Discovering Block-Structured
Process Models from Incomplete Event Logs

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst} @tue.nl

Abstract One of the main challenges in process mining is to discover a process
model describing observed behaviour in the best possible manner. Since event
logs only contain example behaviour and one cannot assume to have seen all pos-
sible process executions, process discovery techniques need to be able to handle
incompleteness. In this paper, we study the effects of such incomplete logs on pro-
cess discovery. We analyse the impact of incompleteness of logs on behavioural
relations, which are an abstraction often used by process discovery techniques.
We introduce probabilistic behavioural relations that are less sensitive to incom-
pleteness, and exploit these relations to provide a more robust process discovery
algorithm. We prove this algorithm to be able to rediscover a model of the original
system. Furthermore, we show in experiments that our approach even rediscovers
models from incomplete event logs that are much smaller than required by other
process discovery algorithms.

Keywords: process discovery, block-structured process models, rediscoverability, pro-
cess trees

1 Introduction

Organisations nowadays collect and store considerable amounts of event data. For in-
stance, workflow management systems log audit trails, and enterprise resource planning
systems store transaction logs. From these event logs, process mining aims to extract
information, such as business process models, social networks, bottlenecks and com-
pliance with regulations [1]. In this paper we focus on the most challenging problem:
discovering a process model from example traces. Learning a process model (e.g., a
Petri net) from example traces in an event log, called process discovery, is one of the
first and most challenging steps of process mining.

Two problems of logs are particularly challenging for process discovery algorithms.
First, the log may contain infrequent behaviour, which forces algorithms to either ex-
clude this behaviour or return complicated, unreadable models describing all behaviour
[18]. Second, the log might contain insufficient information to discover a process model
that represents the system well: the log might be incomplete. Incompleteness forces al-
gorithms to either exclude the missing behaviour and reduce the as yet unseen behaviour
the model can produce, or include the missing, unknown, behaviour and risk guessing
wrong. In this paper, we focus on handling incomplete logs.

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

produces process discovery
system » eventlog > model

measure fitness,
precision, generalisation

rediscoverability

Figure 1: Traditional model quality assessment (fitness, precision, generalisation) and
rediscoverability.

A notion closely related to incompleteness is rediscoverability. If a process discovery
technique has rediscoverability, it is able to discover models that have the same lan-
guage as the real-life process by which a log was produced [3,5,17]. Figure 1 shows
the context of process discovery, rediscoverability, and how discovered models can be
evaluated. Traditionally, models are evaluated with respect to the event log: firness mea-
sures what part of the event log is described by the model, precision is high when the
model does not allow too much behaviour that was not in the event log, and generalisa-
tion is high when the model allows more behaviour than just the behaviour in the event
log. Although fitness, precision, and generalisation are intuitively clear, different formal
definitions are possible [13,22,23]. Measuring the quality of a discovered model with
respect to its event log might be useful, but whether the best model for the event log
is the best model for the system is not captured by these measures. Therefore, to com-
pare process discovery techniques it is useful to study rediscoverability, as that gives
theoretical bounds to when a model is language-equivalent to its real-life system.

Rediscoverability is usually proven using assumptions about both log and model
[3,5,17]. A model must be from a certain class, and a log must contain sufficient infor-
mation. The notion what information is sufficient, completeness, depends on the discov-
ery algorithm. Generally, the strongest completeness notion is language-completeness,
i.e., each trace through the process must be present in the log. The weakest completeness
notion is that each process step must occur at least once in the log: activity-completeness
[17].

Typically, rediscoverability can only be guaranteed if the log is complete. In this pa-
per, we investigate the problem of rediscovering process models from event logs, in
particular from incomplete event logs.

Another desirable property of process discovery algorithms is that they return simple
and sound models. A simple model needs few constructs to express its behaviour, and
a sound model is a model free of deadlocks and other anomalies. While an unsound
model might be useful, it is, for instance, not well suited for compliance evaluation
and bottleneck analysis [18]. Therefore, in this paper we will focus on process trees:
abstract hierarchical block-structured Petri nets that are guaranteed to be sound.

The Inductive Miner (IM) [17] is an example of an algorithm that discovers process
trees and for which rediscoverability has been proven. IM applies a divide-and-conquer
approach: it partitions the activities, selects the most important process construct, splits
the log and recurses until a base case is encountered.

In this paper, we adapt IM to handle incomplete logs: we keep the divide-and-conquer
approach, but replace the activity partition step by an optimisation problem. We intro-

Discovering Process Models for Incomplete Event Logs 3

duce relations between activities, estimate probabilities of these relations and search
for a partition of activities that is optimal with respect to these probabilities. Rediscov-
erability is proven assuming log completeness and a sufficiently large log; we give a
lower bound for sufficiency.

In the remainder of this paper, we first explore related work. In Section 3, we in-
troduce logs, Petri nets, process trees and completeness notions. We study effects of
incompleteness on behavioural relations in Section 4 and describe behavioural prob-
abilisations. Section 5 describes the algorithm, Section 6 proves rediscoverability for
sufficiently large logs, and illustrates how incompleteness is handled by the new ap-
proach, compared with other approaches. Section 7 concludes the paper.

2 Related Work

Petri net synthesis aims to build an equivalent Petri net from a transition system or a
language. [15] introduced region theory to characterise places in a Petri net, and several
synthesis methods were proposed, for instance [11,19,6,12].

Process discovery differs from Petri net synthesis in the assumption on complete-
ness. Synthesis assumes that the complete language of the system is described in some
form. For process discovery we cannot assume the log to be language-complete, as typ-
ically only a fraction of the possible behaviour can be observed in the event log, making
language-completeness often impossible or infeasible. For example, the language of a
model having a loop contains infinitely many traces, and the language of a model de-
scribing the parallel execution of 10 activities contains at least 10! = 3628800 different
traces [1]. In contrast, a typical log only contains a fraction of that.

Many process discovery techniques have been proposed. For instance, after a tran-
sition system has been constructed from the log, state-based region miner techniques
construct a Petri net by folding regions of states into places [4,28]. Typically, state-
based region techniques provide rediscoverability guarantees [10], but have problems
dealing with parallelism.

Process trees, or block structures in general, have been used in process discovery,
both inside the scope of Petri nets [8,2,20], as outside [24,25] the scope of Petri nets.
They provide a natural, structured, well-defined way of describing processes that are
often easily translatable to Petri nets. The process tree formalisms used in [8,17,18]
guarantee soundness as well. Process tree discovery techniques have also been pro-
posed before. For instance, the approach used by [26] constructs a process tree from
a log by enumerating all traces, after which the process tree is simplified. The Evolu-
tionary Tree Miner (ETM) [8] uses a genetic approach to discover a process tree, i.e., a
random population is mutated until a certain stop criterion is met, but as it is steered by
log-based metrics, fitness, precision, generalisation and simplicity, and by its random
nature, it is unable to guarantee rediscoverability. A natural strategy when using block
structures is to apply a divide-and-conquer strategy, which has been applied to process
discovery in for instance [9,36,17,18].

