
Customized Atomicity Specification for Transactional Workflows 

Wijnand Derks 
KPN Research, Netherlands 

w. 1.a.derks @ kp12.com 

Paul  Grefen 
Center for  Telematics and Information 

Technology (CTIT), University of Twente, 
Netherlands 

grefen @ cs. utwente. nl 

Abstract 

This paper introduces a new approach for  specifying 
transaction management requirements for workflow 
applications. We propose independent models for the 
specification of workflow and transaction properties. 
Although we distinguish multiple transaction properties in 
our approach, we focus on atomicity in this paper. We 
propose an intuitive notation to specifi atomicity and 
provide generic rules to integrate the workflow 
specification and the atomicity specification into one 
single model based on Petri Nets. The integrated model 
can be checked for  correctness. We call this correctness 
criterion relaxed soundness as a weaker notion of the 
existing soundness criterion. We can relax the correctness 
criterion because we rely on run-time transaction 
management. A real life example shows the applicability 
of the concepts. 

1. Introduction 

To improve the quality and efficiency of service 
provisioning, many enterprises have developed workflow 
applications to automate their processes. As services 
become increasingly complex, so become these processes 
and the requirements for reliability of these applications. 
Transaction management provides a means to ensure 
correctness in the presence of concurrency and failures. 
Therefore transaction models can be applied to workflow 
applications to achieve increased reliability. 

Present approaches try to map existing transaction 
models to workflow specifications or introduce new 
advanced transaction models to fit the requirements of 
complex workflow applications. However, transaction 
requirements for workflows are often application 
dependent and therefore we require a model to specify 
transactional properties independently from existing 
models. 

Juliane Dehnert* 
Technische Universitat Berlin 

dehnert@ cs.tu-berlin.de 

Willem Jonker 
KPN Research, Netherlands 

w illem.jonke r @ kpn. com 

The approach we take is to specify the workflow and 
transaction requirements independently. After 
specification, we integrate the workflow process and the 
transaction requirement specification to be checked for 
consistency. We consider the specification consistent, if 
the workflow process can be executed according to the 
transactional requirements. In this paper, we restrict 
ourselves to the transactional property atomicity. 
Atomicity constraints define an existence relation between 
tasks in a group, e.g. that either all tasks in the group 
should execute, or no task of the group should execute. 

To be able to integrate the specification of workflow 
and atomicity, we model both with Petri Nets. For the 
workflow specification we adopt Workflow Nets, which is 
based on Petri Nets and for the specification of the 
atomicity requirements, we provide rules for the 
translation of the atomicity requirements into Petri Nets. 
Hence both models can be integrated. The consistency of 
the integrated model is then determined by the relaxed 
soundness criterion. Relaxed soundness is a relaxation of 
the soundness criterion introduced in [l]. We can relax 
soundness, because we rely on run-time transaction 
management to allow more freedom in the specification of 
the workflow. We show the applicability of the proposed 
approach using an example from a cross-organizational 
setting. 

2. Related work 

In the nineties workflow applications were identified as 
an important application domain for transaction 
management. In [ 101 Sheth and Rusinkiewicz introduce 
transactional workflows as workflows with transaction 
support. Since then, a lot of work has been done to 
integrate workflows and transaction models. Reuter [9] 
introduces a transactional workflow specification and 
execution framework called ConTracts. It supports 
execution of (a group of) tasks that preserve strict ACID 

140 

http://kp12.com
http://cs.tu-berlin.de


properties. However, atomicity cannot be specified as an 
independent transaction property. 

Similar to the ConTracts approach, in [5] inter-task 
dependencies describe transactional dependencies 
between atomic tasks. The focus of this work is on 
enforceability of the inter-task dependencies. However, 
atomicity specification remains implicit in the 
specification. 

The work of Adam et al. [4] builds further on the 
approach of [5] and offers a formal framework for 
specification of transactional workflow applications based 
on Petri Nets. However, similar to [5] transactional 
properties between activities are expressed implicitly by 
operational inter-task dependencies, whereas we specify 
them explicitly by separating them from the workflow 
specification. 

