-
cusses the relation between workflow recovery and
transaction models. Section 5 describes the integra-
tion of external applications. Section 6 proposes lan-
guage primitives for exception handling. Section 7 dis-
cusses the described approach. Section 8 concludes
the paper. An enhanced, more detailed version of this
paper is available as technical report [9].

2 Motivation and Example

As a running example for the rest of the paper,
consider a process reserving flights, rental cars and ac-
commodations, sending travel documents and invoices
to the customer, and updating the travel agency’s in-
ternal database (Figure 1). The programs and ser-
vices incorporated in the process are executed by
different autonomous systems: Flight reservation is
done through a CORBA gateway to a booking sys-
tem. Sending the documents and invoice as well as
reserving a hotel are manual task to be handled by
the travel agency’s personnel. Record keeping in the
local database takes place via a TP monitor, and the
reservation of a rental car is done through a legacy sys-
tem. The possible failures can be classified into several
categories: Program failures, design and communica-
tion errors, and semantic failures. Of these, semantic
failures are the most interesting kind of exceptions
since the execution of a program without errors does
not always mean that it was successful. In the ex-
ample given, the checkAwvailability service returns suc-
cessfully even if no available seat has been found. This
case is, however, an exception since without available
seats no reservation can be made. It is up to the pro-
cess code to detect this and invoke appropriate mea-
sures. Thus the process system needs mechanisms to
define what is regarded as semantic exception in order
to incorporate them into the general exception han-
dling scheme. We will discuss these issues in section
d.

Further motivation for structured exception han-
dling is provided by the complexity resulting from in-
terleaving of the original tasks with the recovery steps,
which makes the fault tolerant version of a process
very complex and the original process logic hardly rec-
ognizable. Mixing business logic and exception han-
dling logic makes it difficult to keep track of both, com-
plicating the verification of processes as well as later
modifications. Moreover, such an approach makes it
almost impossible to reuse components since they will
lack meaning once out of the context for which they
were originally designed.

3 Exception handling in OPERA

The exception mechanism used in OPERA is based
on programming language concepts proposed by
Goodenough [8] and later adopted in many program-
ming languages as well as systems like CORBA and
Windows NT. In all these cases, a key aspect of excep-
tion handling is separating exception detection from
exception handling in nested process structures.

New Order

DBMS

Flight

Check
Aval\abnuy Availability
Legacy system

Reserve Reserve

Legacy system

Reserve
Manual

Figure 1: A workflow process

2

Invoice Record
Keep\ng
Manua! DBMS
Executing

System

3.1 Exception Handling

A workflow process in OPERA has a nested struc-
ture that can be represented by a tree with differ-
ent tasks (processes, blocks, or activities) as its nodes.
The set of child nodes of a task 7; is defined by the
subtasks that are invoked inside T;. Each task has a
clearly defined signature that specifies its call param-
eters and return values. Information hiding demands
that only the signature has to be known in order to in-
voke a task. OPERA’s exception handling mechanism
is based on the principle that, in case of failures, a
child task T stops execution and returns an excep-
tion instead of proper return values. Exceptions are
typed data structures that can contain information
about the failure context. A task returning excep-
tions is thus polymorphic: It normally returns data
conforming to its signature, but upon an error, it re-
turns an exception with a different structure. If the
parent has defined an exception handler (an arbitrary
subprocess) for the exception returned by the child
(the signaler), then when the exception is signaled,
control is passed to the handler which contains the
necessary steps for failure handling. If no handler is
defined by the programmer, then a default handler is
provided by the system that aborts the parent.

