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Abstract—Process mining has been around for more than a
decade now, and in that period several discovery and replay
algorithms have been introduced that work fairly well on average-
sized event logs. Nevertheless, these algorithms have problems
dealing with big event logs. If the algorithms do not run out
of memory, they will run out of time, because the problem
handed to them is just too complex to be solved in reasonable
time and space. For this reason, a generic approach has been
developed which allows such big problems to be decomposed into
a series of smaller (say, average-sized) problems. This approach
offers formal guarantees for the results obtained by it, and
makes existing algorithms also tractable for larger logs. As a
result, discovery and replay problems may become feasible, or
may become easier to handle. This paper introduces a tool
framework, called Divide and Conquer that fully supports this
generic approach, which has been implemented in ProM 6. Using
this novel framework, this paper demonstrates that significant
speed-ups can be achieved, both for discovery and for replay.
This paper also shows that a maximal decomposition (that is,
a decomposition into as many subproblems as possible) is not
always preferable: Non-maximal decompositions may run as fast,
and generally provide better results.

I. INTRODUCTION

THE ultimate goal of process mining [1] is to gain process-
related insights based on event logs created by a wide

variety of systems. An event log then contains a sequence of
events for every case that was handled by the system. As an
example, Table I shows data related to a typical event recorded
for some system, which can be interpreted as follows:

On October 1st, 2015, resource 112 has completed
activity a1.

A sequence of events contained in an event log is
commonly referred to as a trace. From the data associated

with the trace, we can derive for which particular case activity
a1 was completed.

TABLE I
EVENT e1 .

Key Value

concept:name a1
lifecycle:transition complete
org:resource 112
time:timestamp 2015-10-01T00:38:44.546

Typically, research done in the process mining area can
be divided into three subfields: process discovery, process
conformance, and process enhancement.

The field of process discovery [1], [4]–[7], [12]–[14], [19],
[20], [32], [34], [35] deals with discovering a process model
from an event log. Example process discovery algorithms in-
clude the Alpha Miner [5] and the ILP Miner [35]. The former
was the first process discovery algorithm to discover concur-
rency adequately. The latter basically converts the discovery
problem into many ILP (Integer Linear Problem) problems and
solves the discovery problem by solving all these ILPs.

The field of process conformance [1], [3], [9], [11], [15],
[16], [20], [26], [28], [31] deals with checking to what extent a
process model and an event log conform to each other, that is,
how well they match. One way to do this is to replay the event
log on the process model as best as possible, which result in
an alignment between both. Such an alignment relates events
in the event log to activities in the process model. Based on
this alignment, conclusions can then be drawn on important
metrics like fitness (how well does the event log conform to the
process model?), precision (how well does the process model
conform to the event log?), and generalization (how well does
the process model conform to the system?). An example replay
algorithm is the cost-based replayer [3], which uses many ILPs
to find a cost-optimal alignment between the event log and the
process model.

The field of process enhancement [1], [24], [30] deals
with enhancing the process model with data present in the
event log. A typical example for this is adding time-related
data to the process model, which allows us to detect for
example bottlenecks in the process model. Note that for
process enhancement an alignment is required, to position data
from some event to an activity in the process model.

As indicated, both process discovery and process replay may
use many ILPs to solve the problem at hand. The size of
these ILPs is mainly determined by the number of different
activities present in the event log, and much less by the number
of traces in the event log. For example, consider the 57/52/n
event log from the IS 2014 data set [28]. This log contains
2000 traces, 57 activities, an average trace length of 52, and
noise. For this event log, we have created 9 smaller event
logs by repeatedly filtering out the last 200 traces. Figure 1
shows the typical computation times needed by the ILP Miner
on these logs as implemented in the leading process mining
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Fig. 1. The effect of different number of traces using the ILP miner.

framework ProM 6 [33]. The figure shows that splitting the
log in this way does not really help in speeding up the ILP
Miner. Granted, a sublog containing only 200 traces requires
much less time than the overall log containing 200 traces, but
if we have to run the ILP Miner on 10 such sublogs and then
merge the results1, we do not gain much. For the same event
log, we also have created 10 smaller event logs by repeatedly
filtering out 5 random activities2 Figure 2 shows the typical
computation times needed by the same ILP Miner on these
logs. The figure shows that if we would be able to split the
event log into five sublogs each containing 17 activities, the
ILP Miner might only need 60 seconds instead of almost 1400.

To be able to deal with big event logs containing many
different activities, [2] has proposed a decomposition approach
for both process discovery and process replay. Instead of
discovering a process model from the overall event log (the
monolithic approach), the event log is first decomposed into a
number of sublogs that each contains only a subset of the
activities from the overall event log, second the discovery
algorithm is employed on each of these sublogs resulting in
as many process fragments, third all fragments are merged
into an overall process model (the decomposition approach).
This decomposition approach may be significantly faster than
the monolithic approach. Likewise, instead of replaying the

1Note that as the 10 results may disagree with each other, this merge may
be (close to) impossible.

2The activities have been removed in the following batches of five: first {J,
I4, L,O,X}, {AZ,AP,AG,AD,N}, {AS,R,AW,C,D}, {AN,AX,
AK,AH,AY }, {Q,Y, I2, I, AA}, {AC,AT,W,H, I5}, {AB,AF,B,
AR, F}, {AJ, T, V, S,AL}, {Z, I3, G,AQ,A}, last {AE,AI, P,AU,
E}, which leaves the activities {AV,U,AO,AM,M, I1,K} for the final
log.
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Fig. 2. The effect of different number of activities using the ILP miner.

overall event log on the overall process model (the monolithic
approach), the log and model can first be decomposed into
sublogs and submodels, second the replayer can be employed
on every sublog with corresponding submodel, third the re-
sulting subalignments can be merged into an overall pseudo-
alignment (the decomposition approach). The result of merging
alignments does not always result in a proper alignment, as the
merged alignment may not be executable on the original model
[2]. For this reason, we will use the more relaxed concept of
pseudo-alignments. Again, this decomposition approach may
be significantly faster than the monolithic approach, and a
pseudo-alignment can still be used to diagnose mismatches
between the event log and the process model.

[2] has also shown that formal guarantees can be given for
both decomposition approaches: Both preserve perfect fitness,
that is, the decomposition approach can only result in perfect
fitness if the monolithic approach can result in perfect fitness,
and vice versa. Moreover, when a trace is not perfectly fitting,
the pseudo-alignment helps to diagnose the problem.

This paper introduces the Divide and Conquer tool frame-
work, which supports both decomposed discovery and replay,
and which has been implemented in ProM 6. This framework
offers an easy integration of existing discovery and replay
algorithms, that is, existing algorithms can be decomposed in
an easy way. Next to the decomposition approach for process
models as introduced in [2], the framework also supports two
alternative approaches. This paper also includes an evaluation
of this framework for the ILP Miner [35] and the cost-based re-
player [3]. Results show that (1) the decomposition approaches
provide more results in cases where monolithic approaches
fail, (2) for larger cases the decomposition approaches have
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typically significant speed-ups over the monolithic approaches,
(3) a non-maximal decomposing discovery is about as fast as
the maximal decomposing discovery while providing better re-
sults, and (4) the overhead that results from the decomposition
is significant for replay, but not for discovery.

The remainder of this paper is organized as follows. Sec-
tion II introduces the concepts necessary for the other sections,
these include activity logs and accepting Petri nets. Note that
the remainder of this paper will use accepting Petri nets
as process models. Section III introduces the decomposed
discovery framework, which includes (a) different heuristics
to split an overall event log into sublogs, (b) information on
how to add an existing discovery algorithm to the framework,
(c) an approach to merge many discovered subnets into an
overall accepting Petri net, and (d) the implementation of
the framework in ProM 6. Section IV introduces the decom-
posed replay framework, which includes (a) the approach as
introduced in [2] to decompose an overall accepting Petri
net into subnets, (b) two alternative approaches to do this,
(c) an approach to decompose the overall event log into
sublogs, (d) information on how to add an existing cost-
based replayer to the framework, (e) an approach on how to
merge subalignments into an overall pseudo-alignment, and (f)
the implementation of the framework in ProM 6. Section V
introduces an evaluation conducted with the decomposition
framework, which uses a number of different data sets varying
in size and complexity. Section VI concludes the paper.

II. PRELIMINARIES

This section presents the key concepts informally. See [2]
for formalizations of these concepts.

A. Logs

In this paper, we often consider activity logs, which are an
abstraction of the event logs as found in practice.

An activity log is a collection of traces, where every trace is
a sequence of activity occurrences. Table II shows the example
activity log L1, which contains information about 20 cases.
For example, 4 cases followed the trace ⟨a1, a2, a4, a5, a8⟩. In
total, the log contains 8 activities ({a1, . . . , a8}) and 13+17+
9+2×9+9+4×5+9+9+5+5+17+3×5+5+5 = 156
activity occurrences.

An event log is a collection of traces, where every trace is
a sequence of events. Table I shows a typical event from an
event log, containing the following attributes:
concept:name The activity name of the event, in this case the

events refers to the activity known as a1;
lifecycle:transition The activity transition of the event, in this

case activity a1 has been completed (other options include
starting, suspending, resuming, and aborting an activity
[21]);

org:resource The resource that triggered the event, in this
case the resource which is known by number 112 in the
organization;

time:timestamp The date and time the event occurred, in this
case some time on October 1st, 2015.

p3 p5

p2

p4 p6

p7

p8

p9

p10

t2

t1

t8

t3

t4

t5 t7

t10

t11

t6 t9

p1

Fig. 3. A Petri net.

We assume that two events never have the same attribute
values. This can be enforced by giving each event a unique
identifier. An activity log can be obtained from an event log
by using a so-called classifier, which is a set of attribute keys.
Using such a classifier an activity log is obtained by replacing
every event in the log with the combined values of the
classifier. Typically, this will be the value of the concept:name
attribute (see, for example, Table II), or the combined value
of the concept:name and lifecycle:transition attributes.

In the remainder of this paper, a log corresponds to an
activity log, unless it is explicitly stated that it is an event
log.

B. Petri nets

A Petri net can model a process using three different types
of elements: places, transitions, and arcs. Figure 3 shows an
example Petri net containing 10 places ({p1, . . . , p10}), 11
transitions ({t1, . . . , t11}), and 24 arcs.

The dot in place p1 is called a token. All tokens together
indicate the current state of the Petri net, which is called a
marking. In the example, the marking contains only a single
token in place p1, denoted [p1], but it could also contain the
two tokens in place p1 and three tokens in place p2, denoted
[p1

2, p2
3]. This latter marking would be visualized by putting

two dots in place p1 and three dots in place p2.
As usual, a transition t is enabled in some marking M ,

denoted M [t⟩, if all its input places (that is, places from which
there is an arc to transition t) contain tokens in marking M .
In the example Petri net, only transition t1 is enabled in the
example marking [p1], that is, [p1][t1⟩. A transition enabled
in a marking M may fire, resulting in a new marking M ′,
denoted M [t⟩M ′, where M ′ equals M where one token is
removed from every input place of t and one token is added
to every output place of t. In the example Petri net, if transition
t1 fires at marking [p1], the new marking would be [p2], that
is, [p1][t1⟩[p2].

A firing sequence is a sequence of markings and transitions
such that every transition is enabled in its predecessor marking
and results in its successor marking. For example, in the ex-
ample net, the sequence ⟨[p1], t1, [p2], t2, [p3, p4], t3, [p4, p5]⟩
is a firing sequence. A transition sequence is a firing sequence
projected onto the transitions. For example, the example firing
sequence yields ⟨t1, t2, t3⟩ as transition sequence.

As usual in process mining, we extend Petri nets with labels,
an initial marking, and a set of final markings, yielding an



4 DIVIDE AND CONQUER

TABLE II
ACTIVITY LOG L1 IN TABULAR FORM.

