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Abstract
Workflow technology has not yet lived up to
its expectations not only because of social
problems but also because of technical
problems, like inflexible and rigid process
specification and execution mechanisms and
insufficient possibilities to handle exceptions.
The aim of this paper is to present a work-
flow model which significantly facilitates the
design and reliable management of complex
business processes supported by an
automatic mechanism to handle exceptions.
The strength of the model is its simplicity
and the application independent transaction
facility (advanced control mechanism for
workflow units) which guarantees reliable
execution of workflow activities.

1 Introduction

Among cooperative information systems, workflow
management is one of the key technologies for
providing efficiency and effectiveness in the office. A
Workflow Management System (WFMS) is a system
that completely defines, manages and executes
workflow processes through the execution of software
whose order of execution is driven by a computer
representation of the workflow process logic [1]. Of
course, the work steps or tasks in a workflow process
are not restricted only to the execution of some
software programs or modules but also to any
thinkable work unit which has to be done (e.g., to
make a phone call).

Although there are more and more success stories
in the area of workflow, it is generally acknowledged
that workflow has not lived up to its expectation.
Besides social problems (e.g., cultural resistance to
change) there are still a lot of technical problems, like
insufficient tools and methodologies to describe
processes and exceptions. Additionally, most of the
current available workflow systems do not very well
support automatic operation execution, status
monitoring, enforcement of consistency and

concurrency control, or recovery from failure.
In this paper we want to address at least some of

the above mentioned shortcomings by introducing the
transaction oriented Workflow Activity Model
WAMO [2] which enables the workflow designer in
modeling not only correct business processes but also
potential (expectable) exceptions which may arise
during process execution. Exceptions will be handled
automatically by the underlying workflow system
which we have partially developed [3]. One of the
main goals of our work is to provide mechanisms for
defining and controlling long-lived activities, just like
transactions in traditional DBMSs control short
computations. Therefore our work is based on the
ideas of Transactional Workflows which are a
combination of workflow systems and database
management systems (DBMSs) with the intention to
incorporate the advantages of both technologies [4, 5].

The remainder of this paper is organized as
follows: in the rest of this section we focus on
exceptions and failures and we present related
research activities in the area of workflow
specification and execution. In section 2 we describe
the workflow activity model WAMO with the help of
a workflow metamodel. In section 3 we define the
semantics of model and the workflow activity
description language WADL which is used to describe
workflow processes according to WAMO.
Additionally, we analyze safety questions of modelled
processes and we present a small example. The
example shows a workflow for the arrangement of a
trip reservation, including dependencies between work
units (e.g., payment may not start before the flight
reservation is done, the car - room reservation may
only be started when the flight reservation terminates
with a positive result) and compensation units for
exception handling (e.g., the client cancels the flight
and therefore the flight reservation must be undone).
Section 4 concludes this paper.

1.1 Exceptions and Failures

Exceptions and failures are basic characteristics of
cooperative information systems.
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type level examples

unexpected
exceptions

process definition
level

the structure of the modelled process cannot handle a
special case (e.g., change of order processing for only one

but very important client)

expected
exceptions

WAMO level one of the process work steps fails (e.g., the client cannot
pay the bill, a flight cannot be booked because it is already

booked-up)

application failures application level program failures, constraint violations

basic failures system level system crash, deadlocks, connection problems, printer
breakdown

TableTable 1:1: Classification of failures and exceptions

Therefore the adequate and efficient treatment of
exceptions and failures in cooperative information
systems, especially in workflow systems is a critical
success factor. We have identified four different types
of failures and exceptions associated with the
corresponding levels where these failures and
exceptions can be handled. The classification is
summarized in table 1 and more precisely explained
in the remaining part of this subsection.

Basic failures: Failures of this kind are handled at
system level by the corresponding components of the
underlying system (e.g., the DBMS, the operating
system, the network software). Typical failures in the
database area are deadlocks, connection problems or
media failures. There are well known techniques (e.g.,
rollback, rollforward, redo, reread of a record) to
manage such failures in a consistent way. If a failure
like a system crash happens, the WFMS is responsible
for storing all necessary context information (process
information) in order to automatically restart the
interrupted processes as soon as the underlying
DBMS is in a consistent state and available again.

Application failures: Such failures mainly comprise
programming failures (e.g., because of unexpected
intput) in components (tasks) of the application
program. The WFMS will interrupt the current
process execution with the faulty task and wait until
the human expert has eliminated the failures. Ideally,
the workflow administrator should have some
possibilities to handle such failures temporarily in
order to enable process progress (to perform the task
manually, to skip the faulty task if this does not lead
to inconsistent states, etc.) until the failure is
corrected by a corresponding person. In any case, the
process must be restarted by the workflow
administrator.