Behavioural relations have been proven to be able to distinguish languages of classes
of Petri nets [30], and they have been used to refine or coarsen models, i.e., making
them more or less abstract [27,16], to compare process models [29], and to perform

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

process discovery. For instance, the behavioural relation used in the a algorithm [3],
its derivatives [33,34], and in [17,18], the directly-follows relation, holds for two ac-
tivities if one activity can consecutively follow the other activity. A notion close to the
directly-follows relation is the eventually-follows relation, which holds if one activity
can eventually be followed by another. This eventually-follows relation has been used
in the context of process discovery [26,30,18].

To the best of our knowledge, the influence of incompleteness has not been system-
atically studied on neither behavioural relations nor process discovery.

3 Traces, Event Logs, Petri Nets and Completeness

Traces, Event Logs. A trace is a sequence of activities: {a, a, by denotes a trace in which
first a occurred, then @ again and finally b. Traces can be concatenated: {a, b) - {¢) =
{a,b,c). An event log is a multiset of traces. For instance, [{a, a, b)?, (b, b)?] denotes
an event log in which the trace {a, a, b) happened 3 times and {b, b) happened 2 times.
The function set transforms a multiset into a set: set(L) = {t|t € L}; the function X
gives the alphabet of the log, i.e., the activities used in it.

Petri Nets, Workflow Nets and Block-Structured Workflow Nets. A Petri net is a bipar-
tite directed graph of interconnected places and transitions, in which tokens on places
model the system state and transitions model process step execution. We use the stan-
dard semantics of Petri nets, see [21].

A workflow net is a Petri net having a single input and a single output place, mod-
elling the initial and final states of the system. Moreover, each element is on a path from
input to output [3]. A consecutive sequence of process executions that brings the system
from the initial state into the final state, corresponds to a trace. The set of traces that
can be produced by a model M, the language of M, is denoted by L(M).

A block-structured workflow net is a hierarchical workflow net: it can be divided
recursively into workflow nets. An example is shown in Figure 2.

Figure2: A block-structured workflow net Mp; filled regions denote the block-
structure; process tree —(x (A(a,b), ¢), x(O(—(d, e), f), g)) corresponds to this net.

Process Trees. A process tree is an abstract hierarchical representation of a block-
structured workflow net. The leaves of the tree are activities, representing transitions.
The nodes of the tree, operators, describe how their children are combined. This paper
uses four operators: x, —, A and (0. The x operator describes the exclusive choice be-
tween its children, — the sequential composition and A the parallel composition. The

Discovering Process Models for Incomplete Event Logs 5

first child of a O tree is the loop body, the non-first children are redo parts. For instance,
((a, b) is the composition of a trace of the body a, then zero-or-more times a trace from
aredo part b and a body a again: a((b|c)a)™*.

Each process tree is easily translatable to a sound workflow net. For example, Fig-
ure 2 shows the block-structured workflow net corresponding to the process tree Mg =
—(x(A(a,b),c), x(O(—(d,e), f),9))-

To define the semantics of process trees, we assume a finite set of activities X' to be
given. The language of an activity is the execution of that activity (a process step). The
language of the silent activity T contains only the empty trace: executing 7 adds nothing
to the log. The language of an operator is a combination of the languages of its children.

To characterise A, we use the shuffle product S W . .. S, which takes sets of traces
from S; ... S, and interleaves their traces t; € S1,...,t, € S, while maintaining the
partial order within each ¢; [7]. For instance,

{{a, by} w {{c,dy} = {{a, b, c,dy,{a,c,b,dy,{a,c,d, by,
<C’ d’ a’ b>’ <C7 a” d’ b>7 <C’ a7 b’ d>}

Using this notation, we define the semantics of process trees:

L(r) ={}
L(a) = {{a)} fora e ¥
L(x(M,...,M,)) = L(M)|L(M)...L(M,)
L(—(My, ..., My)) = L(My) - L(Mz) -+ L(M,)
LA(My, ..., M) = L(M;) w L(Ms) ... L(M,)
L(O(My, ..., My)) = LIM1)(L(x(Mz, ..., L(My))L(M))*

As an example, the language of My is (ab|ba|c)(de(fde)*|g). The function X' gives
the alphabet of a process tree: X(Mg) = {a,b,c,d,e, f,g}. We use @ to denote
the set of operators, and often @ to denote a process tree operator: @ € @, P =
{x,—, A, O}. Obviously, the order of children for x and A and the order of non-first
children of (J is arbitrary.

Directly-Follows Relation, Transitive Closure and Graphs. The directly-follows rela-
tion — has been proposed in [3] as an abstraction of the behaviour described by a model
or a log. From a model M, take two activities a and b. If b can follow a directly in M,
(..ya,b,...) e L(M), then a>ps b. For alog L, —, is defined similarly. For logs,
— is monotonic: for a pair of activities, — cannot cease to hold by adding more traces
to the log.

A —-path is a sequence a; . . . ay of activities such that k > 2 and Vi <;<ra; — a4 1.
The transitive closure of — is denoted by — ™ : for activities a and b, the relation a 7 b
holds if there exists a —-path from a to b. ! For a model M (resp. a log L), Start(M)

' We did not choose the eventually-follows/weak-order relation [18,30], as its completeness
does not survive log splitting; Lemma 11 does not hold for it.

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

(a) —>-graph of Mg (b) > -graph of Mg

Figure 3: Graphs of My showing its directly-follows relation — and its transitive
+

closure — 7.
(resp. Start(L)) denotes the start activities, found at the beginning of a trace, and
End(M) (resp. End(L)) the end activities, that can conclude a trace.

Figure 3a shows the directly-follows relation of Mg in graph notation: a directly-
follows graph. In this graph, an edge is drawn between a pair of activities (z,y) if
x +— y. Similarly, Figure 3b shows the graph of —* for Mp.

Completeness. Using these relations, we introduce two completeness notions, between

amodel M and a log L:

— L is activity complete to M (L oy, M), if each activity of M is present in L at least
once: X(M) € X(L).

— L is directly-follows complete to M (Lo, M), if L is activity-complete to M, its
directly-follows relation is complete, and both start and end activities are complete:
Los M, -y € —p, Start(M) € Start(L) and End(M) € End(L).

Fartitions and Cuts. A partition is a distribution of an activity set X' into disjoint non-
empty subsets Xy ... Y, with n > 1. A pair of activities (a,) is partitioned by a
partition X, ..., Y, if a and b are not both in the same ;. A cut is a partition together
with a process tree operator, for example (—, {a}, {b, ¢, d, e, f}). If a pair of activities
is partitioned by the partition in a cut, the pair crosses the cut.

Obviously, any process tree can be rewritten to a language-equivalent binary pro-
cess tree. Therefore, without loss of generality, in this paper we consider only binary
partitions and cuts.