Trace Frequency

⟨a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a8⟩ 2
⟨a1, a2, a4, a5, a6, a4, a3, a5, a7⟩ 1
⟨a1, a2, a4, a5, a8⟩ 4
⟨a1, a3, a4, a5, a6, a4, a3, a5, a7⟩ 1
⟨a1, a3, a4, a5, a6, a4, a3, a5, a8⟩ 1
⟨a1, a3, a4, a5, a8⟩ 1
⟨a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8⟩ 1
⟨a1, a4, a2, a5, a7⟩ 3
⟨a1, a4, a2, a5, a8⟩ 1
⟨a1, a4, a3, a5, a7⟩ 1
⟨a1, a4, a3, a5, a8⟩ 1
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Fig. 4. An accepting Petri net N1. Note that transitions are labeled and there
is a well defined start and end.

accepting Petri net. Figure 4 shows an accepting Petri net N1

based on the example Petri net, with labels (like a1 and a8),
an initial marking ([p1]), and one final marking ([p10]).

The labels are used to link transitions in the Petri net to
activities in an activity log. As an example, transition t1 is
linked to activity a1. Transitions that are linked to activities
are called visible transitions. Transitions that are not linked to
activities, like transition t2, are called invisible transitions. As
usual, invisible transitions are visualized using a black square.

As a result of the labeling, we can obtain an activity
sequence from a transition sequence by removing all invisible
transitions while replacing every visible transition with its
label. For example, the example transition sequence ⟨t1, t2,
t3⟩ yields activity sequence ⟨a1, a2⟩ (because t2 is invisible).

The initial marking and final markings are included to
have a well defined start and end, just like the traces in the
log. When replaying an activity log on a Petri net, the Petri
net needs to have an initial marking to start with, and final
markings to conclude whether the replay has reached a proper
final state. In the example, a replay of some trace starts from
marking [p1], and the replay will only be successful if marking
[p10] is reached.

In the remainder of this paper, a net corresponds to an
accepting Petri net, unless it is explicitly stated that it is a
Petri net.

Log

Net

Discovery

algorithm

Fig. 5. Conceptual view on a discovery algorithm.

t1 t2 t3 t5 t6 t7 t9 t10≫ ≫

a1 τ a2 ≫ τ a5 τ a7a3 a6

≫

a8

0 0 0 10 0 0 0 010 10 10

Fig. 6. A trace alignment for the trace ⟨a1, a2, a3, a5, a6, a7, a8⟩ and net
N1.

C. Discovery algorithms

A discovery algorithm (see Figure 5) is an algorithm that takes
as input an overall log (like L1) over some set of activities A
and that creates as output a net (like net N1) over the same
set of activities A. Note that we do assume that the labeling
function of the created net is surjective (there is at least one
transition for every activity), but that we do not assume that it
is injective (there may be multiple transitions labeled with the
same activity). Example discovery algorithms that do result
in an injective labeling function include the Alpha Miner [5],
the Heuristics Miner [34], the Hybrid ILP Miner [36], the ILP
Miner [35], and the Inductive Miner [23]. Example discovery
algorithms that may result in a non-injective labeling function
include the Evolutionary Tree Miner [10].

D. Alignments

A trace alignment links activities in a trace onto transitions
in a net in a best-possible way. As an example, Figure 6 shows
a possible trace alignment for the trace ⟨a1, a2, a3, a5, a6, a7,
a8⟩ and net N1. The top row in this alignment contains the
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t1 t2 t4 t5 t6 t7 t9 t11≫ ≫

a1 τ a2 ≫ τ a5 τ a7a3 a6

≫

a8

0 0 0 10 0 0 0 010 10 10

Fig. 7. Another optimal trace alignment for the trace ⟨a1, a2, a3, a5, a6, a7,
a8⟩ and net N1.

activities from the trace, the middle row the transitions from
the net, and the bottom row the costs associated with that
activity and transition. When reading this particular alignment
from left to right, we encounter four different kinds of legal
moves:

1) Activity a1 in the log matches transition t1. This is a so-
called synchronous move, as both the trace and the net
can advance (the trace by stepping over the activity, the
net by executing the transition).

2) The invisible transition t2 is not matched by any activity
in the log, which is okay as this is an invisible transition.
This is a so-called invisible model move, as only the net
can advance (by executing the invisible transition). For
such a move, we use τ to denote the lack of a matching
activity.

3) Activity a2 matches transition t3. This is another syn-
chronous move.

4) Activity a3 is not matched by any transition. This is a
so-called log move, as only the trace can advance (by
stepping over the activity). For such move, we use ≫ to
denote the lack of a matching transition.

5) The visible transition t5 is not matched by the corre-
sponding activity a4 in the log. This is a so-called visible
model move, as only the net can advance (by executing
the visible transition). For such move, we use ≫ to denote
the lack of a matching activity in the log.

6) And so on.

Note that we require the transition sequence in the middle row
of the alignment to lead from the initial marking of the net to
a final marking.

In this example, a synchronous move costs 0, a visible
model move costs 10, an invisible model move costs 0, and
a log move also costs 10. The total costs for the example
alignment is 0+0+0+10+10+0+0+10+0+0+10 = 40.

If no other alignment results in lower costs, the alignment is
called optimal. There may exist multiple optimal alignments
for a single trace. For example, the alignment as shown in
Figure 6 is optimal, but the alignment as shown in Figure 7
is also optimal.

A log alignment is an optimal trace alignment for every
trace in the activity log. As a result of a log alignment, any
trace in the log can be mapped to the transition sequence
that best matches this trace. As an example, Table III shows
optimal trace sequences (it is straightforward to obtain the
alignments from these sequences) for log L1 and net N1,
where the same costs are used as mentioned above. Clearly,
log L1 can be perfectly aligned to net N1, which results in
no costs and perfect fitness. Using such a log alignment, it
is possible to project the date and information that is present

in an event log onto the net, and obtain average durations
between activities and such.

E. Replay algorithms

Log

Alignment

Replay

algorithm

Net

Fig. 8. Conceptual view on a replay algorithm.

A replay algorithm (see Figure 8) is an algorithm that, given
the costs for all possible moves, takes a log (like L1) over
some set of activities A and a net (like N1) over the same set
of activities A, and creates a log alignment over the same set
of activities A.

F. Data sets

Table IV shows the list of data sets (with their characteris-
tics) that are used for the evaluation in this paper.

III. DECOMPOSED DISCOVERY FRAMEWORK

The goal of decomposed discovery is to apply an existing
discovery algorithm on a series of sublogs instead of one over-
all log, where every sublog contains significantly less different
activities than the overall log. Under the assumption that the
complexity of the discovery algorithm is significantly worse
than linear, the decomposed discovery algorithm is expected
to finish well before the monolithic discovery algorithm.

For this reason, the decomposed discovery algorithm first
determines small sets of different activities that are expected
to have direct causal relations among themselves. These sets of
activities are referred to as activity clusters in the remainder of
this paper. Figure 9 then shows a conceptual view on a decom-
posed discovery algorithm. First, the algorithm determines an
as-best-as-possible set of activity clusters. Second, for every
activity cluster, the algorithm filters the overall activity log
into a sublog. Third, the algorithm discovers a subnet from
the sublog using the provided discovery algorithm. Fourth and
last, the subnets are merged into an overall net.

This section first introduces each of these steps in detail.
Second, it introduces the implementation of the decomposed
discovery algorithm in ProM 6.

A. Discover clusters

The goal of this step is to obtain an as-best-as-possible
set of small activity clusters, where the activities within a
single cluster have direct causal relations among themselves.
Figure 10 shows the approach the decomposed discovery
algorithm uses to achieve this. First, a matrix is discovered
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TABLE III
OPTIMAL TRACE SEQUENCES FOR LOG L1 AND NET N1 .

Trace sequence Costs

⟨t1, t2, t3, t5, t6, t7, t8, t2, t3, t5, t6, t7, t8, t5, t2, t3, t6, t7, t9, t10⟩ 0
⟨t1, t2, t3, t5, t6, t7, t8, t2, t4, t5, t6, t7, t8, t5, t2, t4, t6, t7, t8, t2, t3, t5, t6, t7, t9, t10⟩ 0
⟨t1, t2, t3, t5, t6, t7, t8, t2, t4, t5, t6, t7, t9, t10⟩ 0
⟨t1, t2, t3, t5, t6, t7, t8, t2, t4, t5, t6, t7, t9, t11⟩ 0
⟨t1, t2, t3, t5, t6, t7, t8, t5, t2, t4, t6, t7, t9, t10⟩ 0
⟨t1, t2, t3, t5, t6, t7, t9, t11⟩ 0
⟨t1, t2, t4, t5, t6, t7, t8, t5, t2, t4, t6, t7, t9, t10⟩ 0
⟨t1, t2, t4, t5, t6, t7, t8, t5, t2, t4, t6, t7, t9, t11⟩ 0
⟨t1, t2, t4, t5, t6, t7, t9, t11⟩ 0
⟨t1, t2, t5, t3, t6, t7, t8, t2, t5, t3, t6, t7, t8, t2, t4, t5, t6, t7, t8, t2, t3, t5, t6, t7, t9, t11⟩ 0
⟨t1, t2, t5, t3, t6, t7, t9, t10⟩ 0
⟨t1, t2, t5, t3, t6, t7, t9, t11⟩ 0
⟨t1, t2, t5, t4, t6, t7, t9, t10⟩ 0
⟨t1, t2, t5, t4, t6, t7, t9, t11⟩ 0

TABLE IV
DATA SETS USED IN THE EVALUATION.

Data Sets Description

DMKD 2006 [25] 20 synthetic events logs generated from 4 Petri nets, containing 12, 22, 32, and 42 activities, 1000 traces,
and different noise levels.

IS 2014 [28] 32 synthetic event logs generated from 4 highly structured Petri nets, containing 59, 48, 32, and 57 activities,
2000 traces, 4 different average trace lengths (approx. 15–55), with and without noise.

BPM 2013 [27] 7 synthetic event logs (A–G) generated from 7 highly structured Petri nets, containing 317, 317, 317, 429,
275, 299, and 335 activities, log C contains 500 traces, all other logs contain 1200 traces, log B is 100%
fitting its model, all other events logs do not fit 100%.

BPIC 2012 [17] 1 real-life event log, 13087 traces, 262200 events, and 36 activities.
BPIC 2015 [18] 5 real-life event logs, 832–1409 traces, 44354–59681 events, and 356–410 activities.

Overall log
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sublog
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algorithm

Merge

subnets

Overall net

For every ac-

tivity cluster

Sublog

Subnet

Best

clusters

Section 3.2

Section 3.1

Section 3.3

Section 3.4

Fig. 9. Conceptual view on a decomposed discovery algorithm.

from the overall log indicating for every pair of activities
how strong the direct causal relation is from the first to the
second. Second, a graph is derived from this matrix containing
only the strongest relations. Third, an initial set of activity
clusters is derived from this graph. Fourth, a set of grouped
activity clusters is derived from the initial set of clusters by
grouping very small or very coherent clusters together. These
four steps are executed using twelve different settings, leading
to a collection of 12 sets of clusters. Fifth and last, the best
set from the collection is selected and returned as result.

1) Discover matrix: This step discovers a matrix (using
some heuristics) that contains for every pair of two activities
the estimated strength of the direct causal relation from the
first activity to the second. We will refer to such a matrix as
a causal activity matrix. Table V shows an example causal
activity matrix M1 for log L1.

The strengths in a causal activity matrix range from −1.0
to 1.0, which should be interpreted as follows:

• A value of 1.0 indicates that it is sure that there is a direct
causal relation.

• A value of 0.5 indicates that it is likely that there is a
direct causal relation.

• A value of 0.0 indicates that we do not know whether
there is a direct causal relation or not.

• A value of −0.5 indicates that it is likely that there is no
direct causal relation.

• A value of −1.0 indicates that it is sure that there is no
direct causal relation.
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TABLE V
EXAMPLE CAUSAL ACTIVITY MATRIX M1 FOR LOG L1 .