Expected exceptions: We characterize expected
exceptions as something which does not represent the
"normal" case but still may arise frequently and
therefore special mechanisms are available to handle
such special cases. Workflows typically consist of
tasks which depend on the progress (success or
failure) or on the result of other tasks. In WAMO, the
workflow designer has the possibility to specify -
during process definition - how the process should
behave, if a particular task terminates negatively (e.g,
a flight cannot be booked because it is already
booked-up). In general, the aim is to make forward
progress but if a positive execution of the task is
expected definitely but not possible, it may be
necessary to undo some previous computations
(especially to compensate previous tasks) in order to
reach a consistent state again and then to try to
continue process execution by executing an alternative
path in order to reach the end of the overall process.

We want to emphasize that such situations occur
frequently and therefore it is necessary to support the
modeling and automation of such exceptions! As
already mentioned, WAMO offers an adequate and
simple mechanism to handle such exceptions by the
usage of special transaction specific constructs during
process definition (see subsection 2.2). The main
advantage of this concept is that the workflow
designer needs not to specify all possible process
execution alternatives - which would lead to a
complex and incomprehensible process description -
because they are computed and executed reliably by
the system during runtime execution.

Unexpected exceptions: An important class of
exceptions concern the necessity to change the current
process structure of a defined workflow during
runtime because of totally new, unexpected
requirements (e.g., change of order processing for
only one but very important client). Of course, it is



neither recommended nor feasible to model all
possible exceptions but the WFMS should be open to
handle such situations adequate at runtime (e.g., to
skip an activity; to change the order of two activities).
Exceptions of this level are more detailed described in
[6, 7].

1.2 Related Work

Important areas of related work are the research
activities concerning advanced transaction models. A
first step in the evolution of the traditional (flat)
transaction model was the development of (closed)
Nested Transactions [8]. The main advantages of the
nested transaction model are the support of modularity
(decomposition of transactions), failure handling at
the granularity of subtransactions and intra-
transaction parallelism. An interesting extension in
the area of nested transactions are Open Nested
Transactions [9]. They relax the isolation
requirements of nested transactions and make the
results of committed subtransactions visible to other
concurrently executing nested transaction. A new
dimension in the evolution of transaction models was
opened by the concept of compensation, used for
example in the Saga Model [10]. Sagas are long-lived
transactions that can be interleaved in any order with
subtransactions of other sagas. A saga requires that
either all subtransactions complete execution or
compensating transactions are run to undo the effects
of partial execution.

A lot of related work is also done in the area of
distributed transaction management, as for example
the development of the DOM Transaction Model [11]
which allows closed nested and/or open nested
transactions. The Flexible Transactions Model [12]
is based on the nested transaction model and has been
proposed as a transaction model suitable for a multi-
database environment. The objective of multidatabase
systems [13] is to integrate autonomous software
systems (legacy systems) and is therefore very close
to the objective of workflow systems which try to
integrate local services of an institution (e.g., mailers,
text systems) and also services of autonomous
institutions. Based on the work on multidatabase
systems there are also interesting research activities in
defining general purpose work flow languages [14].

Important issues related to transactional workflow
models besides [10, 11, 12], for example, were
addressed in the work of Long-Running Activities
[15], On Transactional Workflows [5] or The
ConTract Model [16]. In [15] a Long-Running Activity
consists recursively of multiple application steps each
of which is either an activity or a (nested) transaction.
Control flow and data flow of an activity may be
specified statically in the activity’s script or

dynamically by ECA-rules. The model includes
compensation, communication between steps and
exception handling. In [5] a precise overview of
transactional workflows, including a description of an
abstract model of a task (by a state machine) is
introduced. The ConTract Model [16] tries to provide
the formal basis for defining and controlling long-
lived, complex computations. ConTracts can be seen
as a mechanism for grouping transactions into a
multi-transaction activity. A ConTract consists of a
set of predefined actions (with ACID properties)
called steps, and the execution plan called a script.

However, the main difference to this related work
is that our model is much easier to work with as it
does not require skilled programmers and it is more
flexible in modeling complex business processes
because of the possibility to use selectively easy but
expressive control structures and intuitive simple
transaction specific features. Additionally, our model
supports the automatic handling of exceptions and it
does not presume the existence of a database system
with an advanced transaction mechanism.

