Dynamic Skipping and Blocking and Dead Path
Elimination for Cyclic Workflows

Dirk Fahland' and Hagen Volzer?

! Eindhoven University of Technology, The Netherlands
2 IBM Research — Zurich, Switzerland

Abstract. We propose and study dynamic versions of the classical flexibility
constructs skip and block and motivate and define a formal semantics for them.
We show that our semantics for dynamic blocking is a generalization of classical
dead-path-elimination and solves the long-standing open problem to define dead-
path elimination for cyclic workflows. This gives rise to a simple and fully local

semantics for inclusive gateways.

1 Introduction

One of the challenges in process management is striking a balance between the clarity
of a process model on one hand and its ability to support a large variety of process
flows on the other hand (also called process flexibility). A model can express flexibility
in different ways: by design, by deviation, by underspecification, and by change [13,
14]. Flexibility by design faces the above challenge directly: including many different
possible paths in a model tends to increase its complexity.

A public service process from a Dutch munici-
pality [3] illustrates the problem; the process model
(Fig. 1) has 80 process steps (white) and 20 routing
constructs (grey). As 65% of the process steps are
optional under some condition, the model also con-
tains 52 explicit paths for skipping 38 single process
steps (black) or 13 segments of multiple process steps
(red). Paths for skipping are not mutually exclusive
but overlap as indicated by the highlighted segment in
the middle of Fig. 1. The complex routing logic is rel-
evant: in 481 cases over a period of over 1 year, each
case required steps to be skipped, amounting to 3087
skipped steps for 11846 executed steps (26%). Other
municipalities running the same process face similar
dynamics [3], their share of optional process steps
ranges between 50% and 63% to allow for 516/5363
to 1574/7684 skips in 1 year. Creating, understanding,
and maintaining models for such flexible processes
with explicit design constructs is tedious.

The classical concepts to skip tasks and to block
a path can be used to express flexibility by design.

Fig. 1. Model of a flexible pro-
cess

They have been used predominantly for static flexibility, i.e., to remove tasks or paths
from the model before deployment through process model configuration [7]. However, in
many processes, skipping and blocking dynamically depend on user input or dynamically
computed data, e.g., Fig. 1 [3]. Such dynamic skipping and blocking can be expressed
to some extent in WS-BPEL by setting the status of a /ink through a combination of
transition conditions, join conditions, suppressing join failure, and dead path elimination
- however, mapping classical skip and block to their implementation in BPEL is not
straight-forward. Furthermore, the link status can carry only the values ‘true’ or ‘false’,
but this binary value can have many different causes, which merges the concepts of
flexibility through data conditions, flexibility through alternate joining of paths, join
failure, elimination of paths that were deliberately not taken in the process logic, and
elimination of paths that are blocked through activity failure. This prevents the free
combination of these concepts and can create unintended side effects [15, 18]. Moreover,
BPEL restricts these constructs to acyclic control flow graphs.

In this paper, we study dynamic skipping and blocking in the context of BPMN with
the following contributions:

1. We define dynamic skipping and blocking for BPMN-like languages, each with
a dedicated local semantics, such that they can be used independently from each
other or freely combined. We define the semantics for general control-flow graphs,
including cyclic graphs.

2. We show that the proposed dynamic blocking generalizes the Dead-Path-Elimination
(DPE) concept [18], which so far was limited to acyclic control flow.

3. We show that dynamic blocking is equivalent to having no control-flow on the
edge. This allows a modeler to comprehend the semantics of ‘block’ flows as their
intended concept: absence of flow. Therefore, dynamic blocking is closely related
with the semantics of inclusive gateways (aka synchronizing merge pattern, OR-
join semantics). Our generalization of DPE to cyclic flow graphs gives rise to a
purely local semantics for inclusive joins. As a result, our semantics does not entail
semantic anomalies such as ‘vicious cycles’ (see, e.g. [9]). In comparison with
existing semantics, it can be enacted faster, i.e., in constant time, it is compositional
for more models and therefore easier to understand and use, and it permits more
refactoring operations for process models.

We start by discussing concepts for dynamic skipping and blocking based on liter-
ature for static skipping and blocking in Sect. 2. In Sect. 3, we generalize dead path
elimination to all sound workflow graphs. The resulting local semantics for inclusive
gateways is discussed in Sect. 4 in the context of the larger body of literature on inclusive
join semantics. We conclude in Sect. 5 where we also compare conceptual and subtle
differences of our approach to the literature.

2 Dynamic skipping and blocking

In this section, we present dynamic versions of task skipping and path blocking together
with modeling examples. These constructs are inspired by their well-known static
counterparts. For example, the approach by Gottschalk et al. [7] allows to make a model

configurable by adding visual annotations for ‘execute’, ‘hide’, and ‘block’ to tasks
and to inputs and outputs of control-flow nodes. ‘Execute’ leaves the task as is, ‘hide’
removes the task, whereas ‘block’ removes the task and the entire flow after it until the
next flow merge.

Our exposition is partially based on the view that a process is a synchronization of
state machines. We start by explaining that view.

2.1 Workflow graphs as synchronized state machines

We work with workflow graphs [5] as the model of the core constructs of business process
models. Other modeling elements, e.g., BPMN events, can be added orthogonally and
are out of scope of this paper. We use the following definitions.

A two-terminal graph is a directed graph (multiple edges between a pair of nodes
are allowed) such that (i) there is a unique source and a unique sink and (ii) every node
is on a path from the source to the sink. A workflow graph is a two-terminal graph
with four types of nodes: task, exclusive gateway, parallel gateway, and dummy such
that (i) the source and the sink are exactly the dummy nodes such that the source has a
unique outgoing edge, called the source edge and the sink has a unique incoming edge,
called the sink edge and (ii) each task has at most one input and at most one output edge.
Further, each outgoing edge e of an exclusive gateway has a guarding expression y(e).
We use the BPMN [11] semantics and visualization for workflow graphs. We will restrict
to sound workflow graphs, which are defined in Sect. 3.3.