From/To a1 a2 a3 a4 a5 a6 a7 a8

a1 −0.41 0.91 0.75 0.88 −1.00 −1.00 −1.00 −1.00
a2 −1.00 −0.79 −1.00 0.29 0.88 −1.00 −1.00 −1.00
a3 −1.00 −1.00 −0.76 0.10 0.86 −1.00 −1.00 −1.00
a4 −1.00 −0.29 −0.13 −0.86 1.00 −1.00 −1.00 −1.00
a5 −1.00 −1.00 −1.00 −1.00 −1.00 0.93 0.90 0.92
a6 −1.00 0.75 0.83 0.86 −1.00 −0.60 −1.00 −1.00
a7 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.62 −1.00
a8 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.63

Overall log

Select best

clusters

Graph

Create

graph

Matrix

Discover

matrix

Grouped

clusters

Group

clusters

Clusters

Create

clusters

For many

heuristics

Best

clusters

Section 3.1.1

Section 3.1.2

Section 3.1.3

Section 3.1.4

Section 3.1.5

Fig. 10. Conceptual view on discovering activity clusters.

For example, based on M1, we are sure that there is a direct
causal relation from a4 to a5 (as M1(a5, a5) = 1.0), and we
are sure that there is no direct causal relation from a2 to a1
(as M1(a2, a1) = −1.0).

Table VI shows an overview of the heuristics currently
implemented in the decomposed discovery framework for
discovering a causal activity matrix from a log.

2) Create graph: In this step, we create a graph containing
the strongest direct causal relations, by filtering those strongest
relations from the casual activity matrix. We will refer to such
graph as a causal activity graph. Figure 11 shows a causal
activity graph G1 created from causal activity matrix M1. The

a1

a2

a3

a4

a5

a6

a7

a8

0.82

0.75

0.50

0.75

0.71

0.71

1.00

0.67

0.50

0.87

0.83

0.80

Fig. 11. Example causality graph G1 for matrix M1.

strengths of the arcs in the causal activity graph range from
0.0 (exclusive) to 1.00 (inclusive). The closer the strength is
to 1.0, the more confident we are there there is indeed such a
direct causal relation. For example, based on G1, we are sure
that there is a causal relation from a4 to a5 (weight is 1.0),
and there might be a causal relation from a6 to a2 (weight is
0.5).

To create a causal activity graph from a causal activity
matrix M , we simply take all values from M that exceed
0.0. However, prior to doing this, we first apply two transfor-
mations on M , which might affect the outcome.

The first transformation is the zero value transformation,
which takes a new zero value z ∈ (−1.0, 1.0) and transforms
M to M⊥z using the following rule:

M⊥z(a, a
′) =



1.0 if M(a, a′) = 1.0;
M(a,a′)−z

1.0−z if M(a, a′) ∈ (z, 1.0);

0.0 if M(a, a′) = z;
M(a,a′)−z

1.0+z if M(a, a′) ∈ (−1.0, z);

−1.0 if M(a, a′) = −1.0.

Figure 12 shows this transformation graphically: The selected
value will become the new zero value, and all other values
are scaled linearly. Clearly, this transformation has an effect
on which values in the matrix will be selected for arcs in the
graph: Any value exceeding value z will be selected, any other
value will not. As an example, causal activity graph G1 was
obtained from matrix M1⊥0.5.

The second transformation is the concurrency threshold
transformation, which takes a concurrency threshold c ∈ (0.0,
1.0] and transforms M to M∥c using the following rule:

M∥c(a, a′) =
{

−0.5 if |M(a, a′)−M(a′, a)| < c;
M(a, a′) otherwise.
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TABLE VI
HEURISTICS TO DISCOVER A CAUSAL ACTIVITY MATRIX.

Heuristic Description

Heuristics A simple heuristic based on how often a is directly followed by a′ in L and vice versa.

Fuzzy A more involved heuristic that also takes second-order effects (like how often a is directly followed by
a′ compared to how often a it directly followed by a′′).

Alpha A heuristic based on the Alpha miner. If the Alpha miner creates a place between the transitions
labeled with a and a′, then this heuristics returns 1.0, otherwise −1.0.

Random A heuristic that returns a random value (for testing purposes only).

Average A meta heuristic that returns the average value of the Heuristics, Fuzzy, and Alpha heuristics.

Mini A meta heuristic that returns the minimal value of the Heuristics, Fuzzy, and Alpha heuristics.

Midi A meta heuristic that returns the middle value of the Heuristics, Fuzzy, and Alpha heuristics.

Maxi A meta heuristic that returns the maximal value of the Heuristics, Fuzzy, and Alpha heuristics.

−1.0 1.0

−1.0

1.0

z

M(a, a
′
)

M⊥z(a, a
′
)

⇔

⇔

m

Fig. 12. Zero value parameter.

This transformation can be used to downplay values in the
matrix in case the relation between activities are balanced,
which may be caused because both activities can be executed
concurrently. In case of concurrent activities, direct causal
relations are not wanted.

3) Create clusters: This step creates an initial set of activity
clusters from a causal activity graph. These activity clusters
are created by first assigning an equivalence class on the arcs
in the graph, where the following restrictions apply:
Input arcs Input arcs of the same node are equivalent.
Output arcs Output arcs of the same node are equivalent.

a2

a3

a4

a5

a1

a2

a3

a4

a6

a5

a6

a7

a8

Fig. 13. Example activity clusters C1 for graph G1.

As an example, Figure 13 shows the set of activity clusters
created from causal activity graph G1.

To prevent any confusion in the remaining steps, the set of
activity clusters are ordered. As a result, there will be a first
cluster, a second clusters, etc. This ordering allows us to keep
track of which subnet was discovered from which sublog, and,
later on, which sublog should be replayed on which subnet.

4) Group clusters: This step changes the initial set of
activity clusters by grouping clusters that are strongly related
to each other. As an example, given that the two leftmost
clusters as shown in Figure 13 have three activities in common,
it might be a good idea to join both clusters. Figure 14 shows
the resulting set of activity clusters.

a1

a2

a3

a4

a6

a5

a6

a7

a8

a5

Fig. 14. Example grouped activity clusters C2.

This grouping of clusters, along with the reason for doing
this, has been described in detail in [22]. In short, a set of
activity clusters is considered to be better if it scores better on
the weighted quality metrics as shown in Table VII. Each of
these metrics provides a value between 0.0 and 1.0, and using
the provided relative weights, an end score is determined.

This step starts with the initial set of clusters and requires
a percentage of clusters as input. As long as the number
of clusters divided by the number of initial clusters exceeds
the given percentage, this step selects the best two different
activity clusters to be merged, and merges them.

5) Select best clusters: Instead of relying on a single
heuristic, the decomposed discovery algorithm relies on three
different discovery heuristics with four different zero values
each. Table VIII shows an overview of the discovery heuristics
used for selecting the best activity clusters. For each of these
combinations, the set of activity clusters is determined. From
these sets of clusters, the best one is selected.
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TABLE VII
QUALITY METRICS FOR ACTIVITY CLUSTERS. ALTHOUGH OTHER METRICS ARE POSSIBLE AS WELL, WE LIMIT OURSELVES HERE TO THOSE DEFINED IN

[22].

Metric Description

Cohesion The causal relation strengths within every single cluster should be maximal.

Coupling The causal relation strengths between every two different clusters should be minimal.

Size The sizes of the clusters should be distributed evenly.

Overlap The overlap (common activities) between every two different clusters should be minimal.

TABLE VIII
COLLECTION OF HEURISTICS TO SELECT THE BEST ACTIVITY CLUSTERS FROM.

Heuristic Zero values Concurrency threshold

Heuristics {−0.5, 0.0, 0.5, 0.9} {0.005}

Fuzzy {−0.6,−0.5, 0.0, 0.5} {0.005}

Midi {−0.5, 0.0, 0.5, 0.9} {0.005}

The reason for selecting these heuristics is that we have seen
that sometimes one works best, and sometimes another. The
reason for using the values −0.5, 0.0, and 0.5 as zero values is
to have some coverage of the entire space of this parameters,
that is, (−1.0, 1.0). The reason for adding the values −0.6 and
0.9 is that we have seen that for these values these heuristics
often provide good results.

B. Filter sublog

The goal of this step it so split the overall activity log into a
sublog for every activity cluster. The sublogs are ordered in the
same way as the activity clusters are ordered. As a result, the
first sublog corresponds to the first cluster etc. As an example,
Table IX shows the sublogs resulting from filtering log L1

using the activity clusters C1.
This filtering works for most of the existing discovery

algorithms, but the Alpha Miner is a known exception. As

a4

a6

a2

a3a1

Fig. 15. Result of the Alpha Miner on the sublog obtained for cluster {a1,
a2, a3, a4, a6}.

an example of this, Figure 15 shows the result of running
the Alpha Miner on the first sublog, that is on the log that
corresponds to the cluster {a1, a2, a3, a4, a6}. Obviously, the
Alpha Miner is unable to properly handle the activity a4
correctly, which is caused by the fact that it appears both
as a final activity (like in the trace ⟨a1, a2, a4⟩) and in the

TABLE X
FILTERED TRACES WITH ARTIFICIAL START AND END ACTIVITIES ADDED

FOR THE FIRST CLUSTER IN TABLE IX.

Cluster {a1, a2, a3, a4, a6}

⟨α, a1, a2, a4, a6, a2, a4, a6, a4, a2, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, ω⟩
⟨α, a1, a2, a4, a6, a4, a3, ω⟩
⟨α, a1, a2, a4, ω⟩
⟨α, a1, a3, a4, a6, a4, a3, ω⟩
⟨α, a1, a3, a4, a6, a4, a3, ω⟩
⟨α, a1, a3, a4, ω⟩
⟨α, a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4, ω⟩
⟨α, a1, a4, a2, ω⟩
⟨α, a1, a4, a2, ω⟩
⟨α, a1, a4, a3, ω⟩
⟨α, a1, a4, a3, ω⟩

middle of a trace (like in the trace ⟨a1, a4, a2⟩) [2]. For the
second cluster, the fact that activity a4 appears both as an
initial activity and in the middle of a trace, results in a similar
problem.

The typical work-around to overcome this problem is to
introduce an artificial start activity α and an artificial end
activity ω. These two artificial transitions prevent that an initial
or a final activity also occurs in the middle of a trace. Table X
shows the result of adding these two artificial activities to the
first sublog. Figure 16 shows the result of running the Alpha
miner on this sublog. Clearly, the resulting net now handles
activity a4 in a proper way.

For this reason, when filtering the overall log for a sublog
using an activity cluster, we include the option to add artificial
start and end activities to the resulting sublog. Obviously, this
creates the obligation to remove the transitions labeled with
these activities later on, that is, when merging the subnets into
an overall net.
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TABLE IX
FILTERED TRACES FOR ACTIVITY LOG L1 AND ACTIVITY CLUSTERS C1 IN FIGURE 13 IN TABULAR FORM.

Cluster {a1, a2, a3, a4, a6} Cluster {a2, a3, a4, a5} Cluster {a5, a6, a7, a8}

⟨a1, a2, a4, a6, a2, a4, a6, a4, a2⟩ ⟨a2, a4, a5, a2, a4, a5, a4, a2, a5⟩ ⟨a5, a6, a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4⟩ ⟨a2, a4, a5, a3, a4, a5, a4, a3, a5, a2, a4, a5⟩ ⟨a5, a6, a5, a6, a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4⟩ ⟨a2, a4, a5, a3, a4, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4⟩ ⟨a2, a4, a5, a3, a4, a5⟩ ⟨a5, a6, a5, a8⟩
⟨a1, a2, a4, a6, a4, a3⟩ ⟨a2, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a2, a4⟩ ⟨a2, a4, a5⟩ ⟨a5, a8⟩
⟨a1, a3, a4, a6, a4, a3⟩ ⟨a3, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a3, a4, a6, a4, a3⟩ ⟨a3, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a8⟩
⟨a1, a3, a4⟩ ⟨a3, a4, a5⟩ ⟨a5, a8⟩
⟨a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4⟩ ⟨a4, a2, a5, a4, a2, a5, a3, a4, a5, a2, a4, a5⟩ ⟨a5, a6, a5, a6, a5, a6, a5, a8⟩
⟨a1, a4, a2⟩ ⟨a4, a2, a5⟩ ⟨a5, a7⟩
⟨a1, a4, a2⟩ ⟨a4, a2, a5⟩ ⟨a5, a8⟩
⟨a1, a4, a3⟩ ⟨a4, a3, a5⟩ ⟨a5, a7⟩
⟨a1, a4, a3⟩ ⟨a4, a3, a5⟩ ⟨a5, a8⟩

TABLE XI
DISCOVERY ALGORITHMS IN PROM 6 [33] SUPPORTED BY THE FRAMEWORK. THE CONVERSION PLUG-INS LISTED ARE NECESSARY TO CONVERT A

NATIVE RESULT (LIKE A HEURISTICS NET OR A PROCESS TREE) INTO A PETRI NET.

