
Decomposing Conformance Checking on Petri net With
Data

Massimiliano de Leoni1,2, Jorge Munoz-Gama3, Josep Carmona3, and
Wil M.P. van der Aalst2

1 University of Padua, Padua (Italy)
2 Eindhoven University of Technology, Eindhoven (The Netherlands)

3 Universitat Politècnica de Catalunya, Barcelona (Spain)

m.d.leoni@tue.nl, jmunoz@lsi.upc.edu, jcarmona@lsi.upc.edu,
w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques relate observed behavior to modeled be-
havior, e.g., the automatic discovery of a Petri net based on an event log. Process
mining is not limited to process discovery and also includes conformance check-
ing. Conformance checking techniques are used for evaluating the quality of dis-
covered process models and to diagnose deviations from some normative model
(e.g., to check compliance). Existing conformance checking approaches typically
focus on the control-flow, thus being unable to diagnose deviations concerning
data. This paper proposes a technique to check the conformance of data-aware
process models. We use so-called Petri nets with Data to model data variables,
guards, and read/write actions. Additional perspectives such as resource alloca-
tion and time constraints can be encoded in terms of variables. Data-aware con-
formance checking problem may be very time consuming and sometimes even
intractable when there are many transitions and data variables. Therefore, we pro-
pose a technique to decompose large data-aware conformance checking problems
into smaller problems that can be solved more efficiently. We provide a general
correctness result showing that decomposition does not influence the outcome of
conformance checking. The approach is supported through ProM plug-ins and
experimental results show significant performance improvements. Experiments
have also been conducted with a real-life case study, thus showing that the ap-
proach is also relevant in real business settings.

Keywords: Process Mining, Conformance Checking, Divide-and-Conquer Tech-
niques, Multi-Perspective Process Modelling

1 Introduction

The practical relevance of process mining is increasing as more and more event data be-
comes available. Process mining techniques aim to discover, monitor and improve real
processes by extracting knowledge from event logs. The two most prominent process
mining tasks are: (i) process discovery: learning a process model from example behav-
ior recorded in an event log, and (ii) conformance checking: diagnosing and quantifying
discrepancies between observed behavior and modeled behavior [1].

Most of the work done in conformance checking in the literature focuses on the
control-flow of the underlying process, i.e. the ordering of activities. There are various

Credit
Request

(a)

Verify

 (b)

Assessment

(c)

Positive
Vefication

Register
Negative

Verification (d)Negative
Verification

Inform Requester

(e)

Renegotiate

Request(f)

Register
Negative

Request (g)

Negative
Decision

Open Credit

(h)Positive
Decision

Amount (A)

Interest (I)

Decision (D)

Verification (V)

 0.1 Amount < Interest < 0.2 Amount

The renegotiated amount is
smaller than the original
amount

Decision = Negative

Fig. 1: Example of a (simplified) process to request loans. The dotted arcs going from
a transition to a variable denote write operations; the arcs towards a transition denote
read operations, i.e. the transition requires accessing the current variables’ value. In the
paper, each transition is abbreviated into a lower-case letter (e.g. a) and each variable
is represented as a upper-case letter (e.g. A). The abbreviations are shown in brackets
after the name of the transitions or variable names.

approaches to compute the fraction of events or traces in the log that can be replayed
by the model [2,3].

In a data-aware process model, each case, i.e. a process instance, is characterized
by its case variables. Paths taken during the execution may be governed by guards and
conditions defined over such variables. A process model specifies the set of variables
and their possible values, guards, and write/read actions. Since existing conformance
checking techniques typically completely abstract from data, resources, and time, many
deviations remain undetected. Therefore, the event log may record executions of process
instances that appear fully conforming, even when it is not the case. Rigorous analysis
of the data perspective is needed to reveal such deviations.

Let us consider the process that is modeled as BPMN diagram in Figure 1. It mod-
els the handling of loans requests from customers. It is deliberately oversimplified to
be able to explain the concepts more easily. The process starts with a credit request
where the requestor provides some documents to demonstrate the capability of paying
the loan back. These documents are verified and the interest amount is also computed.
If the verification step is negative, a negative decision is made, the requestor is informed
and, finally, the negative outcome of the request is stored in the system. If verification
is positive, an assessment is made to take a final decision. Independently of the assess-
ment’s decision, the requestor is informed. Moreover, even if the verification is negative,
the requestor can renegotiate the loan (e.g. to have lower interests) by providing further
documents or by asking for a smaller amount. In this case, the verification-assessment
part is repeated. If both the decision and verification are positive and the requestor is

not willing to renegotiate, the credit is opened. Let us consider the following trace:4

σex = 〈(a, ∅, {(A, 4000)}), (b, {(A, 4000)}, {(I, 450), (V, false)}), (c, {(V, false)},
{(D, true)}), (e, ∅, ∅), (f, {(A, 4000)}, {(A, 5000)}), (b, {(A, 5000)}, {(I, 450),
(V, false)}), (d, {(V, false)}, {(D, false)}), (e, ∅, ∅), (h, {(D, true)}, ∅)〉

Seen from a control-flow perspective only (i.e. only considering the activities’ order-
ing), the trace seems to be fully conforming. Nonetheless, a number of deviations can
be noticed if the data perspective is considered. First of all, if activity c is executed,
previously activity b could not have resulted in a negative verification, i.e. V is set to
false. Second, activity f cannot write value 5000 to variable A, as this new value is
larger than the previous value, i.e. 4000. Furthermore, if the decision and verification
are both negative, i.e. both V are D are set to false, then h cannot be executed at the
end.

The identification of non-conforming traces clearly has value in itself. Nonetheless,
organizations are often interested in explanations that can steer measures to improve
the quality of the process. Alignments aim to support more refined conformance check-
ing. An alignment aligns a case in the event log with an execution path of the process
model as good as possible. If the case deviates from the model, then it is not possible
to perfectly align with the model and a best matching scenario is selected. Note that
for the same deviation, multiple explanations can be given. For instance, the problem
that h was executed when it was not supposed to happen can be explained in two ways:
(1) h should not have occurred because V and D are both set to false (“control-flow is
wrong”) and (2) V andD should both have been set to true because h occurs (“data-flow
is wrong”). In order to decide for the most reasonable explanation, costs are assigned
to deviations and we aim to find the explanation with the lowest cost. For instance, if
assigning a wrong value to V and D is less severe than executing h wrongly, the sec-
ond explanation is preferred. The seminal work in [3] only considers alignments in the
control-flow part, thus ignoring the data-perspective aspect of conformance.