2 The Workflow Activity Model WAMO

WAMO enables the workflow designer to easily
model complex business processes in a simple and
straightforward manner. The basic idea is to
decompose a complex business process into smaller
work units (activities) which themselves consist of
ideally preexisting tasks and to guarantee reliable
flow control with automatic exception handling by
using control structures and special transaction
parameters which are input to the workflow scheduler.

2.1 The Conceptual WAMO Architecture

Up to now there is no general accepted workflow
metamodel but there are a lot of efforts in defining
such a model [17]. We have developed a metamodel
which incorporates traditional workflow modeling
features as well as transaction specific features. The
metamodel presented in Figure 1 is adopted to the
purpose of this paper and does therefore not contain
all necessary components of a workflow metamodel.

A workflow typically consists of multiple
activities, forms and agents. Activities represent any
abstract description of work units in the business
process. A form is a data container or folder which
stores process and application relevant data. Forms
are passed between activities because they are
necessary for the communication. The agent or
processing entity is responsible for the execution of
activities. In WAM0, the agent can more precisely be
modelled with the help of users and roles.



A characteristic feature of our approach is that
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Figure 1: WAMO Metamodel

activities may consist of other activities, representing
subprocesses. Furthermore, it is possible that a certain
activity takes part in several other activities,
especially several times in an other activity. On the
design level the related-association between activities
is many-to-many. This allows that new workflows can
easily be composed using predefined activities.
Subprocesses which occur several times in different
processes have to be designed only once. And for
maintenance, it is only necessary to change such a
subprocess once, and it is changed for all workflows
where it appears.

For the definition of the dependencies between
activities, an occurrence of an activity in a workflow
has to be aware of its process context. Therefore, we
transform the design information contained in the
metamodel into activity trees - one tree for each
workflow. In such activity trees different occurrences
of the same activity are unambiguously distinguished,
such that we can define the dependencies between
activities on basis of these activity occurrences. In the
following we do not distinguish between activities and
activity occurrences, unless it is necessary for clarity.

Additionally, there exist complex activities in the
model to specify control structures (behavior) over
activities. These control structures are illustrated by
the edges of nested activities in the activity tree. The

leave activities of the activity tree are tasks which are
the elementary units of work and not further
decomposable (e.g., database transactions, application
programs, software modules, autonomous services in
a network or human interactions). We want to
emphasize that we treat tasks like black boxes which
are not developed by the workflow designer and
which must have a corresponding interface in order to
communicate with them (e.g., start a task, data
exchange). Additionally, every task in the activity tree
has a corresponding parent activity.

Control structures are structuring mechanisms to
support the decomposition of business processes into
smaller work units and to define the flow of control
between these work units in the activity tree. There
are five simple but powerful control structures:

Sequence: In a sequence activities are executed
strictly sequential. This means that activity Ai

cannot begin execution until activity Ai-1 has
terminated.
Ranked Choice: This construct enables the
modeling of alternative (contingency) activities.
An alternative activity is executed only if the
immediate previous activity fails (commits
unsuccessfully).
Free Choice: The free choice construct is similar
to the ranked choice but the activation order of
the alternative activities in a free choice list is



computed dynamically (at run time).
Parallel: A parallel control structure enables
activities and tasks to run concurrently.
Nesting: The decomposition of activities is
supported by the concept of nesting. An activity
can be further decomposed into smaller, less
complex subactivities.

2.2 Execution of Activities and Tasks

At run time activities are associated with unique
identifiers and the activity tree defines the execution
order of activities and tasks in the activity execution
tree (AET). Activities and tasks have different
execution states during execution, like startable, active
and so forth. Additionally, activities and tasks are able
to react on events, like start, abort or commit. All
activities and tasks in the AET are executed under the
control of an advanced transaction manager. Main
characteristics of the underlying transaction model
are:

Relaxed Atomicity: Each application may have its
own application dependent failure atomicity. A
workflow may survive and make forward
progress although some of its tasks do not
terminate successfully.
Relaxed Serializability: It is not possible to
execute an entire workflow as a single isolated
transaction to achieve (data) consistency. In our
approach consistency is guaranteed by user
defined semantic serializability [18] between
concurrent and interleaving workflows (inter-
workflow dependencies) and correct execution of
each individual workflow (intra-workflow
dependencies). Nevertheless, the traditional
conflict serializability criterion will be necessary
for traditional DB-transactions within tasks.
Relaxed Isolation: Isolation will be relaxed which
means that activities may externalize
uncommitted results and release resources to
achieve a higher degree of concurrency. This
"dangerous" feature is complemented by the
concept of compensation which enables a
semantic undo of already committed activities.