4 Behavioural Relations

In many Petri net discovery algorithms, such as [3,17,18,33,34], a two-stage approach
is used: first, an abstraction of the log is derived, and second, from this abstraction a
model is generated. The directly-follows relation — is often used as a behavioural re-
lation. In this section, we first describe the influence of incompleteness on behavioural
relations. In order to do that, we classify pairs of activities inspired by the process tree
operators, by using the — relation, after which we show the effect incompleteness has
on this classification. Second, we introduce a probabilistic version of the classification
that helps discovery techniques deal with incompleteness.

Discovering Process Models for Incomplete Event Logs 7

Figure 4 identifies nine cases for — and —T between two given activities a and b,
and organises these cases in a lattice. The structure of the lattice follows from +— and
—T: an edge in the lattice corresponds to an extension of the —-relation with one pair
of activities.

The lattice yields five relations between activities: the commutative x, A and (J;, and
the non-commutative — and (. For instance, if b+ a and a .7L>+ b, then —(a, b), and
ifar>*b, b—>"a, ah b and brb a, then Oi(a, b). Informally, x(a,b) denotes that a
and b are in an exclusive choice relation, —(a, b) denotes that a and b are in a sequence
relation, and A (a, b) denotes that @ and b are in a parallel relation. These are similar to
the a-relations #y, —w and ||y [3], but act globally instead of locally.

Both (i(a,b) and Os(a, b) denote that ¢ and b are in a loop relation. If we would
combine them into a single relation, this single relation would not give sufficient in-
formation to partition the activities. Using the two relations (s and (; does, as will be
proven in Section 6.

We consider the commutative cases, for instance A(a,b) and A(b,a), to be equiva-
lent.

arsb bea | Alad)
A

Os(a,b) | @ b bba aksb b—a Ou(bya)
bt a aTb
—(a,b) a—b airb bha b—a —(b,a)
bt a a—=tb bta a—tb
1) 1
S(ab) | 27 Oi(b,a) bra | L4 a)
atb bbbt a asbTh b=Ta
x(a,b)
abTh bista x (b, a)

Figure 4: Activity relations; the arrows define a lattice. Implied +4 and —* are omitted
for readability reasons.

Consider again Petri net Mg shown in Figure 2. Figure 5 shows the activity re-
lations of Mg as graphs. Consider the log Lg = [{c,d,e, f,d,e, f,d,e), (b,a,d,e),
{a,b,d,e, f,d,e),{c, g)], which we produced using Mg, but L is not directly-follows
complete to Mg, asa+— g, b g,a—" gand b—* gholdin Mg but notin Lz. There-
fore, x(a,g) and x (b, g) hold in Lg; Figure 6 shows how x and — change. For L,
a process discovery algorithm will regard a and b to be exclusive to g, while Mg puts
them in sequence, and thus be unable to rediscover M g. The problem illustrated with
these activity relations is inherent to any process discovery algorithm using behavioural
relations; any technique that just uses behavioural relations is likely unable to rediscover
Mg from the directly-follows incomplete Lg.

In the following, we explore ways to use information from incomplete logs that could
help to rediscover the original model. Therefore, in the remainder of this paper we as-

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

[

(d) Os-graph (e) A-graph

Figure 5: Activity relations of Mg as graphs. In the —-graph a directed edge is
drawn from a to b if —(a,b) holds, and similar for (J;. For x, A and (J;, which are
commutative, undirected edges are drawn.

(a) x-graph (b) —-graph

Figure 6: Two activity relations of Lg as graphs. Notice that —(a, g) and —(b, g) do
not hold anymore, while x (a, g) and x (b, g) now do.

sume that the log only contains behaviour from its system, i.e., no noise is present. First,
some information in the log may allow us to conclude that a particular relation between
two activities cannot hold. For instance, if the log contains a trace {b, a), then —(a, b)
cannot hold. These violations follow from Figure 4: if the log contains information that
a relation @ holds, then any weaker relation, i.e., not reachable from @, cannot hold;
one can only move up in the lattice.

Second, the idea is to rather use an estimated probability that a relation holds than a
binary choice, an idea also used in for instance the Heuristics miner [31,32]. For each of
the activity relations @, we introduce a probabilistic version pg: for activities a and b,
pe(a, b) denotes an artificially estimated probability that (a, b) are in a @-related. Us-
ing the probabilistic versions makes it easier for techniques to handle incompleteness:
in our example, instead of a binary choice whether —(a, g) and —(b, ¢) hold or not,
we can compare the probabilities p_, and py to make a choice.

Our choice for these pg is shown in Table 1. Let M be a model and L a log of M.
Then, using Figure 4, we distinguish three cases and choose pa(a,b) as follows:

Discovering Process Models for Incomplete Event Logs 9

- if ®(a, b) holds in L, it makes sense to choose pg(a, b) as the highest of all relations
for the pair (a, b). The more frequent activities a and b occur in L, the more confident
we are that @(a, b) holds for M, and not some stronger relation. We choose pg(a, b)
as follows: let z(a, b) = w denote the average number of occurrences of a and
b, then we define pg(a,b) = 1 — z(T}))H’ yielding a number between % and 1.

— if some relation ®(a, b), holds in L from which @(a, b) is unreachable, then L con-
tains a violation to pg(a, b), so pg(a, b) should be low. We choose pg(a, b) = 0.

— if some relation ® (a, b) holds in L from which @(a, b) can be reached, i.e., pg(a, b)
could hold by adding more traces to L, we choose to divide the remaining W
evenly over all remaining entries, such that the probabilities for each pair (a, b) sum
up to 1.

For example, in case of Lg, we get px (a, g) = 0.6 and p_,(a, g) = 0.07.

Table 1: Our proposal for probabilistic activity relations for activities a and b, with
z = (|a] + |b])/2. Negations of relations are omitted from the first column.

Px(a,b) p-(a,b) p(ba) pgi(a,b) po.(a,b) po,(b,a) pala,b)
(nothing) 1- z+1-1 % ’ 241-1 % ’ z41-1 % ’ 241-1 % ’ z41-1 % ’ 241-1 % ’ z41-1
a—"b 0 - zil 0 i ’ 241-1 i zil i ’ 241-1 i ’ zi1
b—"a 0 0 1_211 iﬁ i'zil i.zil i'zil
amTbaboTa 0 0 0 1_zi1 %'Z}A %'zL %'Z}A
arb 0 1_z~1u 0 0 %-z}rl 0 %-z}rl
ambab-Ta 0 0 0 0 l——=5 0 =
bsa 0 0 11— 0 0 T 3 a
bana—Th 0 0 0 0 0 l—zj_l 241-1
a—>bAab—a 0 0 0 0 0 0 1

In the next section, we demonstrate how to use any system of probabilistic relations
in a concrete algorithm; one could define Table 1 differently, as long as for each pair of
activities (a, b) and each relation @, a probability pg(a, b) is available. In Section 6, we
will show that our choices for pg lead to a correct algorithm. We expect that the proofs
given in Section 6 to extend easily to other choices, but the precise class of acceptable
Pg needs further research.