The approach allows modular design, since the
programmer of a procedure must only be concerned
with exception detection (performed by the invoked
operation), while exception handling, which may be
context-dependent, is left to the invoker of the pro-
cedure. Flexibility is further improved by giving the
exception handler control over whether the signaler
can continue: The handler has the possibility to either

Caller Signaler Caller Signaler
(Process) (Sub-

(Process) (Subprocess) Exception
Handler

i rocess,
(provided by iip)
Start the caller) Start of)
Subprocess| Subprocess|
/ s @ @42
Failure” ~ |T T 7T Raise
(Raise exception
exception)
!
!
Resume
signaler
»
® \ ®
Regular return
t of signaler t

Exception Process Sub- Exception
Handler po process Handler
(provided by Invoke pl of pl Exception
the caller) pL | 1, (provided Activity Handler
by p0) p2 of p2
Invoke [(provided
p2 | oo _1. ‘ >—l7byp1)
Raise - -|- -[HEIE - ISR - SRS - B ‘
exception
Abort signaler, Abort signaler,
return to caller propagate
N exception
\
@ » « . Resume
N operation
¢ Regular of p1

return
of p1

Figure 2: Control flow during exception handling

abort the signaler or to resume its execution after it
has dealt with the exception. Furthermore, if a han-
dler cannot deal with a given exception, it propagates
the exception up one level in the call hierarchy where
it will be processed by a handler associated with the
corresponding invoker.
3.2 Exception propagation

Figure 2 shows several examples for the flow of con-
trol in OPERA during exception handling, depending
on the decision of the handler. In diagram (a), the
exception handler resumes execution of the signaler.
In diagram (b), the signaler is aborted and control
returns to the process that invoked it. Diagram (c)
shows a two-level nested execution, where the inner-
most process (p2) raises an exception which is propa-
gated by the exception handler, enforcing the abort of
p2 and the invocation of an exception handler associ-
ated with pl. This handler resumes the operation of
pl.
3.3 Semantics

The semantics of the OPERA exception handling
mechanisms are based on the replacement model [18].
Logically, the exception handler replaces either the
signaler (if the latter is aborted) or the statement
in the signaler that raised the exception (if the exe-
cution of the signaler is resumed). This poses addi-
tional requirements on the process execution model:
If the exception process aborts and replaces the sig-
naler, the system has to “undo” possible side effects
caused by the signaler. This is achieved in program-
ming languages by cleaning the stack and performing
some additional cleanup work, like calling destructors
of purged objects. In OPERA, each step corresponds
to one or more external activities that may cause arbi-
trary side effects in the outside world (sending a mes-
sage, deleting a file, changing a record); the system
has no knowledge of these effects. In order to be able

to undo any side effects, OPERA relies on semantic
information provided with the failed task [3]. This
semantic information is provided in the form of com-
pensating tasks and managed using the transactional
mechanisms discussed in section 4.

4 Transactional recovery and excep-
tions

The constructs provided by OPERA allow process
designers to describe the failure semantics of a pro-
cess in a convenient way. To enforce these failure se-
mantics, OPERA uses transaction concepts. We gen-
eralize advanced transaction models in that we distin-
guish between different failure states of a task (see,
for instance, [3]). Most transaction models can only
distinguish “committed” from “aborted” transactions
and hence allow to specify only one recovery strat-
egy for each task. (To our knowledge, only [5] has
discussed the implications of multiple possible failures
on recovery mechanisms.) Furthermore, most trans-
action models assume that tasks are atomic. This is,
however, not true for workflow environments where ac-
tivities can be arbitrary program executions or human
activities and may thus not be atomic at all.

The transactional aspects of OPERA are embedded
in the notion of spheres of atomicity, which are used
as a way to bracket operations as units with transac-
tional properties[2]. Spheres are basically specialized
blocks. Atomicity is a property that can be declared
for blocks as well as for processes and activities. The
information on whether an activity is atomic or not
has to be provided when registering a program or hu-
man activity. This is done as part of the process of se-
lecting a task interface. Currently, the following tasks
interfaces are provided in OPERA:

Basic (non-atomic): This is the basic task inter-
face that serves as the root of the interface hierarchy.

Activities that conform to this interface are assumed
to be non-atomic.