Many of the advanced transaction features are very
easy to use and control by the workflow designer
during process specification (construction of the
AET), as for example:

By control structures: Control structures are
simple but expressive mechanisms to handle
activity coordination requirements (intra-
workflow dependencies).
By transaction specific features: Tasks can be
specified more detailed by the STORNO-TYPE
and FORCE parameter. Additionally, activities

which are not essential for a successful
termination of the corresponding parent activity
can be defined as NON VITAL (NV).

The STORNO-TYPE and FORCE parameters of a
task are necessary for eventual compensation
transactions. With the STORNO-TYPE the workflow
designer may specify how a specific task behaves in
case of compensation. There are four possibilities:

none: The committed task does not need to be
compensated because it is not relevant from an
application point of view.
undoable: The committed task can be undone by
the corresponding compensation task without any
side-effects. Let S be the database state at some
time t, T the original task and TC the
compensation task. Then the database state S’
after executing T and TC in sequence equals the
previous state S if in the between time no other
operation has been executed. (e.g. a client makes
a flight reservation - later he cancels the
reservation without paying a cancellation fee; an
expert attaches a notice to a document which
may be undone later by simply removing it).
compensatable: The committed task can be
semantically undone by the corresponding
compensation task but there are side-effects. Let
again S, S’ be database states, T the original task
and TC the compensation task. Then the database
state S’ after executing T and TC in sequence
may not be equal to the previous state S,
regardless whether in the between time other
operations have been executed or not (e.g., a
client makes a flight reservation - later he cancels
the reservation but now he has to pay a
cancellation fee, money transfer and back transfer
with transfer fees).
critical: The task cannot be undone or
compensated afterwards because there exists no
compensation task to undo the already committed
effects (e.g., drilling a hole, mailing a sensitive
information, etc.).

Some tasks in real world situations are always
expected to terminate successfully (e.g., open an
account, print a document). This natural feature may
also be demanded from tasks in our model by using
the parameter FORCE during specification of a task.
If a forcable task terminates negatively (e.g. because
of a connection problem or something similar) then it
is repeated and re-executed several times (specified by
the workflow designer) until a positive
acknowledgement is achieved. Otherwise, process
execution stops and the workflow administrator has to
intervene manually (e.g. fix the defect and restart the
task; change the state of the task).



Besides forcable activities and tasks there may also
exist activities within a workflow AET which are not
essential for the parent activity to terminate
successfully. For such parent-child relations we have
introduced the transaction specific parameter NON
VITAL. If a non vital activity fails, the workflow can
continue and make forward progress without any
compensation actions (e.g., the travel agency has
booked a flight but it is not possible to rent a car
(which has been specified as a non vital activity) -
now it is not necessary to interrupt or compensate the
whole trip reservation). Normally, all activities within
a workflow AET are essential and therefore vital for
the parent activity. In any case, if a vital activity fails
then the compensation mechanism is activated. For
example: if a vital activity in a sequence fails then the
whole sequence fails which means that all previous
successful committed activities and tasks in the
sequence have to be compensated.

3 Definition of the Workflow Activity
Description Language WADL

For the formalization of a complex business process
we have developed the simple to use and high-level
Workflow Activity Description Language WADL. As
already explained, the basic elements of our model
are activities, tasks, control structures and transaction
specific parameters. We now introduce WADL with
the following syntactic sketch (a complete definition
in Backus-Naur Form can be found in [19]):

DEFINITION ACTIVITY A_ID

SEQUENCE [NV] A {[NV] A} END-SEQUENCE OR

RANKED CHOICE A {A} END-RANKED-CHOICE OR

FREE CHOICE A {A} END-FREE-CHOICE OR

PARALLEL [NV] A {[NV] A} END-PARALLEL OR

TASK

END-ACTIVITY-DEFINITION

DEFINITION TASK T_ID [STORNO-TYPE] [FORCE]

ACID-Transaction | ApplicationProgram | HumanInteraction

INVERSE_TASK T_ID

% INVERSE_TASK is necessary if STORNO-TYPE is

(COMPENSATABLE or UNDOABLE)

END-TASK-DEFINITION

With the usage of WADL, the workflow designer is
able to decompose complex business processes into
smaller and hence less complex work units
(subprocesses). The semantics of the language,
especially the workflow coordination requirements
(control- and data flow) between work units can be
described formally by dependency rules based on

valid state transitions between nodes (activities and
tasks) in the AET. The possible state transitions
mainly depend on execution states (e.g., a flight
reservation was possible and therefore the task
commits successfully) and output values of other
activities or tasks.

