
Exception Handling in
Workflow Management Systems
Claus Hagen, Member, IEEE Computer Society, and Gustavo Alonso

AbstractÐFault tolerance is a key requirement in Process Support Systems (PSS), a class of distributed computing middleware

encompassing applications such as workflow management systems and process centered software engineering environments. A PSS

controls the flow of work between programs and users in networked environments based on a ªmetaprogramº (the process). The

resulting applications are characterized by a high degree of distribution and a high degree of heterogeneity (properties that make fault

tolerance both highly desirable and difficult to achieve.) In this paper, we present a solution for implementing more reliable processes

by using exception handling, as it is used in programming languages, and atomicity, as it is known from the transaction concept in

database management systems. The paper describes the mechanism incorporating both transactions and exceptions and presents a

validation technique allowing to assess the correctness of process specifications.

Index TermsÐDependability, exception handling, workflow management, process support systems.

æ

1 INTRODUCTION

FOR the purposes of this paper, distributed processes can be
characterized as sequences of program invocations and

data exchanges between distributed and heterogeneous
stand-alone systems. Business processes are perhaps the
best known example of such processes. The basic tool for
developing and executing business processes is a Workflow
Management System (WFMS) [7], [22], [31], [32], [33], [44],
[50]. A process support system (PSS) generalizes this idea to
any type of process [3], [4]. A PSS generally consists of
buildtime and runtime environment, where the buildtime
environment provides a modeling language and appropriate
design tools allowing us to specify processes. The runtime
environment offers the necessary services for process
automation and monitoring. In this sense, a process support
system can be seen as a tool for ªprogramming in the largeº
over heterogeneous and distributed environments [6].

Due to the characteristics of the environment where they

execute and their long duration (days, maybe weeks),

distributed processes are susceptible to a wide variety of

failures. For instance, communication problems, computer

outages, or program failures are some of the many technical

sources for errors during process execution. Erroneous

process specifications, unexpected changes in the system

configuration, or absent employees are examples of the

many possible user-originated. Thus, in order to build

realistic systems, it is crucial to deploy mechanisms that

allow the system to continue processing even if failures

occur.

In their general classification of system dependability
aspects, Laprie et al. [36] distinguish two ways of coping
with failures in dependable systems, fault prevention and
fault tolerance. While the former is concerned with ªhow to
prevent fault occurrence or introduction,º the latter deals
with ªhow to provide a service complying with the
specification in spite of faultsº [36]. Fault prevention is, to
a large degree, a design issueÐit requires the existence of
suitable design methodologies and construction rules which
help to avoid introducing failures in a system. In process
support systems, validation facilities such as simulation
tools are used to support fault prevention [1], [39]. A
complete avoidance of failures, however, is not possible.
Hence, there is a clear need for inherently fault-tolerant
processes.

Supporting the design of fault-tolerant processes requires:

1. Enhancing the modeling language by adding con-
structs for error detection and error handling and

2. Modifying the runtime system in order to implement
the new semantics.

In this sense, a process support system is not different from
a programming environment and, consequently, concepts
for application fault tolerance, as they have been developed
in many fields, could be applied. Two techniques are
especially relevant for process support environments:
atomicity and exception handling.

The concept of atomicity, as it is used in databases,
provides a well-known abstraction for failure handling. It is
based on backward recovery: In the case of a failure, an
application or parts of it are ªrolled backº to a previous
consistent state. From this state, the computation can
continue by retrying the previously failed instructions or
by following alternative execution paths. The advantage of
the atomicity abstraction is that the programmer (or process
designer) does not need to specify all necessary steps for
undoing work. Instead, this is left to the runtime system,
which performs recovery based on logged information.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000 943

. C. Hagen is with Credit Suisse, CIXT, CH-8070 ZuÈrich, Switzerland.
E-mail: claus.hagen@credit-suisse.ch.

. G. Alonso is with the Department of Computer Science, Swiss Federal
Institute of Technology (ETHZ) ETH Zentrum, CH-8092 ZuÈrich,
Switzerland. E-mail: alonso@inf.ethz.ch.

Manuscript received 2 Mar. 1999; revised 10 Dec. 1999; accepted 28 Jan.
2000.
Recommended for acceptance by A. Romanovsky.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111487.

0098-5589/00/$10.00 ß 2000 IEEE

Paradoxically, adding fault tolerance mechanisms to a
system can reduce its fault tolerance due to the resulting
system complexity [8]. To avoid this, programming lan-
guage designers have developed language elements that
allow us to separate the failure handling aspects from the
ªnormalº flow of control [25], [40]. The same ideas could be
used with processes since, when properly used, they can
provide forward recovery (execution of alternative and/or
compensating activities) and, thus, complement the back-
ward recovery provided by the atomicity concept. The
problem is, however, how to combine both concepts and
adapt them to the context of distributed processes.

This paper describes how this problem has been
addressed in the OPERA process support system [3]. In
particular, we deal with exception handling of the type
encountered in normal programming languages like C,
C++, or Java and how exception handling can be combined
with transactional atomicity. In this regard, the contribution
is twofold. In the first place, we put forward the idea that
process support systems are programming environments
and should be treated as such. This view is not common
among the process support community and, in fact, many
process modeling languages lack even essential abstractions
(such as modularization and nesting) necessary for com-
prehensively modeling large processes. In the second place,
we show how to incorporate exception handling and
transactional atomicity into process support systems. The
result is a flexible and powerful solution that preserves
consistency even if processes access multiple databases.
Furthermore, to help process designers to identify potential
consistency problems, an integral part of our solution is a
validation service which checks the well-formedness of
process specifications and gives hints to designers on how
to improve their design.

The paper is organized as follows: In Section 2, we
present an example and discuss the problem of integrating
fault tolerance into process support systems. Section 3 gives
a short overview of OPERA, the system in which these ideas
have been implemented. Section 4 presents the concept of
spheres of atomicity and Section 5 describes our approach for
incorporating exception handling functionality. Section 6
illustrates the solutions using an example. Section 8
discusses the problem of well-formed processes, develops
a correctness criterion, and presents an algorithm for
process validation. Finally, Section 9 concludes the paper.

2 MOTIVATION AND EXAMPLE

As a running example for the rest of the paper, consider a
process incorporating the reservation of various flights,
rental cars, and accommodations, as well as the final
sending of documents and invoices to the customer and
storage of the result in the travel agency's internal database
(Fig. 1). The programs and services incorporated in the
process are executed by different autonomous systems. In
here, we will assume the flight reservation is done through
a CORBA gateway to a booking system. We will also
assume that sending the documents and invoice, as well as
reserving a hotel, are manual tasks to be handled by the
travel agency's personnel. The record keeping in the local
database will take place via a transaction processing

monitor [10] and the reservation of a rental car will be done
through a legacy system. During execution, this process can
encounter a wide range of problems: Applications might be
down, machines may have crashed, programs may return
the wrong results, the process logic might be incorrect,
messages may disappear, the server where the process runs
may fail, and so forth. One way to deal with some of those
failures is to replicate the process using back-up techniques
so as to be able to resume execution even if the server where
the process runs fails [30]. In some other cases, researchers
have proposed dynamic modification of the process
structure so as to be able to circumvent failures [35]. In this
paper, we are interested in those failures that are normally
considered exceptions in traditional programming languages
like C or C++.

Exception handling, however is not enough in the
context of distributed processes. Processes interact with
external applications and have side effects. Dealing with
failures during process execution implies being able to
account for those side effects. More concretely, aborting a
process in the case of a failure leaves it in an undefined state
with only parts of its goals met and external resources (such
as accessed databases) possibly inconsistent and with large
amounts of work already performed. This is particularly
undesirable for processes which are very long, consist of
expensive tasks, or access multiple external data reposi-
tories. To allow the continuation of a process in spite of a
failure, it is necessary to have an extended process
specification which includes failure handling directives.
Such directives can specify, for instance, the compensation
of already executed activities in order to restore the
consistency of external resources and the execution of
contingency plans for failed activities. This is where
transactions come into the picture. Transactions provide
the necessary semantics to determine the state of the
process and implement a clean recovery strategy. The
question is how to combine exception and transactions in an
efficient way.