As we detail in Section 2.4, finding an alignment of an event log and a data-aware
process model is undecidable in the general case. However, to make the problem decid-
able, works [4,5] put forward the limitation that guards need to be linear (in)equations.
Readers are also referred to them for a state-of-the-art analysis of data-aware confor-
mance checking. These works also show that, even with that limitation, the problem
of finding an alignment of an event log can become intractable since the problem’s
complexity is exponential on the size of the model, i.e. the number of activities and data
variables. In this paper, while keeping the limitations mentioned above, we aim to speed
up the computation of alignments by using a divide-and-conquer approach. The data-
aware process model is split into smaller partly overlapping model fragments. For each
model fragment a sublog is created by projecting the initial event log onto the activities
used in the fragment. Given the exponential nature of conformance checking, this may
significantly reduce the computation time. If the decomposition is done properly, then

4 Notation (act, r, w) is used to denote the occurrence of activity act that writes and reads
variables according to functions w and r, e.g., (b, {(A, 4000)}, {(I, 450), (V, false)}) is an
event corresponding to the occurrence of activity b while reading value 4000 for variable A
and writing values 450 and false to variables I and V respectively. (e, ∅, ∅) corresponds to the
occurrence of activity e without reading/writing any variables.

Fig. 2: Positioning the contribution of this paper with respect to the state of the art: the
gray area identifies the novelty of the proposed technique.

any trace that fits into the overall model also fits all of the smaller model fragments
and vice versa. Figure 2 positions the contribution of this paper with respect to the
state-of-the-art alignment-based techniques. The top part identifies the alignment-based
conformance checking that considers the control flow, only. The bottom part refers to
the alignment-based conformance checking techniques that account for data, as well.
Regarding the control-flow only, several approaches have been proposed to decompose
process mining problems, both for discovery and conformance checking. As described
in [6], it is possible to decompose process mining problems in a variety of ways. Special
cases of this more general theory are passages [7] and SESE-based decomposition [8].
However, these approaches are limited to control-flow. Indeed, some techniques exist
that also consider the data aspects (i.e. [4,5]) but without exploiting the possibility of de-
composing the data-aware model. In this paper, we extend the control-flow approaches
mentioned above to also take data into account, which coincides with the gray area in
Figure 2.

The decomposed data-aware conformance checking approach presented in this pa-
per has been implemented as plug-ins for the ProM framework. We conducted exper-
iments related to a real-life case study as well as with several synthetic event logs.
Experimental results show that data-aware decomposition may indeed be used to sig-
nificantly reduce the time needed for conformance checking and that the problem is
practically relevant since models of real processes can actually be decomposed.

Preliminaries are presented in Section 2. Section 3 introduces our approach for data-
aware decomposition. Section 4 describes different algorithms for instantiating the gen-
eral results presented in Section 3. Section 5 reports on experimental results. Section 6
concludes the paper.

2 Preliminaries

We now introduce (data) Petri nets, event logs and data-aware alignments.

2.1 System Nets

Petri nets and their semantics are defined as usual: a Petri net is a tuple (P, T, F) with
P the set of places, T the set of transitions, P ∩T = ∅, and F ⊆ (P ×T)∪ (T ×P) the
flow relation. A place p is an input place of a transition t iff (p, t) ∈ F ; similarly, p is an
output place of t iff (t, p) ∈ F . The marking of a Petri net is a multiset of tokens, i.e.,
M ∈ IB(P). For some multisetM ∈ IB(P),M(p) denotes the number of times element
p appears in M . The standard set operators can be extended to multisets, M1]M2 is
the union of two multisets.

Firing a transition t in a marking M consumes one token from each of its input
places and produces one token in each of its output places. Furthermore, transition t
is enabled and may fire in M if there are enough tokens in its input places for the
consumptions to be possible, i.e. iff for each input place s of t, M(s) ≥ 1. Some of
the transitions corresponds to piece of work in the process; each of those transitions are
associated with a label that indicates the activity that it represents.

Definition 1 (Labeled Petri net). A labeled Petri net PN = (P, T, F, l) is a Petri net
(P, T, F) with labeling function l ∈ T 6→ UA where UA is some universe of activity
labels.5

Transitions without a label are invisible transitions, also known as τ -transitions. They
are introduced for routing purposes but they do not represent actual pieces of work. As
such, their execution is not recorded in the event logs.

Definition 2 (System Net). A system net SN = (PN ,Minit ,Mfinal) is a triplet where
PN = (P, T, F, l) is a labeled Petri net, Minit ∈ IB(P) is the initial marking, and
Mfinal ∈ IB(P) is the final marking. USN is the universe of system nets.

Definition 3 (System Net Notations). Let SN = (PN ,Minit ,Mfinal) ∈ USN be a
system net with PN = (P, T, F, l).

– Tv(SN) = dom(l) is the set of visible transitions in SN ,
– Av(SN) = rng(l) is the set of corresponding observable activities in SN ,
– Tuv (SN) = {t ∈ Tv(SN) | ∀t′∈Tv(SN) l(t) = l(t′) ⇒ t = t′} is the set of unique

visible transitions in SN (i.e., there are no other transitions having the same visible
label), and

– Auv (SN) = {l(t) | t ∈ Tuv (SN)} is the set of corresponding unique observable
activities in SN .

In the remainder, for the formal definitions and proved theorems in Section 3, we
need to introduce the concept of union of two nets. For this, we need to merge labeling
functions. For any two partial functions f1 ∈ X1 6→ Y1 and f2 ∈ X2 6→ Y2: f3 =
f1 ⊕ f2 is the union of the two functions. f3 ∈ (X1 ∪X2) 6→ (Y1 ∪ Y2), dom(f3) =
dom(f1) ∪ dom(f2), f3(x) = f2(x) if x ∈ dom(f2), and f3(x) = f1(x) if x ∈
dom(f1) \ dom(f2).

Definition 4 (Union of Nets). Let SN 1 = (N1,M1
init ,M

1
final) ∈ USN with N1 =

(P 1, T 1, F 1, l1) and SN 2 = (N2,M2
init ,M

2
final) ∈ USN with N2 = (P 2, T 2, F 2, l2)

be two system nets.
5 Symbol 6→ is used to denote partial functions.

n1 n2

n3 n5 n6

Credit Request

Register Negative
Verification

Inform Requester

Renegotiate

Open Credit Loan

Assessment
Interests

Amount

Verification

Decision

Register Negative Request Register Negative Request

n4n4

VerifyVerify

Fig. 3: Pictorial representation of a Petri net with Data that models the process earlier
described in terms of BPMN diagram (cf. Figure 1). Places, transitions and variables
are represented as circles, rectangles and triangles, respectively. The dotted arcs going
from a transition to a variable denote the writing operations; the reverse arcs denote the
read operations, i.e. the transition requires accessing the current variables’ value.