The main idea to implement this language is to
define the necessary dependencies with the help of the
ACTA Transaction Metamodel [20] and then to map
these specifications into production rules [21]. These
rules will be integrated into our existing prototype
PantaRhei[3] which is based on an active database
system. Currently we are moving to an active object-
relational DBMS.

3.1 A Short Overview of ACTA

ACTA is a transaction framework which facilitates
the formal description of properties of extended
transaction models. It allows the specification of
transaction types, whereby a transaction type
intentionally describes a set of transaction instances
that share structure and behavior. With ACTA, the
effects of transactions on other transactions
(intertransaction dependencies) and also their effects
on objects (visibility of and conflicts between
operations on objects) through constraints on histories
can be formally specified. Transaction instances issue
events, mainly transaction events (i.e., begin, commit)
and object events (i.e., data manipulation events). An
event causes a unit of work to switch to a particular
state. The following concepts are important:

A history H of the concurrent execution of a set
of transactions T contains all the events
associated with the transactions in T and
indicates the (partial) order in which these events
occur.
The predicate e → e’ is true if event e precedes
event e’ in history H. It is false, otherwise.
(e ∈ H) ⇒ ConditionH, where ⇒ denotes
implication, specifies that the event e can belong
to history H only if ConditionH is satisfied. In
other words, ConditionH is necessary for e to be
in H. ConditionH is a predicate involving the
events in H.
ConditionH ⇒ (e ∈ H) specifies that if
ConditionH holds, e should be in the history H. In
other words, ConditionH is sufficient for e to be
in H. Typically, (parts of) the semantics of one
transaction type depend on its relationships to
other types which may be expressed by
dependencies. A dependency is an implication
that constrains the occurrence or order of events
of two transactions.



Dependency Definition Meaning

Abort Dep. tj AD ti (Abortti ∈ H) ⇒ (Aborttj ∈ H) if ti aborts then tj aborts

Commit -on-Termination
Dep. tj CTD ti

(e ∈ H) ⇒ (e → Committj) where
e ∈ {Committi, Abortti}

if ti terminates then tj commits

Serial Dep.
tj SD ti

(Begintj ∈ H) ⇒ (e → Begintj)
where e ∈ {Committi, Abortti}

tj cannot begin execution until ti

either commits or aborts

Begin Dep.
tj BD ti

(Begintj ∈ H) ⇒ (Beginti → Begintj) tj cannot begin execution until ti

has begun

Begin-on-Commit Dep.
tj BCD ti

(Begintj ∈ H)⇒ (Committi → Begintj) tj cannot begin execution until ti

commits

Begin-on-Abort Dep.
tj BAD ti

(Begintj ∈ H) ⇒ (Abortti → Begintj) tj cannot begin execution until ti

aborts

Force-Commit-on-Abort
Dep. tj CMD ti

(Abortti ∈ H) ⇒ (Committj ∈ H) if ti aborts, tj commits

Table 2: Examples for ACTA-Dependencies

Dependencies can arise due to structure (e.g.,
dependencies between a parent and child transactions)
or due to behavior (operations on objects). Some
examples of structural dependencies which are used in
WADL are summarized in table 2.

3.2 Semantics of WADL

In this subsection we will briefly describe parts of the
semantics of WADL with the help of structural
ACTA dependencies. First we define the essential
events and states of our model, presented in Figure 2.

An activity can be started if it is in the initial
state startable. By triggering the event start, the
activity changes its state from startable to active.
After the corresponding child-activities have finished,
the activity either succeeds or fails, depending on the
execution result(s) of its child(s). These two events
have the following semantics:

Succeed is the same as commit successfully or
commit with a positive result.
Fail corresponds to commit unsuccessfully,
commit with a negative result or abort
semantically.

The corresponding termination states are called
committed successfully or committed unsuccessfully.

