
Advanced Transaction Models in Workflow Contexts *

G. Alonso D. Agrawal, -4. El Abbadi M. Kamath
Institute for Information Systems Computer Science Department Computer Science Department

ETH-Zentrum University of California University of Massachusetts
CH-8092, Zurich Santa Barbara, CA 9310 Amherst, MA 01003

Switzerland USA USA

R. Giinthor
IBM European Networking Center
Vangerowstr. 18, 69115 Heidelberg

Germany

Abstract
I n recent years, numerous transaction models have

been proposed t o address the problems posed by ad-
vanced database applications, but only a f e w of these
models are being used in commercial products. I n this
paper, we make the case that such models m a y be too
centered around databases to be useful in real environ-
ments . Advanced applications raise a variety of issues
that are no t addressed at all by transaction models.
These same issues, however, are the basis f o r existing
workflow systems, which are having considerable suc-
cess as commercial products i n spite of no t having a
solid theoretical foundation. W e explore some of these
issues and show that, in m a n y aspects, workflow mod-
els are a superset of transaction models and have the
added advantage of incorporating a variety of ideas that
t o this date have remained outside the scope of tradi-
tional transaction processing.

1 Introduction
It is a widely accepted fact that conventional

databases are unsuitable for many applications. To
address this problem, numerous advanced transaction
models have been proposed [Elm921 but few have been
implemented or used in commercial products. We be-
lieve, and this is the point we want to make in this
paper, that the main reason for such a limited success
is the inadequacy of advanced transaction models to
operate in real working environments. Advanced trans-
action models are too database-centric, which provides
a nice theoretical framework but limits their possibili-

*The research reported in this paper was completed while
several of the authors were at IBM Almaden Research Center:
D. Agrawal and A. El Abbadi during a sabbatical visit, and M.
Kamath, R. Giinthor and G. Alonso as visiting scientists.

C. Mohan
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120
USA

ties and scope. Furthermore, since they tend to remain
theoretical models, they generally ignore a large num-
ber of important design issues [Moh94].

Paradoxically, there is a growing interest in tools
to support applications very similar in nature to those
envisioned by the designers of advanced transaction
models. As a result of this interest there has been con-
siderable effort to deliver workflow products intended
for the management of business processes, to the point
where nowadays there are more than 70 vendors who
claim to have such systems [Fky94]. The goals of Work-
f low Management Sys tems , WFMSs, bear a strong re-
semblance to those of advanced transaction models,
although addressing a much richer set of requirements.
In this paper, we discuss the characteristics of work-
flow models and the notion of business processes by
comparing them with existing transaction models. We
show how workflow models have, in general, richer se-
mantics and are more apt to be used in commercial
products. In many aspects workflow models are a su-
perset of advanced transaction models. We show this
by implementing several advanced transaction models
using a commercial workflow system. The main goal of
the paper is to provide a better perspective of the re-
lationship between advanced transaction models and
workflow models. By analyzing and comparing the
characteristics of both, we have developed a better un-
derstanding of the inherent limitations of the former
and identified many points for improving on the latter.

The paper is organized as follows: Section 2 presents
related work and motivation. Section 3 briefly de-
scribes the characteristics of workflow management
systems. Section 4 discusses the implementation of a
variety of transaction models in a workflow system.
Section 5 concludes the paper.

1063-638W96 $5.00 0 1996 IEEE
574

2 Motivation and Related Work
In the last few years, several transactions models

have been proposed to address non-traditional appli-
cations: [ELLRSO, DHL91, Elm92, WR92, BDG+94]
to name a few. In most cases, the models are devel-
oped from a database point of view, where preserving
the consistency of the shared database by using trans-
actions is the main concern. These models provide
well-defined failure semantics in the sense of concur-
rency control and sophisticated recovery features. Al-
though some of the ACID properties of transactions
may be relaxed, the basic idea is always to use tra-
ditional transactions as building blocks. Taking ad-
vantage of the formalism inherent in database transac-
tions, there have been several studies on the theoretical
aspects of combining transactions into larger execution
units [Kle91, CR91, Gu931. Currently, there are sev-
eral attempts to provide an execution platform flexible
enough to support a variety of advanced transaction
models [BDG+94, BP951. It is not clear, however,
which are the relevant models and how they can be
combined. Moreover, only existing models are imple-
mented, without extensions to address more realistic
requirements.