– l3 = l1 ⊕ l2 is the union of l1 and l2,
– N1 ∪N2 = (P 1 ∪ P 2, T 1 ∪ T 2, F 1 ∪ F 2, l3) is the union of N1 and N2, and
– SN 1 ∪ SN 2 = (N1 ∪N2,M1

init]M2
init ,M

1
final]M2

final) is the union of system
nets SN 1 and SN 2.

2.2 Petri nets with Data

A Petri net with Data is a Petri net with any number of variables (see Definitions 5 and
6 below). Petri nets with data can be seen as an abstracted version of high-level/colored
Petri nets [9]. Colored Petri nets are extremely rich in expressiveness; however, many
aspects are unimportant in our setting. Therefore, we opted for a simple modeling lan-
guage where every irrelevant aspect is abstracted out. Petri nets with data provide pre-
cisely the information needed for conformance checking of data-aware models and logs.

Definition 5 (Variables and Values). UVN is the universe of variable names. UVV is
the universe of values. UVM = UVN 6→ UVV is the universe of variable mappings.

In this type of nets, transitions may read from and/or write to variables. Moreover, tran-
sitions are associated with guards over these variables, which define when these they
can fire. A guard can be any formula over the process variables using relational oper-
ators (<,>,=) as well as logical operators such as conjunction (∧), disjunction (∨),
and negation (¬). A variable v appear as vr or vw, denoting the values read and written
by the transition for v. We denote with Formulas(V) the universe of such formulas
defined over a set V of variables. In the remainder, given a set V ⊂ UVN of variable
names, we denote VR = {vr : v ∈ V } and VW = {vw : v ∈ V }.

Formally, a Petri net with Data (DPN) is defined as follows:

Definition 6 (Petri net with Data). A Petri net with Data DPN = (SN, V, val , init ,
read ,write, guard) consists of

– a system net SN = (PN ,Minit ,Mfinal) with PN = (P, T, F, l),
– a set V ⊆ UVN of data variables,
– a function val ∈ V → P(UVV) that defines the values admissible for each vari-

able, i.e., val(v) is the set of values that variable v can have,6

– a function init ∈ V → UVV that defines the initial value for each variable v such
that init(v) ∈ val(v) (initial values are admissible),

– a read function read ∈ T → P(V) that labels each transition with the set of
variables that it reads,

– a write function write ∈ T → P(V) that labels each transition with the set of
variables that it writes,

– a guard function guard ∈ T → Formulas(VW ∪ VR) that associates a guard
with each transition such that, for any t ∈ T and for any v ∈ V , if vr appears in
guard(t) then v ∈ read(t) and if vw appears in guard(t) then v ∈ write(t).

UDPN is the universe of Petri nets with data.

The notion of bindings is essential for the remainder. A binding is a triplet (t, r, w)
describing the execution of transition t while reading values r and writing values w. A
binding is valid if:

1. r ∈ read(t)→ UVV and w ∈ write(t)→ UVV

2. for any v ∈ read(t): r(v) ∈ val(v), i.e., all values read should be admissible,
3. for any v ∈ write(t): w(v) ∈ val(v), i.e., all values written should be admissible.
4. Guard guard(t) evaluate true.

More specifically, let us introduce variable assignment χb : (VR∪VW) 6→ UVV) which
is defined as follows: for any v ∈ read(t), χ(vr) = r(v) and, for any v ∈ write(t),
χ(vw) = w(v). A binding (t, r, w) makes guard(t) evaluate true if the evaluation of
guard(t) wrt. χb returns true.

A marking (M, s) of a Petri net with Data DPN has two components: M ∈ IB(P)
is the control-flow marking and s ∈ UVM with dom(s) = V and s(v) ∈ val(v) for
all v ∈ V is the data marking. The initial marking of a Petri net with Data DPN
is (Minit , init). Recall that init is a function that defines the initial value for each
variable.

(DPN , (M, s))[b〉 denotes that a binding b is enabled in marking (M, s), which in-
dicates that each of its input places •t contains at least one token (control-flow enabled),
b is valid and and s�read(t)= r (the actual values read match the binding).7

An enabled binding b = (t, r, w) may occur, i.e., one token is removed from each
of the input places •t and one token is produced for each of the output places t• . More-
over, the variables are updated as specified by w. Formally: M ′ = (M \ •t)] t• is
the control-flow marking resulting from firing enabled transition t in marking M (ab-
stracting from data) and s′ = s⊕w is the data marking where s′(v) = w(v) for all v ∈

6 P(X) is the powerset of X , i.e., Y ∈ P(X) is and only if Y ⊆ X .
7 f �Q is the function projected on Q: dom(f �Q) = dom(f) ∩ Q and f �Q (x) = f(x) for
x ∈ dom(f�Q). Projection can also be used for bags and sequences, e.g., [x3, y, z2]�{x,y}=
[x3, y] and 〈y, z, y〉�{x,y}= 〈y, y〉.

Table 1: Definitions of the guards of the transitions in Fig. 3. Variables and transition
names are abbreviated as described in Figure 1. Subscripts r andw refer to, respectively,
the values read and written for that given variable.

Transition Guard

Credit Request true
Verify 0.1 ·Ar < Iw < 0.2 ·Ar

Assessment VR = true
Register Negative Verification Vr = false ∧Dw = false
Inform Requester true
Renegotiate Request Vr = false ∧Aw < Ar

Register Negative Request Dr = false
Open Credit Dr = true

write(t) and s′(v) = s(v) for all v ∈ V \write(t). (DPN , (M, s))[b〉(DPN , (M ′, s′))
denotes that b is enabled in (M, s) and the occurrence of b results in marking (M ′, s′).

Figure 3 shows a Petri net with Data DPNex that models the same process as
represented in Figure 1 as BPMN diagram, and Table 1 illustrates the conditions of the
guards of the transitions of DPNex. The labeling function l is such that the domain of
l is the set of transitions of DPNex and, for each transition t of DPNex, l(t) = t. In
other words, the set of activity labels coincides with the set of transitions.