Semi-atomic: Semi-atomic tasks do not per-
form automatic rollback in case of a runtime failure.
They do, however, keep enough information to allow
an undo after the failure has happened. Part of the
semi-atomic task interface is thus a rollback method
that describes how to undo a partially executed task.

Atomic: These tasks have no side effects if they
fail. Transactions issued to a database or to a dis-
tributed environment through a TP monitor fall into
this category.

Restartable: If this sort of task fails, it can be
executed again and will eventually succeed. Examples
are many programs (like word processors) that may
fail due to failures in the program or operating system
[19].

Compensatable: This task interface applies to
applications that can be rolled back after they have
finished using compensation. The Compensatable task
interface contains a method that allows to invoke an
activity or task that semantically undoes the original
task’s effects [19].

Based on the atomicity declarations for the basic
steps, OPERA enforces atomicity of composite tasks,
i.e., processes and blocks. A process is guaranteed to
be atomic if it either is declared to be semi-atomic
(in this case, the process designer has to provide a
backout method that performs rollback), or if (a) every
component task is atomic or semi-atomic and (b) every
component task is compensatable or the process has
a flex-structure. A flex structured process conforms
to the of the flex transaction model [19]. OPERA uses
these rules to determine the recoverability of processes
at compile-time.

OPERA uses the information provided by the pro-
cess designers in the following way: If a task raises
an exception and is aborted by its exception handler,
it stops (note that this may require recursive abort
of component tasks in the case of a process or block)
and is then undone depending on its type. If the task
was declared atomic, then no further actions are per-
formed. If the task was declared semi-atomic, then
holistic backout is performed by executing its roll-
back method. If the task was declared non-atomic,
then single-step backout is performed by executing the
compensating tasks of the component activities. Note
that for flex structured processes, an atomic abort is
only possible while only compensatable activities have
been executed. Once a pivot or repeatable activity has
succeeded, these processes become semi-atomic in the
sense that they can only be aborted through a back-

out method. The process designer has the possibility
to determine the behavior of flex structured processes
in specifying whether holistic or single-step backout
is preferred when there are only completed compen-
satable tasks. These backout modes generalize ideas
initially proposed in [12].

5 Exception detection

Internally, an exception is represented as a triple
(N, O, L, R), where N is a name, O denotes the allowed
control flow options (abort or resume), I is the input
data structure that is used to pass information about
the context in which the exception took place, and R
is the return data structure used when data has to be
sent back to the source of the exception.

5.1 External Exception Detection

For external programs, OPERA translates their ex-
ceptions into its own internal format at run-time based
on mapping information provided when the programs
are registered. Program registration provides the in-
formation necessary to invoke a program or notify a
user. In OPERA, exceptions have also to be declared,
which includes the declaration of an exception trans-
lation function defining which external signals result
in which internal exceptions. The format in which
this function is given is dependent on the type of the
external application:

Workflow-aware applications [15] are applications
using the OPERA API, alibrary of procedure calls sim-
ilar to that provided by most WFEMS. The API allows
to directly signal OPERA exceptions, thereby skipping
the translation step.

Legacy applications are programs unaware of the
workflow system. They signal failures through special
return codes, which are converted into OPERA excep-
tions by the runtime system. The conversion is based
on a translation table registered with the program that
maps specific return values to appropriate exception
types.

Standard environments like CORBA provide their
own exception mechanisms, which are directly con-
verted into OPERA exceptions. The exception decla-
rations for a service are parsed from its IDL file that
has to be provided when the service is registered. Note
that these application do usually not allow signaler
resumption, i.e., programs are always aborted after
throwing an exception.

Manual activities. Humans communicate with the
WEFMS through worklists, which are graphical user in-
terfaces. The signaling of exceptions by human agents
is supported through the worklist by a suitable GUI.

R<0 Signal Proxy
Activityl E_NEGATIVE
(Escape)

R>=0

Activity2 '

Figure 3: Explicit signaling of an exception

5.2 Internal exception detection

In OPERA, the exception mechanism is also used to
detect and signal semantic failures. OPERA provides
two options: synchronous exception raising, based
on special signal proxies embedded into the control
flow description, and asynchronous exception rais-
ing, which is based on predicates over process-internal
data.