5 Algorithm

In this section, we demonstrate how the probabilistic activity relations defined in Sec-
tion 4 can be used to discover process trees.

We use a divide-and-conquer approach and adapt ideas from IM [17] to introduce
a new disovery algorithm that we call Inductive Miner - incompleteness (IMin). IMin
consists of three steps that are applied recursively: first, the —-graph of the log and
its transitive closure —* are computed. Second, a cut is chosen such that the relations
between pairs crossing the cut have the highest probability according to Table 1. The
operator of the chosen cut is recorded. Third, using the cut, the log is split into a sublog

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

for each part and on each sublog, IMin recurses. The recursion ends when a base case, a
log containing just a single activity, is encountered. The hierarchy of recorded operators
is a process tree.

We first describe how to accumulate the probabilities of Table 1 to assess the prob-
ability of a cut. Second, we give the algorithm, an example and a description of our
implementation.

5.1 Accumulated Estimated Probabilities for Cuts

Given activity relation probabilities, such as the ones defined in Table 1, we compute
an accumulated probability for a cut. Informally, for ® € {x, —, A}, the accumulated
probability pg is the average pg over all partitioned pairs of activities.

Definition 1 (accumulated probability for x, — and A). Let ¢ = (®, X1, X5) be a
cut, with @ € {x, —, A}. Then pg (X1, X2) denotes the accumulated probability of c:

Zaeﬂl ,beEX p@(a, b)
PATRPY

Pe(X1, Xs) =

Note that a —, x, or A cut requires all pairs of activities to be in the same relation
sufficiently often. For a loop cut, this is not sufficient, as all crossing pairs of activities in
a loop are in a loop relation ((Js u (3y). This loop relation suffices to describe the prob-
ability whether all activities are indeed in a loop, but on its own cannot distinguish the
body of a loop from its redo parts. For this, we have to explicitly pick the start and end
activities of the redo parts, such that a redo start activity follows a body end activity, and
a redo end activity is followed by a body start activity. This direct succession in a loop
is expressed in CJs. Hence, we obtain the following probability that ¢ = (O, 2y, Xs)
is a loop cut for the chosen redo start activities .Sy and loop redo end activities Fs; the
start and end activities of the body are the start and end activities of the log. In the next
section, we show how S5 and E5 could be chosen.

Definition 2 (accumulated probability for O). Let ¢ = (O, X1, X2) be a cut, L be a
log, and Ss, Es be sets of activities. We aggregate over three parts: start of a redo part,
end of a redo part and everything else:

red0start = Z pg(av b)
(a,b)eEnd(L)x S>3

> pg. (a,b)

(a,b)eEy x Start(L)

indirect = Z pes, (@, b)
a€ X ,be Ty o
(a,b)¢(End(L)XxS2)u(E2x Start(L))

red0 end

Then, pcs(X1, Xz, Sa, Es) denotes the accumulated probability of c:

red0start + 1€d0ong + indirect
|21 - | 22|

pO(Ela 227 827 E2) =

Discovering Process Models for Incomplete Event Logs 11

In this definition, redo g4+ and redo ., capture the strength of Sy and F really being
the start and end of the redo parts; indirect captures the strength that all other pairs of
activities that cross X1, 2> are in a loop relation.

For readability reasons, in the following, we will omit the parameters S5 and Fs.

5.2 The Algorithm: Inductive Miner - incompleteness (IMin)

Next, we introduce a process discovery algorithm that uses the accumulated estimations
of definitions 1 and 2 in a divide-and-conquer approach.

For this, we introduce a parameter that influences a threshold of acceptable incom-
pleteness. By default, a cut with highest pg is to be selected at all times. However,
a low pg might indicate that the behaviour in the log cannot be described well by a
block-structured Petri net. Therefore, a parameter A is included: if there is no cut with
Pe = h, a flower model (7, a1, ..., ay) with {a1,...,a,} = X(L), allowing for
any trace over X'(L) [17], is returned.

function IMIN(L)

if L = [(a)”] witha € X and = > 1 then

return a
end if
(@, X1, X3) « cutof X'(L) with highest pg (X1, X2); D€ P
ifp@(El, 22) = h then

Ly, Ly « sPLIT(L, (®, X1, X3))

return ®(IMin(L4), IMin(Ls))
else

return (7, a1, ..., a,) where {a1,...,a,} = (L)
end if

end function

IMin contains two non-trivial operations: selecting a cut with highest pg and the
SPLIT function. To select a cut with highest pg, and in case of () to choose S and L,
our implementation uses an SMT-solver. For more details of the translation to SMT,
please refer to Appendix A.

The function SPLIT splits a log L into sublogs L; and Lo, according to a given cut
¢ = (@, X1, Xs), by projecting the traces of L on Xy and X5. For example, SPLIT
applied to a sequence cut (—, {a}, {b}) and a trace {a, a, b, b) yields {a, a) and (b, b).
In addition, for (O, traces are split on the points where the trace ‘leaves’ X} and ‘en-
ters’ 2. For example: SPLIT([{a, b, a, a, b, a)], (5, {a}, {b})) yields [(a)?,{a, a)] and
[(b)?]. For a more detailed formal description, please refer to [17].

IMin has been implemented as part of the Inductive Miner plug-in of the ProM frame-
work [14], available at http://www.promtools.org.

Example 3. As an example, consider again the log L = [{c,d, e, f,d, e, f,d,e),{(b,a,d, €),
{a,b,d,e, f,d,e),{c,g)]. If IMin is applied to Ly with h = 0, the first most likely cut
is (—,{a,b,c},{d,e, f,g}), with a p_, of about 0.64. The choice for — is recorded,
and L is split into [{c)?,{b, a),{a,by] and [{d, e, f,d, e, f,d,e),{d,e),{d,e, f,d,e),
{g>]. Then, IMin recurses on both these sublogs. Figure 7 shows the recursive steps that

12 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

are taken by IMin. The final result is —(x (A(a,b), c), x(O(—(d, €), f), g)), which is
equal to Mg.

0.64 (—,{a,b,c}{d.e, f.g})

e N

0.74 (x,{a,b},{c}) 0.74 (x,{d,e, f},{g})

/o \ /N

1.00 (A {a}, {b}) ¢ 082 (0, {d e}, {f}) 9

VAN /

0.86 (=, {d},{e}) [

d/ \c

Figure 7: Running example: IMin(Lg). As a first step, the cut with highest pg is
(—,{a,b,c},{d,e, f,g}), with pg = 0.64. Then, IMin recurses as shown.

6 Rediscoverability

In this section, we report on the rediscoverability of IMin. We first describe a class of
process trees, for which we then prove that IMin has rediscoverability, given a directly-
follows complete log in which each activity occurs sufficiently often. After that, we
report on experiments showing that IMin manages to rediscover these process trees,
even from smaller logs than those needed by other discovery algorithms.