Other approaches apply advanced transaction models to 
workflows. Examples are the Exotica project [ 2 ]  where 
the SAGA model and the Flexible Transaction models are 
integrated within a Flowmark process specification. This 
way, atomicity remains implicit in the workflow 
specification. In WIDE [6] the extended SAGA model and 
the nested transaction model were incorporated. WIDE 
defines safe-points to identify process states that separate 
semantic units of work. This is similar to atomic units, 
although safe-points are not customizable independently 
from the SAGA model. Recently, in the ESPRIT project 
CrossFlow the WIDE approach was extended to cross- 
enterprise workflows [12]. 

Similar to our approach Leymann et al. [7] specify 
transaction properties and the workflow independently. by 
customizable atomic spheres and spheres of joint 
compensation, However. they approach atomicity from a 
persistence perspective, whereas we define atomicity as a 
property of the workflow. Persistence can be specified in 
addition to our atomicity specification. Similarly, Alonso 
[ 31 expresses the need for separate transactional semantics 
to be applied to groups of activities. He distinguishes 
spheres of atomicity, isolation and persistence. The sphere 
of atomicity is similar to Leymann's atomic sphere. 
However, in [3] atomicity and recovery are coupled, 
whereas we consider atomicity separately from recovery. 

3. Workflow Process 

For the specification of a workflow process definition 
we use Petri Nets, because Petri Nets have a clear and 
precise definition and Petri Nets allow us to make use of 
many existing analysis techniques and tools [4]. Van der 
Aalst [ I ]  applies Petri Net theory to workflow 
specification and introduces Workflow Nets (WF-Net). In 
a WF-Net a task is modeled by a transition and 
intermediate states are modeled via places. A token in the 
source place i corresponds to a case which needs to be 
handled, a token in the sink place o corresponds to a case 
that has been handled. The process state is defined by a 

marking. A marking M is the distribution of tokens over 
places. In this paper we take the definitions of a Petri Net 
and WF-Net from [l]: 

Definition (Petri Net). A Petri Net is a triple (P,T,F): 
P is a finite set of places, 
T is a finite set of transitions (P n T = a), 
F E ( P x T ) U ( T x P ) is a set of arcs (flow 
relation). 

Definition (WF-Net). A Petri Net PN = (P,T,F) is a 
WF-net (WorkFlow Net) if and only if: 

(i) 

(ii) 

PN has two special places: i and 0. Place i is a 
source place and place o is a sink place. 
If we add a transition t* to PN which connects 
place o with i, then the resulting Petri Net is 
strongly connected. 

A Petri Net is strongly connected if and only if for 
every pair of nodes (i.e. places and transitions) x and y, 
there is a path leading from x to y. 

Figure 1 shows a WF-Net. The example represents a 
cross-organizational workflow process that involves two 
companies C l  and C2. Both companies co-operate, but 
have independently specified processes. Company C 1 
takes an order from a customer and outsources the 
delivery of the order to company C2. Although company 
C2 delivers the product, company C 1 takes responsibility 
for the billing of the order. Therefore company C1 checks 
whether the product should be delivered to the customer 
by the check-credit task. The check-credit task results in 
either a not-ok or ok. We model these outcomes in the 
picture explicitly as tasks for clarification purposes. The 
processes are integrated only at the beginning and end of 
both processes. The task ."co-op indicates the start of 
the co-operation of the specific case and task end-co-op 
ends the co-operation. Note that this way, the process 
specification of CI  and C2 needs no adjustments, and 
therefore co-operation is easily established. This is 
especially important in dynamic cross-organizational 
outsourcing, where co-operation relationships are of short 
duration. 

While the preparation of the order is processed at 
company C2, company C1 checks whether the customer 
has sufficient credits to pay the order. If this appears not 
the case, company C2 should not deliver, but cancel the 
delivery. Note that this dependency between both sub- 
processes is not specified in Figure 1 .  In particular, the 
cancel-order at C2 should only be executed if and only if 
the result of the check on the C1 side was not ok. 

This missing constraint is purely functional, which 
means that it does not say anything about ordering but 
only expresses an existence relationship. One way to 

141 



company C2 cancel-order 

company C1 

Figure 1. WF-Net order processing 

implement this constraint, both processes could be 
synchronized at the decision points. For example, two 
places and corresponding arcs could be added to 
synchronize transition ok and pick, and transition not-ok 
and cancel-order. The process specification would then 
serialize the execution: first execute the customer check 
and then execute the ordering. This implementation is 
pessimistic, because it avoids inconsistent execution 
beforehand. 