Signal proxies can occur anywhere inside a process.
A signal proxy is associated with an exception name,
data containers, and an exception category. If the flow
of control in a process reaches a signal proxy, control is
passed to the appropriate exception handler. Figure 3
gives an example of explicit signalisation. If after the
execution of Activityl, the value of the parameter R
is negative, an exception is raised. Since the excep-
tion type (cf. Section 6) is Escape, this leads to the
termination of the process.

For implicit signaling, the workflow designer has to
provide a set of predicates that define under which
circumstances a given exception must be raised. The
designer can for instance define startup predicates and
termination predicates, which trigger a Notify excep-
tion if incorrect values are encountered upon starting
or terminating an activity or process.

6 Integration of exception handling
into modeling languages

Process support systems usually provide a graphi-
cal modeling language to specify processes and, there-
fore, the exception handling mechanism must be in-
tegrated into the graphical language. In the case of
OPERA, processes are described using a model hier-
archy rather than one single language. At the top of
the hierarchy there are domain-specific process rep-
resentations such as OGWL (Opera Graphical Work-
flow Language), a modeling language for business pro-
cesses based on IBM’s FDL [13] which also follows the
Workflow Management Coalition Model [10]. Inter-
nally, OGWL specifications are compiled into OCR
(Opera Canonical Representation), a rule-based lan-
guage which is later translated into the data models of
the underlying databases used as OPERA repositories.
While the incorporation of exception handling into a

—————— ~
Activityl R>100 | »
Activity2 Activity
I

e
true |—>[Activityd) ‘

\ I Subprocess
Activity3 'I
I

mwe | - ===
_____ 1 ! Block

Process2 Activitys
true
Control Connector

d
1
I
R<100 |
I
I

Figure 4: Control flow description

text-based language like OCR is straightforward, the
integration into a graphical language like OGWL is
not. We will focus on graphical representations in the
remainder of this section. An example of a process
representation in OCR including exception handling
specifications can be found in [9].

6.1 Graphical specification language

In OGWL, a process is a directed acyclic graph
(loops are possible using block constructs), whose
nodes represent tasks, and whose arcs are control con-
nectors and data connectors. Control connectors de-
fine the flow of control by linking pairs of activities, re-
gardless of whether they are simple activities, blocks,
or subprocesses.

Each control connector has a state determined by
its transition condition, a boolean expression over el-
ements of the source activity’s output data structure.
The connector’s state is used to model conditional
branching. Initially, all connectors’ states are set to
unevaluated. Upon completion of a task, the states
of its outgoing connectors are computed by evaluating
the transition conditions, which leads to the connec-
tors becoming either true or false. When a task is ex-
ecuted is determined by its start condition (a boolean
predicate over the states of the incoming connectors).

Figure 4 contains an example process. Note that
the two arcs starting at Activityl are equivalent to an
if-then-else-construct (since their conditions are dis-
joint). Parallel execution can be specified by control
connectors with predicates that can be true at the
same time.

6.2 Exceptions

Synchronous exceptions are represented like ordi-
nary activities. Each exception has an associated ex-
ception category, which can be used to restrict the
behavior of the exception handler. Three exception
categories are defined in OPERA:

Signal: Allows the handler to either abort or re-
sume the signaler after processing the exception. The
decision will depend on the handler’s ability to deal
with the exception.

Escape: Requires to abort the signaler. This
will be used for exceptions that do not allow resuming

execution.

Notify: Disallows an abort. This forces the han-
dler to return control to the signaler, an option espe-
cially useful when humans are involved in the process.

The same data flow mechanism used for normal ac-
tivities is used to handle the data flow during excep-
tion handling. Since an exception has data containers,
when the exception occurs, its input container is used
to pass information to the handler. Similarly, the han-
dler has the possibility to return data to the signaler
using the output container of the exception.

