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Abstract

Automated process discovery techniques aim at extracting process models from infor-

mation system logs. Existing techniques in this space are effective when applied to

relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate

models when confronted to logs with high variability. In previous work, trace cluster-

ing has been applied in an attempt to reduce the size and complexity of automatically

discovered process models. The idea is to split the log into clusters and to discover

one model per cluster. This leads to a collection of process models – each one repre-

senting a variant of the business process – as opposed to an all-encompassing model.

Still, models produced in this way may exhibit unacceptably high complexity and low

fitness. In this setting, this paper presents a two-way divide-and-conquer process dis-

covery technique, wherein the discovered process models are split on the one hand by

variants and on the other hand hierarchically using subprocess extraction. Splitting is

performed in a controlled manner in order to achieve user-defined complexity or fitness

thresholds. Experiments on real-life logs show that the technique produces collections

of models substantially smaller than those extracted by applying existing trace cluster-

ing techniques, while allowing the user to control the fitness of the resulting models.
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1. Introduction

Process mining is concerned with the extraction of knowledge about business pro-

cesses from information system logs [1]. Process mining encompasses a vast array of

techniques, including techniques for automated discovery of business process models.

Numerous algorithms for automated process discovery have been developed, which

strike various tradeoffs between accuracy, generalization and simplicity of the discov-

ered models.

One key limitation of the bulk of techniques for automated process discovery is

that they fail to scale to processes with high levels of variance, i.e. high number of

distinct traces. This is mainly because traditional process discovery techniques aim at

producing a single model covering all traces in the log, leading to large and spaghetti-

like models as the variance increases.

A common divide-and-conquer approach to address this issue is trace cluster-

ing [2, 3, 4, 5]. The idea is to slice the log into separate clusters, each one grouping

similar traces, and to discover (via standard process discovery techniques) one process

model per cluster. Accordingly, the output is a collection of process models, each cov-

ering a subset of the traces, as opposed to a single model encompassing all traces. The

underlying assumption is that each model in this collection has lower complexity than

a single all-encompassing model mined from all traces. In this context, complexity can

be measured in terms of size (number of nodes or edges) or in terms of structural com-

plexity metrics such as control-flow complexity or average connector degree, which

have been shown to be correlated with model comprehensibility [6, 7].

While process discovery techniques based on trace clustering produce smaller in-

dividual models than single-model techniques, they do not seek to minimize the cumu-

lative size of the discovered collection of process models. On the contrary, these tech-

niques generally yield models that share duplicate fragments. This duplication entails

that collectively, a set of models produced via trace clustering can be much larger and

not necessarily easier to comprehend as a whole than a single process model discovered

from all traces. A second drawback of trace clustering techniques is that they produce
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models with low accuracy, specifically low fitness, where fitness is a measure of how

well the process model can parse the traces in the event log. De Weerdt et al. [17]

have shown that existing trace clustering techniques produce models that fail to parse

between 30% to 50% of the traces on average, according to a certain notion of fitness.

To address the first drawback, this paper presents a two-way divide-and-conquer

process discovery technique, wherein discovered process models are split on the one

hand by variants via trace clustering (an operation we term “slicing”), but also hier-

archically via shared subprocess extraction and merging (“dicing”). Slicing enables

high-complexity mined models to be split into lower-complexity ones at the expense

of duplication. Dicing, on the other hand, reduces duplication by refactoring shared

fragments. By slicing, mining and dicing recursively, the technique attempts in a best-

effort way to produce a collection of models each with size or structural complexity

below a user-specified threshold, while minimizing the overall size of the discovered

collection of models and without affecting accuracy. The technique is termed SMD

(Slice, Mine, Dice) in reference to the steps performed at each level of the recursion.

To address the second drawback (low fitness), we combine the principles of SMD

with an existing algorithm for fitness-aware trace clustering, namely ActiTraC [17].

This latter algorithm attempts to group traces in such a way as to achieve a user-

specified level of fitness for each output process model. However, the algorithm pro-

duces a flat collection of models without seeking to control their individual size or

complexity. Accordingly, this paper puts forward an approach to combine SMD with

ActiTraC in such a way as to produce models that fulfill both fitness and complexity

requirements. More generally, the paper describes how SMD can be applied on top of

both hierarchical and flat trace clustering techniques, so as to achieve multiple quality

tradeoffs on the discovered process models.

The paper reports on experiments using three real-life logs that put into evidence

the improvements achieved by SMD relative to three existing trace clustering methods,

both in terms of reduction in the overall number of output process models and their

cumulative size. In addition, the experiments show that the combination of SMD and

ActiTraC allow us to also control the fitness of the output process models (in addition

to their complexity) without major impact on the total number of output process models
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nor their cumulative size relative to the case where fitness is left uncontrolled.