Recently, this trend has changed its focus to-
wards transactional workflows [SR93] in an attempt
to address more realistic environments. Much of the
work done along these lines is still transaction based
[TAC+93, MS93, Hsu93, KS94, GHS951, merging ad-
vanced transaction technology and workflow manage-
ment systems to support business processes with well-
defined failure semantics and recovery features.

Parallel to this work, a wide range of workflow
management systems, WFMSs, have become commer-
cial products: OPEN/Work j low of Wang Laboratories,
ProcessIT of AT&T GIS, Fujitsu’s Regatta, Staffware’s
Staffware, Ac t ion Workf low of Action Technology, Xe-
rox’s Inconcer t , IBM’s FlowMark, among many others
[Fry94, GHS951. None of these commercial systems in-
corporates the transactional notions. In their concep-
tion and design most of these systems are orthogonal to
advanced transaction models and transactional work-
flows. Early systems concentrated on automation of
office procedures and document management. Mod-
ern WFMSs provide support for complex long-running
business processes executing in distributed, heteroge-
neous environments. As has been pointed out [GHS95],
WFMSs lack the ability to ensure the correctness and
reliability of the workflow execution in the presence of
concurrency and failures. However, these are database
concepts that cannot be interpreted in the same way
in a workflow domain. While it is true that existing
systems need to be enhanced to cope with more com-

plex scenarios, they do provide a great deal of support
for organizational aspects, user interface, monitoring,
accounting, simulation, distribution, and heterogene-
ity. The success of existing systems is based on these
features. and not on transactional aspects, which they
obviously lack today.

This does not imply that transactional workflow,
meaning workflow systems based on traditional trans-
action concepts and database oriented, should not play
any role in future systems. However, the ideas and so-
lutions derived from a transactional approach are only
a fraction of the overall picture, much in the same way
transactlion management is only one of many compo-
nents within current database systems. VVorkflow sys-
tems are orders of magnitude more heterogeneous and
distributed than databases, databases becoming just
one more component of the workflow system, and the
prob1em.j they pose in terms of performance are very
complex. Successful systems will be required to be flex-
ible and iible to cope with environments where most ac-
tivities are not of transactional nature. TO tie a work-
flow system to a particular transaction model, or to a
combinaiion of these models, will result in major re-
strictions that will limit its applicability and usefulness
as a worlcflc~w tool.

3 Workflow Management Systems
Workflow is, in general, an ill-defined concept. In-

stead of trying to describe it precisely, we follow the
Workj low Management Coalition, W f M C , in providing
a high level description of the model and functional-
ity that a WFMS must support to be considered as
such [Hol94]. When discussing particular implementa-
tion details, we use FlowMark [LR94], IBM’s workflow
product, which will also be briefly discussed. Flow-
Mark follow,s very closely the WfMC’s reference model.
The featurecr used in this paper to implement different
transaction models on top of FlowMark are found in
many other workflow systems.

3.1 Biusiness Processes
At the core of most workflow systems is the notion

of a business process. A business process, in general,
is a set of activities with a common goal. The busi-
ness process is built by linking together diverse activ-
ities, specifying the flow of data and control among
them. Business processes tend to be of loing duration,
involve many users and tools over heterogeneous and
distributed environments. Individual activities range
from computer programs and applications to human
activities such as meetings, phone calls or decision
making. The workflow system has no way of con-
trolling an application between successive invocations.
This is in sharp contrast with the assumptions made

575

in most transaction based systems.
3.2 Workflow Model

A workflow model is an acyclic directed graph in
which nodes represent steps of execution and edges
represent the flow of control and data among the differ-
ent steps. The components described below follow the
meta-model proposed by the Workflow Management
Coalition [Ho194]. This model is only an abstraction
and does not provide implementation details. These
are described based on FlowMark’s model:

Process, a description of the sequence of steps to be
completed to accomplish some goal. A process consists
of activities and relevant data. Processes can be nested.

Activity, or each step within a process. Activi-
ties have a name, a type, pre- and post-conditions and
scheduling constraints. Each activity has an input data
container and an output data container.