Asynchronous exceptions are similar to syn-
chronous exceptions except for the fact that they do
not take part in the normal control flow. Conceptu-
ally, they could be seen as activities to which all other
activities are connected through a control connector
that gets activated when an exception occurs. The
advantage being that this control flow towards the ex-
ception is implicit. Note that in current systems the
only way to achieve similar functionality is to actually
treat the exception as an activity and add control con-
nectors between all activities that could possibly raise
the exception and the exception activity. Many actual
implementations actually resort to this very inelegant,
very inefficient solution to be able to provide a min-
imal failure handling capability. As another alterna-
tive, in the WIDE project [6], ECA rules are used for
the specification of exception conditions and their han-
dling. This approach is similar to the asynchronous
exceptions provided in OPERA, although without tak-
ing into account nested process hierarchies and excep-
tions signaled by external applications.

6.3 Exception handlers

Exception handlers can contain arbitrary activities,
blocks, or subprocesses. In addition, the language pro-
vides special constructs that are useful for effective
reaction to failures.

Each possible exception a task may signal has a
corresponding default handler, which is either system-
provided or defined when the task was registered. The
system default handler matches every exception with-
out specified handler, aborts the signaler and then
propagates an exception to the caller. A process de-
signer can, however, provide user-level default han-
dlers where this is appropriate. For each task inte-
grated into a process, the designer can provide over-
ride handlers for those exceptions where the default
behavior needs to be modified. The advantage of this
approach is that reusing components becomes easier
since they will either cope with any possible exception
themselves or will pass the exception up to the caller.
This is a significant advantage over existing systems

P1
E_FAILED Activityl

Activity2 |
I
] Terminator
1

Figure 5: An exception handler

in which exception handling is entirely hard-wired. In
Opera, by combining default and override handlers,
the designer can let the system take care of exceptions
and specialize the behavior when necessary.

An example for the OGWL representation of an ex-
ception handler is given in figure 5. The entry point
to a handler process is always a so-called prozy ac-
tivity that can be seen as a placeholder for the ex-
ception that occurred. The output container of the
proxy contains the data that have been passed by the
signaler together with the exception. This makes the
case-dependent data accessible inside the handler. In
our example, two predicates, P1 and P2, are defined
on these data. This allows to take different execu-
tion paths depending on the information provided by
the signaler. Terminator prozies define the endpoints
of a handler. They determine how the control flow
has to proceed after termination of the handler. Dif-
ferent types of terminators can be used depending on
whether the signaler has to be aborted or resumed and
whether an exception is to be propagated.

In addition to the functionality provided in or-
dinary processes, OPERA provides special constructs
that can only be used in exception handlers. They
are syntactical shortcuts that facilitate the convenient
specification of recovery-related tasks:

Retry: is performed through retry prozies. They
refer to the task that raised the exception currently
handled and can be marked with a time interval to
specify a delay before the re-execution is to be sched-
uled. To avoid an indefinite number of recursive invo-
cations, if during the retrial of T the same exception is
raised again, instead of calling the exception handler
again, the system returns control to the first invoca-
tion of the exception handler. Repeated invocations of
T are still possible but need to be explicitly specified
in the exception handler.

Human interaction: In a workflow process it is
not always possible to determine in advance what to
do with exceptions. These cases are handled through
human intervention via a special notificator prozy that
allows to transfer control to the user responsible for

NOTIFY
Initiator

TASKJ%'\ILED)—’

(D
D
with the Process)

EH1 handler

If Al A2 | A3
\ [BookFligm)_»[Rent Car) |_>[Hotel 1)
| 1

Transport (Sphere) ,

Travel (Process)

A4

TASK_FAILED Reserve Train '

EH2

handler

with the Sphere)

NO_ROOM)—»[Hotel 2)

EH3 (Exception handler associated with Activity A3)

Travel

Transport
Al
Start Sphere - — /

Signal Exception

= = - - Propagate

Invoke Contingency Task

Invoke Compensating
Operation

Abort Sphere

Figure 6: Travel example, using the new primitives and control flow when handling a failure of activity A2

dealing with the exception. Most workflow manage-
ment systems provide a staff modeling component that
allows the flexible assignment of users to activities,
usually through a role concept. The same mechanism
is used in Opera to assign humans to exception han-
dling tasks.