Discovery algo-
rithm

Discovery Plug-in Conversion Plug-in

Alpha Miner [5] “Alpha Miner”

Heuristics
Miner [34]

“Mine for a Heuristics Net using Heuristics Miner” “Convert Heuristics net into Petri
net”

Hybrid ILP
Miner [36]

“ILP-Based Process Discovery”

ILP Miner [35] “ILP Miner”

Inductive
Miner [23]

“Mine Petri net with Inductive Miner, with parame-
ters”

Evolutionary Tree
Miner [10]

“Mine a Process Tree with ETMd using parameters
and classifier”

“Convert Process Tree to Petri
Net”

a4

a6

a2

a3a1α ω

Fig. 16. Result of the Alpha Miner on the first sublog with artificial start and
end activities.

C. Discovery algorithm

The goal of this step is to discover a subnet from every
sublog by using the provided discovery algorithm. Table XI
shows a list of existing discovery algorithms in ProM 6 that are
currently supported by the framework. Some of the existing
discovery algorithms do not discover a Petri net, and require
a conversion algorithm to convert the discovered model into
a Petri net. Although the ideas in this paper are not Petri-
net specific, the framework is tailored towards Petri nets to
allow for a modular approach. Without this, we would need
to customize things for every discovery approach.

The main problem with this step is that these existing

algorithms discover a Petri net rather than an accepting Petri
net. The initial marking is often clearly defined, but usually
the set of final markings is left implicit or unknown. The
framework offers two solutions for this problem:

1) Some discovery algorithms do in fact discover a Petri
net with an explicit initial marking and a collection of
explicit final markings. Example discovery algorithms for
which this holds include the Inductive Miner and the
Evolutionary Tree Miner. For such algorithms a wrapper
is available that first finds these initial and final markings
for the Petri net at hand, and second constructs an
accepting Petri net from them.

2) Other discovery algorithms only discover a Petri net with
an implicit initial marking (containing a single token in
every source place) and a collection of implicit final mark-
ings (where each final marking contains a single token in
a single sink place). Example discovery algorithms for
which this holds include the Alpha Miner, the Heuristics
Miner, the ILP Miner, and the Hybrid ILP Miner. The
Alpha Miner and Heuristics Miner always discover a
Petri net with a single source place and a single sink
place, with the underlying assumption that the initial
marking contains a single token in the source place and
the only final marking contains a single token in the sink
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place. The ILP Miner and the Hybrid ILP Miner always
discover a Petri net with any number of source places
and no sink places, with the underlying assumption that
the initial marking contains a token in every source place,
and that the only final marking is the empty marking. For
these algorithms a different wrapper is available that first
creates these initial and final markings from the net at
hand, and second constructs an accepting Petri net from
them.

Using these two wrappers, all discovery algorithms men-
tioned in Table XI could be added with ease to the framework.
In case a discovery algorithm does not provide any initial
and final markings (be it implicit or explicit), or in case
the algorithm has different implicit markings than the ones
mentioned, then a specific wrapper needs to be created for it.
This is allowed by the framework but it will take some effort.

a1

a4a6

a2

a3

a4

a5

a2

a3 a5

a7

a8

a6

Fig. 17. Result of the Hybrid ILP Miner on all sublogs from Table IX.

As an example, Figure 17 shows the resulting subnets that
the Hybrid ILP Miner discovered from the sublogs that are
shown in Table IX.

Please note that all these discovery algorithms are oblivious
to the fact that the sublog may contain artificial activities.
These algorithms will just discover a Petri net from the sublog
that was provided to them.

D. Merge subnets

The goal of this step is to merge the discovered subnets into
one overall net. This merge is done in three steps: joining the
subnets, hiding all transitions labeled with artificial activities,
and reducing the net. The result after reduction will be the
accepting Petri net that results from the merge.

1) Join subnets: This step joins a collection of subnets into
one overall net using the following rules (cf. [2]):
Place Every place from every subnet is copied into the overall

net.
Invisible transitions Every invisible transition from every

subnet is copied into the overall net.
Visible transitions For every label, a single visible transition

with that label is selected as proxy for all other transitions
in all subnets with that label. Only the proxy transition
is copied into the overall net.

Arc Every arc from every subnet is copied into the overall
net, where a transition is replaced by its proxy if it has
a proxy.

Initial marking The initial markings of all subnets are com-
bined into the overall initial marking.

Final markings For every possible combination of final
markings in the small net, an overall final marking will

be created. Note that markings are multisets of tokens
that can be combined easily.

a1

a4a6

a2

a3

a5

ωα

a5

a6

a7

a8

α ω

Fig. 18. Possible nets resulting from discovery algorithm.

Assume, for the sake of argument, that some discovery al-
gorithm has discovered the two subnets as shown in Figure 18.
Joining these two subnets results in the overall net shown in

Cluster {a1, a2, a3, a4, a5, a6}

Cluster {a5, a6, a7, a8}

a1

a4

a2

a3

a5

α

a6

a7

a8

ω

Fig. 19. Net that result from joining the subnets as shown in Figure 18.

Figure 19.
Note that in this step, we join all visible transition with the

same label by selecting a proxy and by rerouting all arcs to
and from this proxy. However, this will not work in case one
(or more) of the subnets contains duplicate transitions (that is,
multiple visible transitions sharing the same label). As a result
of the rules, these two transitions would be joined as well. As
an example, consider the subnet as shown in Figure 20. In this
net, the visible transitions t4 and t6 share label a6. Obviously,
joining these transitions is not desired: t4 and t6 cannot both
occur at the same time, so merging them leads to a deadlock.
As a result, before joining the subnets, we need to make sure
that every subnet does not have duplicate transitions.

Figure 21 shows the solution used to solve this problem: In
every subnet, if duplicate transitions exist, then the construct
as shown in this figure is applied. Every firing of transitions t4
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a5

a6

a7

a6

α ω

p1 t1 p2

t3

p3

t5

t4 t6

p4 t7 p5

Fig. 20. Possible discovered net that contains two duplicate transitions labeled
a6.
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Fig. 21. Similar net that contains only one visible transition labeled a6.

and t6 in the subnet is now replaced by the transition sequences
⟨ti4, ta6 , to4⟩ and ⟨ti6, ta6 , to6⟩ and vice versa. The places pa4 and
pa6 guarantee that any firing of any transition labeled with a6
gets routed into the right direction. As an example, transition
to4 can only fire if ti4 has fired before. As a result, we obtain
an adapted subnet that has similar behavior but which does
not contain duplicate transitions.

To avoid joining duplicate transitions in a single subnet,
before joining all subnets, all duplicate transition is a single
subnet are removed first by adapting every subnet.

2) Hide transitions labeled with artificial activities: This
step removes the labels of the artificial activities that may
have been inserted into the sublogs in an earlier step. To
remove these labels, the corresponding transitions are simply
made invisible. As an example, Figure 22 shows the result of

a1

a4

a2

a3

a5

a6

a7

a8

Fig. 22. Net from Figure 19 with artificial labels made invisible.

performing this step on the net as shown in Figure 19.

3) Reduce net: This step reduces the size of the overall
Petri net by applying variants on classical behavior-preserving
reduction rules [29] and by removing places that are struc-
turally redundant [8]. The classical behavior-preserving reduc-
tion rules had to be adapted to take initial markings and visible
transitions into account. Note that we only reduce invisible
transitions and need to keep track of initial and final markings.

As a result of applying a reduction rule, the initial marking
of the overall net may need to be updated. Consider, for
example, the silent transition in Figure 22 that corresponds
to the transition labeled α in Figure 19. This transition and
its input places can be removed from the net, but then the
tokens from the initial marking need to be moved from the
input places to the output places. Otherwise, the initial marking
would get lost.

No reduction step should remove a visible transition. Only
invisible transitions and places may be reduced by these rules,
but all visible transition should remain. Consider, for example,
the transition labeled a2 in Figure 19. This transition has
the same input places and the same output places as the
transition labeled a3. As a result, the so-called Fusion of
Parallel Transitions reduction rule [29] could remove one of
these activities. Clearly, this is not desired, as these transitions
are there to explain the behavior as found in the log. Removing
them now would defeat the purpose of the process discovery
from event data.

a1

a4 a5a6

a2

a3

a7

a8

Fig. 23. Net from Figure 22 after reductions.

As an example, Figure 23 shows the result of performing
this step on the net as shown in Figure 22. In this example,
the reduction was able to remove all invisible transitions.
However, in general, this might not be the case (e.g. skip
transitions).

E. Implementation

The decomposed discovery algorithm has been implemented
as the Discover using Decomposition action in the Decom-
posedMiner package of ProM 6. Figure 24 shows the dialog for
this action, which allows the user to select the configuration,
the classifier (see Section II-A), and the discovery algorithm
(see Section III-C).

A configuration of the algorithm determines predefined
values for the settings in the algorithm. The following con-
figurations can be selected:
Decompose This configuration uses all steps (as described

before) with default values. For discovering a matrix (see
Section III-A1), the aforementioned 12 configurations
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Fig. 24. Dialog for Discover using Decomposition action in ProM 6.

(see Table VIII) are used. For creating a graph (see Sec-
tion III-A2), the zero value is set to 0.0 and the concur-
rency threshold to 0.005. For creating initial clusters (see
Section III-A3), no parameters are required. For filtering
the overall log (see Section III-B), empty traces are not
removed, and artificial start and end activities (called “
|start> ” and “ [end] ”) are added only in case the Alpha
Miner is selected as discovery algorithm. For discovering
the subnets from the sublogs (see Section III-C), the
selected discovery algorithm is used. Merging the subnets
into an overall net (see Section III-D) first removes the
structural redundant places and then reduces the result
using the improved classical reduction rules.

Decompose 75% This configuration is identical to the De-
compose configuration, except that the clusters are now
grouped to 75% of the original number of clusters (see
Section III-A5). As an example, if the best initial clus-
ters contained 20 clusters, then these clusters would be
grouped into 15 clusters by this configuration.

Decompose 50% This default configuration is identical to the
Decompose configuration, except that the clusters are now
grouped to 50% of the original number of clusters. This
results in 10 clusters in case there are 20 clusters in the
best clustering.

Do not decompose This configuration creates an activity
cluster array with a single cluster containing all activities,
and it does not add artificial start and end events. As a
result, the selected miner is run with the selected classifier
on the original log. This configuration corresponds to the
monolithic approach, and offers a baseline for compari-
son.

The first three configurations allow the user to select the
level of decomposition from maximal (Decompose) to three-
quarters of maximal (Decompose 75%) and half of maximal
(Decompose 50%). The last configuration allows the user
to check the result of applying the regular (monolithic, or
‘Decompose 0%’) discovery algorithm in an easy way.

IV. DECOMPOSED REPLAY FRAMEWORK

After presenting a decomposed discovery approach and im-
plementation, we now shift our focus to conformance checking

based on replay. The goal of the decomposed replay is to
apply an existing cost-based replay algorithm on a series of
sublogs and subnets instead of on one overall log and one
overall net. Like with discovery, the idea is that every subnet
contains significantly fewer activities than the overall net. As it
is assumed that the sublogs correspond to the subnets, a sublog
then also contains significantly fewer activity labels than the
overall log does. Under the assumption that the complexity of
the replay algorithm is significantly worse than linear in terms
of the different activities, the decomposed replay algorithm is
expected to finish well before the monolithic replay algorithm.