A natural way to understand a workflow graph is to view it as a synchronization
of state machines, or threads, also called S-components or P-components in Petri net
theory. An S-components represents purely sequential behavior, e.g., the lifecycle of
a business object such as a purchase order or a payment document. Multiple objects
may be completely synchronized, i.e., have exactly the same life cycle represented by
the same S-component. Otherwise, different S-components are synchronized through
parallel gateways. For example, Fig. 2 shows a decomposition of a simple workflow
graph into two S-components A and B, which are synchronized in the black part. A more
complex example is shown in Fig. 8.

Request
payment info
Receive
order

Fig. 2. A workflow graph with two S-components A (red and black) and B (blue and black)

Credit n
Card?

Charge
Credit Card
[

More formally, a subgraph G’ of a workflow graph G is said to be sequential if for
every parallel gateway, at most one incoming and at most one outgoing edge belongs to
G’. G’ is an S -component of G if (i) G’ contains the source and the sink of G and in G’,
every node is on a path from the source to the sink, and (ii) every exclusive gateway has
all its incoming and all its outgoing edges in G’. A set of S-components of G is called a
state machine decomposition of G if the union of all S-components yields G. Note that

every sound workflow graph has a state machine decomposition, which can be computed
in cubic time [8]. An important property of S-components is that each S-component is
always marked with exactly one token.

2.2 Dynamic skip

Both constructs that we define, i.e., the dynamic skip and the dynamic block, allow the
control flow of a process to skip one or more activities on its path depending on the
evaluation of a dynamic data condition. More precisely, a data expression is a Boolean-
valued expression that may contain variables that represent data objects of the business
process, e.g., amount > 1000, isGoldCustomer(client). A guard is a data expression
associated with a point of the control flow of the workflow graph, which we model
as a separate node with a single incoming and a single outgoing edge, depicted as a
mini-diamond, cf. the grey mini-diamonds in Fig. 3. This is similar to the data conditions
(white mini-diamonds) in BPMN [11].

A token flowing through a guard triggers the evaluation of the guard. Only if the
guard evaluates to true, then the subsequent activities in the scope of the guard will be
executed. Hence the guard can be considered as a precondition for the activities in scope.
Informally, the scope of a skip guard g is from g until the next guard (of any type) in the
S-component.

A simple application of a skip guard (grey mini-diamond) is shown in Fig. 3(a),
where two activities are skipped when the data condition amount > 1000 evaluates to
false. This is of course equivalent to the graph fragment shown in Fig. 3(b), however
Fig. 3(a) represents the same behavior more compactly while still indicating the two
cases of the flow graphically. This allows a modeler to represent more complex behavior
more succinctly. The first guard can ‘switch off” the corresponding S-component, the
second guard switches it back on in order to make sure that the third activity ‘Inform
customer’ is executed in any case.

(a) (b) amount > 1000 ("1 nyal oredit
approval
amount > 1000 y true
Manual credit Sign by Inform
—
approval mananger customer

Fig. 3. (a) A simple example for skip guards. (b) Its corresponding explicit representation.

Sign by
mananger

A more complex example for skip guards is shown in Fig. 4, which models a part of
an order fulfillment process. There are two S-components which split up in the center —
the upper is concerned with the invoice whereas the lower is concerned with the physical
items to be shipped. Both of these two components behave differently in case the item is
shipped to a gold customer. Hence the guard is placed already before the parallel split. If
the customer is not a gold customer, then the activities ‘Compute discount’, ‘Add gift’
and ‘Add card’ are skipped.

We formalize the effect of guards using token colors. The normal token color is black.
The workflow starts with a single black token on the source. A black token flowing
through a skip guard remains black if the guard evaluates to true and turns into a grey
token otherwise. Similarly, a grey token flowing through a skip guard turns black if the

Create
Invoice

Compute
Discount
add |9 Ada fue shi
Gift Card P

Fig. 4. A workflow graph with three skip guards, a grey and a black token.

GoldCustomer?

guard evaluates to true and remains grey otherwise. A black token flowing through an
activity executes the activity, a grey token skips the activity. An activity does not change
the color of a token flowing through it. Likewise, the token color does not change through
split gateways and exclusive joins. A parallel join emits a black token iff at least one of
its inputs is black, otherwise it emits a grey token. Hence, a skip guard evaluating to false
switches off the S-component until it is switched on again by another skip guard or by
synchronizing with another S-component that is switched on. Fig. 4 shows a reachable
marking of the corresponding graph with one black and one grey token.

2.3 Dynamic block

A skip guard can switch on or off an S-component repeatedly. In contrast, a block guard
blocks an S-component persistently, i.e., after a blocking, the S-component cannot be
switched on again by another guard. Thus any activity on the S-component is skipped
until the S-component synchronizes with another S-component that is still active. This
behavior is known from the synchronizing split/merge control-flow pattern, which is
also known as the inclusive split and join, cf. Fig. 5(a). Each of the branches, i.e., S-
components is either persistently switched on or off after execution of the inclusive split.
The active and inactive branches are finally synchronized through the inclusive join
gateway. Fig. 5(b) shows the same behavior in an alternative BPMN notation using white
mini-diamonds to represent the data-based blocking of the corresponding branch. Hence
we use the BPMN white mini-diamond to represent a block guard as shown in Fig. 5(c).