7 Discussion

We see the language extensions in OPERA as an
elegant solution to the problem of fault-tolerance in
workflow processes. The proposed extensions, along
with the corresponding system support, result in
cleaner process specifications and less overhead. They
can be easily added to existing systems since they re-
quire only minor changes. For instance, an exception
handler can be treated as an activity which is trig-
gered when another activity raises an exception. This
involves minimal changes to the control flow logic.

To illustrate the advantages of the approach, a
specification of the introductory example using the
new primitives is given in Figure 6. The left hand
side shows the graphical representation in OGWL,
the right hand side displays the control flow for the
case that the car rental activity fails. The process de-
scription has been decomposed into a process (Travel),
shown in the center of the graphical process represen-
tation, and three exception handlers. Note that the
process itself contains only the business logic, plus a
sphere (Transport) that indicates that flight booking
and car renting are regarded as atomic. A clear ad-
vantage of this approach is that modifying the process
becomes straightforward, thereby increasing reusabil-
ity. Consider the addition of another task in the book-
ing process (e.g., reserving theater tickets): only one
new task has to be added to the process description,

since all recovery-related steps are taken care of by
the system. In this regard, the exception mechanism
can be seen as a form of parameterization of activities
and processes allowing to use a once-declared task in
a large number of contexts.

All activities have associated default exception han-
dlers that propagate this exception. The sphere has
an associated override handler (EFH2) that catches the
propagated exception. If either Al or A2 fail, this
handler takes control and calls the train reservation
task (A3) while the sphere is aborted, and the back-
out mechanism cancels reservations already made (the
sphere’s backout mode is declared as Single Step).
Should the train reservation fail as well, its exception
is propagated automatically to the process itself (re-
cursive handler calls are not allowed). This activates
the process’s handler, which notifies the process’s in-
vocator, who has then the possibility to either abort
the whole process or to perform appropriate actions
before resuming execution. In the latter case, the pro-
cess continues with the hotel reservation. This activ-
ity has an associated exception handler (EFH3) that
invokes the reservation of another hotel if no rooms
are available. If this activity fails, too, an exception is
propagated to the process and its handler gets control
again, informing the invoker of the process.

As an illustration of the forward and backward nav-
igation performed by the system if a failure occurs, the
right hand side of Figure 6 shows the control flow if
activity A2 (RentCar) fails. First, the default handler
for A3 is invoked, which propagates the standard ex-
ception TASK_FAILED to the next higher level, which
in this case is the sphere S. This leads to the invoca-
tion of EH2, an exception handler associated with the
Transport sphere, which calls activity A4 (Reserve-

Train) in order to handle the exception. After the
completion of A4 the sphere is aborted (because of the
single step backout method the system automatically
calls the compensating operation for A1, canceling the
flight), and operation continues with P’s next regular
operation A2.

8 Conclusions

We have presented an extension for workflow spec-
ification languages that allows the flexible handling
of exceptions. Given the increasing importance of
process support systems in mission-critical applica-
tions, the proposed primitives could be a fundamen-
tal building block in future systems. The primitives
are based on exception handling concepts developed
for programming languages coupled with ideas from
advanced transaction models. They provide flexible
recovery strategies, increase reusability, and are open
in the sense of being capable of supporting arbitrary
external systems. In terms of recovery, processes and
spheres provide natural boundaries for partial back-
ward recovery. Semantic recovery mechanisms like
compensation and holistic backout ensure the neces-
sary flexibility of backward navigation, while excep-
tion handlers guarantee forward progress. In terms
of reusability, the examples above show the improve-
ments in reusability of process descriptions and of
tasks in different contexts. Furthermore, failure han-
dling strategies can be re-used since exception han-
dlers are registered with the system and can thus be
applied in various processes. In terms of openness, the
API mechanism provided allow to achieve a seamless
integration of external applications within the fault
tolerance mechanisms of Opera. Finally, our model
requires only minimal modifications to the represen-
tation of the business logic. The above shows that
it is only necessary to add spheres in order to specify
atomicity. Since all other recovery related information
is described separately in the exception handlers, the
process description remains comprehensible.