6.1 Class of Rediscoverable Process Trees
The class of process trees C'r for which we will prove rediscoverability is as follows:

Definition 4 (Class CRr). Let M be a process tree. M belongs to C', if for each (sub)tree

M’ at any position in M, it holds that

— The subtree is not a silent activity: M' #

- IfM' = ®(Mj...M)), with @ a process tree operator, then no activity appears
more than once: V1<i<j<n X (M) 0 X(M]) = &

- IfM'=O(Mj ... M)]), then M] is required to have disjoint start and end activities:
Start(M;) n End(M]) = &

6.2 Normal Form

In order to prove language-rediscoverability, we use a language-unique normal form.
Each process tree can be converted into this normal form using the following language-
preserving reduction rules. If no rule can be applied to a tree, the tree is in language-
unique normal form [17].

Note that the order of children of x and A, and redo children of O is arbitrary.

Discovering Process Models for Incomplete Event Logs 13

Definition 5 (Normal Form). Let M be a process tree. Then applying the following
reduction rules exhaustively on subtrees of M yields a language-unique normal form:

@M)—»M'wzth(—Be@

’ (o1 X (o wg)y o) o X (ool o)
(o), og) = (- ,...27...3)
A1y Al)y g) = A(- 3)

O(O(M, '1)7"'2)—’0(M7 “+2)
(M, -1, X (- 3), o) = (M, =e1 g, 3)

Using this normal form, IMin can discover the language of any tree by searching for
only binary cuts. For example, if M = — (M, My, M3), it is perfectly fine to discover
either —>(M1, —>(M2, Mg)) or —>(—>(M1, MQ), Mg)

We say that a cut ¢ conforms to a model M in normal form if selecting ¢ does not
disable discovery of a tree equivalent to M:

Definition 6. Let ¢ = (@, X1, Xs) be a cut and let M = ®(M; ... M,) be a model
in normal form. Then ¢ conforms to M if no X (M;) is partitioned: ¥;3; X (M;) < X;.
Moreover, for non-commutative operators, order must be maintained.

6.3 Formal Rediscoverability

The main theorem states that any model from class C'r can be rediscovered from a
log whose activities occur at least a certain number of times. Let least(L) denote the
number of times the least occurring activity occurs in a log L.

Theorem 7. Assume a model M that is of class Cr. Then there exists a k € N such
that for all logs L with set(L) € L(M), Lo, M and least(L) = k, it holds that
L(IMin(L)) = L(M).

We prove the theorem as follows: we first show that IMin selects the correct root oper-
ator (Lemma 9), then that IMin selects a partition corresponding to M (Lemma 10), and
finally that log splitting yields correct directly-follows complete sublogs (Lemma 11),
on which IMin recurses.

In these lemmas, we will use a very general property of partitions: any two partitions
share at least one pair of activities that crosses both partitions.

Lemma 8. Take two binary partitions X1, Xy and X7, XY, both of the same X. Then
there is a pair of activities that is partitioned by both partitions.

Proof. Towards contradiction, assume there is no pair that is partitioned by both X'y, 3y
and X1, X}, Take a1,a} € X1, ag € X5. Pairs (a1,a2) and (af, as) are partitioned
by X1, X9, so by assumption they are not partitioned by X7, X%. Thus, there is an
1 <i < 2suchthatay, a),as € X7. As we posed no restrictions on a; and af, for some
1 <i <2, % € X By similar reasoning, Xy € X/, so ¥y u Xy € X{. Therefore,
X! = X and hence X, X, is not a partition. =]

14 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

In the following lemma, we prove that for each log for which least is sufficiently
large, IMin selects the correct root operator.

Lemma 9. Assume a reduced model M = @(M;, ..., M,). Then there exists a k € N
such that for all logs L with set(L) € L(M), Lo, M and least(L) = k, it holds that
IMin(L) selects @.

Proof. IMin selects binary cuts, while M can have an arbitrary number of children.
Without loss of generality, assume that ¢ = (®, Xy, X5) is a binary cut conforming to
M.Let ¢ = (®, X1, X)) be an arbitrary cut of M, with ® # @. We need to prove that
Pa(Z1, X2) > pe (X1, X%), which we do by computing a lower bound for pg (X7, X2)
and an upper bound for pg (X}, X%) and then comparing these two bounds. Apply case
distinction on whether @ = O:

— Case @ # (0. We start with the lower bound for pg(21, X2). Obviously,

Zaexl,beﬂz P@(% b)
| 21] - | 22|

p@(217 22) =

By semantics of process trees, Figure 4, set(L) € £(M) and L o, M, for each ac-
tivity pair (a, b) that crosses ¢, @(a, b) holds. For each such pair, we chose pg(a, b) >
1- m (note that this would be an equality, save for p . (a, b), which is 1). Thus,

1
ZGEEI,bEEQ L- z{a,b)+1
[20] - [2]

p®(217 22) 2

For all @ and b, 2(a,b) = ‘“lglbl > min(|al, |b]) = least(L). Thus,

1

i, X)) 21— ——er—
Pe(¥1, X) least(L) + 1

(1)
Next, we prove an upper bound for pg (X}, X%). Obviously,

Zaezg,bezg pe(a;b)

|Ei||Eé| :p®(2172é)

Let (u,v) be a pair partitioned by both X;, X5 and X}, X%. By Lemma 8, such a
pair exists. For all other (a,b) # (u,v), it holds that pg(a, b) < 1 (abusing notation
a bit by combining (J; and (), and there are | X | - | X5| — 1 of those pairs.

(IX1]- 125 1) -1+ 1-pg(u,v)

2 E/,EI
BARD be(*1, >2)

As (u,v) crosses ¢, @(u,v) holds. Then by inspection of Table 1, pg(u,v) <
—ry77- Define y to be |27 - | 2.

z(u,v)

(y_]')—l—zui 1
S 2 (3, 5

Discovering Process Models for Incomplete Event Logs 15

From z(a, b) = W > 1 follows that W < 1. Thus,
(y—1)+3
T, 2 Pe(& X)) @)

Using the two bounds (1) and (2), we need to prove that

1 -1)+1
1— > (y) + 3
least(L) + 1 y

3

Note that y is at most | X'(M)/2] - [X(M)/2], which allows us to choose & such that
k > 2y — 1. By initial assumption least(L) > k, and therefore (3) holds. Hence,
Po(Z1. D) > pg(Zh, Th).

— Case @ = (. Using reasoning similar to the @ # O case, we derive (1). We directly
reuse (2) to arrive at (3) and conclude that pg (X7, X2) > pg (X1, X%).

Thus, pg (X1, X2) > pg (X1, X%) holds for all @. As IMin selects the cut with highest

Pg, IMin selects @. O

Next, we prove that for a log L, if least(L) is sufficiently large, then IMin will select
a partition conforming to M.