Flow of Control: specified by control connectors
between activities, is the order in which activities are
executed. This corresponds to the transit ion condi-
t ions of the reference model.

Input Container: a set of typed variables and
structures which are used as input to the invoked ap-
plication.

Output Container: a set of typed variables and
structures in which the output of the invoked applica-
tion is stored.

Flow of Data: specified through data connectors
between activities, is a series of mappings between out-
put data containers and input data containers to allow
activities to exchange information.

Conditions, which specify the circumstances under
which certain events will happen. There are three basic
types of conditions. Transition conditions are associ-
ated with control connectors and specify whether the
connector evaluates to true or false. A control connec-
tor that evaluates to false will not trigger the execution
of the activity at its end. S tar t conditions specify when
an activity will be started: either when all incoming
control connectors evaluate to true - and condition -
or when one of them evaluates to true - or condition.
Exi t conditions specify when an activity is considered
to have terminated. After the execution of an activ-
ity the exit condition is checked. If true the activity
has terminated, if false, the activity is rescheduled for
execution,

An activity can be in one of the following states:
readg, before the execution of an activity starts, run-
ning, during the execution of an activity, finished when
the execution has completed, and terminated when ex-
ecution has completed and the exit condition is sat-
isfied. Activities can be started from the ready state
either manually or automatically. Within a process,

those activities without incoming control connectors
are considered to be the starting activities of the pro-
cess, and are set to the ready state when the process is
started. Once an activity finishes, its exit condition is
evaluated. If it is false, then the activity is reset to the
ready state. Otherwise the activity is set to terminated
and all the outgoing control connectors from that ac-
tivity are evaluated. When the start condition for an
activity is met, the activity is set to ready. If an activ-
ity will never be executed because its start condition
evaluates to false, the activity is marked as terminated
and all the outgoing control connectors from that ac-
tivity are evaluated to false. This procedure is called
dead path elimination. The process is considered fin-
ished when all its activities are in the terminated state.

In general, conditions increase the power and ex-
pressibility of the model. They provide the means for
discarding some branches of the control flow and for
implementing structures similar to zf-then-else. Such
features are not found in any transaction model, ex-
cept in the ConTract model [WR92] which is more of
a programming environment for reliable execution of
sets of activities. Exit conditions can be used to im-
plement loops, by embedding subprocesses within an-
other process. For the purposes of this paper, we will
refer to subprocesses as blocks. These embedded blocks
or processes appear, at the higher level process, as an
activity.

3.3 Workflow Features Not Found in
Transaction Models

A WFMS considers four different sets of entities:
users, activitzes, programs, and data. It controls and
automates the interactions between elements of each
set. It is the ability to integrate these four groups
that sets WFMSs apart from transaction models. As
outlined above, a WFMS automates the flow of con-
trol and data between activities, and maps activities
to users and programs. Existing advanced transaction
models limit themselves to only part of the problem.

Of the all the features provided by WFMSs, the
most relevant is their ability to describe an organiza-
tion and adapt the definition and execution of workflow
processes to the particular characteristics of that orga-
nization. In a WFMS, the organization is described
in terms of the roles, hierarchical levels and persons
associated with it. A person can have several roles
- manager, programmer, assistant - and a role can
be assigned to several persons. When an activity are
defined, the workflow designer must specify who is re-
sponsible for the execution of the activity. This can
be specified using a role, in which case all the persons
that fit in that role are eligible to execute the activity.
This provides a great deal of flexibility when execut-

576

ing a process. It is also possible to specify who must
be notified if the activity is not executed within a cer-
tain period of time. Thus, activities do not necessar-
ily happen automatically, as is assumed in advanced
transaction models, but with direct user intervention.
Even activities corresponding to programs that do not
require human input for execution are associated with
users who can monitor their progress and are responsi-
ble for their execution. The user can stop an activity,
restart it, force it to finish, and so forth, independently
of the rest of the process. This mapping between users
and activities is possible in WFMS because of the gran-
ularity of the activities, which is that of applications,
and not that of traditional transactions.