References
[1] G. Alonso and C. Hagen. Geo-Opera: Workflow concepts
for spatial processes. In Proc. 5th Intl. Symposium on Spa-
tial Databases (SSD ’97), Berlin, Germany, 1997.

[2] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch. Dis-
tributed processing over stand-alone systems and applica-
tions. In 23rd International Conference on Very Large
Databases (VLDB ’97), Athens, Greece, 1997.

[3] G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi,
R. Giinthor, and C. Mohan. Advanced transaction models
in workflow contexts. In Proc. Intl. Conf. on Data Engi-
neering, New Orleans, February 1996.

[4] G. Alonso and C. Mohan. Workflow management: the
next generation of distributed processing tools. In Sushil

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

Jajodia and Larry Kerschberg, editors, Advanced Transac-
tion Models and Architectures. Kluwer Academic Publish-
ers, 1997.

Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, and
G. Weikum. Merging application-centric and data-centric
approaches to support transaction-oriented multi-system
workflows. ACM SIGMOD Record, 22(3), September 1993.

F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Sanchez.
WIDE workflow model and architecture. Technical report,
University of T'wente, 1996.

D. Georgakopoulos, M. Hornick, and A. Sheth. An
Overview of Workflow Management: From Process Mod-
eling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3(2):119-153, 1995.

J.B. Goodenough. Exception handling: Issues and a pro-
posed notation. Communications of the ACM, 18(12):683—
695, December 1975.

C. Hagen and G. Alonso. Flexible exception handling
in process support systems. Technical Report 290, ETH
Zurich, Department of Computer Science, February 1998.
http://www-dbs.ethz.ch/papers.

D. Hollinsworth. The workflow reference model.
Technical Report TCO00-1003, Workflow Manage-
ment Coalition, December 1996. Accessible via:
http://www.aiai.ed.ac.uk/WfMC/.

M. Kamath and K. Ramamritham. Bridging the gap be-
tween transaction management and workflow management.
In Sheth [16].

F. Leymann. Supporting Business Transactions via Partial
Backward Recovery in Workflow Management Systems.
In Datenbanksysteme in Biiro, Technik und Wissenschaft,
pages 51-70, 1995.

F. Leymann and W. Altenhuber. Managing business pro-
cesses as an information resource. IBM Systems Journal,
33(2):326-348, 1994.

D.L. Parnas. Response to detected errors in well-structured
programs. Technical report, Computer Science Dept,
Carnegie-Mellon Univ., 1972.

H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A gen-
eral framework for the execution of heterogenous programs
in workflow management systems. In First IFCIS Intl.
Conf. on Cooperative Information Systems (CoopIS’96),
Brussels, Belgium, 1996.

A. Sheth, editor. Proceedings of the NSF Workshop on
Workflow and Process Automation in Information Sys-
tems, Athens, Georgia, USA, May 1996.

P. van Zee, M. Burnett, and M. Chesire. Retire superman:
Handling exceptions seamlessly in a declarative visual pro-
gramming language. In Proceedings of the IEEE Sym-
posium on Visual Languages, Boulder, Colorado, USA,
September 1996.

S. Yemini and D.M. Berry. A modular verifiable exception-
handling mechanism. ACM Transactions on Programming
Languages and Systems, 7(2):214-243, April 1985.

A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. En-
suring relaxed atomicity for flexible transactions in multi-
database systems. In Proc. ACM SIGMOD, pages 67-78,
1994.