Let σb = 〈b1, b2, . . . , bn〉 be a sequence of bindings. (DPN , (M, s))[σb〉(DPN ,
(M ′, s′)) denotes that there is a set of markings (M0, s0), (M1, s1), . . . , (Mn, sn) such
that (M0, s0) = (M, s), (Mn, sn) = (M ′, s′), and (DPN , (Mi, si))[bi+1〉(DPN , (Mi+1, si+1))
for 0 ≤ i < n. A marking (M ′, s′) is reachable from (M, s) if there exists a σb such
that (DPN , (M, s))[σb〉(DPN , (M ′, s′)).

φf (DPN) = {σb | ∃s (DPN , (Minit , init))[σb〉(DPN , (Mfinal , s))} is the set of
complete binding sequences, thus describing the behavior of DPN .

Definition 7 (Union of Petri nets with Data). Let DPN 1 = (SN 1, V 1, val1, init1, read1,
write1, guard1) and DPN 2 = (SN 2, V 2, val2, init2, read2,write2, guard2) with
V 1 ∩ V 2 = ∅. DPN 1 ∪DPN 2 = (SN 1 ∪ SN 2, V 1 ∪ V 2, val1 ⊕ val2, init1 ⊕ init2,
read3,write3, guard3) is the union such that

– read3(t) = read1(t), write3(t) = write1(t), and guard3(t) = guard1(t) if t ∈
T 1 \ T 2,

– read3(t) = read2(t), write3(t) = write2(t), and guard3(t) = guard2(t) if t ∈
T 2 \ T 1, and

– read3(t) = read1(t) ∪ read2(t), write3(t) = write1(t) ∪ write2(t), and
guard3(t) = guard1(t) · guard2(t) if t ∈ T 1 ∩ T 2.

2.3 Event Logs and Relating Models to Event Logs

Next we introduce event logs and relate them to the observable behavior of a DPN .

Definition 8 (Trace, Event Log with Data). A trace σ ∈ (UA × UVM × UVM)∗ is a
sequence of activities with input and output data. L ∈ IB((UA × UVM × UVM)∗) is an
event log with read and write information, i.e., a multiset of traces with data.

Definition 9 (From Bindings to Traces). Consider a Petri net with Data with transi-
tions T and labeling function l ∈ T 6→ UA. A binding sequence σb ∈ (T × UVM ×
UVM)∗ can be converted into a trace σv ∈ (UA × UVM × UVM)∗ by removing the
bindings that correspond to unlabeled transitions and by mapping the labeled transi-
tions onto their corresponding label. l(σb) denotes the corresponding trace σv .

Note that we overload the labeling function to binding sequences, σv = l(σb). This
is used to define φ(DPN): the set of all visible traces.

Definition 10 (Observable Behavior of a Petri net with Data). Let DPN be a Petri
net with Data. (DPN , (M, s))[σv � (DPN , (M ′, s′)) if and only if there is a sequence
σb such that (DPN , (M, s))[σb〉(DPN , (M ′, s′)) and σv = l(σb). φ(DPN) = {l(σb) |
σb ∈ φf (DPN)} is the set of visible traces starting in (Minit , init) and ending in
(Mfinal , s) for some data marking s.

Definition 11 (Perfectly Fitting with Data). A trace σ ∈ (UA × UVM × UVM)∗ is
perfectly fitting DPN ∈ UDPN if σ ∈ φ(DPN). An event log L ∈ IB((UA × UVM ×
UVM)∗) is perfectly fitting DPN if all of its traces are perfectly fitting.

Later, we will need to project binding sequences and traces onto subsets of tran-
sitions/activities and variables. Therefore, we introduce a generic projection operator
ΠY,V (σ) that removes transitions/activities not in Y and variables not in V .

Definition 12 (Projection). Let X be a set of transitions or activities (i.e., X ⊆ T or
X ⊆ UA). Let Y ⊆ X be a subset and V ⊆ UVN a subset of variable names. Let
σ ∈ (X × UVM × UVM)∗ be a binding sequence or a trace with data. ΠY,V (σ) ∈
(Y × (V 6→ UVV)× (V 6→ UVV))∗ is the projection of σ onto transitions/activities Y
and variables V . Bindings/events unrelated to transitions/activities in Y are removed
completely. Moreover, for the remaining bindings/events all read and write variables
not in V are removed. ΠY,V (L) = [ΠY,V (σ) | σ ∈ L] lifts the projection operator to
the level of logs.

2.4 Alignments

Conformance checking requires an alignment of event log L and process model DPN ,
that is the alignment of each single trace σ ∈ L and process model DPN .

The events in the event log need to be related to transitions in the model, and vice
versa. Such an alignment shows how the event log can be replayed on the process model.
Building this alignment is far from trivial, since the log may deviate from the model at
an arbitrary number of places. We need to relate “moves” in the log to “moves” in the
model in order to establish an alignment between a process model and an event log. It
may be that some of the moves in the log cannot be mimicked by the model and vice
versa. We denote such “no moves” by�. An alignment is a sequence of moves:

Definition 13 (Legal alignment moves). Let DPN = (SN, V, val, init,
read, write, guard) be a Petri net with Data, with SN = (PN ,Minit ,Mfinal) and
PN = (P, T, F, l). Let SL = UA×UVM×UVM be the universe of events. Let SDPN =
T ×UVM ×UVM be the universe of bindings of DPN . Let be S�DPN = SDPN ∪ {�}
and S�L = SL ∪ {�}.

A legal move in an alignment is represented by a pair (sL, sM) ∈ (S�L × S
�
DPN) \

{(�,�)} such that

Table 2: Examples of complete alignments of σexample and N . For readability, the read
operations are omitted. Of course, read operations for any variable must match the most
recent value for that variable. Any move is highlighted with a gray color if it contains
deviations, i.e. it is not a move in both without incorrect read/write operations.

(a)

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,4000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, ∅) (e, ∅)
(f, {(A,5000)}) (f, {(A,3000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, ∅) (e, ∅)
(h, ∅) �
� (g, ∅)

(b)

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,5100)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, ∅) (e, ∅)
(f, {(A,5000)}) (f, {(A,5000)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, ∅) (e, ∅)
(h, ∅) �
� (g, ∅)

– (sL, sM) is a move in log if sL ∈ SL and sM =�,
– (sL, sM) is a move in model if sL =� and sM ∈ SDPN ,
– (sL, sM) is a move in both without incorrect read/write operations if sM = (t, r, w) ∈
SDPN and sL = (l(t), r, w) ∈ SL,

– (sL, sM) is a move in both with incorrect read/write operations if sM = (t, r, w) ∈
SDPN and sL = (l(t), r′, w′) ∈ SL, and r 6= r′ or w 6= w′.

All other moves are considered as illegal.