Moreover, activities in a WFMS can be of any type,
not just computer programs, as long as there is a way
to report their progress to the WFMS. WFMSs are not
designed for transactions but for generic activities. In
particular, in FlowMark, once a program is registered
it can be invoked from any activity. An API inter-
face is provided so the programs can access the data
containers. When an activity is set to ready, the set
of users eligible to execute that activity is determined
and a notification is sent to each one of them.

Regular users interact with the system using work-
lasts. A worklist contains the ready activities that the
user is eligible to execute. Note that the same activity
may appear in several worklists simultaneously. How-
ever, as soon as a user selects that activity for execu-
tion, it disappears from all other worklists. This can
be effectively used to perform load balancing in the ex-
ecution of a process. None of these ideas can be found
in advanced transaction models.

Finally, a major difference between WFMSs and
transaction models is in the area of correctness and
reliability. Current WFMSs do not offer significant
support for recovery and failure handling [GHS95]. In
most cases, user intervention is required, either to solve
consistency problems or to specify which activities are
needed to recover from an exception. Transaction mod-
els, on the other hand, are in many cases motivated by
these issues and many solutions have been proposed.
However, it must be noted that since the majority of
the proposed models have not been implemented, their
feasibility is in many cases unclear. It must also be
noted that in most WFMSs the execution of a pro-
cess is persistent in the sense that forward recovery is
always guaranteed, a feature not found in many ad-
vanced transaction models. In case of failures, the
process execution will stop. Once the failures have
been repaired, the process execution is resumed from
the point where the failure occurred. There are some
minor caveats to this behavior, especially considering

most WFMSs treat the applications that actually run
the activities as completely autonomous entities and
the activities are not necessarily failure atomic. When
a failure occurs it is possible that the activity was half-
way executed, or even totally executed, biut the WFMS
had not been notified. In these cases the activity will
have to be manually restarted or forcibly terminated.
It is up to i,he user to do the appropriate checking and
book-keeping to handle problems. Again, this is re-
lated to the granularity at which WFMSs operate.

4 1m.plementing Transaction Models
using Workflow Tools

In this section we show how several transaction
models (can be implemented using a WFMS. An im-
portant point to note is that workflow models do not
deal witlh the actual application semantics, i.e., the se-
mantics of the activities is orthogonal to the workflow
process. As a result, workflow models cannot be di-
rectly used to implement transaction models based on
semantics or internal operations of the transactions.
However, the semantics of such models are difficult to
translate to workflow applications where most activi-
ties are not transactional in nature.

The trarislations described below are too complex
to be performed by the user every time a process is
built. To hide this complexity, we have designed a
middleware module, Exotica/FMTM, which acts as a
pre-processor that converts high level specifications of
selected advanced transaction models into workflow
processej. This conversion is automated and does
not require manual intervention, which indicates that
WFMSs can be used as “programming languages’’ to
construct the particular execution model demanded by
an application. Such an approach has the added ad-
vantage of being more versatile and provide features
that do not exist in many transaction models such as
forward recovery, optional execution paths, and a clear
separation between the flow of data and control from
the transac1,ions themselves.

In what €allows we wile assume that the subtrans-
actions, or the programs in which they are embedded,
return a code indicating whether the transaction com-
mitted or aborted. Furthermore, we will assume the
return code is 0 if the transaction aborted and 1 if it
committed.
4.1 Linear Sagas

Linear Sagas were originally proposedl by Garcia-
Molina and Salem as a way to solve the problems re-
lated to long lived transactions [GMS87]. The model
was later extended to parallel sagas and generalized
sagas [GlvlGK+Sla, GMGK+Slb]. For reasons of space
the discussion will be limited to linear sagas, but the

577

same ideas apply to the more general case. The ba-
sic idea of the saga model is to allow a transaction
to release resources before committing. A long lived
transaction, or saga, is seen as a sequence of sub-
transactions that can be interleaved in any way with
other transactions. Each subtransaction is an ACID
transaction that preserves database consistency. Par-
tial executions of the saga are undesirable, if the saga
aborts then subtransactions that have committed must
be compensated. Thus, each subtransaction has a com-
pensating transaction associated with it, which undoes
any changes introduced by the subtransaction but does
not necessarily return the database to the state it was
before the subtransaction was executed.