An important feature of WAMO is its
compensation concept. Normally, a compensation is
initiated if a vital activity fails. Then the general
solution is to compensate all previous successful
committed activities in the current control structure in
inverse order. There are two important strategies in
compensating activities:

A compensation of an successful committed
activity is propagated to its child activities until
the task level is reached. At task level, the
corresponding task is compensated according to
its STORNO-TYPE. As soon as all childs of the
activity are compensated successfully, the
compensating activity changes its state to
compensated. If the compensation fails, an error
is raised and a manual intervention is necessary.
As soon as all relevant activities in the current
control structure are compensated, the parent
activity of the control structure changes its state
to committed unsuccessfully. Depending on the
current situatiuon, the system now can make
forward progress (e.g., to try the next alternative
in a choice) or again start a new compensation
process on the next higher level.

The above mentioned compensation process shows,
that only successful committed activities can be
compensated. Now, in WAMO it is possible to abort
an active activity by the user or by the system (e.g.,
if the client for whom the trip reservation is arranged,
falls ill then the whole reservation should be
interrupted). It must be mentioned, that an abort is not
always possible because it may endanger the safety of
the overall process (see subsection 3. 3). A nice
feature of WAMO is the reusability of the
compensation concept for an abortion and vice versa.
The abortion of an active activity roughly consists of
the following steps:



The active activity changes its state to aborting

Intermediate Activity State

Start State
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compensating

error

aborted

aborting

committed unsuccessfully

committed successfully

compensate

succeed

fail

fail

succeed

abort

succeed

fail

Figure 2: Event-state diagram for activities

and propagates the abortion to its child activities
until the tasks are reached. The currently active
task is aborted and the state of the parent activity
of the task is changed to aborted which
corresponds to committed unsuccessfully.
The remaining steps which are necessary to
complete the abortion are executed like an
ordinary compensation: Compensate previously
successful committed activities in the same
control structure. Then change the state of the
parent activity to aborted which corresponds a
commit unsuccessfully and continue with the
compensation until the initial aborted activity is
reached. At this point, all active childs of the
activity are aborted and all successful committed
childs are compensated. Finally the state of the
aborting activity is changed to aborted which
again corresponds an unsuccessful commit. Now
the abortion process is finished but now there
may be further compensations necessary if the
aborted activity was a vital activity.

The abortion of a task demands some additional
actions: First it is necessary to distinguish in which
state the task currently is and whether the task has a
corresponding mechanism to handle an abort-event or
not. We cannot a priori demand such a functionality
from a task because we treat tasks as black boxes.
Therefore there are two possibilities to handle an
abort:

a) The task is active and it is an abortable task. The
task reacts immediately to the abort event and
executes a rollback which leads to the state
aborted which corresponds to committed
unsuccessfully.

b) The task is active but it is a not abortable task
which means that there is no direct mechanism to
execute an internal, task specific rollback.
Therefore, it is necessary to wait until the task
has finished execution. Depending on the
termination state, the task now already is in the
correct state if it failed. Otherwise, the task is
compensated according its STORNO-TYPE
immediately. Finally the state of the task is
changed to aborted.

Besides the previous mentioned termination events for
activities and tasks there are two additional abort
events for tasks. A task may abort because of a
failure at system level or because of a failure at
program level. If there is a failure at system level the
task will be restarted automatically several times - this
can be configured at process specification time - until
the task succeeds. If this is not possible, the task state
is changed to committed unsuccessfully in case it is
not a forcable task. If it is a forcable task, then a
manual intervention by the workflow administrator is
necessary because of safety reasons. Such a situation
is very serious and neither expected by the workflow
designer nor by the system (e.g., an urgent request for
payment must be sent out but the file with the
necessary data is corrupted).



In the same way, a manual intervention is necessary,
if a task aborts because of a failure at program level.
Manual intervention depends on the current situation
and means to correct the failure, to restart the task or
to change the execution state of the task in order to
support process progress.

In the rest of this section we analyze structural
dependencies of activities in a sequence. The
following abbreviations are used:

PA: Parent Activity
CA: Child Activity
VCA: Vital Child Activity; the relation

between the CA and its PA is vital
CompA: Compensation Activity; because of

implementation aspects, each activity
has a corresponding compensation
activity which controls the compensation

n: number of last activity in the sequence

Structural dependencies between activities in a
sequence:

(a) CA1 BD PA % Begin Dependency
(b) PA CTD CAn % Commit-on-Termination Dep.
(c) PA AD VCAj % Abort Dependency
(d) CAi SD CAi-1 : 1 < i ≤ n % Serial Dependency
(e) CAi BCD VCAi-1: 1 < i ≤ n

%Begin-on-Commit Dep.

The semantics of these logical clauses is:
(a) The first child activity CA1 of the sequence

cannot be started before its parent activity PA has
been started.