Definition 14 (Alignments). Let DPN = (SN, V, val, init, read, write, guard) be a
Petri net with Data and σ ∈ (SL)

∗ be an event-log trace. Let ADPN be the set of legal
moves for DPN . A complete alignment of σL and DPN is a sequence γ ∈ ADPN ∗
such that, ignoring all occurrences of�, the projection on the first element yields σL
and the projection on the second yields a σP ∈ φf (DPN).

Table 2 shows two complete alignments of the process model in Figure 3 and the
log trace σex from Section 1.

In order to define the severity of a deviation, we introduce a cost function on legal
moves: κ ∈ ADPN → R+

0 . This cost function can be used to favor one type of expla-
nation for deviations over others. The cost of each legal move depends on the specific
model and process domain and, hence, the cost function κ needs to be defined specifi-
cally for each setting. The cost of an alignment γ is the sum of the cost of all individual
moves composing it: K(γ) =

∑
(sL,sM)∈γ κ(sL, sM).

However, we do not aim to find just any complete alignment. Our goal is to find a
complete alignment of σL and DPN which minimizes the cost: an optimal alignment.
Let ΓσL,N be the (infinite)set of all complete alignments of σL and DPN . The align-
ment γ ∈ ΓσL,DPN is an optimal alignment if, for all γ′ ∈ ΓσL,N ,K(γ) ≤ K(γ′). Note
that an optimal alignment does not need to be unique, i.e. multiple complete alignments
with the same minimal cost may exist.

Let us consider again our example introduced above. Let us assume to have a cost
function κs such that κs(sL, sM) = 1 if (sL, sM) is a visible move in process or a

move in log (i.e. sL =� and sM corresponds to a labeled transition or, conversely,
sM =�, respectively) or a move in both with incorrect read/write operations and
κs(sL, sM) = 0 in case of move in both without incorrect read/write operations or
a move in model corresponding to an unlabeled transition. The alignment in Table 2a
has a cost of 6 whereas the alignment in Table 2b has a cost 8.8 It follows that the former
is a better alignment. As a matter of fact, it is also an optimal alignment, although it is
not the only one. For instance, any variation of such an alignment where the move
for f is of the form (now including read operations) ((f, {(A, 4000)}, {(A, 5000)})
(f, {(A, 4000)}, {(A, x)})})) with 2250 < x < 4000 corresponds to an optimal align-
ment, as well.

In Section 1, we have mentioned that the data-aware conformance checking is un-
decidable in the general case. This is caused by the fact that Petri nets with Data are
Turing-complete. Therefore, it is not decidable to verify whether a sequence of valid
bindings exists that takes from the initial marking to any final marking (Mfinal, s). As
a consequence, for instance, it is not possible to find an alignment of a Petri net with
Data and the empty log trace. As mentioned in Section 1, the problem becomes decid-
able (with an exponential complexity) if guards are restricted to linear (in)equalities.

3 Valid Decomposition of Data-aware Models

In [6] the author defines valid decomposition in terms of Petri nets: the overall system
net SN is decomposed into a collection of subnets {SN 1,SN 2, . . . ,SN n} such that the
union of these subnets yields the original system net. A decomposition is valid if the
subnets “agree” on the original labeling function (i.e., the same transition always has
the same label), each place resides in just one subnet, and also each invisible transition
resides in just one subnet. Moreover, if there are multiple transitions with the same
label, they should reside in the same subnet. Only unique visible transitions can be
shared among different subnets.

Definition 15 (Valid Decomposition for Petri nets [6]). Let SN ∈ USN be a system
net with labeling function l. D = {SN 1,SN 2, . . . ,SN n} ⊆ USN is a valid decompo-
sition if and only if:

– SN i = (N i,M i
init ,M

i
final) is a system net with N i = (P i, T i, F i, li) for all 1 ≤

i ≤ n,
– li = l�T i for all 1 ≤ i ≤ n,
– P i ∩ P j = ∅ for 1 ≤ i < j ≤ n,
– T i ∩ T j ⊆ Tuv (SN) for 1 ≤ i < j ≤ n,
– rng(li) ∩ rng(lj) ⊆ Tuv (SN) for 1 ≤ i < j ≤ n, and
– SN =

⋃
1≤i≤n SN i.

D(SN) is the set of all valid decompositions of SN .

From the definition the following properties follow:
1. each place appears in precisely one of the subnets, i.e., for any p ∈ P : |{1 ≤ i ≤
n | p ∈ P i}| = 1,

8 They also include a cost of two that is accounted for incorrect read operations, not shown in
the alignments, which are caused by incorrect write operations.

2. each invisible transition appears in precisely one of the subnets, i.e., for any t ∈
T \ Tv(SN): |{1 ≤ i ≤ n | t ∈ T i}| = 1,

3. all visible transitions with the same label (i.e. the label is not unique) appear in
the same subnet, i.e., for any a ∈ Av(SN) \ Auv (SN): |{1 ≤ i ≤ n | ∃t ∈
Tv(SN) ∩ T i, l(t)}| = 1,

4. visible transitions having a unique label may appear in multiple subnets, i.e., for
any t ∈ Tuv (SN): |{1 ≤ i ≤ n | t ∈ T i}| ≥ 1, and

5. each edge appears in precisely one of the subnets, i.e., for any (x, y) ∈ F : |{1 ≤
i ≤ n | (x, y) ∈ F i}| = 1.
As shown in [6], these observations imply that conformance checking can be de-

composed. Any trace that fits the overall process model can be decomposed into smaller
traces that fit the individual model fragments. Moreover, if the smaller traces fit the in-
dividual fragments, then they can be composed into a trace that fits into the overall
process model. This result is the basis for decomposing process mining problems.

Theorem 1 (Conformance Checking Can be Decomposed [6]). Let L ∈ IB(A∗) be
an event log with A ⊆ UA and let SN ∈ USN be a system net. For any valid decompo-
sition D = {SN 1,SN 2, . . . ,SN n} ∈ D(SN): L is perfectly fitting system net SN if
and only if for all 1 ≤ i ≤ n: the projection of L onto Av(SN i) is perfectly fitting SN i.

In this paper, the definition of valid decomposition is extended to cover Petri nets
with data.