For this reason, the decomposed replay algorithm first
decomposes the overall net using the decomposition approach
as described in [2]. Hence, instead of having to estimate using
all kinds of heuristics like the decomposed discovery algorithm
needs to do, the decomposed replay algorithm can just derive
the maximal subnets from the overall net as provided as input.

Overall log

Merge

subalignments

Overall net

Extract

clusters

Clusters

Decompose

net

Filter

sublog

Replay

algorithm

Sublog

Subnets

Subalignments

For every ac-

tivity cluster

Overall pseudo

alignment

Project

subnet

Subnet

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Section 4.5

Section 4.6

Fig. 25. Conceptual view on a decomposed replay algorithm.

Figure 25 shows a conceptual view on the decomposed
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replay algorithm. First, the algorithm decomposes the overall
net into a series of subnets. Second, it extracts the activity
clusters from these subnets. Third, for every activity cluster,
the algorithm filters the overall log into a sublog, and it either
takes the corresponding subnet from the decomposed subnets
or it filters the overall net for a subnet. Fourth, it replays
the sublog on the corresponding subnet, which results in a
subalignment. Fifth and last, it merges these subalignments
into an overall pseudo-alignment, where a pseudo-alignment
is an alignment except that we drop the requirement that
its transition sequence leads from the initial to some final
marking. In general, this requirement cannot be guaranteed

b

t
b

a

d

t
a

1

t
d

1

a

t
a

m

c

tc

d

t
d

n

. . .

. . .

m transitions labeled a

n transitions labeled d

Fig. 26. An example for which merging the subalignments does not result in
an overall alignment.

as the example in Figure 26 shows. The dashed line in this
net indicates the only way this net can be decomposed into
subnets: The first subnet (Na) contains (among others) all m
duplicate transitions labeled a and the second subnet (Nd)
contains (among others) all n duplicate transitions labeled d.
Now assume that the trace at hand is the empty trace and
that every model move costs 10. The optimal alignment for
Na contains only the visible model move (≫, tc) (with costs
10/2 = 5, as tc is distributed over two subnets [2]), whereas
the optimal alignment for Nd contains only the visible model
move (≫, tb) (also with costs 5). Clearly, there is no alignment
in the overall net that has lower costs than the accumulated
costs (5 + 5 = 10) of these two model moves: Selecting the
upper branch would cost 10 × m + 10, selecting the lower
branch would cost 10+10×n. This example also shows that
we cannot give an upper bound for the costs of an overall
alignment using the subalignments, as m and n could be
arbitrary high. Nevertheless, note that we can still provide a
lower bound for the costs.

In the remainder of this section, we introduce each of the
abovementioned steps in detail, followed by a description of
the implementation of the decomposed replay algorithm in
ProM 6.

A. Decompose net

The goal of this step is to decompose the overall net into a
series of subnets using the decomposition approach from [2].
This approach decomposes the overall net by first assigning an
equivalence class to the arcs, where the following restrictions
apply:
Places Arcs connected to the same place are equivalent.

Invisible transitions Arcs connected to the same invisible
transition are equivalent.

Duplicate visible transitions Arcs connected to all duplicate
transitions with the same label are equivalent.

Second, for every equivalence class, it projects the overall net
into a subnet that contains (1) all the arcs in this equivalence
class and (2) all places and transitions that are connected by
these arcs.

Figure 27 shows the resulting subnets (Na
1 , . . . , N

e
1 ) of this

approach on net N1 (see Figure 4).

B. Extract clusters
The goal of this step is to create a set of activity clusters

from the provided subnets. This is done in a straightforward
way: For every subnet an activity cluster will be created that
contains exactly those activities that are supported by the
subnet (that is, for which there is a transition that refers to
it). As a result, for subnet Na

1 the activity cluster {a1} will
be created, for subnet N b

1 the cluster {a1, a2, a3, a4, a6)}, and
so on.

C. Project subnet
The goal of this step is to project an overall net into a

collection of subnets, if needed. As input, it takes the overall
net, a set of activity clusters, and the subnets that resulted
from decomposing the overall net. As output, it delivers
a collection of subnets, one net for every activity cluster.
The decomposed replay framework supports three possible
projections: Decompose, Hide, and Hide and reduce.

1) Decompose: The Decompose projection simply takes
the corresponding subnet from the subnets that resulted from
decomposing the overall net. As such, this projection fully
supports the decomposition approach from [2]. The resulting
subnets are already shown in Figure 27.

Using this projection, the combination of the initial mark-
ings of all subnets corresponds to the initial marking of the
overall net. As a result, the initial marking of a subnet is only a
subset of the initial marking of the overall net. In the example
as shown in Figure 27, the initial marking of subnet Na

1 does
correspond to the initial marking of the overall net, but the
initial markings of all other subnets are all the empty marking.
In case the initial marking covers several places that end up
in different subnets, none of the subnets may have the overall
initial marking as initial marking. Something similar holds for
the final markings.

2) Hide: The Hide projection projects the overall net into a
subnet by hiding visible transitions that are not covered by the
cluster at hand. Figure 28 shows the result of this projection on
net N1 and the cluster {a1, a2, a3, a4, a6}. By definition, this
projection maintains the structure of the net, as it only hides
some transitions. For this reason, the initial and final markings
do not change when applying this projection. However, this
projection does lead to the duplication of places and invisible
transitions, as every subnet will contain its own copy of the
silent transition t6 (called tb6 in Figure 28). Furthermore, this
projection also leads to invisible transitions that correspond
to visible transitions in the overall net. Transition tb7 is an
example of such a transition.
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Fig. 27. The result of applying the decomposition approach on net N1.
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Fig. 28. An example subnet that results from applying the Hide projection
on net N1 and cluster {a1, a2, a3, a4, a6} (cf. subnet Nb

1 in Figure 27).

3) Hide and reduce: The Hide and reduce projection
projects the net into a subnet by hiding visible transitions that
are not covered by the cluster at hand, and by applying classi-
cal behavior-preserving reduction rules afterwards. Figure 29
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Fig. 29. An example subnet that results from applying the Hide and reduce
projection on net N1 and cluster {a1, a2, a3, a4, a6} (cf. subnet Nb

1 in Figure
27).

shows the result of this projection approach on net N1 and
cluster {a1, a2, a3, a4, a6}. Unlike the Hide projection, this
projection does not maintain the structure of the net, as it may
remove places, transitions, and arcs. Like the Hide projection,
this projection maintains the behavior of the net, as it only
uses behavior-preserving reduction rules. Note that the initial
and final markings may need to be updated when using this
projection. Like the Hide projection, this projection may lead
to the duplication of places and invisible transitions, and to
invisible transitions that correspond to visible transitions in
the overall net.

D. Filter sublog

This step is similar to the step as described in Section III-B.
The only exception is that no artificial start and end activities
are added in this step, the overall log is just split according to
the activity clusters.

E. Replay algorithm

The goal of this step is to replay all sublogs on the
corresponding subnets using the provided cost-based replay
algorithm, thereby obtaining subalignments. To be able to
accumulate the costs from the subalignments into costs for the
overall pseudo-alignment later on, we need to change the cost
structure for these subreplays. As explained in [2], we divide
the costs of a particular activity move (that is, a synchronous
move, a log move, or a visible model move) in the alignment
by the number of clusters that contain the corresponding
activity. As a result, if the subreplays all agree on the same
move as the overall replay, then the accumulated costs for the
subreplays match the costs of the overall replay. We refer to
[2] for the details on this splitting of costs over clusters. For
this paper, it suffices to mention that the subreplays indeed
use such an updated cost structure.

Any replayer algorithm that takes the same set of inputs
and that returns a similar alignment with similar costs, can
be added with ease to the framework. For other replayers,
more work needs to be done, depending on the required inputs
or created outputs. The only real requirements on a replayer
algorithm (from our framework point-of-view) is that it should
be able take a net, a log, and a cost structure, and that it should
return an alignment with costs (based on the provided cost
structure) associated to every trace.

At the moment, the framework supports the most-used
replay algorithm: the cost-based replayer that underlies the
existing “Replay a Log on Petri net for Conformance Anal-
ysis” plug-in in ProM 6. This plug-in takes (1) a Petri net,
(2) a log, (3) a mapping that assigns an activity to every
transition (where invisible transitions can be mapped to a
special dummy activity), and (4) additional parameters for the
cost-based replayer. These additional parameters include the
initial marking of the net, the final markings of the net, and the
cost structure to be used. The replayer then returns an optimal
alignment including (raw fitness) costs for every trace.
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F. Merge subalignments

The goal of this step is to merge the subalignments that
resulted from replaying the sublogs on the subnets, and to
accumulate the costs of these subalignments. Each trace can
be correctly classified as fitting or not in the decomposed
approach (that is, exact results). However, because of the
updated costs structure, as explained in [2], this accumulated
costs will be a lower bound for the costs obtained by replaying
the overall log on the overall net.

To explain issues at hand for this step, we assume that
we need to replay the trace ⟨a1, a2, a3, a5, a6, a7, a8⟩ on the
overall net, that is on net N1 (see Figure 4). Figure 6 shows
an optimal overall alignment for this trace, which shows that
the optimal costs for replaying this trace is 40. Figure 30
shows a set of possible optimal subalignments (Ha

1 , . . . ,H
e
1 ),

obtained by replaying the sublogs on the subnets obtained
using the Decompose projection (Na

1 , . . . , N
e
1 , see Figure 27).

Accumulating the costs from these small alignments yields
costs 40, which is in accordance with the costs of the overall
alignment.

We need to merge these five subalignments into one overall
pseudo-alignment. If possible, this pseudo-alignment should
be an alignment. To do so, we take the trace and an empty
pseudo-alignment, and work our way through the trace (from
left to right) and the subalignments while building up the
pseudo-alignment:

1) Activity a1 is covered by two subalignments: Ha
1 and Hb

1 .
Fortunately, both subalignments agree on a synchronous
move on a1, so we add this synchronous move on a1 and
t1 to the pseudo-alignment and advance both the trace and
subalignments Ha

1 and Hb
1 .

2) Activity a2 is also covered by two subalignments: Hb
1

and Hc
1 . However, subalignment Hb

1 is not yet ready
to accept a2 as it first needs to do an invisible model
move on t2. Therefore, we first add this invisible model
move into the pseudo-alignment and advance the state
of subalignment Hb

1 . Then, unfortunately, we see that
both subalignments disagree on the move on a2, as Hb

1

suggests a synchronous move (on transition tb3) while
Hc

1 suggests a log move. In case of such a conflict,
we either take an optimistic approach (by selecting the
least expensive move) or a pessimistic approach (by
selecting the most expensive move). In the remainder
of this paper, we will use the pessimistic approach, as
the optimistic approach tends to mask mismatches by
selecting, in case of a conflict, moves without costs.
Clearly, when diagnosis is the goal, one should not mask
possible problems. So, we add the log move (a2,≫) into
the pseudo-alignment and advance the state of the trace
and both subalignments.

3) Activity a3 is handled in a similar way as a2, as both
subalignments again disagree. Note that as a result, we
now have added two log moves for a2 and a3 to the
pseudo-alignment, which leads to a transition sequence
that is indeed not executable in the overall net, and
to a pseudo-alignment which is (by definition) not an
alignment.

4) And so on.
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Figure 31 shows the alignment of alignments that results from
merging the subalignments. In this figure, the top row shows
the activity sequence, that is, the trace, the middle row shows
how the subalignments can be aligned properly, and the bottom
rows show the resulting overall pseudo-alignment. Moves that
have been ignored (because they were in conflict and were less
expensive) are indicated with a grey background. Note that his
includes transition tc7 in Hc

1 as its absence conflicts with the
visible model move on td7 in Hd

1 . The overall pseudo-alignment
follows directly from this alignment of subalignments by
taking in every column an optimal move, that is, a move that
has no grey background.