" :
Fig. 5. (a) Inclusive split and -join, (b) Inclusive split with BPMN mini-diamond, (c) Proposed
notation with block guards

Fig. 6 shows a more elaborate example for the use of block guards. Similarly to
Fig. 5, a subset of the branches can be activated. However, the upper branch is always
taken, which does not need any guard. The lower branch is also always taken, and hence
the activity ‘Add standard travel insurance’ is always executed - however this branch,
i.e., S-component, is switched off subsequently by the block guard whenever an optional
emergency insurance is not selected, which means that all remaining activities before the
parallel join will be skipped. Since all those activities are skipped whenever a preceding
block guard evaluates to false, the guard can again be viewed as a precondition to those
activities.

Corporate?

Add extra
insurance

Emergency Rejected?

Ir ?
Add standard | 7L Get Confirm
travel insurace quote
Select other

supplier

Select
Options

Add emergency
insurance

Fig. 6. A more complex example for a block guard

To formalize block guards, we introduce white tokens. A black or grey token entering
a block guard g turns white when g evaluates to false, otherwise it retains its color. A
white token flowing through a block guard, skip guard, or an exclusive gateway always
retains its color, hence the guard does not need to be evaluated in that case. If a white
token flows through an activity, the activity is not executed and the color of the token
does not change. Likewise, a white token entering a parallel split produces only white
tokens on the outgoing edges of the parallel split. A parallel split emits a black token iff
at least one of its inputs is black, it emits a grey token iff none of its inputs is black but
at least one is grey, and it emits a white token iff all its inputs are white.

Note that, so far, the difference between a skip and a block guard is merely that
blocking is more permanent than skipping, i.e., a grey token can easily be turned into
a black one whereas a white token cannot. However, we will introduce another crucial
difference in Sect. 3.2.

3 Dead path elimination for cyclic workflows

In this section, we define the routing of grey and white tokens in exclusive splits, and we
present dead-path elimination for cyclic workflow graphs.

3.1 Grey tokens in exclusive splits

How should we route a grey or white token in an exclusive split? Both token colors
represent inactive S-components — recall that all incoming and outgoing edges of an
exclusive gateway belong to the same S-components. However, while a white token
cannot execute any activity on any of the outgoing branches of the exclusive split since
it cannot become black, a grey token can become black, and it will in general execute
different activities on different outgoing branches just as a black token can. Therefore,
it matters how we route a grey token and we route it as a black token, i.e., according
to the evaluation of the data expression in the exclusive split — firmly controlled by the
modeler.

This requires care since the data variables that the exclusive split refers to must be
in an expected state, in particular must be defined at all. This is not trivial since some
activities (this is where data is set) have been skipped by the grey token. Consider for
example the exclusive split in Fig. 6, labeled with ‘Rejected?’. This decision refers to a
Boolean variable rejected which is set in the preceding task ‘Confirm’. However, this

Schedule for
drone delivery
Add rapid delivery
fyer to shipment

Fig. 7. Flexible skipping in different branches of an S-component

| Prioritize
picking

task is skipped if the preceding guard ‘Emergency insurance selected’ evaluates to false.
Therefore the decision value in the exclusive split is not well defined if ‘Confirm’ is not
executed (and that’s why we cannot use a skip guard but must use a block guard—as we
will see later—in the lower branch of Fig. 6). Likewise, this explicit routing of grey tokens
in an exclusive split must be carefully designed by the modeler if the split represents the
exit condition of a loop to make sure that the process eventually exits the loop to be able
to terminate.

This extra care will not be necessary when using white tokens as we show below.
On the other hand, grey tokens, i.e., skip guards, provide greater flexibility than block
guards. In particular, the explicit control of routing grey tokens in exclusive splits can be
leveraged to model different skipping behavior in different branches of the S-component.
For example, Fig. 7 models that all GoldCustomers receive an immediate prioritization
of picking their goods; the upper alternative branch is taken for members living in an
area where delivery via drone is offered, but only GoldCustomers get their picked goods
scheduled for delivery via drone (for non-GoldCustomers this activity is still skipped);
for any customer (Gold or regular) living in a different area the lower branch is taken
and a flyer about alternative rapid delivery options is added to their shipment.

3.2 White tokens in exclusive splits and dead path elimination

In contrast to the explicit routing of grey tokens, we can route a white token implicitly
at an exclusive split. Intuitively, the routing of a white token does not matter, because
the S-component is dead anyway — neither of the branches can be executed because a
white token remains white, hence all activities on each of the branches are skipped. In
particular, we do not need to evaluate the data condition at an exclusive split if a white
token arrives at it, which is important, because it may not be well defined — as we have
seen in Fig. 6.

Still we have to make sure that a white token arrives at the next synchronization
point, i.e., ‘eliminates the dead path’, even or in particular in the presence of cycles as in
Fig. 6, where we have to make sure that the white token is not following a cycle infinitely
often and prevents termination of the process. We can do that by implicitly ‘flushing
out’ the white tokens, i.e., route them automatically towards the sink, thereby providing
a form of dead path elimination for cyclic workflow graphs. We operationalize such a
behavior by help of an exit allocation.

Definition 1. Call any outgoing edge of an exclusive split a choice edge of the workflow
graph. An exit allocation is a mapping ¢ that assigns to each exclusive split v one of its
choice edges ¢(v), called the exit edge, such that, for each edge e of the workflow graph
there exists a path from e to the sink such that each choice edge on the path is an exit
edge.

The intuition behind Def. 1 is that white tokens will get flushed out of the graph by
routing them via exit edges. The exit edges are statically fixed and can be considered as
‘providing a compass’ to the sink. To justify this definition, we first observe:

Theorem 1. An exit allocation exists for each workflow graph and it can be computed
in time O(|E| + |V| - log|V)).

Proof. Note that a workflow graph is equivalent to a corresponding isomorphic free-
choice Petri net [5]. Therefore, we can directly apply the theory of free-choice Petri
nets to workflow graphs. An exit allocation is an allocation pointing to the sink in the
sense of [1, Def.6.4]. Existence follows from [1, Lemma 6.5 (1)]. We can use Dijkstras
algorithm to compute, for each node the shortest path to the sink. We allocate a choice
edge of an exclusive split v as exit edge if it starts the shortest path from v to the sink. It
follows that, for each edge e, every choice edge on the shortest path from e to the sink is
an exit edge.