Definition 16 (Valid Decomposition for Petri nets with Data). Let DPN ∈ UDPN

be a Petri net with Data. D = {DPN 1,DPN 2, . . . ,DPN n} ⊆ UDPN is a valid de-
composition if and only if:

– for all 1 ≤ i ≤ n: DPN i = (SN i, V i, val i, init i, read i,writei, guard i) is a
Petri net with Data, SN i = (PN i,M i

init ,M
i
final) ∈ USN is a system net, and

PN i = (P i, T i, F i, li) is a labeled Petri net,
– D′ = {SN 1,SN 2, . . . ,SN n} ⊆ USN is a valid decomposition of

⋃
1≤i≤n SN

i,
– V i ∩ V j = ∅ for 1 ≤ i < j ≤ n,
– DPN =

⋃
1≤i≤n DPN i.

D(DPN) is the set of all valid decompositions of DPN .

Each variable appears in precisely one of the subnets. Therefore, there cannot be two
fragments that read and or write the same data variables:

⋃
t∈T i read i(t)∪writei(t)

⋂⋃
t∈T j read j(t) ∪ writej(t) = ∅ for 1 ≤ i < j ≤ n. Moreover, two guards in

different fragments cannot refer to the same variable. If a transition t appears in multiple
fragments, then it needs to have a visible unique label as shown in [6]. Such a uniquely
labeled transition t shared among fragments, may use, read, or write different variables
in different fragments. Since DPN =

⋃
1≤i≤n DPN i, we know that, for all t in DPN ,

guard(t) is the product of all guardi(t) such that t ∈ T i. Without loss of generality
we can assume that the first k fragments share t. Hence, guard(t) = guard1(t) · . . . ·
guardk(t). Hence, in a valid decomposition, the guard of a shared transition can only
be split if the different parts do not depend on one another.

Based on these observations, we prove that we can decompose conformance check-
ing also for Petri nets with data.

Theorem 2 (Conformance Checking With Data Can be Decomposed). Let L ∈
IB((UA × UVM × UVM)∗) be an event log with information about reads and writes
and let DPN ∈ UDPN be a Petri net with Data. For any valid decomposition D =
{DPN 1,DPN 2, . . . ,DPN n} ⊆ UDPN : L is perfectly fitting Petri net with Data DPN
if and only if for all 1 ≤ i ≤ n: ΠAv(SN i),V i(L) is perfectly fitting DPN i.

Proof. Let DPN = (SN , V, val , init , read ,write, guard) be a Petri net with Data with
SN = (PN ,Minit ,Mfinal) and PN = (P, T, F, l). Let D = {DPN 1,DPN 2, . . .
DPN n} be a valid decomposition of DPN with DPN i = (SN i, V i, val i, init i, read i,
writei, guard i), SN i = (PN i,M i

init ,M
i
final) ∈ USN , and PN i = (P i, T i, F i, li).

(⇒) Let σv ∈ L be such that there exists a data marking s such that (DPN , (Minit ,
init))[σv� (DPN , (Mfinal , s)). This implies that there exists a corresponding σb with
(DPN , (Minit , init))[σb〉(DPN , (Mfinal , s)) and l(σb) = σv . For all 1 ≤ i ≤ n, we
need to prove that there is a σib with (DPN i, (M i

init , init
i))[σib〉(DPN i, (M i

final , s
i))

for some si. This follows trivially because DPN i can mimic any move of DPN with
respect to transitions T i: just take σib = ΠT i,V i(σb). Note that guards can only become
weaker by projection.
(⇐) Let σv ∈ L. For all 1 ≤ i ≤ n, let σib be such that (DPN i, (M i

init , init
i))[σib〉

(DPN i, (M i
final , s

i)) and li(σib) = ΠAv(SN i),V i(σv). The different σib sequences can
be stitched together into an overall σb s.t. (DPN , (Minit , init))[σb〉(DPN , (Mfinal , s))
with s = s1 ⊕ s2 ⊕ . . . ⊕ sn. This is possible because transitions in one subnet
can only influence other subnets through unique visible transitions and these can only
move synchronously as defined by σv . Moreover, guards can only be split in indepen-
dent parts (see Definition 16). Suppose that t appears in Ti and Tj , then guard(t) =
guard i(t)·guard j(t). Hence, a read/write in subnet i cannot limit a read/write in subnet
j. Therefore, we can construct σb and l(σb) = σv . ut

4 SESE-based Strategy for Realizing Valid Decomposition

In this section we present a concrete strategy to instantiate the valid decomposition
definition over a Petri net with data presented in the previous section (cf. Def.16).
The proposed strategy decomposes the Petri net with data in a number of Single-Entry
Single-Exit (SESE) components, which have recently been shown to create meaningful
fragments of a process model [10,8].

We will now informally describe the necessary notions for understanding the pro-
posed data-oriented SESE-based valid decomposition strategies described below. For
the sake of clarity, we will focus on the control flow to illustrate the concepts, although
the definitions will be extended at the end to also consider data.

Given Petri net PN = (P, T, F, l), its workflow graph is the structural graph
WG = (S,E) with no distinctions between places and transitions, i.e., S = P ∪T and
E = F . For instance, Fig. 4(b) shows the workflow graph of the Petri net of Fig. 4(a)
(corresponding with the control-flow part of the running example). Given a subset of
edges E′ ⊆ E of WG, the nodes S�E′= {s ∈ S : ∃s′ ∈ S. (s, s′) ∈ E′∨ (s′, s) ∈ E′}
can be partitioned into interior and boundary. Interior nodes have no connection with
nodes outside S �E′ , while boundary nodes do. Furthermore, boundary nodes can be
partitioned into entry (no incoming edge belongs to E), or exit (no outgoing edge be-
longs to E′). E′ ⊆ E is a SESE of WG iff the subnet derived from E has exactly two

n1 n2 n3 n5 n6
Credit Request Verify

Register Negative
Verification

Inform Requester

Renegotiate

Open Credit Loan

Assessment Register Negative RequestRegister Negative Request

n4n4

a b

c

d
e

g

f

h

i

j

lk

m n

po

S1
S2

S8

S3

S4

S9

S5

S10

S7

S6

S1

S8 S2

S9 S10 S4 S3

S5

S6 S7

a b

m n o p k l

c d i j

e f g h

a) Petri Net

b) Workflow graph and SESEs

c) RPST

Fig. 4: A Petri net modeling the control-flow of the running example, its workflow graph
and the RPST and SESE decomposition.

n3
Verify

Register Negative
Verification

Assessment

n2
Credit Request

Verify

Renegotiate

n1
Credit Request

Register Negative
Verification

Inform Requester

Assessment

n4n4

n5

Renegotiate

Open Credit Loan

Register Negative Request Register Negative Request

n6

Open Credit Loan

Verify

Register Negative
Verification

Open Credit Loan

Assessment

Verification Decision

Credit Request

Verify

Renegotiate

Interests

Amount

Register Negative Request Register Negative Request

Register Negative Request Register Negative Request

Fig. 5: SESE-based decomposition for the running example, with 2-decomposition.

boundary nodes: one entry and one exit. Fig. 4(b) shows all non-trivial SESEs9 of the
Petri net of Fig. 4(a). For a formal definition we refer to [10].