A crucial observation for this merging of alignments, is
that it requires the invisible transitions to occur in only a
single subnet. For the Decompose projection, this requirement
holds by definition, but this is not the case for the Hide
and Hide and reduce projections. Almost by definition, these
projections result in subnets that share invisible transitions,
as shown in Figure 28 and Figure 29. For this reason, we
first project a subalignment as obtained by these latter two
projections on the corresponding subnet as obtained by the
Decompose projection. The projection of a subalignment on
a net keeps only those moves in the subalignment that are
related to some transition in the subnet, while all other moves
are discarded. As an example, Figure 32 shows a possible
optimal alignment for the trace ⟨a1, a2, a3, a5, a6, a7, a8⟩ on
the subnet shown in Figure 28. Projection of this alignment
on the corresponding subnet N b

1 (see Figure 27) leads to
alignment Hb

1 (see Figure 30), as the moves related to the
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transitions tb6, tb7, tb9, and tb10 will be discarded. After this
projection, the alignment can be merged as described above.

G. Implementation

Fig. 33. First dialog for Replay using Decomposition action in ProM 6.

The decomposed replay algorithm has been implemented as
the Replay using Decomposition action in the Decompose-
dReplayer package in ProM 6. Figure 33 shows the first dialog
for this action, which allows the user to select the configuration
to use (which determines, amongst other things, which net
projection to use), which classifier to use, and two sliders to
determine the cost structure to be used during the replay. The
top slider (labeled Move on Log Costs) determines the cost
of a log move, that is, the costs of skipping an activity from
the log because there is no matching transition in the net. The
bottom slider (labeled Move on Model Costs) determines the
cost of a visible model move, that is, the costs of executing a
visible transition in the net while there is no matching activity
in the log.

Like with the decomposed discovery, a configuration of the
algorithm determines predefined values for the settings of the
algorithm. The following configurations can be selected:
Decompose This configuration uses all steps (as described

before) with default values. For decomposing the net,
extracting the clusters, filtering the sublogs, and merging

the subalignments, no parameters are required. For pro-
jecting the net into subnets, the Decompose projection is
selected. For the replay algorithm, (1) the classifier is as
selected by the user, (2) the costs of synchronous moves
and invisible model moves are set to 0, while the costs
of log moves and visible log moves are set as selected
by the user, and (3) a transition label is mapped onto an
activity if and only the user has selected so (in the second
dialog).

Hide This configuration is identical to the Decompose con-
figuration, except that for projecting the net into subnets
the Hide projection is used.

Hide and reduce This configuration is identical to Decom-
pose configuration, except that for projecting the net into
subnets the Hide and reduce projection is used.

Do not decompose This configuration creates a single subnet
and a single sublog. As a result, the replayer is run
with the selected classifier, costs, and transition-activity
mapping on the original log and net. This configuration
corresponds to the monolithic approach, and offers a
baseline for comparison.

Like with the decomposed discovery, the Do not decompose
configuration has been added to be able to run the underlying
algorithm in a monolithic setting.

Fig. 34. Second dialog for Replay using Decomposition action in ProM 6.

Figure 34 shows the second dialog for this action, which
allows the user to select which transition label corresponds
to which activity. Note that this dialog causally depends on
the classifier as set in the first dialog: Changing the classifier
in the first dialog will change the available activities in this
second dialog. If an activity exists with the same name as the
transition label, then this activity will be preselected for the
transition label.

As mentioned in Section IV-E, the only replayer imple-
mented in the framework is the cost-based replayer that under-
lies the existing “Replay a Log on Petri net for Conformance
Analysis” plug-in in ProM 6. Our framework imposes an initial
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deadline of 10 minutes on this replayer (see also [28]). As
soon as a single run of this replayer exceeds this deadline,
this run is stopped and the deadline for subsequent runs is set
to 0 minutes. In case of a non-decomposed replay, there are
no subsequent runs, but in case of decomposed replay there
may be. Assume, for the sake of argument, that the log and
net at hand have been decomposed by the framework into five
sublogs and subnets, and that the replayer takes (in the given
order) 5, 15, 10, 5, and 15 minutes to replay these sublogs on
these subnets. The first replay finishes in time, but the second
does not. As a result, this second replay fails, which causes
the entire decomposed replay to fail. As such, there is no need
to spend much time in the subsequent third, fourth, and fifth
replay. For this reason, after the second replay has failed, we
set the deadline to 0 minutes, which causes these subsequent
replays to return as soon as possible.

V. EVALUATION

We have evaluated the implemented decomposed discovery
and replay algorithms by running them on the data sets as
mentioned in Section II-F. This section discusses the results of
these experiments. For the decomposed discovery algorithm,
the reported computation times for the monolithic discovery
(that is, for the Do not decompose configuration) include
only the computation time needed for the discovery algorithm
itself (see Figure 9), that is, it excludes the computation
times for discovering activity clusters, filtering the overall
log, and merging the subnets. For all other configurations,
the computation times include all these steps. In a similar
fashion, for the decomposed replay algorithm, the reported
computation times for the monolithic replay (that is, for the
Do not decompose configuration) include only the computation
time needed for the replay algorithm itself (see Figure 25),
that is, it excludes the computation times for the creation of
the activity clusters, the filtering of both the overall net and
the overall log, and the merging of the subalignments. Hence,
overhead is only counted for the decomposed approaches and
not for the baseline (no decomposition).

For the DMKD 2006 data set, the results use case labels
like a32f0n10, where a32 indicates that this case contains 32
activities, and n10 indicates that in 10% of the traces noise
was introduced. For the IS 2014 data set, the results use case
labels like 59/55/n, where 59 indicates the reported number
of activities in [28], 55 indicates the average trace length, and
n indicates that this log contains noise. For the BPM 2013
data set, the results use case labels like prAm6, which directly
relates to the case from the data set. For the BPIC data sets,
the result use case labels like BPIC15 1, where 15 indicates
that this case is from the BPIC 2015 data set, and 1 indicates
that this is the first case (log) from this data set.

All plug-ins used for doing this evaluation are available in
the DivideAndConquerTest package in ProM 6. This package
can be downloaded from https://svn.win.tue.nl/repos/prom/
Packages/DivideAndConquerTest/Trunk3, which is a folder in
our Subversion repository.

3See the file evaluation/readme.txt in this download for additional details
on the evaluation.

All tests are performed on a desktop computer with an Intel
Core i7-4770 CPU at 3.40 GHz, 16 GB of RAM, running
Windows 7 Enterprise (64-bit), and using a 64-bit version
of Java 7 where 4 GB of RAM was allocated to the Java
VM. Note that the approach can be distributed over multiple
computers, but we only use one computing node.

A. Discovery

We have evaluated the implemented decomposed discovery
algorithm using the ILP Miner, as this discovery algorithm is
known to have a bad complexity in the number of different
activities in the log. Although other discovery algorithms are
supported by the framework (see also Table XI), in this paper
we focus only on the ILP miner.

To evaluate the decomposed discovery algorithm for a single
case, that is, for a given event log, a given configuration, and
a given discovery algorithm, we perform the following steps:

1) We import the event log. We assume that the first classi-
fier in that event log provides us with the activity log.

2) We run the decomposed discovery algorithm using the
given configuration and the given discovery algorithm.
Any computation time reported relates only to this step,
and not to any of the other steps. In the end, this results
in an accepting Petri net, which is saved to file.

3) We replay the given event log on the discovered net
using the monolithic replay. This provides us with the
log alignment needed for the next step.

4) We estimate the generalization and precision of the log
and the net using the Measure Precision/Generalization
plug-in as available in ProM 6.

5) We output a text file containing the diagnostic results in
condensed form.

These steps have been implemented as the Evaluate Decom-
posed Discovery plug-in.

First, we compare the monolithic discovery algorithm (as
implemented by the Do not decompose configuration, see
Section III-E) with the maximal-decomposition discovery al-
gorithm (as implemented by the Decompose configuration).
Second, we compare the maximal-decomposition discovery al-
gorithm with both the non-maximal-decomposition discovery
algorithms (as implemented by the Decompose 75% configu-
ration and the Decompose 50% configuration).

1) Monolithic vs. Maximal-decomposition: First, we show
for which logs in the data sets both configurations are feasible.
Second, we show the computation times required by both
configurations, and compare them where possible. Next, we
provide results for the precision and generalization metrics
for both configurations. Note that, as we are using the ILP
miner, fitness is guaranteed to be 1, so we do not discuss the
fitness metric here. To compute precision and generalization,
we need to replay the log on the discovered net without using
decomposition. Therefore, third, we show for which logs this
replay was feasible. Fourth, we show the feasible precision
values obtained by both configurations, and compare them
where possible. Fifth, we do the same for generalization.
Finally, we summarize our findings.
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a) Feasibility: The Do not decompose configuration
(simply called Do not decompose henceforth) is feasible for
all logs in the DMKD 2006 data set, all logs in the IS 2014
data set, for the prAm6, prBm6, prCm6, and prEm6 logs from
the BPM 2013 data set, and for the only log in the BPIC
2012 data set. Do not decompose runs out of memory for the
prDm6 and prFm6 logs, while it runs out of time for all other
infeasible logs (that is, they were stopped after a week).

The Decompose configuration (simply called Decompose
henceforth) is feasible for all logs in the DMKD 2006 data
set, all logs in the IS 2014 data set, for the prAm6, prBm6,
prCm6, prEm6, and prGm6 logs from the BPM 2013 data set,
for the only log in the BPIC 2012 data set, and for all logs in
the BPIC 2015 data set. Like Do not decompose, Decompose
runs out of memory for the prDm6 and the prFm6 logs.

As a result, we can only compare computation times for
those logs that are feasible with Do not decompose.
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Fig. 35. Comparison of feasible computation times. The speed-up by
decomposition tends to be high when computation times are long.

b) Computation times: Figure 35 shows the feasible
computation times for Do not decompose, and the speed-ups
obtained by using Decompose. For example, this figure shows
that Do not decompose took almost 75.000 seconds (more than
20 hours) to discover a net from the prCm6 log, and it also
shows that Decompose is about 150 times as fast, needing
only about 500 seconds (less than 10 minutes). Decompose
outperforms Do not decompose for all cases where the latter
takes more than ten seconds.

Figure 35 clearly shows that the speed-up obtained by
Decompose depends on the computation time of Do not
decompose. This is especially clear for the DMKD 2006 and
IS 2014 data sets: The higher the computation time needed
by Do not decompose, the higher the speed-up of Decompose.
The figure finally shows that the speed-up also depends on
the data set the log originates from. For example, the speed-
up for a log from the DMKD 2006 data set is typically higher
than the speed-up for a log from the IS 2014 data set. This is

surprising, as we believed that both data sets contained logs
with a similar complexity.
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Fig. 36. Categorized percentages of computation times for the most-hard
feasible cases together with their computation times.

Figure 36 shows, for the 10 most time-consuming logs,
the feasible computation times for both configurations, and
also where time was spend. First, time can be spend on the
discovery of the subnets, that is, on running the discovery
algorithm on the sublogs. Figure 36 shows the percentage
of time spend on this (see the bottom-most bars, labeled
Discovery). Second, time can be spend in the reduction of the
discovered overall net, which is shown using the middle bars,
labeled Reduction. Clearly, Decompose spends the majority of
its time (more than 86% for the cases shown in Figure 36,
more than 83% for all feasible cases) in the decomposed
discovery, only a fraction is spend on the overhead of the
decomposition approach. This shows that there is no urgent
need to improve on, for example, the reduction of the net, as
the entire approach would hardly benefit from this.