However, in case the delivery process takes long and 
the customer check takes long, this pessimistic scheduling 
would be inefficient. This is especially undesirable if it is 
very rare that a customer check results in a not-ok. A 
more efficient way of implementing the atomicity 
requirement would then be to just start the delivery of the 
order to the customer hoping the customer check will be 
OK, i.e. following an optimistic approach. Only in the rare 
case that the decision not-ok was taken, the order should 
be returned to stock, i.e. go back to S12 and then cancel 

could then be supported by transaction management, e.g. 
compensation [12]. Note that we do not model 
compensation explicitly, but assume each task to have an 
inverse task that undoes all of its effects. 

Because different approaches could be followed to 
ensure the atomicity requirement, we consider this 
synchronization of processes an implementation issue. 
Therefore we want to abstract from synchronization and 
express an execution dependency between tasks 
independently from the ordering. For this we introduce 
atomicity spheres. 

the order after all. Recovery from this inconsistent state 

4. Atomicity 

We define atomicity in terms of completeness, which 
means that an atomic unit of work is either executed 
completely or not at all. The smallest granularity of 
atomicity is the task and we consider a single task to be 
atomic. We extend the notion of atomicity to a set of tasks 
and consider these tasks to be contained in an atomicity 
sphere. We consider an atomicity sphere to execute if at 
least one task in the sphere executes. 

Strict-atomicify defines the basic atomic behavior, i.e. 
all tasks in a strict atomicity sphere have to be executed or 
no task in the sphere at all. This strict atomicity constraint 
can be relaxed into two dimensions: alternatives and 
exceptions. 

Alternative-atomicity specifies exclusive execution of 
combinations of atomicity spheres. This notion defines 
that the execution of tasks is according to the defined 
atomicity spheres and requires that at most one specified 
combination of atomiciQ spheres executes. Alternative 
atomiciQ is introduced for atomicity specification in case 
alternative ways of execution are allowed. Considering the 
example in Figure 1 it would be desirable to specify that if 
the task rake-ordercl is executed, either the task 
cancel-order or the task finish-ordercl is executed as 
well. Note that it is not possible to specify the alternative 
execution as two strict atomicity spheres. This would 
force the execution of both the tasks cancel-order and 
finish-ordercl. 

Exception-atomicity allows a group of tasks to violate 
the atomicity constraint in a controlled manner: tasks in an 
exception-atomicity sphere do not all have to execute. but 
in case one or more tasks in the sphere do not execute, an 
exception task is executed. Weakening atomicity is useful 
in the workflow context to allow for exceptions like 
timeouts or to allow for atomic units that cannot be forced 
to behave atomically. Note that an exception-atomicity 
sphere always introduces an additional task in the 
workflow specification: the exception task. Therefore the 
workflow process designer has to incorporate this 
exception task in the workflow process explicitly. 

The notations of the different atomicity constraints are 
depicted in Figure 2 for examples with six tasks. An 
atomicity sphere is drawn as a solid box containing the 
corresponding tasks. Alternatives are denoted by 
numbered dark bullets that connect atomicity spheres. 
Exceptions are visualized by a gray exception task. The 
atomicity requirement in the combination s/n is satisfied if 
and only if the tasks 1 through 6 either all execute or none 
of them. The atomicity sphere in the combination s/e is 
satisfied if all tasks execute or no task executes while the 
exception task does not execute, or, if some tasks together 

142 



with the exception task execute. The atomicity 
requirement as shown in the cell a/n is satisfied, if the 
tasks 1 through 4 all execute and tasks 5 and 6 do not 
execute, or the tasks 3 through 6 all execute and neither 
task 1 nor 2. Another valid option is that no task executes. 
The atomicity requirement in the combination d e  is 
satisfied similar to ah, but in addition allows violation of 
a combination if and only if the exception task is 
executed. Note that even in the case of a violation of the 
alternative, spheres { 1,2),  {3,4) and (5 ,6}  each still 
behave as a strict atomic unit, i.e. either all task execute or 
none. Execution of all tasks 1 through 6 including the 
exception task is also valid. 

~~ 

strict / no excention (s/n) 1 alternative / no excention ( d n )  I 

strict /exception (de) alternative / exception (de) 

I I 
Figure 2. Notations for the different atomicity types 

4.1. Application in the example 

To demonstrate the use of atomicity spheres, we have 
identified atomicity requirements in the example of Figure 
1. The tasks pick, wrap and deliver are contained in a 
strict atomicity sphere. This means that those three tasks 
cannot execute independently. The intuition is that a 
package that is picked should always be packaged and 
delivered. Also the task take-order-CI and notify-cancel 
are each contained in a strict atomicity sphere for the sake 
of consistent notation. Note that this corresponds to the 
normal task execution semantics, because we consider a 
task to be atomic by itself. 