Lemma 10. Assume a model M = @®(My, . .., M,) innormal form. Let ¢ = (®, X1, Xs)
be a cut conforming to M, and let ¢ = (@, X}, X%) be a cut not conforming to M.
Then there exists a k € N such that for all logs L with set(L) € L(M), Lo, M and
least(L) = k, holds that pgy(X1, Xa) > pe(X1, XY).

The proof strategy for this lemma is similar to the proof of Lemma 9: we prove that
at least one “misclassified” activity pair (u, v) contributes to the average pg (X1, X25).
The detailed proof that such a pair is included as Appendix B.

As a last lemma, we show that log splitting produces correct and directly-follows
complete sublogs.

Lemma 11. Assume a model M in normal form and a log L such that set(L) € L(M)
and Lo, M. Let ¢ = (®,X1,X5) be a cut corresponding to M, and let Ly, Lo
be the result of SPLIT(L, c). Then, there exist process trees My and Ms, such that
X = X(My), Xy = X(Ms), the normal form of ®(M,, M) is M, set(L1) € L(My),
Ly o My, Set(Lg) - ,C(MQ) and Lo o, M.

For this lemma, we use that M can be converted into a binary tree by using the reduc-
tion rules of Definition 5 reversed. As ¢ conforms to M, it is possible to convert M to
@®(My, Ms) such that Xy = X (M;) and Xy = ¥'(M3). The remaining part of the proof
of this lemma is similar to the proof of Lemma 13 in [17]: for each operator, it is shown
that SPLIT returns sublogs L; and Ly with set(L;) € £(M;) and set(Lo) S L(My).
After that, it is proven that Ly o, M7 and Lo o, Mo.

Using these lemmas, we can prove rediscoverability for sufficiently large logs.

Proof (of Theorem 7). We prove the theorem by induction on model sizes, being | X'(M).
— Base case: M = a. Asset(L) € L(M), L = [{a)*] for some = > 1. By code
inspection, L(IMin(L)) = L(M).

16 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

— Induction step: assume that the theorem holds for all models smaller than M. By
Lemma 9 and 10, IMin selects a cut ¢ = (@, X, Xs) conforming to M. Next
SPLIT(L, ¢) returns an Lq and Lo. By Lemma 11, there exists process trees M7, My
such that £L(®(M;, Ms)) = L(M). By Lemma 11, set(L;) € L£L(M1), Ly o My,
set(Le) € L(Ms) and Lo o, My. As of the induction hypothesis and the fact that
L; and Lo are sufficiently large by construction, £(@(IMin(L;),IMin(Ls))) =
L(®(M, M) = L(M). Because IMin(L) = @(IMin(L,), IMin(Lz)), there exists
a k € N such that if least(L) > k, then L(IMin(L)) = L(M). =

In the proofs of Lemmas 9 and 10, we chose k > 2| X(M)/2]-[X(M)/2] — 1. This
gives an upper bound for the minimal least(L) required:

Corollary 12. An upper bound for k and least(L) as used in Theorem 7 is determined
by the size of the alphabet X: k > 2 - | X(M)/2] - [X(M)/2] — 1.

Last, the unsolved question remaining is whether directly-follows completeness of a
log implies that the log is sufficiently large, and that a generalised version of Theorem 7
holds:

Conjecture 13. Assume a model M and a log L such that set(L) < L(M) and
Lo, M. Then L(IMin(L)) = L(M).

The experimental results reported in the remainder of this paper support this conjecture.

6.4 Experimental Result

In this section, we show that IMin can rediscover models from small logs. In addi-
tion, we investigate how various process discovery algorithms, including IMin, handle
incompleteness.

Experiment. In the experiment, we aim to answer three questions: 1) Can IMin redis-
cover the language of models? 2) How does IMin handle incomplete logs? 3) How do
other algorithms handle incomplete logs?

To answer questions 1 and 2 we investigated how large the log of a given model M
has to be to rediscover the language of M, by generating logs of various sizes and trying
to rediscover M from these logs. For question 3, we investigated how large logs need
to be for other algorithms, such that adding more traces to the log would not change the
result of the algorithm.

Setup. For answering questions 1 and 2, we generated 25 random process trees with
15 activities from class C'g. For each tree M, 20 random, sufficiently large, directly-
follows complete logs were generated. For each log L, we verified that £(M) was
rediscovered from it: £(IMin(L)) = L(M). Then we performed a binary search on
L to find the smallest sublog of L from which, in normal form, M was rediscovered.
These sublogs were obtained by removing traces from L, and on each smallest sublog
found, we measured the number of traces and completeness of —.

To answer question 3, comparing IMin to other algorithms, we used a similar proce-
dure: for each discovery algorithm D, we used the same randomly generated process

Discovering Process Models for Incomplete Event Logs 17

trees to find, for each tree, the smallest logs Lp such that adding more traces to Lp
would always return a model D' = D(Lp) (up to isomorphism). We call the model
D(Lp) for such a smallest log Lp a top model Mr. For this experiment, we con-
sidered the following discovery algorithms: Inductive Miner (IM) [17], Integer Linear
Programming miner (ILP) [35], a-algorithm («) [3], Region miner (RM) [28,4] and
flower model, all plug-ins of the ProM framework [14]. The flower model was included
as a baseline, as it will reach its top model if L o5, M: it only depends on the presence
of activities in the log. All miners were applied using their default settings, and for
IMin h was set to 0. For both procedures, we experimentally observed that event logs
with 16000 traces were directly-follows complete and sufficiently large to rediscover
the original model (in case of IMin) or to find the top model (for other algorithms).

Results. Table 2 shows the results. For example, IM on average required 97% of the
—-pairs of the model to be present in the log to discover its top model M. For some
models, the ILP implementation we used did not return an answer. Averages are given
without these models and are marked with a preceding *.

Table 2: Results of the experiments. Column 2: for how many models M was its
language rediscovered in M7, averaged over logs. Column 3: average number of traces
in the smallest sublogs. Column 4: average ratio of —-pairs present in smallest sublogs
compared to the models M.

miner L(M) = L(Mr) number of traces +—-completeness
e! 0% 133.132 1.000
ILP 12% *258.529 *0.980
RM 4% 132.896 1.000
M 100% 85.256 0.971
IMin 100% 32.568 0.875
Flower 0% 11.620 0.641

Figure8: Petri net representation of Mp: —(O(—(ao, x(a1,a2)),
a3, a4), O(A(—(as, ap), —(az, as), —(ag, a10)), = (a1, ai2), a3, ai4)

One of the randomly generated models is shown in Figure 8. To illustrate handling
of incompleteness, we used this model to find the smallest sublog for which IMin re-
discovered Mp, and applied other discovery algorithms to that sublog. The results are
shown in Figure 9.

Discussion. Answering question 1, for all models and logs, IMin discovered the origi-
nal model or a language-equivalent one, and even did not require the log to be directly-

18 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

(a) Excerpt of a; ao cannot fire; (b) Excerpt of RM; labels have been removed; lots of
unsound. places necessary to represent parallelism.

(c) Excerpt of ILP; ag can fire at any (d) IM; labels have been removed; misses the central
time. parallelism.