Figure 36 also shows the computation times using De-
compose for those logs for which Do not decompose was
infeasible. For example, it took Decompose 2167 seconds
(about 36 minutes) to discover a net from the BPIC2015 5
log. Given the fact that Do not decompose for this log was
stopped after a week, the speed-up of Decompose for this log
is at least 280.

c) Feasibility of monolithic replay: The monolithic re-
play on the nets discovered using Do not decompose is feasible
for all logs in the DMKD 2006 data set, all logs in the IS
2014 data set, the only log in the BPIC 2012 data set, and for
the prAm6 and prBm6 logs in the BPM 2013 data set. The
monolithic replay runs out of time (that is, it takes more than
10 minutes) for the prCm6 and prEm6 logs.

The monolithic replay on the net discovered using Decom-
pose is feasible for all logs in the DMKD 2006 data set, all
logs in the IS 2014 data set, the prCm6, prDm6, prFm6 logs
in the BPM 2013 data set, the only log in the BPIC 2012 data
set, and the BPIC2015 3 and BPIC2015 4 logs in the BPIC
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2015 data set. The monolithic replay runs out of memory for
the BPIC2015 2 log, and runs out of time for all remaining
logs.

As a result, we can only compare precision and generaliza-
tion for all logs in the DMKD 2006 data set, all logs in the
IS 2014 data set, and the log in the BPIC2012 data set.
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Fig. 37. Comparison of precision metrics on all feasible data sets.

d) Precision: Figure 37 shows the precision values ob-
tained using Do not decompose, and the percentage of pre-
cision as obtained using Decompose. As an example, the
precision obtained with Do not decompose on the 48/12/n
log is about 0.86, and Decompose results in a precision of
about 33% of 0.86 (about 0.28). This figure also shows that,
in general, Decompose results in the same or less precision as
Do not decompose. The only exceptions to this are the 32/18/n
log (101.23%) and the 32/18/- log (100.42%).

Figure 38 shows why precision can be lower when using De-
compose. The net that is discovered with Decompose contains
three source transitions (transitions without incoming arcs),
which are always enabled. As these transitions are enabled in
all possible states, but only executed in few states, this net is
less precise.

In contrast, Figure 39 shows that precision can also be
higher when using Decompose. The net that is discovered with
Decompose contains two additional source places (places with-
out incoming arcs), which are initially marked. One of these
places effectively prevents the transition labeled I2+complete
from being executed more than once, which is possible in the
net discovered by Do not decompose, but which does not occur
in the log. As a result, the net discovered with Decompose is
more precise.

e) Generalization: Figure 40 shows the generalization
values obtained using Do not decompose, and the percentage
of precision as obtained using Decompose. This figure shows
that, in general, Decompose results in a better generalization
than Do not decompose, although the differences are typically
very small.

Fig. 38. Example a32f0n00 explaining why precision can be lower when using
Decompose. The top net is the result from Do not decompose, the bottom net
from Decompose.

Fig. 39. Example 32/18/n explaining why precision can be higher when using
Decompose. The top net is the result from Do not decompose, the bottom net
from Decompose.
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Fig. 40. Comparison of generalization metrics on all feasible data sets.
Decompose results in very similar generalization values.

f) Conclusions: If the monolithic discovery algorithm
(that is, Do not decompose) can discover a net from a log, then
the decomposition discovery algorithm (that is, Decompose)
can also discover a net from this log. However, the decom-
position algorithm can also discover nets from logs on which
the monolithic algorithm fails. As such, the decomposition
algorithm can be applied on much larger and more complex
logs than the monolithic algorithm.

The decomposition algorithm is typically faster than the
monolithic algorithm. If the monolithic algorithm takes more
than 100 seconds, then the speed-up is at least 7.5, but can be
more than 100.

The decomposition algorithm typically results in nets that
have an equal or worse value for precision, where the latter
is typically due to the introduction of additional source tran-
sitions. However, it is also possible that the decomposition
algorithm results in a slightly higher precision, as a result of
the introduction of additional initially marked source places.

The decomposition algorithm typically results in a net that
has an equal or better value for generalization, although the
improvements are minor.

2) Maximal-decomposition vs Non-maximal-
decomposition: First, we show for which logs all three
configurations are feasible. Second, we show the computation
times required by Decompose and the speed-ups obtained
using the other two configurations. Third, we show for
which logs (and discovered nets) the monolithic replay was
feasible, as again this is needed to compute the precision and
generalization. Fourth, we show the precision values obtained
using Decompose and the percentages obtained by the other
two configurations. Fifth, we do the same for generalization.
Finally, we summarize our findings.

a) Feasibility: The Decompose 75% configuration (sim-
ply called Decompose 75% henceforth) and the Decompose
50% configuration (simply called Decompose 50% henceforth)
are feasible for exactly the same set of logs as Decompose,

that is, they only fail for the prDm6 and prFm6 logs (by also
running out of memory).

As a result, we can compare computation times for all logs
that are feasible with Decompose.
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Fig. 41. Comparison of decomposed computation times.

b) Computation times: Figure 41 shows the computation
times required by Decompose, and the speed-ups obtained
using Decompose 75% and Decompose 50%. As an example,
it takes Decompose about 210,000 seconds (about 58 hours)
to discover a net from the prGm6 log, and the speed-up
of Decompose 50% is about 1.09, resulting in a required
computation time of about 193,000 seconds (about 54 hours).
For the easier cases, Decompose 50% outperforms Decompose,
but for the harder cases there seems to be no improvement.
In fact, there are two cases (BPIC2012 and BPIC2015 3) for
which Decompose 50% needs significantly more time than the
other two configurations.

On average, Decompose 50% requires about 96% of the
time required by Decompose, and Decompose 75% requires
about 98%. Nevertheless, the differences between the config-
urations seem only minor, especially when compared to the
difference with Do not decompose.

c) Feasibility of monolithic replay: The monolithic re-
play on the nets discovered using Decompose 75% is feasible
for all logs in the DMKD 2006 data set, all logs in the IS 2014
data set, the prCm6 log in the BPM 2013 data set, the only
log in the BPIC 2012 data set, the only log in the BPIC 2012
data set, and the BPIC2015 1, BPIC2015 3, and BPIC2015 4
logs in the BPIC 2015 data set. The monolithic replay runs
out of memory for the BPIC2015 2 log and out of time for
all remaining logs.

The monolithic replay on the nets discovered using De-
compose 50% is feasible for exactly the same set of logs as
for which Decompose 75% is feasible. Again, the monolithic
replay runs out of memory for the BPIC2015 2 log, while it
runs out of time for all remaining logs.

d) Precision: Figure 42 shows the precision values ob-
tained using Decompose, and the percentages using Decom-
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Fig. 42. Comparison of decomposed precision metrics.

pose 75% and Decompose 50%. As an example, the precision
value for the a32f0n00 case as obtained using Decompose
is about 0.28, and the percentages for the two other con-
figurations are about 237%, resulting in a precision value of
about 0.67 (that is, the same value as obtained by Do not
decompose). Apparently, both Decompose 75% and Decom-
pose 50% were able to avoid the introduction of the additional
source transitions for these cases. Still, for some other cases
(a42f0n00, 48/12/-, and 48/12/n), these configurations did not
improve precision to the same level as Do not decompose.
Possibly, we need an even more coarse-grained decomposition
(like 25%) to get the same precision.
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Fig. 43. Comparison of decomposed generalization metrics.

e) Generalization: Figure 43 shows the generalization
values obtained using Decompose, and the percentages using
Decompose 75% and Decompose 50%. As an example, the
precision value for the a32f0n00 case as obtained using

Decompose is about 0.98, and the percentages for the both
other configurations are about 99.7%, resulting in a precision
value of about 0.98.

f) Conclusions: The non-maximal decomposition discov-
ery algorithms (that is, Decompose 75% and Decompose 50%)
can discover nets from the same set of logs that the maximal
decomposition algorithm (Decompose) can. On average, the
50% decomposition algorithm takes a bit more time (104%)
than the maximal decomposition algorithm, and the 75%
decomposition algorithm takes also a bit more (105%). For the
cases that take less than 100 seconds, the 50% decomposition
algorithm is the fastest, but it is considerably slower for
some cases that require more time, like the BPIC2012 and
the BPIC2015 3 cases. Apparently, for these cases the 50%
decomposition algorithm results in sublogs that are harder
to handle for the ILP Miner than the sublogs for the other
decomposition algorithms. The non-maximal decomposition
algorithms result in equal or better precision values. Some-
times the precision values obtained match the ones obtained
using the monolithic algorithm (which is perfect). The non-
maximal decomposition algorithms result in equal or worse
generalization values, but if worse the difference is only minor.

B. Replay

To evaluate the decomposed replay algorithm for a single
case, that is, for a given combination of a log and a net, we
perform the following steps:

1) We import the given event log. As before, we assume that
the first classifier in that event log provides us with the
activity log.

2) We import the accepting Petri net provided. We assume
that a transition in this net is related to an activity in the
log if and only if the label of the transition matches the
activity perfectly.

3) We run the decomposed replay algorithm using the given
configuration. Any computation time reported relates only
to this step, and not to any of the other steps. In the end,
this results in a (pseudo)-alignment with replay costs.

4) We output a text file containing the diagnostic results in
condensed form.

These steps have been implemented as the Evaluate Decom-
posed Replay plug-in.

As the BPI 2012 and BPI 2015 data sets did not include
process models, these data sets could not be used in this
evaluation.

First, we compare the monolithic replay algorithm (as
implemented by the Do not decompose configuration, see
Section IV-G) with the decomposed replay algorithm (as
implemented by the Decompose configuration). Second, we
compare the monolithic replay algorithm with the alternative
replay algorithms, that is, we compare the Do not decompose
configuration with the Hide configuration and the hide and
reduce configuration.

1) Monolithic vs. Decomposition: First, we show for which
logs and nets in the data sets both replay configurations
are feasible. Second, we show the computation times needed
by both configurations, and compare them where possible.
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Next, we show the replay cost values as obtained by both
configurations. Finally, we summarize our findings.

a) Feasibility: The Do not decompose configuration
(simply called Do not decompose henceforth) is feasible for
all cases in the DMKD 2006 data set, all cases in the IS 2014
data set, and the prAm6 and prBm6 cases from the BPM 2013
data set. Do not decompose runs out of time (that is, it does
not finish in 10 minutes) for all remaining cases from the BPM
2013 data set.

The Decompose configuration (simply called Decompose
henceforth) is feasible for all cases in all data sets.

As a result, we can only compare the computation times and
costs for those cases that were feasible for Do not decompose.
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Fig. 44. Comparison of feasible computation times.

b) Computation times: Figure 44 shows the feasible
computation times using Do not decompose, and the speed-
ups obtained by using Decompose. For example, this figure
shows that Do not decompose took about 599 seconds (almost
10 minutes) to replay the 59/55/n log on its net, and it also
shows that Decompose is 146 times as fast, requiring only 4
seconds. For all logs considered, Decompose outperforms Do
not decompose for those cases where the latter takes more than
3 seconds.

Figure 44 clearly shows that the speed-up obtained by
Decompose depends on the computation time of Do not
decompose. This is especially clear for the DMKD 2006 and
IS 2014 data sets: The higher the computation time needed
by Do not decompose, the higher the speed-up of Decompose.
For the BPM 2013 this relation is not obvious, as it contains
only two points which are almost on top of each other. The
figure finally shows that, like with discovery, the speed-up
also depends on the data set the case originates from. For
example, the speed-up of a case from the DMKD 2006 data
set is typically higher than the speed-up for a case from the
IS 2014 data set. Again, we find this surprising.

Figure 45 shows, for the 10 most time-consuming cases,
the computation times for both configurations, and also where
time was spend. First, time can be spend on the replay of the

1

10

100

1000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
e

co
n

d
s

Replay - Percentage of times spend and 

computation time

Replay Merge Split Other Do not decompose Decompose

Fig. 45. Categorized percentages of computation times for the most-hard
feasible cases together with their computation times.

sublogs on the subnets, that is, on running the replay algorithm
on the sublogs and subnets. Figure 45 shows the percentage of
time spend on this using the bottom-most bars, labeled Replay.
Second, time can be spend in splitting the log (the bars labeled
Split log) and merging the alignments (the bars labeled Merge).
The percentage of merge time needed for the decomposition
approach in these cases ranges from about 18% (prGm6) to
about 65% (57/39/n). On average, on these cases Decompose
spends 47% of its time on merging the alignments, 25% on
the actual replay, and 24% on splitting the logs. This indicates
that by improving the alignment merge and/or the log split,
we would improve the decomposition approach considerably.