We specify alternative atomicity for tasks 
( take-orderC1 }, {pick, wrap, deliver} and 
{ notify-cancel} . The alternatives are specified such that 
either { take-ordercl, notify-cancel } executes, or 
(take-ordercl, pick, wrap, deliver } executes. This 
implies that the notify-cancel task can never execute 
together with one of pick, wrap or deliver. This ensures 
that if the order is taken by C1, either the order is 
cancelled or the parcel is processed. 

Furthermore, we specify an exception atomicity sphere 
containing the tasks get-address and check-credit to allow 
partial execution of the customer check. If either of the 
tasks does not execute, the exception task is executed. In 

Section 6.1 we show how task X is integrated in the 
process specification. 

take-ordcrC 1 pick wrap deliver notify-cancel 

Figure 3. Atomicity specifications in the example 

5. Specifying atomicity with Petri Nets 

An atomicity-sphere containing a group of tasks 
specifies the behavior that the tasks should either execute 
all or none. Figure 4 gives the translation of the strict 
atomicity sphere with two tasks I and 2 into a Petri Net. 
The transitions not-at-all and all represent the valid 
alternative executions of the atomic sphere. The sphere is 
initialized by a token in local i and define it finished with 
a token only in local 0. Note that this definition implies 
that the workflow is required to be acyclic and that 
not-at-all must not fire if task 1 or 2 still may be 
executed. We have incorporated this requirement in our 
correctness criterion relaxed soundness, which is 
introduced in Section 6.3. 

El a 

Figure 4. Petri Net pattern for a strict atomicity 
sphere 

5.1. Alternative atomicity 

In the case of alternative-atomicity, combinations of 
atomicity spheres are defined. Alternative-atomicity 
requires, that ut most one of those combinations of 
atomicity spheres be executed. In Figure 2, three atomicity 
spheres are defined: { 1,2),  { 3,4) and { 5 , 6 } ,  which we will 
denote S1, S2  and S3 here. The allowed alternative 
executions include A l :  (1,2,3,4) and not {5,6} (i.e. SI 
and S2 and not S3), and A2: not ( 1,2} and { 3,4,5,6} (i.e. 
not S1 and S2 and S3). 

The Petri Net pattern for the alternative atomicity 
sphere is similar to the strict atomicity sphere and is 
shown in Figure 5. We have not shown the Petri Net 
patterns for each of three spheres in the figure for reasons 
of clarity. 

143 



Figure 7. Example of a complex atomicity constraint 

U 
Figure 5. Petri Net pattern for alternative atomicity 

5.2. Exception-Atomicity 

Figure 6 gives the translation for the example in the 
de-combination (see Figure 2 )  into a Petri Net pattern for 
two tasks. The Petri Net incorporates all possible 
alternative executions of the tasks, i.e. no execution, only 
task 1 executes, only task 2, or both task 1 and task 2 
execute. The execution of only task 1 or only task 2 
violates the strict atomicity requirement and should only 
occur if and only if the exception task is executed. The 
exception is modeled by the X transition. 

Note that this way of modeling is exponential, because 
the powerset of the set of tasks must be present as an 
alternative. This can be ignored, if the number of tasks 
contained in an atomicity sphere is small. For the case of 
larger number of tasks, we have developed a Petri Net 
pattern that scales linearly with the number of tasks in the 
sphere. This pattern is omitted for brevity. 

{ 1 2  I 

Figure 6. Petri Net pattern for an exception 
atomicity sphere 

{ 1 2  I 

Figure 6. Petri Net pattern for an exception 
atomicity sphere 

The Petri Net pattern of the exception alternative (e/a) 
combination is similar to the pattern for the exception 
atomicity sphere. W e  omit the pattern due to space 
limitations. 

5.3. General construction rules 

In the previous paragraphs we have shown the Petri 
Net patterns for each atomicity type independently. 
Different atomicity types can also be combined to define 
complex atomicity constraints. An example is presented in 
Figure 7. 