As an example of the problems to avoid, it has been
proposed to integrate the necessary steps for handling
failures directly into process descriptions [5], [9]. This,
however, is not advisable. Fig. 2 shows a slightly simplified

944 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

Fig. 1. A workflow process.

representation of our initial travel planning process using
the modeling language of FlowMark [39], a workflow
management system. (In the FlowMark representation of
processes, the wheels denote activities, the arcs represent
execution order, and conditions attached to the arcs restrict
execution.) At the left side, we display the pure ªapplication
logicº without failure handling, while, at the right side, an
attempt has been made to include all necessary steps for
handling the failures mentioned above. The model includes
recovery mechanisms like compensation (the Cancel_Flight
activities) and contingency tasks (Hotel2 is a replacement for
Hotel1, ReserveTrain replaces BookFlight and RentCar), as
well as partial rollback (compensation of BookFlight if no car
is available and subsequent booking of train).

The interleaving of the original tasks with the recovery
steps makes the fault-tolerant version very complex and the
original process logic hardly recognizable. The complexity
explosion in this very small example points out the
drawbacks of including exception handling as part of the
normal process specification. Mixing business logic and
exception handling logic makes it difficult to keep track of
both, complicating the verification of processes, as well as
later modifications. Moreover, such an approach makes it
almost impossible to reuse components since they will lack
meaning once out of the context for which they were
originally designed. One of the key features of process
systems is the ability to reuse subprocesses very much in
the same way that libraries are used in programming
languages. This can only be accomplished if there is some
form of system support for exception handling that allows
us to separate it from the normal code.

3 OPERAÐA GENERIC PROCESS SUPPORT

KERNEL

The work discussed in this paper has been done in the
context of OPERA, a generic process support system kernel
[3]. In here, we will restrict the description of OPERA to
those aspects of modeling support that are relevant to the
paper. More information on OPERA can be found in
references [2], [3], [27], [29].

OPERA allows the use of application-specific modeling
languages for the description of processes, which are then
translated into an internal format (OCR, Opera Canonical
Representation) prior to execution [3]. To make the presenta-
tions in the paper as comprehensible as possible, we will

use one of the application-specific languages, OPERA

graphical workflow language (OGWL), to describe lan-
guage extensions and new semantics. OGWL is an adapta-
tion of the modeling language of a commercial workflow
tool, IBM's FlowMark [38]. Like most process modeling
languages, it is relatively simple and, hence, well-suited to
demonstrating the new modeling features. Although we
describe our solutions in the context of OGWL, they are
easily applicable to other, more complex languages. Our
experiences with integrating them into OPERA's internal
language, OCR, have shown that very few extensions to a
language are necessary to support exception handling and
atomicity. Due to space limitations, however, we will not
discuss these issues in detail. The interested reader will find
examples of OCR in [28].

An overview of the main OGWL components is given in
Fig. 3. A process consists of a set of tasks and a set of data
objects. Tasks can be activities, blocks, or processes. The data
objects store the input and output data of tasks and are used
to pass information around. The different task types have
the following semantics: Activities are the basic execution
steps, meaning that each activity has an external binding that
specifies a program to be executed by a person responsible
for performing this part of the workflow and/or resources
to be allocated for its execution. This information is used by
the runtime system to execute external applications or
instruct users to perform certain actions. Blocks areÐin
analogy to the block concept of programming languagesÐ-
subunits defined within the scope of a given process which
are used for modular design and as specialized language
constructs (for, do-until, while, fork). Blocks also serve as
spheres of atomicity, as will be discussed later. Subprocesses
are processes used as components of other processes.
Subprocesses allow, like blocks, the hierarchical structuring
of complex process structures. Late binding (the referenced
process is read only when the subprocess is started) allows
dynamic modifications of a running process by changing its
subprocesses [38]. Blocks and subprocesses allow for the
structured modeling of workflows, which leads to a process
structure resembling a tree of tasks, where the intermediate
nodes are blocks and subprocesses and the leaf nodes are
always activities.

Control flow inside a block or process is based on control
connectors which, formally, are triples �TS; TT ; CAct�, where
TS is the source task, TT is the target task, and CAct is an
activation condition. Each connector defines an execution

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 945

Fig. 2. Handling exceptions by programming them in control flow.

order between two tasks and can, in addition, restrict the
execution of its target task based on the state of data objects,
thereby allowing conditional branching and parallel execu-
tion. Note that the concepts of control connectors and
specialized blocks, when taken together, allow us to model
arbitrary patterns of control flow. Using multiple control
connectors departing from the same task, but with different
activation conditions, it is possible to model conditional
branching and trigger parallel execution.

In a similar fashion, data flow is specified through data
connectors linking activities and indicating the flow of
information between them. Each task has an input data
structure describing its input parameters and an output data
structure to make return values accessible.

4 SPHERES OF ATOMICITY

Transactional semantics are added to OPERA's process
modeling languages using spheres of atomicity. The notion of
a sphere follows that suggested by Davies [16]. The sphere
concept can be seen as a way to assign to a process only
those transactional properties that are actually needed. To
this end, it is possible to distinguish between spheres of
atomicity, spheres of isolation, and spheres of persistence [3],
depending on the property being enforced. Here, we will
focus on spheres of atomicity.

4.1 Execution Characteristics and Task Properties

The execution characteristics of programs, blocks, and
processes are based on the notions of compensatable,
retriable, and pivot tasks [19], [37]. Informally, a compen-
satable task is one that can be undone one way or another in
case the process either fails or it is cancelled. In most real
world processes, compensation is possible by executing a
number of actions that cancel the effects of the initial tasks.
These actions may be directly related to the task (e.g., a
transactional undo) or be a semantic compensation (e.g., a
letter is sent notifying the user of a given mistake). By
labeling a step as compensatable we are acknowledging this
fact. On the other hand, a task is a pivot when the overhead
or cost of compensating it is not acceptable (note that the

definitions are not mutually exclusive, it depends on the
concrete application). Committing a pivot task means we
are committed to complete the process because, otherwise,
things will get expensive or difficult.

Finally, there are tasks that can be accomplished in many
different ways. When automating a process, one can only
automate one or two of these ways, but if they fail, one can
still resort to the many others options. Such tasks are
identified as retriable. Note that pivot tasks are assumed not
to be retriable.

By introducing these notions we allow the designer to
express an important aspect of the execution of a process,
i.e., how severe failures can be and how to deal with them.
In turn, using these notions, the system can act appro-
priately when failures occur. It can also check whether the
process specification makes sense by analyzing it before
hand and making sure that no irrecoverable situation can
arise.

In OPERA, we have extended this basic classification to
be able to distinguish among several types of tasks
depending on how they can be treated in the event of
failures.

Thus, in regard to atomicity, we distinguish between
atomic, quasi-atomic, and nonatomic tasks. Atomic tasks are
those with transactional semantics, i.e., they have no effect
at all if they fail. This category also includes tasks that do
not cause any changes, such as read-only operations, even if
they are not transactional in nature. Quasi-atomicity
represents tasks that are not atomic in the transactional
sense (i.e., their effects do not automatically disappear
when the transaction aborts or fails), but that can be made
to appear atomic by tinkering with the system (i.e., to
eliminate the effects of the task, a rollback method has to be
explicitly invoked). Nonatomic tasks are those whose effects
cannot be eliminated once they commit. Nonatomic tasks
correspond to the notion of pivot outlined above.

In OPERA, when an activity is declared to be quasi-
atomic, a rollback-method has to be registered which can be
invoked by the system to invoke the undo. Quasi-atomicity
can also be declared for blocks or processes by specifying a

946 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

Fig. 3. Main components of OGWL.

rollback-method which is executed, instead of compensat-
ing each single task.

Once transactions commit, their effects can only be
undone through compensation (note the difference between
a rollback method, which is applied before a tasks commits,
and a compensation method, which is applied after the tasks
commits). A task is considered to be compensatable if the
designer has specified a compensation method for it.
Moreover, if a block or process is declared to be compensa-
table, it has to be specified whether it is to be compensated
by a compensating-method or through the compensation of
its component tasks. (This distinction between integral and
discrete compensation was proposed in [38].)