The rest of the paper is structured as follows. Section 2 provides an overview of

process discovery, trace clustering, clone detection and process model merging tech-

niques upon which SMD builds. Next, Section 3 presents and illustrates the SMD

algorithms for complexity-aware process model discovery. Section 4 describes how

SMD can be used to also control the fitness of the discovered process models in ad-

dition to controlling their complexity. Section 5 presents the experimental setup and

results. Finally, Section 6 discusses related work while Section 7 draws conclusions

and spells out directions for future work.

2. Background

SMD builds upon techniques for: (i) automated process discovery; (ii) hierarchi-

cal trace clustering; (iii) clone detection in process models; and (iv) process model

merging. This section introduces these techniques and discusses their use in SMD.

2.1. Automated process discovery techniques

Numerous techniques for discovering a single (flat) process model from a process

execution log have been proposed in the literature [1, 8]. For example, Weijters et

al. [9] propose the Heuristics Miner, which is based on an analysis of the frequency of

dependencies between events in a log. In essence, frequency data is extracted from the

log and used to construct a graph of events, where edges are added based on different

heuristics. Types of splits and joins in the resulting event graph can be determined by

analyzing the frequency of events associated to those splits and joins. This information

can be used to convert the output of the Heuristics Miner into a Petri net. The Heuristics

Miner is robust to noise in the event logs due to the use of frequency-based thresholds,

which makes it suitable for use with real-life event logs. Meantime, van der Werf et

al. [10] proposed a discovery method where relations observed in the logs are translated

to an Integer Linear Programming (ILP) problem. The ILP miner is independent of the

number of events in the log, making it applicable in practical scenarios.

Automated process discovery techniques can be evaluated along four dimensions:

fitness (recall), appropriateness (precision), generalization and complexity [1]. Fitness
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measures the extent to which the traces in a log can be parsed by the discovered model.

Several measures of fitness have been proposed in the literature, most notably token

fitness [14], which measures the number of missing and remaining tokens after replay-

ing the original traces against the discovered process model represented as a Petri net;

continuous parsing measure, which measures the number of missing and remaining

activations while replaying a heuristics net; and alignment-based fitness [15], which

measures the alignment of events from a trace with activities in an execution of the

process model. Another measure of fitness that trades off correctness for performance

is the improved continuous semantics (ICS) fitness [16], which can be seen as an opti-

mization of the continuos parsing measure.

Appropriateness on the other hand is a measure of additional behavior allowed by a

discovered model, that is not found in the log. Appropriateness in essence corresponds

to the number of traces that can be generated by the discovered model, but not presented

in the traces. A model with low appropriateness is one that can parse a proportionally

large number of traces that are not in the log from which the model is discovered.

Generalization captures how well the discovered model generalizes the behavior

found in a log. For example, if a model can be discovered using 90% of the traces of

the log and this model can parse the remaining 10% of traces in the logs, it can be said

the model generalizes well the log.

Finally, complexity of a model can be measured using several metrics proposed in

the literature [6]. A simple complexity metric is the size the model, measured by the to-

tal number of nodes in the model (or alternatively number of edges). Empirical studies,

e.g. [6], have shown that process model size is strongly correlated with model compre-

hensibility and error probability. Other (structural) complexity metrics correlated with

comprehensibility include:

• CFC (Control-Flow Complexity): sum of all connectors weighted by their po-

tential combinations of states after a split.

• ACD (Average Connector Degree): average number of nodes a connector is con-

nected to.

• CNC (Coefficient of Network Connectivity): ratio between arcs and nodes.
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• Density: ratio between the number of arcs and the maximum possible number of

arcs for the same number of nodes.

An extensive empirical evaluation [8] of automated process discovery techniques

has shown that Heuristics Miner offers a good tradeoff between precision and recall

with satisfactory performance. The ILP miner achieves high recall – at the expense

of some penalty on precision – but it does not scale to larger logs due to memory

requirements. The SMD technique presented in this paper abstracts from the mining

algorithm used to extract a model from a collection of traces. However, due to its

scalability, we use the Heuristics Miner as a basis for the evaluation of SMD.

2.2. Trace clustering

Several approaches to trace clustering have been proposed [2, 3, 11, 4, 12, 13, 5,

17]. Some of these techniques produce a flat collection of trace clusters, e.g. [12,

17], though most produce hierarchical collections of trace clusters from which models

can be mined. Specifically, hierarchical trace clustering methods construct a so-called

dendrogram. The dendrogram is a tree wherein the root corresponds to the entire log.

The root is decomposed into N (typically 2) disjoint trace clusters of smaller size, each

of which is split again into N clusters and so on recursively.