Fig. 8 shows an example of
an exit allocation where the exit
edges are shown in bold. A white
token produced by the block
guard g; will be routed at the ex-
clusive splits d; and d, towards <
the parallel join j,, where it is o /> !
joined with either a black token + N — A --»B ——»B+C
or a white token produced by »C —>A+B+C

block guard g. A white token Fig.8. A workflow graph decomposed into three S-
arriving at d3 is routed directly components A (red and black), B (orange, green, and black)
to the sink. Note that an exit al- and C (blue, green, and black). An exit allocation is shown
location for the graph in Fig. 8 is in bold.

not unique. We could have cho-

sen also the other choice edge of d; (but not for d, or d3).

An exit allocation defines the routing of white and only white tokens at an exclusive
split and it does not need to be defined by the modeler — it is implicitly there, i.e.,
the compiler or execution engine provides the dead path elimination automatically.
However, since an exit allocation is not unique and the modeler does not choose it,
how does the modeler understand and control the behavior of the workflow graph? To
this end, we prove that the particular choice of the exit allocation does not matter, i.e.,
all exit allocations and even more general, all fair routings of white tokens produce
essentially the same behavior. Therefore any exit allocation operationalizes the same
abstract behavior of dead path elimination.

Before we formally prove this, we have to formalize our extended model of workflow
graphs and their semantics.

3.3 Multipolar workflow graphs

In this section, we present the formal concepts for our model, which we named mul-
tipolar workflow graph based on the bipolar synchronization schemes of [6] which

o ceg @ c @ pa— o e@ @ o *

O > X

o e @ Mg -0, re@ 9 *

O+ > / MENG) O o *

0 %0 @ M o 0

O+ =

o tve o (o tue o /,—O—‘ ©)

O+ > / NG O o)

o) falseo o) false o) A O 0O * |
c C > any color

Fig. 9. Possible transitions of nodes in a multipolar workflow graph.

introduced true/false tokens for graphs without choices. Appendix A provides a rigorous
formalization of our model.

A multipolar workflow graph G consists of a workflow graph with two additional
nodes types skip guard (small grey diamond) and block guard (small white diamond); °v
and v° denote the input and output edges of node v, respectively. Each guard v has one
incoming and one outgoing edge and is annotated with an expression y(v) over some data
variables, where the data is accessed during process and updated during task execution.
A marking m assigns to each edge a nonnegative number of fokens, where each token
has a color ¢ € C = {black, grey, white}. We write m/[e, c] for the number of tokens of
color ¢ € C on e and m[e] = Y .cc m[e, c] for the number of all tokens of any color in m
on e; m is safe iff m[e] < 1 for each edge e. The marking with exactly one black token
on the source edge and no token elsewhere is called the initial marking of G. A marking
that has a single token of any color on the sink edge and no token elsewhere is called a
final marking of G.

Nodes are enabled as in classical workflow graphs: a task, exclusive gateway, or
guard v needs a token (of any color) on some edge e~ € °v; a parallel gateway v needs a
token on each edge e~ € °v. Each node v defines several transitions t that distinguish the

possible colors of input tokens consumed and output tokens produced in a step m Lo
as illustrated in Fig. 9; see see [4, App. A] for the formalization.

1 . L t .
A step m — m’ of G is called an elimination step, denoted m --> m’ if all tokens
consumed (and produced) by r are white, otherwise it is a normal step. If m’ can be

. . . . * .
reached from m through zero or more elimination steps, we write m --> m’. We write
max . *
m --> m* if m --> m* and m* does not enable any further elimination step. Given an exit

allocation ¢ for G, we say that an elimination step m --> m’ complies with ¢ if the white
token is produced on e* = ¢(v) whenever 7 is a step of an exclusive split v.
A trace of G is a sequence o = my, 1], my, ... of markings and transitions s.t. mg

is the initial marking of G and m; sl m;y4q for each i > 0; o is maximal if it is either
infinite or ends in a marking m,, such that no transition is enabled in m,,. A trace o is fair
with respect to a choice edge e of an exclusive split v of G if the following holds: If v is
executed infinitely often in o, then e is marked infinitely often in o

A node v (edge e) is dead in m if no marking reachable from m enables v (marks
e). A node or edge x is live in m if x is not dead in each marking reachable from m. A
local deadlock is a marking in which a node v other than the sink is dead and an edge
e € °v is marked. G is live if no marking reachable from the initial marking my is a local

deadlock. G is safe if each marking reachable from my is safe. G is sound if G is safe
and live. Equivalently, G is sound iff G is safe, the sink edge is live in m and only a
final marking is a reachable marking that marks the sink edge. Soundness guarantees
that each maximal and fair trace of G terminates in a final marking of G.

3.4 Justification of exit allocations

In this section, we justify the use of exit allocations as implementation of dead path
elimination. Let G be henceforth a sound multipolar graph. We first observe that an exit
allocation implements fair behavior:

Proposition 1. Every sequence of elimination steps that complies with an exit allocation

¢ is finite.

Proof. The claim follows from [1, Lemma 6.5, (2)]: The free-choice workflow net that
corresponds to the workflow graph, cf. [5], is slightly modified by adding a transition,
called the return transition, that consumes a token from the sink and produces a token
on the source. This version is called the connected version. It is strongly connected and
the exit allocation points to the return transition in the sense of [1]. Furthermore, each
reachable marking of a sound workflow graph is bounded. [1, Lemma 6.5, (2)] now
implies that an infinite elimination sequence implies infinitely many firings of the return
transition, which implies the claim.