More formally, let Tl,T2, ..., Tn be the subtrans-
actions of a saga T . Let CTl,CT2 ,..., CT,, be the
corresponding compensating transactions. The sys-
tem provides the following guarantee: either the
sequence T I , T2, ..., T, is executed, or the sequence
Tl,T2, ..., Tj, CTj, ... CT2, CTI, for some 0 5 j 5 n, will
be executed. In the original proposal only one level of
nesting was allowed, i.e., only the top level saga and
the subtransactions were considered.

The translation of a linear saga into a workflow pro-
cess is straightforward, as is shown in Figure 1. Note
that there are two phases of execution in a linear saga.
In the first, the subtransactions are being executed. If
they terminate successfully, the saga commits. How-
ever, if the saga aborts for any reason, then the second
phase of execution takes place, compensating all the
committed subtransactions. We use this idea in the
translation. There are many other ways to perform
this translation but we prefer the one presented here
for its simplicity.

All the subtransactions of the saga are grouped into
a block. The flow of control within the block reflects
that of the saga, with each subtransaction represented
as an activity. The control connectors have a condition
associated with them, which is that the previous activ-
ity must have terminated successfully, i.e., the corre-
sponding transaction has committed. When this is the
case, the control connector evaluates to true and exe-
cution proceeds forward. If a transaction aborts, the
corresponding control connector will evaluate to false,
and by dead path elimination, no other activity in the
block will be executed, and the block terminates. The
result of the execution of a transaction, whether it com-
mitted or aborted, can be captured through the return
code of the program. Each activity must also register
its status, i.e., whether it has executed or not. This is
done by mapping the return code of the output data
container of each activity to the appropriate variable
in the output data container of the block. When the

block terminates, its output data container will contain
a list of the istatus of each activity.

The second phase is implemented in another block
containing the compensating activities in reverse order.
There is also a null activity (NOP) whose purpose is
to trigger the execution of the compensation at the
correct point. This activity is a no-operation, how-
ever it has control connectors to all the compensating
activities. The condition on those control connectors
is whether the corresponding forward activity was exe-
cuted or not. This information is obtained by mapping
the output data container of the forward block to the
input data container of the compensating block. Thus,
when the compensating block is executed - right after
the forward block terminates - the starting null activ-
ity is executed, and the control connectors are evalu-
ated. All those that correspond to activities that have
executed will be activated, and compensation will pro-
ceed in the reverse order of execution starting from the
last activity executed. Note that strictly speaking, the
last activity should not be compensated. In the origi-
nal model, when the last activity commits, the entire
saga commits. However, it is possible that users may
require to compensate an already completed saga. In
these cases (all activities must be compensated.
4.2 Flexible Transactions

Flexible transactions work in the context of het-
erogeneous multidatabase environments [ELLRSO]. In
such enviroinments, each local database acts indepen-
dently from the others. Since a local database can
unilaterally abort a transaction, it is not possible to
enforce the commit semantics of global transactions
[ZNBB94]. Flexible transaction were designed to ad-
dress this problem.

A flexible transaction provides alternative execution
paths. If a subtransaction is aborted, then a different
subtransaction can be submitted in the hope that it
will be successful. A flexible transaction commits if
either the main subtransactions or their alternatives
commit. Following [ZNBB94], a flexible transaction is
a partial order of subtransactions. A subtransaction
can be compensatable, retriable, or pivot [MRSK92]. A
compensatable subtransaction is one whose effects can
be undone after it commits by executing a compensa-
tion transaction. A retriable transaction is a subtrans-
action that will eventually commit if retried a sufficient
number of times. A pivot subtransaction is one that
is neither retriable nor compensatable. Note that it
is possible for a subtransaction to be both compen-
satable and retriable. A flexible transaction is well-
formed when the possible orders of execution do not
violate the data dependencies between subtransactions
and the flexible transaction is “atomic” (its effects can

Linear Saga

FlowMark Process

1 Compensation Block

STATE2 <> 0
STATE-1 C> 0

STATE-x = 0 --> Activity X terminated succesfully
RCJ - 0 --> Activity X terminated succesfully