Figure 9: Models resulting from discovery of a smallest sublog of IMin.

follows complete, which supports Conjecture 13. IMin required on average 87.5% of
the —-relation pairs to be present in the log to discover its top model. This suggests that
IMin is able to handle directly-follows incomplete logs, answering question 2.

The flower model provides a baseline: it discovers a model based on the activities
that are present in a log; no process discovery technique can be expected to reach its
top model without all activities being present in the log. For all models, IMin required
fewer or equally many traces than any other discovery algorithm, except for the flower
model, to reach its top model.

Remarkably, also IM did not require the +— relation to be complete at all times. A
possible explanation is that log splitting might help at times. For instance, A(a, b, ¢)
could be rediscovered as A(a, A(b,c)). If a log lacks — (b, ¢), it could be introduced
during log splitting: by splitting <{b, a, ¢y with {a} and {b, ¢} yields the trace {b, ¢y for
which b+ c holds, enabling the rediscovery of A (b, ¢).

Figure 9 illustrates how other discovery algorithms handle models within the repre-
sentational bias of IM and IMin, for which IMin rediscovers its language. It would be
interesting to see how these algorithms perform on process trees not from class C'r and
on general Petri nets.

7 Conclusion

In this paper, we studied the effects of incompleteness on process discovery. We anal-
ysed the impact of incompleteness of logs on behavioural relations. We introduced
probabilistic behavioural relations to make them more stable when dealing with in-
completeness, and defined an algorithm based on these probabilistic relations. This al-
gorithm was proven to be able to rediscover the language of models, given sufficiently
large directly-follows complete logs. Moreover, it was shown in experiments to be able
to rediscover the language of models, even when given small incomplete logs, and to
need less information in the log to converge than other process discovery algorithms.

Discovering Process Models for Incomplete Event Logs 19

An open question remaining is whether rediscoverability holds for IMin (Conjec-

ture 13). Another question is if directly-follows completeness is an upper bound for
rediscoverability and if activity-completeness is a lower bound for it, whether these
bounds are tight. The experiments we conducted suggest that there is a tighter upper
bound than directly-follows completeness.

References

10.

11.

12.

13.

14.

16.

17.

18.

19.

. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business

Processes. Springer (2011)

. van der Aalst, W., Buijs, J., van Dongen, B.: Improving the representational bias of process

mining using genetic tree mining. SIMPDA 2011 Proceedings (2011)

. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models

from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142 (2004)

. Badouel, E., Darondeau, P.: Theory of Regions. In: Lectures on Petri Nets I: Basic Models.

vol. 1491, pp. 529-586 (1998)

. Badouel, E.: On the a-reconstructibility of workflow nets. In: Petri Nets’12. LNCS, vol.

7347, pp. 128-147. Springer (2012)

. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from term based

representations of infinite partial languages. Fundam. Inform. 95(1), 187-217 (2009)

. Bloom, S.L., Esik, Z.: Free shuffle algebras in language varieties. Theor. Comput. Sci.

163(1&2), 55-98 (1996)

. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process

trees. In: Evolutionary Computation (CEC), 2012 IEEE Congress on. pp. 1-8. IEEE (2012)

. Carmona, J.: Projection approaches to process mining using region-based techniques. Data

Mining and Knowledge Discovery 24(1), 218-246 (2012)

Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for finite
transition systems. IEEE Trans. Computers 47(8), 859-882 (1998)

Darondeau, P.: Region based synthesis of p/t-nets and its potential applications. In: ICATPN.
pp. 16-23 (2000)

Darondeau, P.: Unbounded Petri net synthesis. In: Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 413—438. Springer (2003)

De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs.
Information Systems 37, 654-676 (2012)

van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM
framework: A new era in process mining tool support. Petri Nets 2005 3536, 444454 (2005)

. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Acta Informatica 27(4), 343-368

(1990)

Giinther, C., van der Aalst, W.: Fuzzy mining—adaptive process simplification based on
multi-perspective metrics. Business Process Management pp. 328-343 (2007)

Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from event logs - a constructive approach. In: Petri Nets 2013. LNCS, vol. 7927, pp.
311-329. Springer (2013)

Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process mod-
els from event logs containing infrequent behaviour. In: Business Process Management
Workshops. Springer (2013), to appear

Lorenz, R., Mauser, S., Juhds, G.: How to synthesize nets from languages: a survey. In:
Winter Simulation Conference. pp. 637-647. WSC (2007)

20 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

20. Polyvyanyy, A., Vanhatalo, J., Volzer, H.: Simplified computation and generalization of the
refined process structure tree. In: WS-FM’10. LNCS, vol. 6551, pp. 25-41. Springer (2010)

21. Reisig, W., Schnupp, P., Muchnick, S.: Primer in Petri Net Design. Springer (1992)

22. Rozinat, A., de Medeiros, A., Giinther, C., Weijters, A., van der Aalst, W.: The need for
a process mining evaluation framework in research and practice. In: Business Process
Management Workshops. pp. 84-89. Springer (2008)

23. Rozinat, A., Veloso, M., van der Aalst, W.: Evaluating the quality of discovered process
models. In: 2nd Int. Workshop on the Induction of Process Models. pp. 45-52 (2008)

24. Schimm, G.: Generic linear business process modeling. In: ER (Workshops). LNCS, vol.
1921, pp. 31-39. Springer (2000)

25. Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In:
JELIA. LNCS, vol. 2424, pp. 525-528. Springer (2002)

26. Schimm, G.: Mining most specific workflow models from event-based data. In: Business
Process Management. LNCS, vol. 2678, pp. 25-40. Springer (2003)

27. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on
synthesis from well-structured behavioral profiles. INT J COOP INF SYST 21(01), 55-83
(2012)

28. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Petri Nets. LNCS,
vol. 6128, pp. 226-245. Springer (2010)

29. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - effi-
cient computation, applications, and evaluation. Fundam. Inform. 113(3-4), 399-435 (2011)

30. Weidlich, M., van der Werf, J.M.E.M.: On profiles and footprints - relational semantics for
Petri nets. In: Petri Nets. LNCS, vol. 7347, pp. 148-167. Springer (2012)

31. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics
miner-algorithm. BETA Working Paper Series 166 (2006)

32. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner. In: CIDM. pp. 310-317. IEEE
(2011)

33. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice
constructs. Data Mining and Knowledge Discovery 15(2), 145-180 (2007)

34. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. Advances in Data and
‘Web Management pp. 358-365 (2007)

35. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using
integer linear programming. Fundamenta Informaticae 94, 387412 (2010)

36. Yzquierdo-Herrera, R., Silverio-Castro, R., Lazo-Cortés, M.: Sub-process discovery:
Opportunities for process diagnostics. In: EIS of the Future, pp. 48-57. Springer (2013)

A SMT translation

Al x,—>, A

Cut searches for x, — and A are translated straightforwardly to optimisation problems,
by maximising the average probability of edges crossing the cut.

a a re{a1,az) . ..
For ® € {x,—, A}, pp = 1521"2215‘?‘222'* = X The basic decision to be

made by the SMT solver is how to divide the activities in two sets: the ones on one
side of the cut (cut(a)) and the ones on the other side of the cut (—cut(a)), such that
P is maximised. Let n be |X(L)|. As divisions cannot be translated to SMT directly,
we repeatedly check while varying [. For the commutative x and A, 1 € 1...n/2,
for the non-commutative —, [€ 1...n — 1. We give the translation to SMT for non-
commutative —; the commutative x and A are similar.