In the following, we will prove that all exit allocations generate essentially the same
behavior. We prove first that two maximal elimination sequences that comply with the
same exit allocation end in the same marking:

. . . max
Lemma 1. Let my be a reachable marking, ¢ be an exit allocation and mqy --> m; and

my --> my be two maximal elimination sequences that comply with ¢. Then we have
mp = mj.

Proof. Every elimination step that is enabled in m(will be executed in a maximal elimi-
nation sequence because it cannot be disabled by another elimination step. Therefore, it
can be shown by induction that each maximal elimination sequence contains the same
steps, i.e., one maximal sequence is a permutation of the other. The marking equation
for Petri nets (cf. [1]) implies that both sequences end in the same marking.

As a result, we can consider two elimination sequences both starting in m and ending
in m; = mj, to be equivalent, as neither executes any activities. An even stronger result
holds: any two fair, maximal elimination sequences starting in mg necessarily reach the
same marking even if they do not comply with a particular exit allocation.

. max max .
Lemma 2. Let my be a reachable marking, my --> m; and my --> my be two fair
maximal elimination sequences. Then we have m; = my.

Proof (Sketch.). In the state-machine decomposition of the sound WFG, any S-component
contains exactly one token. During elimination steps, the single white token only travels

10

edges of ‘its’ S-component until reaching a parallel join. Two different sequences reach-
ing two different markings m; # m, would reach different parallel joins. But then one
would cause either a local deadlock or an improper termination, i.e., a reachable marking
that has a token on the sink edge and another token elsewhere. Both cases contradict
soundness of the WFG. The detailed proof is given in [4, App. B]

We can now prove that the behavior of the WFG does not depend on the choice of a
particular exit allocation, and hence the behavior of the WFG does not depend on the
routing of white tokens. In other words, routing white tokens in exclusive splits in a
fair but otherwise nondeterministic way suffices to reach a unique marking after finite
elimination steps. We do not prove the result in full generality, i.e., for the most general
behavioral equivalence possible, as the necessary technical overhead would not justify
the additional insight within the scope of this paper. In a technically simplified form, we
assume that the WFG is executed with eager elimination, i.e., after each normal step,
we execute a sequence of maximal elimination steps before we execute the next normal
step.

Theorem 2. Let o and o’ be two eager traces of a sound multipolar WFG, i.e., they are
max 123

1 . oL .
of the form my S my > my > ... where my is the initial marking of the WFG, and
1. t;,i > 0 are normal steps such that for any two markings m;,m; of o and o’, we
have m; = mj implies ti,1 = tj.1, i.e. the program behaves deterministically from a
given marking, and

max
2. m; --> myy are fair and maximal elimination sequences.

Then, o and o’ have the same sequence of normal steps and in particular the same
sequence of executed activities.

Proof. The theorem follows directly from Lemma 2.

Note that the proof of Thm. 2 rests on the essential property of white tokes, i.e., that a
white token always remains white. This property allows us to route them automatically.
We have shown that a modeler can abstract from the behavior of white tokens and
consider block guards as a means to disable control-flow along the subsequent path as if
no token is present. As any fair routing of white tokens is permissible, the compiler or
execution engine can choose an exit allocation that optimizes some cost measure, e.g.,
the average number of elimination steps, to implement the fair routing. Control-flow will
consistently and predictably re-emerge at parallel joins with black tokens. Next, we show
that this property allows us to give inclusive gateways a simple and fully local semantics.

4 Dynamic blocking as inclusive gateway semantics

We have argued already in Sect. 2.3 that parallel gateways in combination with block
guards with their semantics of white tokens and dead path elimination provide a general-
ization of inclusive gateways. This allows us to propose to use the semantics proposed
above as an inclusive join semantics. Since we only use the existing constructs of parallel
gateways and white mini-diamonds, the new semantics would allow us to use inclusive

11

gateways merely as syntactic sugar for parallel gateways with block guards or to abolish
the inclusive gateways altogether. Next, we discuss such a proposal in more detail.

Many papers on the inclusive join semantics (aka Or-join semantics) problem have
been published, for a survey see [17]. In this section, we compare our proposal with
existing semantics from the literature with respect to various properties.

Enactment. Existing semantics that do not restrict to a subset of workflow graphs are non-
local, i.e., the enablement of an inclusive join there depends not only on the tokens of the
incoming edges of the join but also on the presence of tokens on other edges of the graph.
Two kinds of non-local semantics have been proposed: In the first, the enablement can
depend on the entire state space of the workflow graph, e.g., [9]. Therefore, enactment
takes exponential time. In the second kind of non-local semantics, which includes the
current BPMN semantics [11], the enablement depends on the existence of paths from
other tokens in the graph to the inclusive join [17, 2]. It can be determined in linear [17]
or quadratic time [2] respectively whether a particular inclusive join is enabled. The
run time can be reduced in both cases by trading time for space, i.e., by creating data
structures of quadratic size.

The local semantics presented in this paper has a small constant overhead for storing
the additional token colors. It can be determined in constant time whether a particular
inclusive join is enabled under the assumption that the in-degree of nodes is bounded by
a constant.

Compositionality. A process model can be better understood if it is composed out of
simpler patterns or modules. However this is only the case when the simple module can
be understood in isolation, i.e., independent from the context it will be embedded in.
Note that many textbooks explain the semantics of BPMN gateways, in particular the
inclusive gateway by help of simple patterns.

One of the simplest and most popular notions of module is a single-entry-single-exit
fragment, cf. e.g.[16]. Fig. 10 shows such a fragment (shaded) nested in another fragment.
Considered in isolation, each fragment has the expected intuitive and sound behavior in
the BPMN semantics, cf. [11, 17]. However, if we compose them in the way shown, the
composed workflow graph has a deadlock (the marking shown in Fig. 10) in the BPMN
semantics. This is due to the non-local semantics of the inclusive join in BPMN where
the synchronization behavior can depend on tokens outside the containing fragment.