The general approach for constructing Petri Nets for 
complex atomicity spheres is to: 

1. construct Petri Net patterns for the strict and 
exception atomicity spheres, 

2 .  construct Petri Net patterns for the alternative 
atomicity specification, 

3.  connect all execution alternatives of the atomicity 
spheres, i.e. transitions Ax, with the sphere places of 
the alternative atomicity Petri Net, i.e. places S,. 

6. Model integration 

To show that the specification of atomicity spheres is 
consistent with a workflow process, we integrate all 
specifications into one Petri Net. After that, the integrated 
Petri Net can be checked for consistency. We consider the 
process and atomicity specifications to be consistent if a 
scheduler can execute the process definition according to 
the atomicity constraints. W e  introduce relaxed soundness 
as a criterion for this property. 

6.1. Informal analysis 

As a first step the independently made specifications 
from Figure 1 and Figure 3 are mapped onto each other 
which results in Figure 8. Here the workflow process 
specification and the atomicity spheres are presented in 
the notation introduced earlier. 

From this notation we can see that the strict atomicity 
sphere around pick, wrap and deliver is consistent with the 
process specification. The three tasks are executed in a 
row and the process specification does not offer the 
possibility to skip either of the tasks. However, for the 
alternative atomicity over the { pick, wrap, deliver), { 
take-orderC1 } and { notify-cancel ) spheres this is not 
obvious. Here, analysis techniques should prove 
consistency. 

The integration of the exception atomicity sphere 
requires a little more thought as with other spheres, 
because the exception sphere adds a new exception task to 
the model, which was not present in the process model 
before. Therefore, we must include additional process 
specification to specify what should happen in case the 
exception is raised. In our example the workflow designer 
decides that in case of an exception the process should 
behave as if the customer was checked and found OK 
(modeled by the arc from X to S7).  

144 



cancel-order 

Figure 8. Example with atomicity annotation 

6.2. Integrated Petri Net 

To prove consistency of the workflow process and the 
atomicity specifications as presented in Figure 8, we now 
transform the different models into one single Petri Net. 
The integration is performed by joining the WF-Net with 
the atomicity sphere Petri Net patterns. The Nets are 
merged at the points where they have common transitions. 
In addition, we extend the Net with a source place (I) and 
a sink place (0) and two transitions initiate and clean-up. 
Transition initiate is introduced to initialize the workflow 
Net and all atomicity spheres. This is done by connecting 
it to the new source place I and with all source places 
from the atomicity spheres (local i’s) and the source place 
from the process definition (i). The transition clean-up is 
introduced to collect all tokens again from the workflow 
Net and the atomicity spheres. It connects all sink places 
(o and local 0’s) with the new sink place 0. Note, that the 
integration of the Petri Nets can easily be implemented 
with an automated tool. This tool would have the WF-Net 
and the Petri Net patterns as input and would produce the 
combined Petri Net. 

Figure 9 shows the integrated WF-Net after combining 
the Nets corresponding to the spheres in Figure 8. The 
original workflow Net is marked in gray. Note that the 
strict atomicity spheres around task notifjl-cancel and 
take-ordercl are omitted, because we consider a single 
task to behave strict atomically by itself and therefore 
requires no specific Petri Net pattern. 

6.3. Relaxed soundness as correctness criterion 

Van der Aalst introduced soundness as a correctness 
criterion for Workflow Nets [ 11. It covers a minimal set of 
requirements a process definition should satisfy. 
Soundness ensures that, the process can always terminate 
with a single token in place o and all the other places 
empty. In addition it  requires, that there is no dead task, 
i.e. all tasks can be executed. 

Next we define soundness according to [ l ] .  Note that 
the notation MI +‘ M, denotes that the firing of transition t 
brings state M, to state M,. M ,  +* M ,  denotes that there 
exists a firing sequence of tasks that brings state M I  to 
state M,. 

Definition (Sound). A process specified by a WF-Net 
PN = (P,T,F) is sound if and only i f  

(i) For every state M reachable from state i, there 
exists a firing sequence leading from state M to 
state o. Formally: 

V M ( i  +* M )  =3 ( M + *  0) 

(ii) State o is the only state reachable from state i 
with at least one token in place o. Formally: 

b f h f ( i * * M A M > o ) = 3 ( M = o )  

(iii) There are no dead transitions in PN with initial 
marking i. Formally: 

( V t E  T ) ( 3 M , M ?  i+*M+‘M’ 

A WF-Net that is extended with a transition that 
connects place o with place i is sound if and only if the 
extended Net is live and bounded [ l ] .  Therefore the 
soundness criterion requires that a WF-Net can never 
deadlock. To  avoid deadlocks, decisions in the Net must 
be taken in advance, before a deadlock can occur. This 
would introduce explicit synchronization in the Net. We 
argued in section 3 that we want to leave this 
synchronization out of our specification and transfer the 
responsibility of avoiding or resolving deadlocks to a 
scheduler. Therefore we can relax the soundness criterion 
to a new criterion called relaxed soundness. 