Many tasks cannot be easily compensated once they
commit. Nevertheless, they can be treated as compensatable
if they are based on systems that support two-phase commit
(2PC), i.e., can be rolled back after they have finished, but
before they receive a final commit signal. The most common
example for this class is database transactions which are
controlled through an XA interface [26]. Upon declaring this
characteristic, OPERA requires three methods to be regis-
tered. The prepare-method and commit-method are used for the
respective messages of the 2PC protocol. The abort-method
initiates the undo of the activity. Note that, when a task is
compensatable, it does not make sense to defer the commit.
The commit is deferred only for those tasks that, once they
commit, they cannot be compensated. By deferring the
commit, we prevent getting into a situation in which we
cannot go backward and eliminate side effects. Hence,
although it is always technically possible to defer the
commit of any task, this will only be done for tasks that are
not compensatable but need to be treated as such.

Finally, tasks can also be categorized by their ability to
commit. In here we can distinguish between guaranteed
success, retriable, and nonretriable. Guaranteed success
applies to blocks or processes. For instance, a process that
consists only of retriable tasks is guaranteed to succeed.
Retriable tasks, as pointed out above, are those that when
they fail, can be executed again or in another form and will
eventually succeed [19]. Nonretriable tasks are those that if
they fail once, will never succeed afterwards (or the user is
not interesting in trying).

4.2 Well-Formed Spheres

Based on the task properties outlined above, OPERA

enforces the atomicity of the spheres defined within a
process. Moreover, it can also tell whether a process will
end up in an impossible situation where recovery is not
feasible. Thus, a process as a whole is atomic if:

1. There is a rollback-method defined for the whole
process or

2. Every task is atomic or quasi-atomic and the process
is well-formed.

This simple rule is a direct consequence of the task
properties we have discussed. First, if the process has a
rollback-method, it can be aborted at any time and it will
not leave any side effects behind (more formally, the
process is quasi-atomic). Second, the notion of well-formed
is used to imply that the process is organized in such a way
that there is always a way either forward (toward

termination) or backward (compensate everything). Of
course, it is still necessary to make sure that if a task fails
in the middle of the execution, its effects can be undone,
hence, the requirement that all tasks should be either atomic
or quasi-atomic. The reason why processes need to be well-
formed is that a task can be atomic but if it commits, we
may not be able to compensate it. That is, once that task
commits we cannot go back. If the process does not have the
right structure (i.e., it is well-formed), this can quickly lead
us into trouble if, at a later time, the process cannot progress
forward any longer.

To define well-formed processes more formally, we first
need to establish some notation.

Definition 1 (Basic notation).

. A sphere S is a tuple �T;!�. T � t1; t2; ::; tn is a set of
tasks. !� �T � T � is the precedence relation defined
on the tasks.

. Let PROP be the set of task execution characteristics,
i.e.,

PROP :� fatomic; quasiatomic; retriable;
guaranteed success; compensatableg:

. The function prop : T ! 2PROP assigns to each task a
set of execution characteristics. As a shortcut, we
introduce test predicates allowing us to determine
certain properties of tasks directly. For instance, the
predicate atomic : T ! P is true if and only if the
task to which it is applied is atomic. Respective test
predicates exist for all task execution characteristics.

. To simplify matters, the test predicate comp�t� returns
true if t is compensatable. Likewise, the Boolean
predicate retr�t� returns true if t is either retriable or
guaranteed to succeed. pivot�t� returns true if t is a
pivot (i.e., if it is noncompensatable and nonretriable).

Intuitively, a pivot task is neither retriable nor compen-
satable. Hence, the outcome of a pivot decides the outcome
of the complete sphere. If the pivot fails, the sphere has
failed (because the pivot is not retriable) and has to be rolled
back (by calling its rollback-method or by compensating all
tasks executed so far). If the pivot succeeds, undoing is
possible only through the rollback-method, but not through
compensation of tasks (because the pivot has no compensa-
tion). Hence, for a sphere without rollback-method, after the
success of the pivot it has to be guaranteed that no rollback
will become necessary. This, obviously, is the case only if
there is path consisting solely of retriable or ªguaranteed
successº tasks from the pivot to the end of the process.
From here, a well-formed sphere is defined as follows (we
use the term well-formedness as in [19].

Definition 2 (Well-formed atomic spheres).

1. A sphere S is allowed to have at most one pivot task.
8t1; t2 2 T : pivot�t1� ^ pivot�t2�) t1 � t2.

2. Every possible execution path to this pivot tp must
consist solely of compensatable tasks. 8t 2 T : �t!
tp�) comp�t�:

3. Every possible execution path from a pivot or
retriable task must consist solely of tasks which

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 947

are retriable or guaranteed to commit. 8t1; t2 2 T :
�t1 ! t2 ^ �pivot�t1� _ retr�t1���) retr�t2�:

4. Parallel tasks must have the same type. 8t1; t2 2 T :
�:�t1 ! t2 ^ t2 ! t1��) �comp�t1� ^ comp�t2�� _
�retr�t1� ^ retr�t2��:

This definition ensures that, within a sphere, it is always

possible to either go back to the beginning by compensating

if the pivot has not committed or, if the pivot has

committed, successfully commit by following a path of

retriable tasks.

4.3 The Rollback Algorithm

Aborting a sphere has to take into consideration the task

execution characteristics of the sphere, as well as its

component tasks. Given that the sphere is well-formed,

the following algorithm can be used:

1. Stop execution: Abort all tasks that are currently
running. Depending on the execution characteristics
of these tasks, it is necessary to invoke their rollback-
method (for quasi-atomic tasks).

2. Rollback: We distinguish between the atomic and
the quasi-atomic case. If the sphere is atomic,
perform single-step back out: Compensate each task,
thereby using the reverse order of the original
execution.1 If the sphere is quasi-atomic, invoke its
rollback-method. The component tasks are not com-
pensated. This strategy can speed up the recovery
significantly and is possible in many situations
where no work actually has to be undone, but some
notification of the abort has to be written to a log or
sent to an administrator. We note again that the
holistic back-out should not be confused with
holistic rollback, which is performed for compensa-
table composite tasks for which a compensating
method was defined.

Note that, for well-formed spheres, an atomic abort is
only possible when only compensatable activities have been
executed. Once a pivot or repeatable activity has succeeded,
these spheres become quasi-atomic in the sense that they
can only be aborted through a rollback-method. The process
designer has the capability of determining the behavior of
spheres by specifying whether holistic or single-step back-
out is preferred when there are only completed compensa-
table tasks.

4.4 Task State Model

The task execution characteristics described above lead to
the state transition diagram shown in Fig. 4. The gray states
are the standard ones existing for a traditional process
model. The new states, which have white background,
reflect the new execution semantics. The state transitions,
which are drawn as dotted lines, apply only to specific
types of tasks. The most relevant changes over the
traditional model are as follows: After the failure of a
quasi-atomic activity, its rollback is initiated, which leads to
the Undone state. If an atomic activity fails, it changes into
the Undone state directly. Retriable activities reenter the
ready state, either from the Failed state (if they are
nonatomic) or from the Undone state (if they are atomic or
quasi-atomic). A compensating task changes into the
Compensating state while its compensation method is
executing. After the successful undo, it changes into the
compensated state.

5 EXCEPTION HANDLING

5.1 Basic Mechanisms

The exception mechanism used in OPERA is based on
programming language concepts proposed by Goodenough
[25] and later adopted in many programming languages,
including CommonLisp [45], Standard ML [41], C++ [46],
and Java [20]. The main difference of our approach is the
tight integration of the exception handling functionality
with transactional semantics realized through the spheres of
atomicity. Together, they provide strong semantics which
are not provided in general.

948 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

1. Note that it is possible to compensate all steps in a sphere in parallel if
it is known that there are no conflicts between the compensating activities.
However, we have no knowledge of possible conflicts. The separate
rollback of steps in reverse order is always safe.

Fig. 4. Task state diagram for atomic tasks.

An exception is an unusual event, erroneous or not, that
is detectable either by hardware or software and that may
require special processing [43]. The overall goal of
exception handling is to give the programmer means to
adapt the behavior of operations, allowing them to flexibly
react to exceptions of various kinds while preserving
information hiding and autonomy. This is achieved by
separating exception detection from exception handling in
nested process structures.