Figure 1: Translation of a linear Saga into a FlowMark process

be undone or by retrying subtransactions it will even-
tually commit). As has been shown [MRSK92], a well-
formed flexible transaction contains at most one pivot
subtransaction. Furthermore, all subtransactions that
are non-retriable must be executed before the pivot,
and all non-compensatable subtransactions must be
executed after the pivot. In [MRSK92] it is further
assumed that there are no data dependencies among
subtransactions. In [ZNBB94], it was noted that such
restrictions apply only to the subtransactions that ac-
tually commit. As long as there is an alternative in
case a transaction aborts, there can be several pivots,
and retriable and compensatable transactions can be
interleaved. Correctness is guaranteeed by enforcing
certain rules in the order of execution of the subtrans-
actions and the overall structure of the flexible trans-
action. These rules, however, are beyond the scope of
this paper, and in what follows we will assume well-
formed flexible transactions.

Flexible transactions can be easily implemented us-
ing a WFMS. The only difficulty is to “mask” the roll
back involved in a compensation as some form of for-
ward progress. However, the characteristics of flexible
transactions can be used to simplify the design. For
instance, a pivot subtransaction must always be asso-
ciated with a “way out7,. This is because if it aborts,
there must be a way to either commit the transaction
or compensate everything that has been executed so
far. Thus, a pivot subtransaction becomes a branching
point,, depending on whether it committed or aborted.
Note also that the path between any two pivot sub-

transaction3 must contain only compensatable trans-
actions. When a pivot subtransaction aborts all the
subtransactions in the path must be compensated for
until a point is reached in which there is an optional
path. This compensation may be quite complex since
many subtransactions may be involved aind it is nec-
essary to ackcourk for all possible executions. For sim-
plicity, all compensatable subtransactions in the path
between two pivot subtransactions that aire not bifur-
cation points of two optional paths will be grouped
together into a single block. The status of the sub-
transactions, i.e., whether they committed or aborted,
is passed as input data to the block. For simplicity,
we will assume that there is a specification of a flexible
transaction in some notation - we will use graphs to
better illusti*ate the process. The translation process
is as follows:

1. Each s ubtransaction and compensating subtrans-
action of the flexible transaction corresponds to an ac-
tivity. This is a one to one mapping, thus we will refer
to pivot, coinpensatable, compensating and retriable
activities.

2. The ordering among activities follows the order-
ing of the corresponding transactions. This is enforced
by introducing control connectors between the activi-
ties.

3. Pivot activities have, at least, two outgoing con-
trol connectors. The transition condition for each of
these coninectors is that the pivot transaction aborted
and that the pivot transaction committed, respectively.

4. Retriable activities have an exit condition that

579

evaluates to false when the subtransaction aborts. In
this way the activity is repeated until the subtransac-
tion commits.

5 . Compensatable activities that are not bifurca-
tion points for two optional paths, and that lay in the
path between two pivot activities - or between the be-
ginning of the transaction and a pivot activity - are
grouped together in a block. They will have control
connectors capturing the execution order among them,
if any. When an activity terminates, the status of the
corresponding subtransaction, committed or aborted,
is recorded in the output data container of the block.
This data container will be mapped into the input data
container of the corresponding compensating block.

6. A block of compensatable activities has a cor-
responding block of compensating activities. The in-
put to this block is the result of the execution of the
activities. We introduce a no-operation activity for
each block of compensating activities, connecting it to
the compensating activities with a control connector in
which the transition condition is that the activity has
committed. The connectors between the compensat-
ing activities are the same as those for the correspond-
ing compensatable activities but reversed. Information
about which activities were executed and which were
aborted can be found in the input data container of
the block. This is similar to the case of Sagas.

Changing from an execution path to another
is done by compensating all the activities committed
along the old path and starting another. Note that
there is always a point, not necessarily unique, where
it is possible to state that a path cannot be followed any
longer. At these points the flow will be redirected to
the corresponding compensating activities, if any, and
the execution of the new path will be started. This
can be represented as a linear succession of events by
taking advantage of the dead path elimination feature
of FlowMark.

For reasons of space, no example can be provided. A
more extensive discussion of this translation procedure
can be found in the extended version of this paper (see
the acknowledgments section).

5 Discussion

7.