The decomposition based on SESEs is a well studied problem in the literature, and
can be computed in linear time. In [11,12], efficient algorithms for constructing the
Refined Process Structure Tree (RPST), i.e., a hierarchical structure containing all the
canonical SESEs of a model, were presented. Informally, an RPST is a tree where the
nodes are canonical SESEs, such that the parent of a SESE S is the smallest SESE that
contains S. Fig. 4(c) shows the RPST of the workflow graph depicted in Fig. 4(b). By
selecting a particular set of SESEs in the RPST (e.g., k-decomposition [8]), it is possible
to obtain a partitioning of the arcs. We refer the reader to the aforementioned work for
a formal description of the SESE-based decomposition.

To extend the previous definitions to also account for data, one simply has to incor-
porate in the workflow graph the variables and read/write arcs, i.e., the data workflow
graph of a Petri net with Data (((P, T, F, l),Minit ,Mfinal), V, val , init , read ,write, guard)

9 Note that by definition, a single edge is a SESE.

Algorithm 1 SESE-based Decomposition
1: Build data workflow graph DWG from F , R, W
2: Compute RPST from DWG
3: Compute SESE decomposition D from the RPST
4: Compute and merge subnets if necessary to preserve valid decomposition.
5: return valid decomposition where perspectives are decomposed altogether

with data arcs R = {(v, t)|v ∈ read(t)} and W = {(t, v)|v ∈ write(t)} is DWG =
(S,E) with S = P ∪T ∪V and E = F ∪R∪W . The subsequent definitions after this
extension (SESE, RPST) are analogous.

Similar to [8], we propose a SESE decomposition to analyze the conformance of
Petri nets with data, but considering data workflow graph instead. Algorithm 1 de-
scribes the steps necessary to construct a SESE decomposition. The arcs are partitioned
in SESEs by means of creating the RPST from the data workflow graph, and select-
ing a particular set of SESES over it. Once the partitioning is done, a subnet is created
for each part. Subnets contradicting some of the requirements of Def. 16 (e.g. shar-
ing places, invisible or duplicate transitions, variables, or transitions with non-splitting
guards) are merged to preserve the valid decomposition definition.

Figure 5 shows the decomposition for the example of Fig.3, where the RPST is
partitioned using the 2-decomposition algorithm [8], i.e., SESEs of at most 2 arcs10.
To ensure a valid decomposition is obtained, step 4 of Algorithm 1 combines multiple
SESE fragments into larger ones, which are not necessarily SESEs anymore.

5 Implementation and Experimental Results

The approach discussed in this paper has been implemented as a plug-in for the open-
source ProM framework for process mining.11 ProM is an extensible process-mining
software framework, where new process-mining algorithms can be easily developed in
form of plug-ins and can also reuse and build on top of the results of previously existing
plug-ins, without having to implement common functionalities again.

Our plug-in requires a Petri Net with Data and an event log as input and returns as
many bags of alignments as the number of fragments in which the Petri Net with Data
has been decomposed. Each bag refers to a different fragment and shows the align-
ments of each log trace and that fragment. Figure 6a shows the visualization of the the
alignments of the log traces with the various fragments. Each tab refers to a different
bag and, hence, to a different fragment. Each sequence of triangles refers to the align-
ment of a trace with the fragment, where events referring to transitions not present in
the fragment are removed. Each triangle represents a different move and is colored ac-
cording to the move type. The green and white colors are used to identify moves in
both without or with incorrect write operations, respectively; yellow and purple are for
moves in the log or in the process, respectively. Finally, the gray is used for moves for
invisible transitions. When the user passes over a triangle with the mouse, the plug-in
10 Although the SESEs have at most two arcs, this is not guaranteed for the final subnets, i.e.,

some subnets are merged to preserve the valid decomposition definition.
11 http://www.promtools.org

(a) Visualization of decomposed data alignments.

(b) The projection of the deviations on the process model.

Fig. 6: Screenshots of the two types of output returned by the operationalization in the
ProM framework.

highlights the two transition firings sL and sP associated with the move (sL, sP). The
value associated with each trace (e.g., value 0.97 for the trace in the figure) is the fitness
level, obtained by normalizing the alignment’s cost between 0 and 1, where 1 indicates
perfect fitness and 0 indicates a very poor fitness. We refer to [4] for details about how
fitness is concretely computed.

A second type of output is also produced in which the alignments’ information is
projected onto the Petri net with Data. Transitions are colored according to the num-

Fig. 7: Computation time for checking the conformance of the Petri net with Data in
Figure 3 and event logs of different size. The Y axis is on a logarithmic scale.

ber of deviations: if no deviation occurs for a given transition, the respective box in
the model is white-colored. The filling color of a box shades towards red as a larger
fraction of deviations occur for the corresponding transition t, i.e. the number of moves
in log, model or both with incorrect read/write operations for the t divided by the total
number of moves for t. Something similar is also done for variables: the more incorrect
read/write operations occur for a variable, the more the variable is shown with a color
close to red. This visualization specializes what was proposed in [4] for the decompo-
sition case. The main difference is that a transition t may appear in multiple fragments,
say DPN1, . . . , DPNn. Therefore, an event for t in a trace σ is related to one move
in n alignments, i.e. the alignments of σ with DPN1, . . . , DPNn. To guarantee uni-
formity, the fraction of deviations is normalized by dividing it by n, i.e. the number
of fragments in which t appears. This output is extremely interesting from an end-user
viewpoint as it allows for gaining a helicopter view on the main causes of deviations.

As previously mentioned, the plug-in has been evaluated using a number of syn-
thetic event logs and also a real-life process. The plug-in has been evaluated using the
model in Figure 3 and with a number of event logs that were artificially generated.
In particular, we have generated different event logs with the same number of traces,
5000, but increasing number of events, meaning that, on average, traces were of differ-
ent length. To simulate that, for each simulated process execution, an increasing number
of renegotiations was enforced to happen. Traces were also generated so as to contain
a number of deviations: the event logs were generated in a way that 25% of transitions
fired violating the guards.