As in other process support systems [14], [15], [39], a
workflow process in OPERA has a nested structure that can
be represented by a tree with different tasks (processes,
blocks, or activities) as its nodes. The set of child nodes of a
task Ti is defined by the subtasks that are invoked inside Ti.
Each task has a clearly defined signature that specifies its
call parameters and return values. Information hiding
demands that only the signature has to be known in order
to invoke a task. OPERA's exception handling mechanism is
based on the principle that, in case of failures, a child task
Tik stops execution and returns an exception instead of
proper return values. Exceptions are typed data structures
that can contain information about the failure context. A
task returning exceptions is thus polymorphic: If it is
executed successfully, it returns data conforming to its
signature, but if it encounters an unusual event, it returns
an exception with a different structure. If the parent has
defined an exception handler (an arbitrary subprocess) for the

exception returned by the child (the signaler), then when the
exception is signaled, control is passed to the handler which
contains the necessary steps for failure handling. If no
handler is defined by the programmer, then a default handler
is provided by the system that aborts the parent.

The approach allows modular design since the program-
mer of a procedure must only be concerned with exception
detection (performed by the invoked operation), while
exception handling, which may be context-dependent, is
left to the invoker of the procedure. Flexibility is further
improved by giving the exception handler control over
whether the signaler can continue: The handler has the
possibility to either abort the signaler or to resume its
execution after it has dealt with the exception. Resuming
execution is used in those cases in which the exception was
raised because of invalid parameters and in which excep-
tion handling incorporates querying a user for different
data. Furthermore, if a handler cannot deal with a given
exception, it propagates the exception to a level in the call
hierarchy where it will be processed by a handler associated
with the corresponding invoker.

Fig. 5 shows several examples for the flow of control in
OPERA during exception handling, depending on the
decision of the handler. In diagram (a), the exception
handler resumes execution of the signaler. In diagram (b),
the signaler is aborted and control returns to the process
that invoked it. Diagram (c) shows a two-level nested

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 949

Fig. 5. Control flow during exception handling. (a) Resume. (b) Abort. (c) Propagation.

execution, where the innermost process (p2) raises an
exception which is propagated by the exception handler,
enforcing the abort of p2 and the invocation of an exception
handler associated with p1. This handler resumes the
operation of p1.

5.2 Semantics

The semantics of the OPERA exception handling mechan-
isms are based on the replacement model [52]. Logically, the
exception handler replaces either the signaler (if the latter is
aborted) or the statement in the signaler that raised the
exception (if the execution of the signaler is resumed). This
poses additional requirements on the process execution
model: If the exception process aborts and replaces the
signaler, the system has to ªundoº possible side effects
caused by the signaler. This is achieved in programming
languages by cleaning the stack and performing some
additional cleanup work, like calling destructors of purged
objects [46]. In OPERA, each step corresponds to one or
more external activities that may cause arbitrary side effects
in the outside world (sending a message, deleting a file,
changing a record, etc.); the engine has no knowledge of
these effects. In order to be able to undo any side effects,
OPERA relies on semantic information provided with the
failed task. This semantic information is provided in the
form of compensating tasks and managed using the
transactional mechanisms discussed in Section 4.

6 EXAMPLE

To illustrate the approach, a specification of the introduc-
tory example (Fig. 2) using the new primitives is given in
Fig. 6. The lefthand side shows the graphical representation
in OGWL and the righthand side displays the control flow
for the case that the car rental activity fails.

The process description has been decomposed into a
process (Travel) and three exception handlers. Note that the
process itself contains only the business logic plus a sphere
(Transport) that indicates that flight booking and car renting
are regarded as atomic with respect to failures. The

graphical representation shows the elegance of the pro-
posed approach, especially if compared with the process in
Fig. 2, which is the only possible way to cope with
exceptions in most current systems. Furthermore, modify-
ing the process becomes straightforward. Consider the
addition of another task in the booking process (e.g.,
reserving theater tickets). While, in the conventional design,
this would require embedding several new nodes and arcs
to the graph to avoid violating the failure semantics, in
OPERA, only one new task has to be added to the process
description since all recovery-related steps are taken care of
by the system. Thus, the OPERA approach to exception
handling guarantees reusability of process descriptions
since existing specifications can easily be used as a basis
for new processes. Moreover, reusability of tasks is
improved since the exception mechanism can be seen as a
form of parameterization of activities and processes allow-
ing use of a once-declared task in a large number of
contexts.

As an illustration of the forward and backward naviga-
tion performed by the system if a failure occurs, the
righthand side of Fig. 6 shows the control flow if activity A2
(RentCar) fails. First, the default handler for A3 is invoked,
which propagates the standard exception TASK_FAILED to
the next higher level, which in this case is the sphere S. This
leads to the invocation of EH2, an exception handler
associated with the Transport sphere, which calls activity
A4 (ReserveTrain) in order to handle the exception. After
the completion of A4, the sphere is aborted (because of the
single step back-out method, the system automatically calls
the compensating operation for A1, canceling the flight) and
operation continues with P's next regular operation A2.
This example shows how, based on the failure semantics
specified through spheres, exceptions, and exception
handlers, flexible recovery is enforced.

7 CORRECTNESS OF FAULT-TOLERANT PROCESS

SPECIFICATIONS

Atomicity and exception handling mechanisms give process
designers the ability to specify fault-tolerant processes by

950 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

Fig. 6. The travel example modeled with the new primitives and the control flow when handling a failure of activity A2.

deliberately creating spheres as units of joint compensation
and defining appropriate failure recovery strategies
through exception handlers. The combination of the
mechanisms, however, complicates the detection of failures
in process specifications. The rules for well-formed pro-
cesses, given in Section 4.2, are not sufficient since new
violations of atomicity can be introduced through inap-
propriate use of exception handlers. Hence, what is needed
is a new correctness criterion and a validation mechanism
that aids process designers by checking process specifica-
tions, detecting failures, and proposing changes that lead to
correct processes. The aim of this section is to define the
notion of a well-formed process specification and to
describe an algorithm for correctness checking. In doing
so, we use the well-formedness criterion for atomic spheres
(Section 4.2) as a starting point. It will, however, be
extended in order to take the exception handling function-
ality into account.

7.1 Examples

The well-formedness definition of Section 4.2 is valid only
as long as a process contains no exception handlers. If
handlers exist, it is possible that the execution character-
istics of a task are changed through the execution of a
handler. Recall that, due to the replacement model
semantics, it is possible that a compensatable task is
replaced by a noncompensatable exception handler, which
may lead to an incorrect process structure. The following
examples will serve as a starting point for the further
investigation of these problems.

Consider the four examples for process structures in
Fig. 7. The process of example (a) has a correct ordering of
tasks if the exception handlers are not taken into considera-
tion. The handlers, however, have inappropriate execution
characteristics, leading to nonatomicity if one of them is
executed. The noncompensatable handler attached to a
compensatable task, for instance, leads to unrecoverable
effects because it cannot be undone if the pivot task should
fail. The same effect occurs for the retriable task at the end
of process (a). It is replaced by a nonretriable handler,
which again can lead to nonatomicity if the exception
handler fails.

Example (b) shows the reverse effect, i.e., the correction
of an ill-structured process through the introduction of
exception handlers. The compensatable task at the end of
the sphere has an exception handler which is retriable.
Hence, it is guaranteed that the sphere completes after a
successful termination of the pivot, even if the compensa-
table activity should fail. Note that the reverse case is not
possible: A retriable activity before a pivot cannot be
tolerated, even if it has a compensatable exception handler.

Another important observation is that all exception
handlers attached to a task have to be retriable in order to
ªrepairº a nonretriable task. Hence, a case like example (c)
is not correct since, if the third task fails with exception E2,
the nonretriable handler is selected. If this handler fails, the
process is blocked and no rollback is possible.

Example (d) shows incorrect behavior due to the fact that
a sphere is aborted at the wrong time. The third task has an
exception handler which propagates the exception up to the

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 951

Fig. 7. Examples for changed execution semantics due to exception handlers.

next higher level in the invocation hierarchy. Here, it is
caught by a higher-level exception handler. In the case that
this handler decides to abort the sphere, atomicity is
violated since the pivot activity has already been executed.
This is an important example since it shows that the
correctness of the exception handling mechanism has to
take into account the state of a sphere at the time an
exception handler is invoked and a sequence of exception
handler invocations over several levels.