WFMSs provide a much broader functionality than
that needed to implement ACID transactions, since
their goal is to coordinate activities, users, programs
and data, instead of just activities and data. This
paper is a critique of the advanced transaction mod-
els proposed in the literature based on our belief that
workflow models are a more appropriate framework to
address advanced applications. In fact, since WFMSs
are more flexible and in some aspects more general,
they can be viewed as providing a ubiquitous program-

ming environment for implementing a variety of such
advanced models. In this paper we show this to be the
case for both Sagas and Flexible transactions.

There are still many areas in which WFMSs need to
be improved. In particular, it has been noted that they
lack the functionality to cope with failures [GHS95].
This point deserves special attention. In conventional
environments, coping with failures usually means to
provide failure atomicity, i.e., a transaction is executed
in its entirety or not at all. While more sophisticated
failure handling capabilities have been widely discussed
in the advanced transaction models literature, very few
of these techniques are currently being used in commer-
cial, industrial strength systems. WFMSs provide for-
ward recovery, but not atomicity, which is certainly not
required in many cases. Moreover, existing WFMSs do
not provide satisfactory solutions to the problem of ex-
ception handling. However, this is also true of transac-
tion processing systems. It is important to make a dis-
tinction between these two characteristics. Recovery,
in the database sense, is a well understood problem.
Certainly it is an area in which existing WFMSs need
improvement, but this is only a matter of time and
the products reaching a more mature state. Exception
handling is an entirely different matter. A workflow
designer cannot predict every single possible case that
may occur when a process is being executed. This is
one of the problems that advanced transaction models
try to address. For instance, through alternative ex-
ecution paths, like in flexible transaction, or through
compensation, like in Sagas. As we have shown in this
paper, existing advanced transaction models can be
implemented using a WFMS. Such transaction models
provide a partial and limited solution to the problem
of exception handling, and all of them can be used in
the context of a WFMS. Still, they do not solve the
problem. In this paper, we have tried to show that
transactional approaches to workflow management are
not adequate since they do not address many of the
issues that have made workflow systems so popular.
Transactional properties will be used in some work-
flow activities and processes, but not in the majority
of them. Schemas such as Sagas or Flexible transac-
tions can be easily implemented in a WFMS, which
provides the first realistic opportunity for these mod-
els to be used in a real environment. However, the
solutions they provide to exception handling are very
limited and certainly inappropriate for workflow envi-
ronments where the main problem is not so much re-
covery but semantic exception handling. In this area,
as in the other issues pointed out in the paper, work-
flow systems offer a much more comprehensive solution
than advanced transaction models.

580

Acknowledgments Workflow Management Coalition reachable at:
This work is partially supported by funds from IBM Net- http://www.aiai.ed.ac.uk/WfMC/.

M. Hsu. Special Issue on Workflow and Extended working Solutions Division and IBM Software Solutions Division.

Transaction Systems. Bulletin of the Technical More information on the Exotica research project, as well as an

Committee on Data Engineerhi , IEEE, 16(2), extended version of this paper, can be found in the following

June 1993. URL: http://www.almaden.ibm.com/cs/exotica/

References IKle911 J. Klein. Advanced Rule Driven Transaction

[Hsu93]

[BDG+94]

[BP951

[CRSl]

[DHLSl]

[ELLRSO]

[Elm921

[Fry941

[GHS95]

A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and
K. Ramamritham. ASSET: A System for Sup-
porting Extended Transactions. In Proc. 1994
SIGMOD International Conference on Manage-
ment of Data, pages 44-54, May 1994.
R. Barga and Calton Pu. A Practical and Mod-
ular Method t o Implement Extended Transac-
tion Models. In Proceedings of the 21st Inter-
national Conference on Very Large Databases
(VLDB’95), Zurich, Switzerland, September,
1995.
Panos K . Chrysanthis and Krithi Ramamritham.
A formalism for extended transaction models.
In Proceedings 17th Conference on Very Large
Databases (VLDB) , pages 103-112, Barcelona,
Spain, September 1991.

U. Dayal, M. Hsu, and R. Ladin. A Transac-
tion Model for Long-running Activities. In Pro-
ceedings of the Sixteenth International Confer-
ence on Very Large Databases, pages 113-122,
August 1991.
A.K. Elmagarmid, Y . Leu, W. Litwin, and
M.E. Rusinkiewicz. A Multidatabase Transac-
tion Model for Interbase. In Proc. of the 16th
V L D B Conference, August 1990.