Discovering Process Models for Incomplete Event Logs 21

Given an [, the number of nodes cut must be [:

{alcut(a)}| =1

Pe is defined on pairs, so for each pair of activities (a1, a2) we introduce a helper
variable crosses(ay, as), denoting whether (a1, as) crosses the cut:

crosses(ay, az) < (cut(ar) A —cut(az))

The objective function to be maximised is the weighted sum of the crossing edges:

obj = Z crosses(ai, az) - pp(ai, az)

a1€21,a2622

Once an optimal solution is found, # gives the probability of pg.
For A, a constraint is added that both X', and X5 contain both start and end activities.

A2 O

For pcs, each pair (a, b) that crosses the cut is categorised as being either indirect, sin-
gle or reverse single. (The fourth category, double, cannot happen in class C'r and is
therefore omitted here.) They are defined as follows:

(a,b) single < (a € Endy A be Starta)v
(a € Endy A b e Starty)
(a,b) reverse single < (b, a) single

(a,b) indirect < —(a,b) single A —(b,a) single

We give an example using Figure 10, showing a directly-follows graph. In this ex-
ample, Xy = {u,v}, Yo = {w,x}, Start; = {u}, End; = {v}, Starts = {z}, and
Endy = {w}. Pairs (u,x), (v,w), (z,u) and (w,v) are indirect, (w, u) and (v, x) are
single and (u, w) and (x, v) are reverse single. Note that indirect corresponds to (J; and
single to Os.

Figure 10: Example —-graph. The dashed line denotes a cut.

The optimisation searches for assignments to Xy, X5, Starty and Ends, and a classi-
fication of all edges that maximises the average probability of single and indirect edges.
Start; and End; are taken as-is from the log.

22 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

B Proof of Lemma 10

Proof. We follow a similar reasoning as in the proof of Lemma 9 to prove that pg (X1, X2) >

pa(X7, X4): we prove a lower bound for pgy (X1, X2), an upper bound for pg (X1, X5)

and compare these two. Apply case distinction on whether @ = (.

— Case @ # (. Obviously, (1) holds in this case as well. For the upper bound for
pa(X1, X4), we start with

Zaezg,bezg pe(a;b)
| 211 [2%]

= pe(X7, X3) “

As ¢ = (@, X1, X)) does not conform to M, there is a X'(M;) partitioned by
d: X nX(M;) # & and X n X(M;) # . Consider this M; = ®(...), then
A, = (®, (X(M;) n X1), (X(M;) n X3) is a cut of M;. Take an arbitrary cut cpy,
that conforms to M;. By Lemma 8, at least one activity pair (u,v) is partitioned by
both cyy, and ¢y, . For all other (a,b) # (u,v), by Table 1, it holds that pg(a, b) < 1,
and there are |)| - | X5] — 1 of those pairs. Applying this to (4), we derive:

(I121] - [X5] = 1) - 1+ 1 pg(u, v)

As ¢y, conforms to M; and @ # O, ®(u,v) holds. As M is in normal form
® # @, and therefore ®(u, v) does not hold. Then, by Table 1, pg(u, v) <
[ul+]v]

2

1
z(u,v)+1"
From z(u,v) = < 3. Define y to be

|21] - 12%]-

> 1 follows that pg(u, v) < z(uii)—&—l

(y—D+3z _ (5] 1%5-1) -1+
T mm P e) ®)

Similar to the proof of Lemma 9, from (1), (5) and choosing & > 2y — 1, follows
that pg (21, X2) > pe (L1, X3).
— Case @ = (0. We follow a reasoning similar to the proof of Lemma 9, and derive the
lower bound (1) again. For the upper bound for pg (X1, X%), similar to the proof of
Lemma 9, we derive

Zaexg bES, pe(a;b)
| 211125

= p@(Eiv Eé)

As L o_, M and by semantics of (5, — " holds for all activity pairs. Thus, OsvGiva
contains all activity pairs. By constraint, Start(M) = Start(M;) € Xy and Start(M;) S
X1

¢’ separates at least a X (M;). Let (u, v) be a pair of activities of X'(M;) separated
by ¢’. Prove by case distinction on whether X'(M;) = X; that at least one pair (u, v)
is counted wrongly.

e Case X(M;) = X;. Towards contradiction, assume no misclassified pair exists
in X(My). Take an arbitrary ay, € X'(M7). Apply case distinction on whether ay,
is a start or an end activity.

Discovering Process Models for Incomplete Event Logs 23

x If ay, € Start(M) or a, € End(M), by constraint aj € X.

* Consider two —-paths: from a start activity to ax: aj ...ay such that a; €
Start(M) and a;j-1 ¢ Start(M) u End(M), and a —-path from aj, to
an end activity: ay, ... a; such that a; € End(M) and a;<; ¢ Start(M) u
End(M). Apply case distinction on whether such paths exist.

- Jay ... ax. Then some pair (a,, a,), on this path crosses ¢’. As (a,, aq)
is on a —>-path a,, — aq, so either Gs(ayp, aq) or A(ayp, ag). Activity aq
is not a start activity and a,, is not an end activity, so (a,,aq) con-
tributes as (; towards pes(c’).

- dag . ..a;. Similar.

. ﬂal...ak A ﬁak...al.Thenak must be on a —-path a;...ay...ay
with a; € Start(M) and ay, € End(M). As My # (, this can only
happen if M; = X, which means that there is a a} € Start(M) such
that no +-path ay . ..a} exists. Then, Ci(ag, a}), but (ax,a}) con-
tributes as Os.

o Case X (M;) # X1. As M isreduced, M; # @(...) and thus, the —-graph of M;
is connected. By semantics of process trees, there is at least a start or end activity
that can be executed before/after both u and v: either {s---u) and {s---v) or
{u---€yand {v---e), with s € Start(M;) and e € End(M;). Without loss of
generality, assume that two —-paths (s - - - uy and (s - - - v) exist in the +>-graph,
such that s € Start(M;). The pair (u, v) crosses ¢/, so one of these paths must
cross ¢’ as well. Let (x,y) be such a crossing pair in the —-graph. As —(z,y),
either A(x,y) or Os(,y). Neither 2 nor y are start or end activities of A/, so the
pair (x,y) contributes as (Jj to the average pcy(c’).

The remaining part of this case is similar to the case ® # .
Hence, pgy (X1, X2) > pa (XY, XY). O