7.2 Notation

Our goal is now to derive a well-formedness criterion for
atomic spheres enriched with exception handling elements.
We start by introducing the necessary notation and will
then present conditions that have to hold for correct process
definitions.

Definition 3 (New notion of spheres). We start by giving a

modified version of Definition 1. The main difference is the
inclusion of exception-handling related aspects.

. A sphere S is a quadruple �T;H;<; e). T is the set of
component tasks, which may be activities, blocks, or
subprocesses. H is the set of exception handlers used in
the block. <� T � T is the control flow relation. It is
derived from the activator part of the guards attached
to each task. e � ��T [H� �E � T � is the exception
handling relation, where E denotes the domain of all
exception types. Hence, the exception handling relation
relates tasks to exception handlers based on the
exceptions that may occur. Note that this relation
can be determined based on the declarations which have
to be provided by the process designers. Note also that
exception handlers can raise exceptions as well. Hence,
they are also included in the relation.

. As a shortcut, we will denote with T� the union of
tasks and exception handlers, T [H.

. The function prop, mentioned in Definition 1, is
extended to work on T� instead of T . Likewise do
the test predicates, i. e., atomic has now T� as its
input set.

Definition 4 (Transitive task execution characteristics).

The examples (a), (b), and (c) show that the execution

characteristics of a task can change if an exception handler is

executed. To capture this fact, we introduce a new function
prop� : T� ! 2PROP and a new set of test predicates

compensatable�, retriable�, etc., which are based on prop�.
prop� is defined recursively:

1. If t has no associated exception handler, then
prop��t� :� prop�t�

2. If t has a set of associated exception handlers Ht, then

a)

�8h 2 Ht : retr��h��)
�prop��t� :� prop�t� [fretriableg�;

i.e., if all exception handlers of a task are retriable,

the task is considered to be retriable.

b)

�9h 2 Ht : :comp��h��)
�prop��t� :� prop�t� n fcompensatableg�;

i.e., if at least one exception handler of a task is

noncompensatable, the task has to be considered

noncompensatable.

7.3 Correctness

The correctness criterion for fault-tolerant processes is

enclosed in the notion of well-formedness given below.

7.3.1 Well-Formed Process Specifications

A well-formed process specification has to suffice the

following three requirements:

1. Atomicity of components. The first necessary con-
dition for block atomicity is that either all compo-
nent tasks have to be atomic or quasi-atomic or the
block has to be quasi-atomic. There is one exception
to this rule. If a task is retriable, it is allowed to be
nonatomic. We assume that the reexecution of a
retriable activity after a failure cleans up possible
effects of the previous erroneous execution.

2. Flex structure under replacement. As a second
necessary condition, we postulate that a sphere
must adhere to the well-formedness definition of
Section 4.2, with the difference that well-formed-
ness must hold for the transitive task execution
characteristics as they were defined in Definition 4.
This correctness requirement captures cases such
as the ones described in the examples (a), (b), and
(c) of Fig. 7.

3. No abort after critical point. A sphere that
contains noncompensatable activities can be rolled
back only until a certain point in its execution is
reached. This point, which is defined by the
successful termination of the first noncompensata-
ble activity, is called a critical point [13]. The
specification of a sphere can have multiple critical
points due to parallel branches.

It has to be avoided that the sphere is aborted

after the critical point since rollback is not possible

anymore. Obviously, there are two cases in which an

abort of a sphere is possible:

a) An exception is raised in the sphere and the
handler dealing with this exception aborts the
sphere.

b) Handling an exception in the sphere leads to an
exception propagation and the resulting hand-
ling of the exception on the next higher level
leads to an abort of the sphere.

Hence, the atomicity of a sphere can only be

guaranteed if, after a critical point, no exceptions can

be raised that could ultimately lead to an abort of the

sphere. An algorithm for testing this condition will

be given in the next section.

952 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

7.3.2 Deriving Execution Characteristics of Complex

Tasks

If a sphere contains blocks or subprocesses, it is necessary to

compute the task execution characteristics of these complex
tasks in order to access the correctness of the sphere. The

characteristics of a block are based either on the character-
istics of its component tasks or on specifications given by
the process designers. Table 1 defines, for each execution

characteristic, the necessary conditions which they have to
hold. A process is compensatable, for instance, if either all

of its components are compensatable or if a compensating
method has been provided which allows us to compensate
the whole process without regard to its components. Quasi-

atomicity, on the other hand, can only be achieved through
definition, by specifying a rollback method. A property that

is only based on structure is the deferrable commit and only
if all components of a block are commit-deferrable can the

commit of the block can be deferred.

8 A VALIDATION ALGORITHM FOR WELL-FORMED

ATOMIC SPHERES

We will now describe a validation algorithm for atomic

spheres that tests for the three necessary conditions
described in the last section.

8.1 Preliminaries

Given that we want to validate a sphere S, the algorithm

assumes the existence of the following information:

. The set of component tasks TS . We assume that each
task t is represented by a tuple �Et; Ct�, where Et is
the set of exceptions it can possibly raise and Ct is
the set of task execution characteristics of the task
which have either been declared or are (for complex
tasks) derived according to Section 7.3.

. The set of exception handlers H. Each exception
handler h is represented by a tuple �Ch; Th�, where

Ch is the set of task execution characteristics and Th
is the set of possible terminations (out of resume,
abort, and propagate) of this handler. This information
can be derived from the specifications of the
exception handlers. We denote with T� the union
of exception handlers and tasks.

. The control flow relation <S� �TS � TS� describes
the relative order of the component tasks. It can be
derived from the activators, which are part of the
process specifications.

. The internal exception handling relation for the
component tasks, ei � �T� � E �H�. It defines
which exception handler has to be invoked if a
particular exception is signaled by a particular task.
Note that this relation does not cover exceptions
raised by signal proxies since those exceptions are
not handled internally, but have to be treated by
exception handlers of the sphere.

. The external exception handling relation of the
sphere. It declares the exceptions the sphere may
signal (if a signal proxy is executed or if an exception
handler propagates its exception) and the exception
handlers to be invoked. It is represented as
ee � E �H.

. To simplify matters, we will omit indices whenever
no ambiguities are possible because of the context.
For instance, instead of <S , we will often use < to
denote the control flow relation if it is clear which
sphere is meant.

8.2 Algorithm

The validation algorithm is graph-based and runs through

five phases, which are executed according to the graphical

representation of Fig. 8. In the following, they are described

in detail.

Step 1. Constructing the internal exception handling

graph. The internal exception handling graph GI�S� for a

sphere S is a directed, multicolored graph that has as its

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 953

TABLE 1
Deriving Execution Characteristics of Complex Tasks

Fig. 8. Steps of the validation algorithm.

nodes the elements of T�, i.e., the tasks and exception
handlers used in S. The graph has two types of edges,
reflecting the control flow relation < and the internal
exception handling relation e. For each element �t1; t2� of
< , a < -edge is inserted between t1 and t2. Likewise, for
each element �t; e; h� of e, an e-edge is inserted between t
and h. This edge is labeled with e. The graph is not
allowed to have loops.

An example sphere is described in Table 2. It consists
of the two activities T1 and T2 and the signal proxy P1.
Two exception handlers, H1 and H2, are attached to the
activities. Furthermore, two exception handlers, H3 and
H4, are attached to the sphere itself. The properties of the
various tasks and handlers can be seen from the table.
The other two tables describe the internal and external
exception handling relations.

The internal exception handling graph for this sphere
is shown in Fig. 9. Note that no edge is leaving P1 since
its exception impacts the external exception handling of
the sphere, not its internal exception handling.

Step 2. Deriving execution characteristics. In a first step,
the prop� relation is computed by first computing the
execution characteristics of composite tasks (according to
Section 7.3) and then deriving the transitive execution
characteristics (according to Definition 4). For the first
part, each composite task has to be analyzed recursively.