The intuition of relaxed soundness is that for each 
transition there exists a firing sequence that brings the 
initial state i to state o. No tokens should be left in the 
Petri Net. We call this a soundfiring sequence. Note that 
the definition of soundness requires all firing sequences to 

145 



F? rrunsrrronfired mfirrng rryuence I 

‘?r] tronsrnonfirrd rnfinng wyuencr 2 

’> tmnsrrronfired in borh sequrnir\ 

f 
- d11L e dead !runiirwn 

Figure 9. Integrated WF-Net with marked firing sequences 1 and 2 

be a sound firing sequence. Therefore soundness implies 
relaxed soundness. 

Definition (Relaxed sound). A process specified by a 
WF-Net PN = (P,T,F) is relaxed sound if and only if 
every transition t is in a firing sequence that starts in state 
i and ends in state 0. Formally, with M, M ’  markings of 
P N :  

( V t €  T ) ( 3 M , M ?  (i+*M+‘M’-+*o) 

6.4. Application of relaxed soundness 

In this paragraph, we apply the relaxed soundness 
criterion to check consistency of workflow processes and 
atomicity specifications. With this build-time analysis of 
the workflow and atomicity specification, we can 
determine whether the workflow can execute according to 
the atomicity requirements. We apply the criterion to the 
example of Figure 9. 

To check for relaxed soundness we have to check 
whether every transition is in a firing sequence that starts 
in state I and ends in state 0. As there are many 
transitions, this shouId be automated by a tool, e.g. by 
Woflan [ 111 or LoLa [8]. As an illustration, we analyze 
the Petri Net by hand in the next section. The approach we 
take is to find sound firing sequences in Figure 9 that start 
in state I and end in state 0. For such firing sequences we 

mark the transitions. For each transition that is not 
marked, we then try to find another firing sequence from 
state I to state 0. If there appears a transition that cannot 
be marked, the Petri Net is not relaxed sound. 

As an example, we mark a sound firing sequence that 
includes task ok (ordered item is delivered) and a sound 
firing sequence that includes task not-ok (ordered item is 
not delivered) in Figure 9. 

We see that four transitions not-at-alll, not-at-all2, 
chk, ga and X are not included in these firing sequences. 
So for each of these transitions we have to find another 
sound firing sequence in order to prove relaxed soundness. 
However, in  the Net there is no firing sequence possible 
that includes any of these transitions. So, the relaxed 
soundness criterion is violated for these transitions and 
thus the Net in Figure 9 is not relaxed sound. This 
indicates inconsistency of the workflow process 
specification and the atomicity specification. To resolve 
the inconsistencies we can adopt two strategies: change 
the workflow specification or change the atomicity 
spheres. Note that this is a design problem and therefore 
the correction is done manually. In this example we only 
change the process specification. 

For the inconsistency with the not-at-all1 and 
not-at-all2, we add a transition no-exec to the workflow 
specification that connects the I and 0 place directly. This 
way we allow the Workflow Net to execute without doing 
any work, making the dead transitions of the atomicity 
spheres live again. To resolve the exception sphere 
inconsistency, we add skip transitions to the process 

146 



specification that allows non-execution of the get-address 
and check-credit transition. Note that even if one of the 
tasks is skipped, always a token will be present in S4. 
Therefore we consume this token if the exception task X is 
executed. Now the Petri Net is relaxed sound. 

Note that relaxed soundness implies that every 
transition in the Petri Net should be live, including all 
transitions in the atomicity spheres. This forces the 
designer to include in the workflow specification all 
possible executions of the atomicity spheres. For example, 
in case of the exception sphere, the workflow specification 
must support all four exception cases. This is ensured by 
adding the skip1 and skip2 tasks. Also, the task no-exec is 
added to ensure the possible firing of transition 
not-at-all1 and not-at-all2. In case it is not critical that 
all alternatives of the atomicity spheres are supported by 
the workflow specification, the relaxed soundness 
criterion could only be applied to a subset of the tasks. 