Figure 45 also shows the computation times using Decom-
pose for those cases for which were infeasible with Do not
decompose. For example, it took Decompose 5 seconds to
replay the prCm6 log on its net. Given the fact that Do not
decompose for this case did not finish in 10 minutes, the speed-
up of Decompose for this case is at least 120.

c) Replay costs: For many of the cases in the data sets,
the replays costs are 0 as the log and net are perfectly fitting.
This is the case for all cases from the DMKD 2006 data set
that end with 00 (like a32f0n00), for all the cases from the
IS 2014 data set that end with - (like 32/34/-), with all the
cases from the same data set that end with n but have the
lowest average trace length for the given set of activities (like
59/17/n), and for the prBm6 case from the BPM 2013 data
set.

Recall that the decomposition replay approach guarantees
that it yields costs 0 if and only if the monolithic replay
approach yields costs 0, and that the decomposition approach
never yields higher costs than the monolithic approach. As
a result of the former, we will only compare the cases with
non-zero costs.

Figure 46 shows the non-zero costs values obtained using
both Do not decompose and Decompose. For example, for the
57/52/n case, the costs value obtained using Do not decompose
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Fig. 46. Comparison of replay costs.

is about 80, while the costs obtained by Decompose is just
above 10.

Figure 47 explains this difference. The top part in this figure
shows the part of the 57/52/n net where Do not decompose
detects mismatches, whereas the bottom part shows the two
subnets of this net where Decompose detects mismatches.
Clearly, each of the two subnets individually allows for more
behavior than the part of the net, which explains why De-
compose can report less costs. However, note that Decompose
clearly indicates the same transitions to be involved in the
mismatches: the transitions AR, AU, AV, and AZ. Even better,
using Decompose, it is straightforward to conclude that the
noise as contained in this log was introduced by (1) swapping
the occurrences of AR and AU and (2) swapping the occur-
rences of AV and AZ, a fact that is not so obvious when using
Do not decompose. Therefore, Decompose can very well be
used to diagnose the same mismatches, and can do so in less
time.

d) Conclusions: If the monolithic replay algorithm (that
is, the do not decompose configuration) can replay a log on
its net, then the decomposition replay algorithm (that is, the
Decompose configuration) can also replay this log on its net.
However, the decomposition replay algorithm can also replay
logs on nets on for which the monolithic replay algorithm
fails. In fact, the decomposition replay algorithm was able to
replay all logs on their nets from all data sets. As such, this
algorithm can be applied on more cases than the monolithic
replay algorithm.

The decomposition replay algorithm is typically faster than
the monolithic replay algorithm. If the monolithic algorithm
takes more than 10 seconds, then the speed-up is at least
4, but can be more than 100. A point of attention for the
decomposition replay algorithm is the fact that the required
merge of the alignments and the required split of the log may
take significant time. In the data sets, there were examples
where the decomposition algorithm took 30 seconds, of which
only 6 seconds were used for the actual replay, and more

than 15 seconds were used on merging the alignments. As
a result, we aim to improve on the merging of alignments and
the splitting of logs.

The decomposition algorithm on a log and net that are not
perfectly fitting results in costs that are quite a bit lower
than the costs as obtained using the monolithic algorithm.
However, although not the same mismatches are detected by
the decomposition algorithm, it will detect similar mismatches,
which can be used to diagnose why a log and a net do not
match perfectly.

2) Monolithic vs. Alternative: Next, we compare the Do
not decompose configuration to the two alternative replay
configurations: the Hide configuration and and the Hide and
reduce configuration. Recall that the difference between these
two configurations and the Decompose configuration lies in
the way they project the overall net into subnets. The Decom-
pose configuration uses the Decompose projection approach
(see Section IV-C1), the Hide configuration uses the Hide
projection approach (see Section IV-C2), and the Hide and
reduce configuration uses the Hide and reduce projection
approach. First, we show for which cases from the data sets
both alternative replay configurations are feasible. Second,
we show the computation times needed by both alternative
configurations, and compare them to the computation times
as needed by the Do not decompose configuration where
possible. Third, we show the replay cost values as obtained by
the alternative configurations, and compare them to the costs
as obtained by the Do not decompose configuration where
possible. Finally, we summarize our findings.

a) Feasibility: The Hide configuration (simply called
Hide henceforth) is feasible for all logs and nets in the DMKD
2006 data set, all logs and nets in the IS 2014 data set, and
the prAm6, prBm6, and prCm6 logs and nets in the BPM 2013
data set. Hide runs out of memory for the prDm6 case, while
it runs out of time (10 minutes for a single replay) for all
remaining cases from the BPM 2013 data set.

The Hide and reduce configuration (simply called Hide and
reduce henceforth) is feasible for all cases from all data sets.

As a result, we can only compare the computation times and
costs for those cases that are feasible for Do not decompose.

b) Computation times: Figure 48 shows the computation
times required by Do not decompose, and the speed-ups
obtained by using Hide and Hide and reduce. For example,
the figure shows that it took Do not decompose about 599
seconds (almost 10 minutes) to replay the 59/55/n log on its
net, and it also shows that Hide and reduce is about 96 times
as fast. In contrast, for this case, Hide is about 6 times as
slow as Do not decompose. When we compare Figure 48 with
Figure 44, then we observe that Hide and Hide and reduce
do not offer any advantages over Decompose when it comes
to computation times, as they are always slower than that
configuration. Typically, Hide is a lot slower, and even slower
than Do not decompose, while Hide and reduce is only a bit
slower. However, like Decompose, Hide and reduce is faster
than Do not decompose.

Figure 48 also shows that, in general, the speed-up as
obtained by Hide and reduce depends on the computation time
of Do not decompose: The higher the computation time, the
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Fig. 47. Example 57/52/n showing that the decomposition approach diagnoses the same mismatches.
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Fig. 48. Comparison of computation times.

higher the speed-up. In contrast, the speed-up of Hide gets
worse when computation time of Do not decompose goes up.

c) Replay costs: Figure 49 shows the non-zero costs
values as obtained by Do not decompose and both Hide and
Hide and reduce (as Hide and Hide and reduce always return
the same costs on these data sets, we only show one). Note
the resemblance of this figure with Figure 46: Basically, the
only significant change involves the data series for the DMKD
2006 data set. For this data set, the costs as obtained by Hide
and Hide and reduce are higher than with Decompose, which
is good (the higher, the better).

d) Conclusions: In this section, we have compared the
monolithic replay algorithm (that is, Do not decompose) with
two alternative replay algorithms: A first that uses the Hide
projection (that is, Hide) and a second that uses the Hide
and reduce projection (that is, Hide and reduce). Like the
decomposition algorithm (that is, Decompose), both alternative
algorithms can replay all cases from all data sets. The first
alternative algorithm can only replay those cases that the
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Fig. 49. Comparison of replay costs.

monolithic algorithm can replay, and one more: the prCm6
case.

The first alternative algorithm is typically much slower
than the monolithic algorithm. However, the second alternative
algorithm is typically faster. If the monolithic algorithm takes
more than 10 seconds, then the speed-up of using the second
alternative algorithm is at least 3, but it can be about 100.
When compared to the decomposition algorithm, the second
alternative algorithm is on average twice as slow.

Using the alternative algorithms on a log and net that are
not fitting results in costs that are also quite a bit lower
then costs as obtained using monolithic algorithm. For the IS
2014 and BPM 2013 data sets, these costs are similar to the
costs as obtained by the decomposition algorithm. However,
for the DMKD 2006 data set, the costs are higher than the
costs obtained by the decomposition algorithm. In general,
the alternative algorithms result in costs that are somewhere
in-between the costs obtained by the decomposition algorithm
and the costs obtained by monolithic algorithm.
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VI. CONCLUSIONS

This paper presents the Divide and Conquer framework.
This framework fully supports the decomposed process mining
as introduced in [2], and has been implemented in ProM 6.
As such, the framework allows for (1) easy decomposed
discovery, using existing discovery algorithms, and (2) easy
decomposed replay, using the cutting-edge cost-based replayer.
The current framework supports six discovery algorithms, but
can easily support more.

For the decomposed discovery, the framework allows the
end user to select the classifier to use (which maps the
event log at hand to an activity log), the miner (or discovery
algorithm) to use, and a configuration to use. Available con-
figurations include Do not decompose (monolithic discovery
algorithm), Decompose (maximal decomposition discovery
algorithm), Decompose 75% (75% decomposition discovery
algorithm), and Decompose 50% (50% decomposition discov-
ery algorithm). The selected level of decomposition (maximal,
75%, or 50%) determines the number of sublogs to overall log
will be split into. For the maximal decomposition, this number
will be maximal. Whatever classifier, miner, and configuration
the user selects, the end result will be an overall net discovered
for the log at hand.

For the decomposed replay, the framework allows the user
to select the classifier to use, and a configuration to use (as
there is only one replayer supported at the moment, there is
no need to select a replayer). Available configurations include
Do not decompose (monolithic replay algorithm), Decompose
(decomposition replay algorithm), Hide (replay algorithm that
uses only hiding), and Hide and reduce (replay algorithm
that uses hiding and reduction). The selected configuration
determines the level of decomposition (maximal or not) and
the projection used for the subnets (Decompose, Hide, or Hide
and reduce). Whatever classifier and configuration the user
selects, the end result will be an overall pseudo-alignment
for the log and net at hand, where a pseudo-alignment is an
alignment except for the fact that the transition sequence may
not be executable in the net. If possible, this pseudo-alignment
is an alignment, but this is not always possible.

Adding a new miner to the framework is easy, provided
that the miner either results in (1) a net with an explicit initial
marking and an explicit set of final markings, or (2) a net with
an implicit initial marking (one token in every source place)
and an implicit set of final markings (a token in one sink
place). However, if a new miner emerges that does not satisfy
these requirements, then it can still be added, but a wrapper
needs to be created that assigns an initial marking and a set
of final markings to the discovered net.

The decomposed ILP Miner can discover a net from a log
in about half an hour where the ILP Miner takes more than a
week (and might not even succeed). The decomposed replayer
can replay a case (a log on a corresponding net) in seconds
where the replayer itself would take 10 minutes. This shows
that decomposition indeed can speed up both the discovery
and the replay. Because of the formal guarantees as provided
by the decomposition, the results of both the decomposed dis-
covery and replay provide a valuable and reliable alternative.

For discovery, precision may drop, while generalization may
increase. The possible drop in precision may be mitigated
by using a non-maximal decomposition algorithm, like the
50% decomposition algorithm. For replay, costs may drop.
However, this drop is not a downside, as the decomposition
replay algorithm still points out valid mismatches between a
log and a net, and the decomposition algorithm only reports
mismatches if the monolithic replay does. As a result, when
all mismatches reported by decomposition replay algorithm
have been solved, then they will also have been solved for the
monolithic replay algorithm.

Future work on the framework includes additional non-
maximal decomposition algorithms and improvements of the
overhead. Our evaluation shows that in discovery we can go
from maximal decomposition to 50% decomposition while
maintaining high speed-ups. Discovery may take more time,
but on average the computation times are still reasonable, and
the results get only better. Therefore, for discovery, we aim to
check whether, for example, a 25% decomposition algorithm
is even better, both in computation times and in results. In
replay, we did not try a 50% decomposition algorithm yet, but
this may for sure be very beneficial. Computation times may
become better, as we have less sublogs to replay, and replay
costs also get better when decomposing less.

Our evaluation shows that in discovery the overhead takes
only a minor fraction of the overall time, while in replay the
overhead may be considerable. As such, it makes more sense
to investigate whether we can improve on the alignment merge
than to try to improve the reduction of the discovered overall
net.
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