For the second part, the subgraph containing only e-edges
is traversed in reverse order, starting with exception
handlers that throw no exceptions themselves and ending
with plain tasks. During the traversal, the transitive
execution characteristics for each node can be computed
as a function of the characteristics of its successors.

In our example, it is easy to see that the prop� function
equals the prop function. Either of the two conditions
given in Definition 4 are given since all exception
handlers are compensatable.

Step 3. Validating component atomicity and FLEX

structure. Now that the prop� function is known, the
first two necessary conditions of Section 7 can be
validated. In addition, the critical points have to be
identified.

To achieve this, the graph is traversed depth-first
from left to right. Each visited node is first checked for
atomicity or quasi-atomicity. The structure rules for well-
formed spheres are checked by appropriately marking
visited tasks and ensuring that no path contains
nonretriable activities after the first noncompensatable
activity occurred. It is also checked that parallel branches
have the same type. Critical points (i.e., a noncompensa-
table task directly following compensatable ones) are
marked when they are visited.

In the example, T2 is a critical point since it is the first
noncompensatable task. It is easy to verify that compo-
nent atomicity and FLEX structure are not violated
because each task is atomic, T1 is compensatable, and
T2, as well as P1; is retriable.

Step 4. Identifying critical exceptions. Now, we modify the
graph in order to validate the third correctness criterion
of Section 7. First, all nodes are removed that do not
follow a critical point (this includes the critical points
themselves). The removed nodes are those from which a
rollback is possible. Hence, the remaining nodes enforce

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

TABLE 2
Example Sphere

Fig. 9. Internal exception handling graph for the example.

a successful termination of the sphere. Due to the
removal of tasks, there may be exception handlers which
are not reachable anymore. Those are removed as well,
together with all edges connected to them.

In a second step, we add as new nodes all exceptions
that may be signaled by the sphere itself. New edges are
inserted. These so-called c-edges (critical edges) reflect
the external exception handling relation. They are
generated by the following rules:

1. If an exception handler h is reached by an e-edge
labeled with exception E and if h has propagation
as a possible termination, we draw a c-edge from
h to the node for E.

2. If a signal proxy p can raise an exception of typeE,
we draw a c-edge from p to the node for E.

Now we can derive the set of critical exceptions for S. A
critical exception is represented by a node which has an
incoming c-edge. The rationale behind the introduction
of critical exceptions is that they are signaled by the
sphere while it is in a critical state. Hence, correctness
requires that the handling of a critical exception cannot
lead to an abort of the sphere.

In our example, the removal of nodes leads to the

elimination of the nodes for T1 and T2 since T2 is the

critical point. The exception handlers H1 and H2 are also

removed since they were only reachable from the

removed tasks. The resulting graph, together with the

newly introduced external exception information, is

shown in Fig. 10. The two external exceptions of the

sphere, E2 and E3, are added, as well as a c-edge from P1

(the signal proxy) to E3. Hence, the only critical

exception in this example is E3.

Step 5. Constructing the external exception handling

graph. In a last step, the impact of handling the critical
exceptions is evaluated. To this end, we construct the
external exception handling graph based on the external

exception handling relation. It contains, as nodes, the
sphere S itself and all exception handlers which are
transitively reachable from S through e-nodes.

The external graph for the example is shown in Fig. 11.

S signals two possible exceptions, E2 and E3, which are

caught by the handlers H3 and H4.

All handlers which cannot be reached through a path

starting with a critical exception (as computed in the

previous step) can be removed from the graph. The

termination options of the remaining handlers have to be

examined. If they include an abort, the correctness of the

sphere cannot be guaranteed since it is possible to have

an execution of the sphere in which an exception which

occurs after a critical point leads to an abort of the

sphere. In the example, it is easy to see that correctness is

violated since the handler H4, which is invoked for the

critical exception E3, aborts the sphere.
If, in Step 5, no critical handler with an abort option is

detected, the correctness of the sphere is validated.

8.3 Complexity of the Algorithm

We will now evaluate the complexity of the algorithm

described above. To this end, we analyze the different steps.

. Step 1. It is easy to see that the size of the internal
exception handling graph is linearly dependent on
the number of tasks and exception handlers in the
sphere since it has exactly these elements as nodes.
Inserting the edges has a complexity which is bound
by n �m, where n is the number of tasks and
exception handlers and m is the number of edges
listed in the internal exception handling relation,
which we assume is represented as a table.

. Step 2. If the reverse traversal of the graph is
performed breadth-first, each node has to be visited
exactly once. Hence, the complexity of this step is
linear.

. Step 3. All validations of Step 3 (atomicity, FLEX-
structure, critical points) can be performed in one
depth-first left-to-right traversal of the graph. Hence,
the complexity is linear.

. Step 4. In this step, nodes and edges are removed
and inserted based on information which can be
found directly in the process descriptions. Hence,
what is needed is a traversal of the graph and a
lookup of task properties for each node. The
complexity of this is bound by n2 if n is the number
of nodes in the graph.

. Step 5. This step requires a traversal of the external
exception handling table and the generation of the
external graph based on this table. The complexity is
bound by n2 �m2, where n is the size of the table
and m is the size of the exception information for the
exception handlers. The size of the former, as well as
the size of the latter, is bound by the number of
exceptions in the system.

The considerations above show that the algorithm for the

correctness validation of spheres described above has a

complexity which is O�n2�, where n is the number of tasks,

exceptions, and exception handlers used in the sphere.

8.4 Practical Considerations

The validation algorithm described above allows us to

control the correctness of sphere definitions and is thus an

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 955

Fig. 10. Modified graph for the example. Fig. 11. External exception handling graph for the example.

important tool for the construction of fault-tolerant pro-
cesses. Process designers can invoke the algorithm to verify
the correctness of their specifications and receive hints on
possible improvements. These hints can be easily derived
from the algorithm. In the simplest form, the algorithm
could present the internal and external exception handling
graphs to the process designers, giving them the chance to
comprehend the decision of the system and allowing them
to detect possible improvements themselves. A more
sophisticated mechanism could make propositions for
improvements autonomously. If, for instance, a critical
exception is detected that leads to an exception handler
which aborts the sphere, the system can provide the
designer with a set of possible changes which include:

1. Changing the exception returned by the respective
task or signal proxy,

2. Changing the termination options of the handler
which incorrectly aborts the sphere, or

3. If a chain of multiple handler invocations leads to
the abort, changing exceptions or termination op-
tions of one or more of the handlers in the chain.

The user can then select the most appropriate out of the
options presented.

A general problem of the correctness notion underlying
the algorithm is its restrictiveness. The algorithm evaluates
the worst case, detecting all possible violations of atomicity.
Such a violation can, however, be caused by an exception
that is very unlikely to occur, which means that a process is
rejected although the probability that atomicity will be
violated is very small. For practical reasons, modifications
to the algorithm are possible that take a more pragmatic
approach.

1. Ignore exceptions in the validation process. The user
can instruct the system to check only the normal
process without considering the exception handling
mechanism. Given that exceptions are unlikely to
occur, this allows us to validate a basic level of
correctness without the guarantee that the system
can enforce atomicity in all cases. Instead of compile-
time checks, the system can detect atomicity viola-
tions caused by exception handling at runtime and
signal a specific exception in this case which calls for
human intervention. Relaxing the mechanism in this
way can be valuable during the test phase of a new
process since it allows us to detect which violations
are likely to occur.

2. Allow to ignore certain violations explicitly. Ignor-
ing all correctness violations caused by exceptions
may be a too relaxed a solution in some cases.
Instead, an interactive mechanism is possible which
presents the user with the correctness violations
found, asking them to correct the failures, but
permits us to install a process even if some of the
failures are not fixed. This weakening of correctness
has to be confirmed by the user explicitly and the
runtime mechanisms described before have to be in
place in order to detect violations at runtime.

3. Statistical support: Given that the process support
system contains a history component which logs all

relevant information during process execution and
allows us to analyze the stored data, it is possible to
provide statistical support for the decisions of the
modeler. If, for instance, a process is composed of
predefined components which have already been
used in other processes, the system will have
information about the probability of certain excep-
tions and the typical decisions of the exception
handlers. This information can serve as the basis for
deciding which correctness violations can be ignored
(because they are very unlikely to occur) and which
have to be corrected. The history information can
also be used to gradually improve process specifica-
tions, for instance, by analyzing a process after a
number of instances have been executed and finding
exceptions which are raised very frequently. An
exception that is raised often should be incorporated
in the normal control flow. Likewise, branches in a
process which are almost never executed can be
changed into exceptions in order to keep the process
as near to the actual application semantics as
possible.