In our local semantics, the behavior of any subgraph G depends only on the tokens it
exchanges at its border, i.e., the behavior of a composed graph is the composition of the
behaviors of its constituent graphs. Even the non-local property of soundness is composi-
tional for single-entry-single-exit-fragments in the local semantics, i.e., a composition is

Fig. 10. The current BPMN semantics for inclusive joins is not fully compositional w.r.t. single-
entry-single-exit fragments.

12

Fig. 11. The BPMN inclusive join semantics is not robust under node splitting (a) and (b). The
corresponding refactoring rule (c) is valid in our semantics (d).

sound if and only if all its constituent fragments are sound [16]. The example in Fig. 10
shows that the non-local BPMN semantics [11, 17] is not compositional in general in
this sense.

Refactoring. Compositionality supports refactoring, i.e., maintenance of a process model.
A fragment can be extracted from a process model, outsourced into a separate process
and then called from different places without changing the behavior. There are other well-
known refactoring operations that preserve the local semantics, viz. various structural
transformation rules originally stated for Petri nets [10], but which apply to workflow
graphs as well. For example, the two patterns shown in Fig. 11(d) are equivalent in any
context in our local semantics as this is a well-known rule for parallel gateways. Note
that the combination of colors in a parallel join can be seen as a form of disjunction
or maximum operation. In particular, it is commutative and associative. However, the
corresponding rule for the non-local semantics for inclusive gateways in BPMN is
not valid (Fig. 11(c)). As a counterexample, we consider the model Fig. 11(b) that is
obtained by applying the rule for inclusive joins from Fig. 11(c) on join j, of the model
of Fig. 11(a). The workflow graph in Fig. 11(b) is not sound — the marking shown is a
deadlock in the non-local semantics of BPMN, whereas the workflow graph Fig. 11(a) is
sound. Therefore, for that semantics, the rule in Fig. 11(c) is not a valid refactoring rule.
Whether a deadlock occurs or not depends in our local semantics only on whether all
incoming edges are live (a black, grey, or white token will eventually arrive) or whether
one edge is dead (there may no token arrive). Transformation rules such the one of
Fig. 11(d) preserve whether an edge is live or dead, and hence can be applied in any
situation. How to express the model of Fig. 11(a) in our semantics is discussed next;
Fig. 13 shows the result.

Expressiveness. A semantics is preferable to another if it can model more (realistic)
process behaviors than the other in a concise way. The best documented modeling use
case for inclusive gateways is the structured synchronizing merge pattern, cf. Fig. 5(a).
Fig. 5(c) already showed that this case can be modeled isomorphically with parallel
gateways and block guards.

13

Fig. 13. Representation of the unstructured loop with inclusive gateways of Fig. 11(a) in our
semantics.

Another well-understood context for the use of inclusive joins are acyclic workflow
graphs. There is little debate what semantics inclusive joins should have in acyclic graphs,
only how to express that semantics such that it generalizes to a semantics for general
workflow graphs. Fig. 12(a) shows a paradigmatic example, where a task D is executed
after concurrent tasks A and B, but B is executed only when the condition « is false.
Often, but not always, all inclusive joins can be replaced by parallel joins [5], at the price
of introducing additional auxiliary paths called bridges, cf. Fig. 12(b). However, each
acyclic graph in BPMN semantics is equivalent when each inclusive and exclusive split
is replaced with a parallel split with block guards and each exclusive and inclusive join
is replaced with a parallel join, which follows from [17, Thm.2]. The resulting workflow
graph is a BPEL flow with DPE semantics. For the graph in Fig. 12(a), the resulting
graph is shown Fig. 12(c). Note that we can also re-model the graph in Fig. 12(a) into a
well-structured graph, i.e., a graph where the gateways are matching pairs of split and
join, cf. Fig. 12(d). We do this by using skip guards at the expense of duplicating the
conditions « and !a and the task D.

Acyclic workflow graphs can be composed by single-entry-single-exit nesting with
arbitrary sequential workflow graphs. For the resulting workflow graphs, the BPMN
semantics and our local semantics here agree, which follows from the theorems in [17].
Only for workflow graphs that cannot be obtained in this way, the two semantics disagree.
A few such graphs with sound behavior have been documented for technical discussion
[17,2]; the model of Fig. 11(a) is an example. We have verified that these workflow
graphs documented there can be easily equivalently modeled with our local semantics,
again by adding bridges. Figure 13 shows the model of Fig. 11(a) in our semantics. The
bridges producing white tokens (by the ‘false’ block guards) can be merged anywhere

14

along the ¢ and d branches. In summary, the rare modeling cases where concurrency and
loops cannot be separated by single-entry-single-exit decomposition can still easily be
supported by the local semantics at the expense of extra bridges. The extra bridges for
rare models are a small price to pay for faster execution across all models and the other
advantages of the local semantics discussed above.

Note that the default outgoing edge of inclusive splits as defined in BPMN [11]
to ensure a token in the sink upon termination is not necessary in the local semantics,
because the white tokens that are sent take care of these issues.

5 Conclusion

We have defined dynamic versions of task skipping and path blocking together with
a local semantics which supports efficient execution. Dynamic path blocking comes
with dead path elimination, which we have generalized to work for all sound workflow
graphs. We argued that when inclusive gateways in BPMN are semantically replaced
with parallel gateways with block guards, the advantages outweigh the disadvantages.
Note also that workflow graphs with a fully local semantics can be easier and more
naturally mapped to Petri nets where a wealth of tools and algorithms is available for
their analysis. In particular, verifying soundness can be done in polynomial time for the
local semantics, whereas no polynomial-time algorithm is known to verify soundness
under the non-local BPMN semantics for inclusive joins.