(b) PA succeeds as soon as the last CA in the
sequence terminates (either succeeds or fails)

(c) If there is a vital child activity VCA and this
activity fails then the whole sequence and PA
fails.

(d) If the sequence consists of several child
activities, then the activity CAi in the sequence is
started as soon as the previous activity CAi-1 has
terminated.

(e) If the previous child activity is a vital activity
then the next child activity CAi in the sequence
is started only if VCAi-1 succeeds.

Structural compensation dependencies between
activities in a sequence:

If a vital child activity (VCA) fails then the
compensation process is activated! All previous
executed activities which have committed successfully
are compensated in inverse order. At last the parent
activity fails.

(a) CompAi BAD VCAj %Begin-on-Abort Dep.
(b) CompAj CMD VCAi % Force-Commit-on-

% Abort Dep.
(c) CompAi BCD Ai % Begin-on-Commit Dep.
(d) CompAj-1 BCD CompAj

% Begin-on-Commit Dep.

The semantics of these logical clauses is:
(a) The compensation activity CompAi of the

immediately previous succeeded (successful
committed) activity of the vital activity VCAj

cannot be started before VCAj has failed.
(b) If a vital child activity VCAi fails then the

compensation activity CompAj of the
immediately previous successful committed
activity must succeed.

(c) An activity can only be compensated if it has
succeeded before.

(d) If there are several successful committed
activities in the sequence then the compensation
activity CompAj-1 of the successful committed
activity Aj-1 cannot be started before CompAj (of
the successful committed activity Aj) has
committed successfully.

A complete definition of structural dependencies of
the workflow activity language WADL can be found
in [19].

3.3 Safety of defined processes

After the workflow designer has defined a complex
business process according to the concepts of WAMO
it would be very helpful to compile the specified
process in order to check whether the specified
process is unsafe or not. We define a process as
unsafe if during process execution a compensation of
a critical task can become necessary to proceed with
process execution. However, this is a pessimistic
approach because we declare processes as unsafe as
soon as we detect a possible activation order of
activities and tasks which may lead to an unsafe
process but the point is that we do not forbid such
process specifications but we only want to inform the
workflow designer of this fact. The detection of
unsafe processes is influenced by the following
parameters:

The existence of different control structures in
the process definition.
The usage of the special transaction parameters
vital and non vital for activities. The concept of
compensation is the reason why at all safety
computations are required and a compensation is
initiated only if a vital activity terminates
negatively.



The usage of the task specific transaction
parameter storno-type. Tasks with the storno-type
critical play a central role for the computation of
safety because it must be checked whether they
can come into an compensation process or not.
The usage of the task specific transaction
parameter force. Forceable tasks help to improve
the safety of a process because they always
terminate positively.

As stated above, the task specific parameters critical
and force are crucial for safety computations. They
are inherited upwards to its parent activities which
leads to critical activities and forcable activities.

An activity is a critical activity, iff one of the
following conditions holds:
(a) it is a critical task
(b) it is the parent of a sequence of activities and at

least one activity in the sequence is a critical
activity

(c) it is the parent of a ranked / free choice of
activities and at least one activity in the choice is
a critical activity

(d) it is the parent of a set of parallel activities and
at least one activity of the parallel activities is a
critical activity

An activity is a forcable activity, iff one of the
following conditions holds:
(a) it is a forcable task
(b) it is the parent of a sequence of activities and all

vital activities in the sequence are forcable
activities

(c) it is the parent of a ranked / free choice of
activities and at least one activity in the choice is
a forcable activity

(d) it is the parent of a set of parallel activities and
all vital activities in the parallel set are forcable
activities

We want to emphasize that the semantics of a
forcable activity is slightly different to the semantics
of a forcable task. To achieve the same semantics, it
is necessary that all forcable tasks are safe or critical
safe (explained in the rest of this subsection).

Now we are able to compute the safety of activities
which is done bottom up, from the leave nodes of the
AET to the root node of the AET. We distinguish
between three different safety states: safe, critical safe
or unsafe.

An activity is safe if there is no critical task
specified in the process or the critical task is the
last task in the process.

An activity is critical safe if there are critical
tasks in the process definition but it can be
guaranteed that during process execution no
compensation of a critical task is attempted.

There are some important rules for critical safe
activities:

The parent activity of a sequence of
activities is critical safe, iff the following
conditions holds:
(a) all critical activities in the sequence are

critical safe and
(b) all vital activities after a critical activity

in the sequence are forcable activities
The parent activity of a ranked / free choice
is critical safe, iff the following condition
hold:

(a) all critical activities are critical safe
The parent activity of a set of parallel
activities is critical safe, iff the following
conditions hold:

(a) all critical activities are critical safe
and

(b) all vital activities are forcable

An activity is unsafe if it is neither safe nor
critical safe.