8.5 Related Work

Several research projects have focused on the integration of
databases and nondatabases into distributed computing
environments, including work on extended transaction
models (ETM) in distributed object management (DOM)
[12], [23], [24], where a framework for flexible transaction
structures in workflows was developed, and the ConTracts
project [48], which focused on long-running applications
and provided relaxed atomicity based on compensation and
forward recovery. Recently, the work on recovery in
transactional workflows has been extended in [14] and
[15], where recovery mechanisms have been developed for
transactional workflows that consist of transaction hierar-
chies with arbitrary deep nesting.

In addition, a considerable amount of work toward
flexible recovery has been done in the context of advanced
transaction models [11], [19], [18], [24], [21], [49], [48]. In
particular, the EXOTICA project [5] investigated the
mapping of advanced transaction models to workflow
description languages and showed how some of the
concepts used in transaction management can be used in
workflow environments. The approach presented here
differs from this work mainly because of its strong focus
on modeling language aspects and because we do not
assume a transactional environment.

There is no support for exception handling in currently
available commercial WFMS. The problem of recovery from
activity failures has, however, been considered in a number
of research projects. Leymann [38] introduces the notion of
a sphere of joint compensation, which is a subset of a process'
activities. If one activity of a sphere fails, the whole sphere
has to be backed out (either by compensating each step that
succeeded so far or by executing a special higher-level
compensating activity). The special properties of the
concept (spheres do not have to form a connected graph,
and multiple spheres can overlap) leads to very complex
and incomprehensible semantics. Eder and Liebhart [17]
describe recovery facilities in WAMO, a research WFMS.

956 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

Processes are treated as workflow transactions. Component
activities can be declared vital for a process. A running
process is aborted and compensated if a vital activity fails.
Failures are classified into two categories (system failures
and semantic failures). A further distinction of exception
types is not possible. Thus, the system does not support the
specification of different handling strategies for different
classes of failures. Resumption of failed processes is not
possible.

It is important to note the differences between our notion
of exception handling and the recent work on adaptive
workflows and workflow evolution [35]. Our work focuses
on the handling of expected exceptions and on the seamless
integration of exception handling in the execution environ-
ment. Workflow evolution concepts go far beyond the
application of programming language concepts to work-
flow systems. Instead, they try to cope with unexpected
exceptions by making the workflow system adapt to new or
changed environments. These issues are beyond the scope
of our work.

The work on exception handling in programming
languages [25], [40], [43], [47], [52] has provided the basics
for our approach. While it provides mechanisms for the
seamless integration of exception handling into workflow
descriptions, it lacks the consideration of practical aspects
that become important in workflow systems such as the
participation of autonomous, heterogeneous legacy sys-
tems, and the strong impact of human intervention.

A problem we did not consider in this work is the correct
handling of multiple exceptions that occur concurrently in
multiple parts of a system and can only be handled
together. Specification and failure resolution techniques
that can be used for this case have been developed in the
context of complex concurrent and real-time distributed
systems [34], [42], [51]. They do mostly rely on a notion of
atomic actions that is very similar to the notion of atomic
spheres used in workflow contexts.

9 CONCLUSIONS

The solutions presented allow the elegant specification of
fault-tolerant workflow processes and will, along with the
corresponding system support, result in cleaner process
specifications and less overhead when designing fault-
tolerant workflow processes. To summarize, the extensions
presented meet important criteria for a flexible process
exception mechanism.

. Support for flexible recovery strategies. Processes and
spheres provide natural boundaries for partial
backward recovery. Semantic recovery mechanisms
like compensation and holistic back-out ensure the
necessary flexibility of backward navigation, while
exception handlers guarantee forward progress.

. Reusability. The proposed primitives improve the
reusability of process descriptions (because of the
separation of business logic and failure handling
semantics), as well as the reusability of tasks in
different contexts (because of the parameterization
realized through override handlers). This is a
significant advantage over what is possible in

current systems. Furthermore, failure handling
strategies can be reused since exception handlers
are registered with the system and can thus be
applied in various processes. Note that this applies
even in the case of semantic exceptions. While the
definition of whether a given situation is regarded as
a semantic exception or not is highly context-
dependent, the handling will often be similar
between cases so that reusability can still be
exploited. As a result, it is possible to reuse defined
processes and activities without further modification
and without having to redo the exception handling
procedures entirely.

. Consistency. The combination of exception handling
and atomicity provides strong semantics for excep-
tion handling, as they are needed if database
management systems and other transactional re-
sources are to be integrated into a distributed
process.

Our model requires only minimal modifications to the
representation of the business logic. The above shows that it
is only necessary to add spheres in order to specify
atomicity. Since all other recovery related information is
described separately in the exception handlers, the process
description remains comprehensible.

We see the validation mechanism as an important
contribution toward the rapid development of fault-tolerant
processes since it provides process designers with the
ability to verify the correctness of their specifications,
freeing them from the need for lengthy simulations or test
suites. In this regard, our validation mechanism can be seen
as a first step toward more sophisticated verification
mechanisms for distributed processes which are able to
assess other properties such as resource utilization or
temporal behavior.

REFERENCES

[1] G. Alonso et al., ªWISE: Business to Business E-commerce.º Proc.
IEEE Ninth Int'l Workshop Research Issues on Data Eng., Mar. 1999.

[2] G. Alonso and C. Hagen, ªGeo-Opera: Workflow Concepts for
Spatial Processes,º Proc. Fifth Int'l Symp. Spatial Databases (SSD
'97), June 1997.

[3] G. Alonso et al., ªDistributed Processing over Stand-Alone
Systems and Applications,º Proc. 23rd Int'l Conf. Very Large
Databases (VLDB '97), 1997.

[4] G. Alonso et al., ªTowards a Platform for Distributed Application
Development,º Workflow Management Systems and Interoperability,
A. Dogac et al., eds., 1998.

[5] G. Alonso et al., ªAdvanced Transaction Models in Workflow
Contexts,º Proc. Int'l. Conf. Data Eng., Feb. 1996.

[6] G. Alonso and C. Mohan, ªWorkflow Management: The Next
Generation of Distributed Processing Tools,º Advanced Transaction
Models and Architectures, S. Jajodia and L. Kerschberg, eds., Kluwer
Academic, 1997.

[7] G. Alonso and H.J. Schek, ªResearch Issues in Large Workflow
Management Systems,º Proc. NSF Workshop Workflow and Process
Automation in Information Systems, A. Sheth ed., pp. 126±132 May
1996. http://optimus.cs.uga.edu:5080/activities/NSF-workflow/
proceedings.html.

[8] T. Anderson and P.A. Lee, Fault ToleranceÐPrinciples and Practice.
Prentice Hall Int'l, 1981.

[9] P. Arnold, ªIntegration eines erweiterten Transaktionsmodells in
ein Workflow-Modell,º master's thesis, ETH ZuÈ rich, Institut fuÈ r
Informationssysteme, 1996.

[10] P.A. Bernstein and E. Newcomer, Principles of Transaction
Processing. Morgan Kaufmann, 1997.

HAGEN AND ALONSO: EXCEPTION HANDLING IN WORKFLOW MANAGEMENT SYSTEMS 957

[11] Y. Breitbart et al., ªMerging Application-Centric and Data-Centric
Approaches to Support Transaction-Oriented Multi-System Work-
Flows,º SIGMOD Record, vol. 22, no. 3, Sept. 1993.

[12] A. Buchmann et al., ªA Transaction Model for Active Distributed
Object Systems,º Database Transaction Models for Advanced Applica-
tions, A. Elmagarmid, ed., pp. 123±158, 1992.

[13] C. Canamero, ªValidierung der AtomaritaÈt in Workflow- und
ProzessunterstuÈ tzungssystemen,º master's thesis, ETH ZuÈ rich,
1998.