Further related work. We already discussed in Sect. 2 how our semantics for dynamic
skipping and blocking originates from ideas of configurable process models, e.g. [7].
In Sect. 4 we extensively discussed our semantics wrt. works on the inclusive join
semantics. Another way to support dynamic skipping and blocking is to give each task an
explicit activation condition (over process data and control-flow) that, when evaluated to
false, leads to skipping of the activity [20]; the modeler can choose to further propagate
‘true’ or ‘false’ control-flow values by a corresponding start condition.[19, pp.55]. This
model was restricted to acylic processes, but can be generalized to models where ‘false’
flows are contained in a block-structured loop [12]. In these models, an exclusive choice
evaluates one outgoing arc to true and all other outgoing arcs to false. However, the
modeler has to ensure consistent propagation of ‘false’ to skip downstream activities
of paths that should not be taken. Automated propagation of ‘false’ edges, i.e., dead
path elimination (DPE) as provided by BPEL was discussed in Sect. 1. Where existing
DPE proposals suffer from only distinguishing ‘false’ and ‘true’ as analyzed in [15,
18], our semantics provides different token colors to distinguish skipping and blocking.
Moreover, as we showed in Sect. 3, the ability to also route skipping and blocking flow
across exclusive choices (rather than propagating ‘false’), makes our approach applicable
to any model, including cyclic ones.

Additional remarks. We have assumed a unique sink only for simplicity of the presenta-
tion. Multiple sinks can be easily admitted as they are equivalent to an implicit inclusive
join that merges all sinks into one. The use of blocking for paths that lead to a sink is
compatible with that view and our definition of blocking.

15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

Jorg Desel and Javier Esparza. Free choice Petri nets. Cambridge University Press, New
York, NY, USA, 1995.

Marlon Dumas, Alexander GroBkopf, Thomas Hettel, and Moe Thandar Wynn. Semantics
of standard process models with OR-joins. In OTM Conferences (1), volume 4803 of LNCS,
pages 41-58. Springer, 2007.

. Dirk Fahland and Wil M. P. van der Aalst. Model repair - aligning process models to reality.

Inf. Syst., 47:220-243, 2015.

. Dirk Fahland and Hagen Vo6lzer. Dynamic Skipping and Blocking and Dead Path Elimination

for Cyclic Workflows (Ext. Version). BPM Center Report BPM-16-05, bpm-center.org, 2016.

. Cédric Favre, Dirk Fahland, and Hagen Vo6lzer. The relationship between workflow graphs

and free-choice workflow nets. Inf. Syst., 47:197-219, 2015.

. Hartmann J. Genrich and P. S. Thiagarajan. A theory of bipolar synchronization schemes.

Theor. Comput. Sci., 30:241-318, 1984.

. Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, and Marcello La

Rosa. Configurable workflow models. Int. J. Cooperative Inf. Syst., 17(2):177-221, 2008.

. Peter Kemper and Falko Bause. An efficient polynomial-time algorithm to decide liveness

and boundedness of free-choice nets. In ICATPN ’92, Proceedings, volume 616 of LNCS,
pages 263-278. Springer, 1992.

. Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle. Data Knowl. Eng.,

56(1):23-40, 2006.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, 1989.

OMG. Business process model and notation (BPMN) version 2.0, OMG document number
dtc/2010-05-03. Technical report, 2010.

Manfred Reichert and Peter Dadam. ADEPT g -Supporting Dynamic Changes of Workflows
Without Losing Control. J. Intell. Inf. Syst., 10(2):93-129, 1998.

Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer, 2012.

Marcello La Rosa, Wil M.P. van der Aalst, Marlon Dumas, and Fredrik P. Milani. Business
process variability modeling : A survey. QUT e-Print 61842, QUT, Australia, 2013.

Franck van Breugel and Mariya Koshkina. Dead-Path-Elimination in BPEL4AWS. In Fifth
International Conference on Application of Concurrency to System Design (ACSD 2005), 6-9
June 2005, St. Malo, France, pages 192-201. IEEE Computer Society, 2005.

Jussi Vanhatalo, Hagen Volzer, and Frank Leymann. Faster and more focused control-flow
analysis for business process models through sese decomposition. In /CSOC, volume 4749 of
LNCS, pages 43-55. Springer, 2007.

Hagen Volzer. A new semantics for the inclusive converging gateway in safe processes. In
Proceedings of the 8th international conference on Business process management, BPM’10,
pages 294-309, Berlin, Heidelberg, 2010. Springer-Verlag.

Matthias Weidlich, Alexander GroBkopf, and Alistair P. Barros. Realising Dead Path Elimina-
tion in BPMN. In 2009 IEEE Conference on Commerce and Enterprise Computing, CEC
2009, Vienna, Austria, July 20-23, 2009, pages 345-352. IEEE Computer Society, 2009.

. Mathias Weske. Workflow Management Systems: Formal Foundation, Conceptual Design,

Implementation Aspects. Habilitationsschrift Fachbereich Mathematik und Informatik, Uni-
versitiat Miinster, 2000.

Mathias Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a
Workflow Management System. In 34th Annual Hawaii International Conference on System
Sciences (HICSS-34), January 3-6, 2001, Maui, Hawaii, USA. IEEE Computer Society, 2001.

16

A Formal Semantics of Multipolar Workflow Graphs

We define two versions of our model, one where the data decisions are explicit and
another where the data decisions are implicit modeled through nondeterminism.

Definition 2. Let X be a set of variables for data objects and Expr(X) a set of Boolean
expressions over X. A (high-level) multipolar workflow graph G consists of (i) a workflow
graph with two additional node types skip guard and block guard where each guard has
a unique incoming and a unique outgoing edge and (ii) a mapping y : V — Expr(X) that
assigns an expression to each guard (and to each outgoing edge of an exclusive split).