With the possibility of safety computations the
workflow designer can be warned at compile time that
there are unsafe states in the process specification.
Additionally, there are possibilities to transform
automatically unsafe process definitions into safe
process definitions but this is still topic of further
research.

3.4 A Small Example

In this subsection we present a simplified and
incomplete business process example which
emphasizes the most important features of our model.
The example is illustrated graphically (see Figure 3)
and also more formal by the usage of WADL:

ACTIVITY Trip_Reservation
SEQUENCE

Flight_Reservation
Car_Room_Reservation (NV)
Payment
Document Handling

END SEQUENCE
ACTIVITY Flight_Reservation

SEQUENCE
prepare
exec_FR

END SEQUENCE
END ACTIVITY Flight_Reservation
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Figure 3: Trip Reservation

TASK F_Res
END ACTIVITY F_Res

ACTIVITY Car_Room_Reservation
PARALLEL

Room_Res
Car_Res (NV)

END PARALLEL
END ACTIVITY Car_Room_Reservation
ACTIVITY Payment

FREE CHOICE
Cash
Cheque

END FREE CHOICE
END ACTIVITY Payment
ACTIVITY Document Handling

PARALLEL
deliver
archive

END PARALLEL
END ACTIVITY Document Handling

TASK F_Res (COMPENSATABLE)
F_Res
INVERSE_TASK Comp_F_Res

END TASK F_Res
...

END ACTIVITY Trip_Reservation

A Trip Reservation consists of the activity sequence
Flight Reservation - Car-Room Reservation - Payment
and Document Handling. Car-Room Res. is not vital
(NV) for the parent-activity Trip Res., whereas the

other activities in the sequence are vital (per default).
This means, if one of these activities terminates
negatively, a compensation process is started auto-
matically and the whole trip reservation will fail. If
for example the vital activity Payment terminates
negatively then the activities Car-Room Res. and
Flight Res. have to be undone (compensated).

Flight Res. is further decomposed into two
activities whereby the activity exec_FR is realized by
the task F-Res and the corresponding compensation
task Comp. F-Res.

Car-Room Res. consists of two parallel
executable activities: Room-Res and Car-Res. Room-
Res is modelled as a ranked choice consisting of two
alternatives whose activation order is from left to
right (if there is no room at Hilton then the system
attempts a different hotel). If the non vital Car-Res
fails, the parent activity Car-Room Reservation still
may terminate successfully.

Payment is modelled as a free choice which
means that the activation order of the alternatives
depends on information which is computed at
execution time. If the choice is cash then the critical
task pay is executed and this means that a
compensation of this task (e.g., to return the money
back to the client) later on is not possible.

Document Handling consists of two activities
which may be executed in parallel. Additionally the
activity deliver must succeed because it is forcable.



4 Conclusions

We have defined the Workflow Activity Model
WAMO which supports the workflow designer in
modeling complex business processes. The model is
based on the concepts of transactional workflows in
order to guarantee reliable execution of workflow
activities by an advanced transaction management
facility. In particular, we have developed a workflow
metamodel which incorporates traditional workflow
modeling features as well as transaction specific
features and we have presented the high-level
Workflow Activity Description Language WADL to
model such transactional workflows. The strength of
the language mainly is based on simple structuring
mechanisms and the possibility to express application
specific transactional requirements. Typically,
workflow activities are of long duration, highly
concurrent and of a cooperative nature. Therefore, our
transaction facility enables the relaxation of atomicity,
serializability and isolation as well as, for example,
the possibility to compensate activities.

One of the main advantages of WAMO is the
exception handling mechanism. The workflow
designer needs not to model all possible process
execution alternatives (exceptions), instead he only
needs to specify whether special tasks are essential for
the workflow and whether there are compensation
tasks or not. During process execution the system will
automatically control the reliable execution of
exceptions and failures.

As we have to be very carefully in compensating
tasks (not all tasks are compensatable) it is possible
to compute the safety of modelled processes and to
warn the workflow designer in case he has modelled
unsafe processes.

The proposed transaction-oriented workflow
activity model will be integrated in our prototype
system based on an active database management
system [3]. We are also developing a graphical
application development interface to design such
workflows with the possibility to generate WADL-
code automatically.
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