7. Conclusions and future work 

This paper introduces a new approach for specifying 
atomicity requirements for workflow applications. We 
propose to separate the specification of the workflow 
process and the atomicity requirements. This allows the 
workflow and transaction designers to work 
independently. Atomicity defines execution dependencies 
between a group of tasks, independent of ordering. In 
traditional workflow specifications, these execution 
dependencies are specified implicitly within the ordering. 
If recovery is absent, this results in pessimistic execution 
schedules. Soundness is a correctness criterion that allows 
pessimistic process specifications only. However, we 
argue that if the workflow is supported by advanced 
transaction management that supports recovery, more 
optimistic schedules should be allowed, because 
transaction management could recover from potential 
deadlocks. Therefore we relax the soundness criterion to 
relaxed soundness. Relaxed soundness allows the designer 
to specify a wider class of workflows and thus a more 
flexible way of execution. 

We have shown how relaxed soundness can be applied 
to check the consistency of the workflow process and 
atomicity specification. In addition, we have shown that 
our example is relaxed sound. Because the example is 
relaxed sound, it can be executed, even though the 
specification is not sound. 

In future work we will consider other transaction 
properties than atomicity, e.g. isolation and recovery. In 
addition, we will elaborate on transformations between 
relaxed sound Nets and sound Nets. 

Acknowledgements 

We thank Wil van der Aalst for inspiring discussions 
and helpful hints for improving this paper. 

References 

[I] Aalst, W.M.P. van der; The Application of Petri Nets to 
Workflow Management, The Journal of Circuits, Systems and 
Computers 8(1), 1998, pp. 21-66 

[2] Alonso, G.; Agrawal, D.; El Abbadi, A.; Kamath, M.; 
Gunthor, R.; Mohan, C. Advanced transaction models in 
workflow contexts, ICDE96, New Orleans, 1996 

[3] Alonso, G. Processes + Transactions = Distributed 
Applications, Proceedings of the 7th international Workshop on 
High Performance Transaction Systems, Asilomar, 1997 

[4] Adam, N.R.; Atluri, V.; Huang, W., Modeling and Analysis 
of Workflows Using Petri Nets, Journal of Intelligent 
Information Systems I O  (2), 1998, 131-158 

[5] Attie, P.; Singh, M.; Sheth, A.; Rusinkiewicz, M.; Specifying 
and Enforcing Intertask Dependencies, Proceedings of the 
International Conference on Very Large Databases, Dublin, 

[6] Grefen, G.; Pernici, B.; Sanchez, G. (eds.); Database support 
for Workflow Management - The WIDE Project, Kluwer 
Academic Publishers, Boston, 1999 

[7] Leymann, F.; Roller, D. Production Workflow: Concepts and 
Techniques, Prentice Hall, 2000 

[8] Lola, a Low Level Petri Net Analyzer, Humboldt University 
B er1 i n, 11 tt p : //w w w. i n forma t i k . 11 U- her1 i n . de/- k 5L.h ni i d t/l 01 a. h t in I 

[9] Reuter, A.; Schneider, K.; Schwenkreis, F. ConTracts 
Revisited. In: Jojodia, S.; Kerschberg, L. (eds.); Advanced 
Transaction Models and Architectures, Kluwer, 1997, pp. 127- 
151 

[IO] Sheth, A.; Rusinkiewicz, M.; On transactional Workflows, 
In: Hsu, M. (ed.), Special Issue on Workflow and Extended 
Transaction Systems 16, IEEE CS, Washington, 1993 

[I l l  Verbeek, H.M .W.; Aalst, W.M.P. van der; Woflan 2.0: A 
Petri-net-based Workflow Diagnosis Tool, In: Nielsen, M.; 
Simpson, D. (eds.); Application and Theory of Petri Nets 2000, 
LNCS 1825, Springer-Verlag, Berlin, 2000, pp. 475-484 

[I21 Vonk, J.; Derks, W.L.A.; Grefen, P.; Koetsier, M. Cross- 
Organisational Transaction Support for Virtual Enterprises. 
Proceedings of the fifth IFCIS International Conference on 
Cooperative Information Systems, Eilat, 2000 

1993, pp. 134- 145 

147 