A marking of G is a mapping m : E X {black, grey, white} — N that assigns each
edge a nonnegative number of black, grey and white tokens. The marking that has a
single black token on the source and no token of any color elsewhere is called the initial
marking of G. We write mle, c] instead of m(e, ¢). Markings can be added and compared
pointwise: (my + my)|e, c] = my[e, c] + myle, c] and m; < my iff there exists a marking
m such that my + m = my. We write mle] for Y. mle, c]. A marking m is safe if each edge
has at most one token of any color, i.e., m[e] < 1 for each edge e.

A state s = (m,evaly) of G consists of a marking m of G and a mapping eval; :
Expr(X) — {true, false} that evaluates any expression a € Expr(X).

A transition t = (17, v,t") of G consists of a node v € V and two safe markings t~,t*;
which represent the set of tokens consumed by t and produced by t, respectively. Let,
for a subset C C {black, grey, white}, max C denote the maximum of the set C w.r.t. the
order black > grey > white. For a transition t = (t~,v,t") and two states s = (m, evaly)

. ' . .
and s’ = (m’,evaly), we define the relation s — s’, pronounced t is enabled in s and

. . . t -
firing of t in s results in 5" as follows: s — ' iff t” <mand m + t* =m’ + t~ such that
either

— vis a parallel gateway such that (i) t [e] = 1 iff e € °v (which implies t[e] = 0 iff
e ¢ °v by safeness of t~) and (ii) t*[e,c] = 1 iff e € v° and ¢ = max .

— vis an exclusive gateway, a task, or a guard and there exist e~ € °v and e* € v° such
that (i)t [e] = 1 iffe = e~ and (ii) t*[e] = 1 iff e = e* and furthermore (iii) where
¢~ and c¢* denote the colors such that t [e”,c¢”] = 1 and t*[e*, c*] = 1 such that

e ifvis an exclusive gateway or a task, then ¢~ = c*,

e if v is a skip guard, then ¢t = white iff c- = white and ¢* = black iff
evaly(y(v)) = true

e if v is a block guard, then (i) ¢* = white or ¢ = ¢* and (ii) ¢t = white iff
¢~ = white or eval,(y(v)) = false

e ifvisan exclusive split and ¢~ # white, then evaly(y(e*)) = true and eval(y(e)) =
false for e # e*

e eval, = evaly orvis a task and ¢~ = black.

To define low-level multipolar workflow graph we use the above definition of a high-
level multipolar workflow graph without any reference to variables, expressions, and the

. 1
mappings y and eval,. A state consist only of a marking and we simply write m — m’.
Since we also remove any reference to evaly in the transition rules, the data-based
decisions are replaced by non-determinism.

17

Given an exit allocation ¢ for G, we say that an elimination step m s complies
with ¢ where t = (7, v,t") if the following holds: If v is an exclusive split where
t*[e*] = 1, then et = ¢(v).

B Proof of Lemma 2: Routing of white tokens does not influence
grey and black tokens

In Sect. 3.3 we use the formal model of Multipolar WFG to show that the routing of
white tokens across tasks and gateways does not influence the behavior of the grey and
black tokens. Next we give the proof that any two maximal fair elimination sequences
starting in my reach the same marking m;.

Proof (Lemma 2). The proof is indirect. Suppose m; # mj,. Since m; and m; can
only differ in the location of white tokens, it follows that there is an edge e; such that
ml[el,white] =1and mz[el] =0.

Consider a state machine decomposition of the WFG and an S-component S such
that e; € S. Since S is always marked with exactly one token, call ey and e, the edges in
S such that mg[eg] = 1 and my[e;] = 1. It follows that these two tokens are also white.
Because my[e;] = 0 and my[ez] = 1, we have e; # e,. Because the eliminations are
assumed to be maximal, the white token on e; and e; are in front of an parallel join or
the sink.

We consider here the case that the target nodes of both, ¢; and e, are parallel joins,
denoted j; and j, respectively. The other case that the target node of one of these edges
is the sink is similar.

Because e; and e, belong to the same S-component, we have j; # j,. Since com-
ponent S is strongly connected, let 7r;, i = 1,2 be a simple path from e; to the sink. It
is clear that the paths 7; can be chosen such that j, is not on 7} or that j; is not on ;.
W.lLo.g., let’s assume that j, is not on ;.

We consider now marking m; and recall that there is a white token on e, in front of
the parallel join j,. Let e3 # e, be another incoming edge of j,. Because our graph is
sound and hence m; is not a local deadlock, there must be a token on some edge that
has a path to e;. Because m, is maximally eliminated, there must be a such a token
that is black. Hence, let e4 be an edge and 73 be a simple path from e4 to e3 such that
my[e4, black] = 1. Therefore, we also have mg[e4, black] = 1 and m[e4, black] = 1.

e h sink
7ei :: Te~l
0 S\\\\\eZ
— -
L] e3 J2

Fig. 14. Illustration for the proof of Lemma 2

Fig. 14 shows the overall situation with the marking m;, which has a white token on
e1 and a black token on e4. We consider now a marking m that is reachable from m; such

18

that there is a token (of any color) on 7; and a token (of any color) on 73. Clearly m;
itself is such a marking. Hence, there is a marking m* that is a maximal such marking
in the sense that tokens on m; and 73 have progressed maximally, i.e., have a minimal
distance to the sink and to j, respectively, and we furthermore assume that no node other
than j, is enabled in m*.

If the token on m; has reached the sink in m*, then m* manifests an improper
termination (i.e. a marking with a token on the sink edge and a token elsewhere) because
of the other token on 73, which contradicts soundness. Therefore and because m* was
chosen maximally in the sense above, both tokens are in front of an parallel join in m*.
Since m* cannot be a deadlock, some node must be enabled, which can be only j, due to
our assumption. However, this is impossible because a token on 7r; implies that there is
no token on e, (recall that e; and 71 belong to the same S-component and e, cannot be
on m; because we assumed j, is not on 7y.)

19