[14] Q. Chen and U. Dayal, ªA Transactional Nested Process Manage-
ment System,º Proc. 12th Int'l Conf. Data Eng. (ICDE '96), 1996.

[15] Q. Chen and U. Dayal, ªFailure Handling for Transaction
Hierarchies,º Proc. 13th Int'l Conf. Data Eng. (ICDE '97), 1997.

[16] C.T. Davies, ªData Processing Spheres of Control,º IBM Systems J.,
vol. 17, no. 2, pp. 179±198, 1978.

[17] J. Eder and W. Liebhart, ªWorkflow Recovery,º Proc. First IFCIS
Int'l Conf. Cooperative Information Systems (CoopIS '96), June 1996.

[18] A. Elmagarmid, Transaction Models for Advanced Database Applica-
tions. Morgan-Kaufmann, 1992.

[19] A.K. Elmagarmid et al., ªA Multidatabase Transaction Model for
Interbase,º Proc. Int'l Conf. Very Large Data Bases, pp. 507±518,
1990.

[20] D. Flanagan, Java in a Nutshell. O'Reilly & Associates, 1996.
[21] H. Garcia-Molina and K. Salem, ªSagas,º Proc. ACM SIGMOD,

1987.
[22] D. Georgakopoulos, M. Hornick, and A. Sheth, ªAn Overview of

Workflow Management: From Process Modeling to Workflow
Automation Infrastructure,º Distributed and Parallel Databases,
vol. 3, no. 2, pp. 119±153, 1995.

[23] D. Georgakopoulos and M.F. Hornick, ªA Framework for
Enforcable Specification of Extended Transaction Models and
Transactional Workflows,º Int'l J. Intelligent and Cooperative
Information Systems, Sept. 1994.

[24] D. Georgakopoulos, M.F. Hornick, and F. Manola, ªCustomizing
Transaction Models and Mechanisms in a Programmable Envir-
onment Supporting Reliable Workflow Automation,º IEEE Trans.
Knowledge and Data Eng., 1996.

[25] J.B. Goodenough, ªException Handling: Issues and a Proposed
Notation,º Comm. the ACM, vol. 18, no. 12, pp. 683±695, Dec. 1975.

[26] The Open Group, Distributed TP: The XA Specification, Open Group
Technical Standard, 1992.

[27] C. Hagen and G. Alonso, ªBackup and Process Migration
Mechanisms in Process Support Systems.º Technical Report 304,
ETH Zurich, Ins. of Information Systems, Aug. 1998. http://
www.inf.ethz. ch/department/IS/iks/publications/ha98d.html.

[28] C. Hagen and G. Alonso, ªFlexible Exception Handling in the
OPERA Process Support System,º Proc. Int'l Conf. Distributed
Computing Systems, May 1998.

[29] C. Hagen and G. Alonso, ªBeyond the Black Box: Event-Based
Inter-Process Communication in Process Support Systems,º Proc.
19th Int'l Conf. Distributed Computer Systems (ICDCS 99), June 1999.

[30] C. Hagen and G. Alonso, ªHighly Available Process Support
Systems: Implementing Backup Mechanisms,º Proc. 18th IEEE
Symp. Reliable Distributed Systems, Oct. 1999.

[31] Bulletin IEEE Technical Committee on Data Eng., Special Issue on
Workflow and Extended Transaction Systems, M. Hsu ed., IEEE
Computer Soc., June 1993.

[32] Bulletin IEEE Technical Comittee on Data Eng., Special Issue on
Workflow Systems, M. Hsu, ed., IEEE Computer Soc., Mar. 1995.

[33] S. Jablonski and C. Bussler, Workflow Management. Int'l Thomson
Computer Press, 1996.

[34] P. Jalote and R.H. Campbell, ªAtomic Actions for Software Fault
Tolerance Using CSP,º IEEE Trans. Software Eng., vol. 12, no. 1,
1986.

[35] ªTowards Adaptive Workflow Systems,º Proc. Computer Supported
Cooperative Work (CSCW 98') Workshop, M. Klein, C. Dellarocas,
and A. Bernstein, eds. 1998. http://ccs.mit.edu/klein/cscw98/.

[36] Dependability: Basic Concepts and Terminology, J.C. Laprie ed.,
Springer-Verlag, 1992.

[37] Y. Leu, A.K. Elmagarmid, and N. Boudriga, ªSpecification and
Execution of Transactions for Advanced Database Applications,º
Information Systems, vol. 17, no. 2, pp. 171±183, 1992.

[38] F. Leymann, ªSupporting Business Transactions via Partial Back-
ward Recovery in Workflow Management Systems,º Datenbank-
systeme in BuÈro, Technik und Wissenschaft, pp. 51±70, 1995.

[39] F. Leymann and W. Altenhuber, ªManaging Business Processes as
an Information Resource,º IBM Systems J., vol. 33, no. 2, pp. 326±
348, 1994.

[40] D.L. Parnas, ªResponse to Detected Errors in Well-Structured
Programs,º technical report, Computer Science Dept, Carnegie-
Mellon Univ., 1972.

[41] L.C. Paulson, ML for the Working Programmer. Cambridge Univ.
Press, 1991.

[42] A. Romanowsky, ªPratical Exception Handling and Resolution in
Concurrent Programs,º Computer Languages, vol. 23, no. 1, 1997.

[43] R.W. Sebesta, Concepts of Programming Languages, third ed.
Addison-Wesley, 1996.

[44] Proc. NSF Workshop Workflow and Process Automation in Information
Systems, A.Sheth, ed., May 1996. http://optimus.cs.uga.edu:5080/
activities/NSF-workflow/proceedings.html.

[45] G.L. Steele, Common Lisp: The Language, second ed. Digital Press,
1990.

[46] B. Stroustrup, The C++ Programming Language, second ed.
Addison-Wesley, 1991.

[47] P. van Zee, M. Burnett, and M. Chesire, ªRetire Superman:
Handling Exceptions Seamlessly in a Declarative Visual Program-
ming Language,º Proc. IEEE Symp. Visual Languages, Sept. 1996.

[48] H. Waechter and A. Reuter, ªThe ConTract Model,º Transaction
Models for Advanced Database Applications, A. Elmagarmid, ed.,
pp. 219±263, Morgan-Kaufmann, 1992.

[49] G. Weikum and H.J. Schek, ªConcepts and Applications of
Multilevel Transactions and Open Nested Transactions,º Database
Transaction Models for Advanced Applications, A.K. Elmagarmid,
ed., Morgan Kauffman, 1991.

[50] Workflow Management Coalition±Terminology and Glossary, Version
2.0. June 1996. http://www.aiai.ed.ac.uk/WfMC.

[51] J. Xu, A. Romanowsky, and B. Randell, ªCoordinated Exception
Handling in Distributed Object Systems: From Model to System
Implementation,º Proc. 18th Int'l Conf. Distributed Computing
Systems (ICDCS '98), pp. 12±21, May 1998.

[52] S. Yemini and D.M. Berry, ªA Modular Verifiable Exception-
Handling Mechanism,º ACM Trans. Programming Languages and
Systems, vol. 7, no. 2, pp. 214±243, Apr. 1985.

Claus Hagen received his degree in computer
science from the University of Erlangen-NuÈrn-
berg, Germany, in 1995, and his PhD degree in
computer science from the Swiss Federal
Institute of Technology (ETH), ZuÈrich, in 1999.
He is a senior information systems architect at
Credit Suisse, a major Swiss bank. He is a
member of the IEEE Computer Society.

Gustavo Alonso received a degree in telecom-
munications engineering from Madrid Technical
University in 1989 and the MS and PhD degrees
in computer science from the University of
California at Santa Barbara in 1992 and 1994,
respectivily. Previously, he was with the IBM
Almaden Research Laboratory in San Jose,
California. Currently, he is an assistant professor
in the Department of Computer Science at the
Swiss Federal Institute of Technology (ETH) in

ZuÈrich, and also leads the Information and Communication Systems
Research Group. His research interests include cluster computing,
databases, workflow management, scientific applications of database
and cluster technology (earth sciences, astrophysics, and biology),
transaction management, as well as replication, availability, and
scalability in databases and clusters.

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