Figure 7 shows the results of checking for conformance of the different event logs
and the process model, comparing the SESE-based decomposition with k = 2 with
the case in which no decomposition is made. To check the conformance of each frag-
ment, we used the technique reported in [4]. Each dot in the chart indicates a different
event log with traces of different size. The computation time refers to the conformance

checking of the whole event logs (i.e., 5000 traces). The decomposed net is the same
as in Figure 5. Regarding the cost function, we assign cost 1 to any deviation; however,
this could be customized based on domain knowledge. The results show that, for every
combination of event log and process model, the decomposition significantly reduces
the computation time and the improvement is exponential in the size of the event log.

To assess the practical relevant of the approach, we also performed an evaluation
with a Dutch financial institute. The process model is shown in Figure 8 and was pro-
vided by a process analyst of the institute and consists of 21 transitions: 13 transitions
with unique labels, 3 activities labels shared between 2 transitions (i.e. 6 transitions in
total), plus 3 invisible transitions. The model contains twelve process variables, which
are read and written by the activities when being executed.

We acknowledge that the model shown in Figure 8 is not fully readable, as its large
width prevents it from being properly fitting with one page. However, the main purpose
of the picture is to show the complexity of the model in term of number of transitions,
variables, as well as of read and write operations. The visible and invisible transitions
with a red color are those associated with guards. The actual guards are not important
since the decomposition techniques look at the read and write operations, only.

We were also provided with an event log that recorded the execution of 111 real
instances of such a process; overall, the 111 log traces contained 3285 events, which
means roughly 29.6 events per trace. We checked the conformance of this process
model and this event log, comparing the results when the model has or has not been de-
composed in small fragments. For conformance checking, here we used the technique
reported in [5] since the provided process model breaks the soundness assumptions re-
quired by [4]. For this experiment round, the additional optimizations proposed in [5]
were deactivated to allow for a fair comparison.

The application of the decomposition approach to this real-life case study has shown
tremendous results: the conformance checking has required 52.94 seconds when the
process model was decomposed using the SESE-based technique presented in Section 4;
conversely, it required 52891 seconds when the model was not decomposed. This indi-
cates that decomposing the process model allowed us to save 99.999% of the computa-
tion time. As a matter of fact, we tried for different values of SESE parameter k but we
obtained similar results: the computation time did not move away for more than 1 sec-
ond. The reason of this is related to the fact that every decomposition for any value of
k always contained a certain fragment, along with others. Indeed, that fragment could
not be decomposed any further than a given extent. Since the computation time was
mostly due to constructing alignments with that fragment, no significant difference in
computation time could be observed when varying k.

6 Conclusions and Future Work

Conformance checking is becoming more important for two reasons: (1) the volume
of event data available for checking normative models is rapidly growing (the topic
of “Big Data” is on the radar of all larger organizations) and (2) because of a variety
of regulations there is a need to check compliance. Moreover, conformance checking
is also used for the evaluation of process discovery algorithms. Also genetic process
mining algorithms heavily rely on the efficiency of conformance checking techniques.

Fig. 8: The Data-aware Process Model of the Dutch financial institute. The large width
of the model prevents it to be properly readable to fit within one page. However, the
picture aims at showing the complexity of models in term of number of transitions,
variables, read and write operations. Also, the actual guards are also unimportant since
they are not considered by our decomposition approach.

Thus far, lion’s share of conformance checking techniques has focused on control-
flow and relatively small event logs. As shown in this paper, abstracting from other
perspectives may lead to misleading conformance results that are too optimistic. More-
over, as process models and event logs grow in size, divide-and-conquer approaches
are needed to still be able to check conformance and diagnose problems. Perspectives
such as work distribution, resource allocation, quality of service, temporal constraints,
etc. can all be encoded as data constraints. Hence, there is an urgent need to support
data-aware conformance checking in-the-large.

This paper demonstrates that data-aware decompositions can be used to speed up
conformance checking significantly. The evaluation with a real-life case study has shown
that real data-aware process models can indeed be decomposed, thus obtaining even
tremendous saving of computation time. As future work, we would like to extend our
experimental evaluation with real-life process models of larger sizes. Moreover, we
would like to explore alternative decomposition strategies using properties of the under-
lying data. This paper only focuses on fitness aspect of conformance, namely whether
a trace can be replayed on a process model. However, recently, research has also been
carried on as regards to different conformance dimensions [13,14], such as whether the
model is precise enough to not allow for too much behavior compared with what ob-
served in reality in the event log. We plan to use data-aware decomposition approaches
to speed up the assessment of the quality of process models with respect to these other
conformance dimensions, as well.

Acknowledgments. This work has been partially supported by the Ministerio de Edu-
cación (AP2009-4959) and by the project TIN-2007-66523. The work of Dr. de Leoni is
supported by the Eurostars - Eureka project PROMPT (E!6696). Authors want to thank
Felix Mannhardt, Ph.D. candidate at the Architecture of Information Systems (AIS) re-
search group, Eindhoven University of Technology. He provided invaluable support to
enable the software integration of the technique proposed [5] into the ProM plug-in that
operationalizes the decomposition technique proposed in this paper. We also thank him
for useful insights and discussions.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Information System 33(1) (2008) 64–95

3. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: Proceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference, (EDOC 2011), IEEE Computer Society (2011) 55–64

4. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-
perspective conformance checking: An approach based on integer linear programming. In:
Proceedings of the 11th International Conference on Business Process Management, (BPM
2013). Volume 8094 of Lecture Notes in Computer Science., Springer (2013) 113–129

5. Mannhardt, F., de Leoni, M., Reijers, H.A. van der Aalst, W.M.P.: Balanced Multi-
Perspective Checking of Process Conformance (2014) BPM Center Report BPM-14-07.

6. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach.
Distributed and Parallel Databases 31(4) (2013) 471–507

7. van der Aalst, W.M.P.: Decomposing process mining problems using passages. In: Proceed-
ings of the 33rd International Conference on Application and Theory of Petri (PETRI NETS
2012). Volume 7347 of Lecture Notes in Computer Science., Springer (2012) 72–91

8. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed
conformance checking. Information Systems (2014) . To Appear.

9. Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer Verlag (2009)
10. Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam (2012)
11. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng.

68(9) (2009) 793–818
12. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the

refined process structure tree. In: 7th International Workshop on Web Services and Formal
Methods. Revised Selected Papers. Volume 6551 of Lecture Notes in Computer Science.,
Springer (2011) 25–41

13. Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking. International
Journal of Innovative Computing, Information and Control (IJICIC) 8(7B) (July 2012) 5317–
5339

14. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Infor-
mation System 37(7) (2012) 654–676