A.K. Elmagarmid, editor. Transaction Models
for Advanced Database Applications. Morgan-
Kaufmann, 1992.
C. Rye . Move t o Workflow Provokes Business
Process Scrutiny. Software Magazine, pages 77-
89, April 1994.
D. Georgakopoulos, M. Hornick, and A. Sheth.
An Overview of Workflow Management: From
Process Modeling to Workflow Automation In-
frastructure. Distributed and Parallel Databases,
3(2):119-153, April 1995.

[GMGK+9la] H. Garcia-Molina, D. Gawlick, J. Klein,
K. Kleissner, and K. Salem. Coordinating Multi-
transaction Activities. In Proceedzngs IEEE
Spring Compcon, 1991.

[GMGK+9lb] H. Garcia-Molina, D. Gawlick, J. Klein,
K. Kleissner, and K. Salem. Modeling Long-
Running Activities as Nested Sagas. Bulletin
of the Technical Committe on Data Engineering,
IEEE, 14(1):18-22, March 1991.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In
Proc. 1987 SIGMOD International Conference
on Management of Data, pages 249-259, May
1987.

[GUS31 R. Gunth6r. Extended Transaction Processing
based on Dependency Rules. In RIDE-IMS’93,
pages 207-214, Vienna, Austria, April 1993.

[Ho194] D. Hollinsworth. The workflow reference
model. Technical Report TC00-1003, Work-
flow Management Coalition, December 1994.

Management. In 36th IEEE Computer Soci-
ety International Conference CompCon Spring
1991, pages 562-567, San Francisco, California,
March 1991.

[KS94] N. Krishnakumar and A. Sheth. Specifying
Multi-system Workflow Applications in ME-
TEOR. Technical Report TM-24198, Bellcore,
May 1994.

[LR94] F . Leymann and D. Roller. Business Processes
Management with FlowMark. In Proc. 39th
IEEE Computer Society Int ’1 Conference (Com-
pCon), Digest of Papers, pages 230-233, San
Francisco, California, February 28 - March 4
1994. IEEE.

[Moh94] C. Mohan. Advanced Transaction Mod-
els - Survey and Critique, 1994. Tuto-
rial presented at ACM SIGMOD Interna-
tional Conference on Management of Data.
http://www.almaden.ibm.com/cs/exotica/
tranmodels4utorialsigmod94.ps.Z

J.E.B. Moss. Nested Transactions: A n Approach
to Reliable Distributed Computing. PhD thesis,
M.I.T. Laboratory for Computer Science, Cam-
bridge, Massachusetts, MIT Press, 1981.

S. Mehrotra, R. Rastogi, A. Silberschatz, and
H.F. Korth. A Transaction Model for Multi-
database Systems. In Proceedings of the Inter-
national Conference on Distributed Computing
Systems, pages 56-63, June 1992.

[MS93] D.R. McCarthy and S.K. Sarin. Workflow and
Transactions in Inconcert. Bulletin of the Tech-
nical Committee on Data Engineering, 16(2),
June 1993. IEEE Computer Society.

[SR93] A. Sheth and Rusinkiewicz. On Transactional
Workflows. Bulletin of the Technical Committee
o n Data Engineering, IEEE, 16(2), June 1993.

C. Tomlison, P. Attie, P. Cannata, G. Mered-
ith, A. Sheth, M. Singh, and D. Woelk. Work-
flow Support in Carnot. Bulletin of the Techni-
cal Committee on Data Engineering, 16(2), June
1993. IEEE Computer Society.

[WR92] H. Waechter and A. Reuter. The ConTract
Model. In A.K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications,
chapter 7, pages 219-263. Morgan Kaufmann
Publishers, San Mateo, 1992.

[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, and
0. Bukhres. Ensuring Relaxed Atomicity for
Flexible Transactions in Multidatabase Systems.
In Proc. 1994 SIGMOD International Confer-
ence on Management of Data, pages 67-78, 1994.

[Mosbl]

[MRSK92]

[TAC+93]

581

http://www.aiai.ed.ac.uk/WfMC
http://www.almaden.ibm.com/cs/exotica
http://www.almaden.ibm.com/cs/exotica