A trace cluster is a set of “similar” traces. The notion of trace similarity varies be-

tween approaches and is generally defined with respect to a feature space. For instance,

if traces are seen as strings on the alphabet consisting of the set of activity labels, the

feature space corresponds to the set of all possible permutations of activity labels. With

such a feature space, similarity of traces can be assessed by means of standard string

similarity functions, such as Hamming distance or Levenshtein edit distance. However,

mappings to other feature spaces have been used in the literature, such as the count of

occurrences of activities, the count of motifs over such activities (e.g. n-grams), etc.

In addition to differing by the choice of similarity notion, trace clustering tech-

niques differ in terms of the underlying clustering technique. Hierarchical clustering

techniques can be divided in two families: agglomerative and divisive clustering. In

agglomerative clustering, pairs of clusters are aggregated according to their proximity
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following a bottom-up approach. In divisive clustering, a top-level cluster is divided

into a number of sub-clusters and so on recursively until a stop condition is fulfilled.

The techniques of Song et al. [11, 4] and Bose et al. [5, 13] both use agglomerative

hierarchical clustering. Song et al. also consider other clustering techniques, such as

k-means and self-organizing maps. The main difference between the approaches of

Song et al. and Bose et al. lie in the underlying feature space. Song et al. map traces

into a set of features such as count of occurrences of individual activities, or count of

occurrences of pairs of activities in immediate succession. On the other hand, Bose

et al. evaluate the occurrence of more complex motifs such as repeats (i.e., n-grams

observed at different points in the trace). Meanwhile, the DWS method of Medeiros et

al. [2, 3] adopts divisive hierarchical clustering with k-means for implementing each

division step. They use a similarity measure based on the count of occurrences of

n-grams.

The above techniques produce a collection of models by applying single-model

process mining techniques (e.g. Heuristics Miner) to each cluster at the lowest level

of the dendrogram. Thus, the output is a collection of models that are in general sim-

pler (lower complexity) than a single model discovered from the entire set of traces.

However, the above techniques do not seek to control the complexity of the result-

ing models. Also, they do not attempt to reduce the amount of duplication across the

produced process models. SMD addresses these limitations by taking as input the den-

drogram produced by the above techniques and traversing it top-down in search for

models of a certain level of complexity, while attempting to reduce duplication along

the traversal.

2.3. Fitness-Aware Trace Clustering

The trace clustering techniques discussed above generally do not take into account

the accuracy of the resulting models, where accuracy refers to the fitness and appro-

priateness dimensions discussed above. An exception is the technique of de Medeiros

et al. [3] that proposes to stop the hierarchical decomposition of trace clusters when

process models of a certain level of appropriateness are found, but without actively

seeking to construct clusters that lead to process models with the required appropriate-
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ness. Also, this technique as well as the others mentioned above do not seek to control

the fitness of the resulting models.

In an empirical study, De Weerdt et al. [17] showed that the trace clustering algo-

rithms discussed above produce models with low fitness (in the order of 0.5 to 0.7).

This observation inspired the authors to design a fitness-aware algorithm for trace clus-

tering, namely Active Trace Clustering (ActiTraC). ActiTraC produces a flat collection

of clusters whereby each model discovered from a cluster meets a target fitness (a

threshold on the fitness value, e.g. 1), and each cluster has a minimum cluster size in

terms of overall log size (e.g. a cluster should at least be 30% of the log size). The

algorithm is based on three phases: selection, look ahead and residual trace resolution.

In the selection phase, traces are selected to create clusters either solely based on their

frequency in the log (frequency-based selective sampling), or also based on their Eu-

clidean distance to the traces already in a cluster (distance-based selective sampling).

A trace is added to the current cluster if the model discovered from the cluster includ-

ing that trace meets the target fitness. If so, the selection phase continues by choosing

a new trace; otherwise the trace is discarded and a new one is selected, until the mini-

mum cluster size is reached. This brings the algorithm to the second phase, wherein the

cluster is enlarged by adding those traces that fully fit in the model discovered from the

cluster, and that have not been considered in the selection phase. Observe that in this

phase the model is not rediscovered, but a trace is added based on its individual fitness

with the existing model. In the third phase, the noisy traces, i.e. those that the technique

was unable to cluster, can either be distributed over the created clusters according to

the individual trace fitness for the different process models discovered (i.e. a trace is

assigned to the cluster whose model the trace fits the most), or form a separate noisy

cluster. The algorithm terminates once a predefined maximum number of clusters is

reached.

ActiTraC relies on the Heuristics miner to discover process models and on the

ICS fitness for computing both model fitness and individual trace fitness, while the

Euclidean distance is computed using the definition in [5].

ActiTraC is a best-effort approach as it cannot guarantee that the target fitness is

always met. In fact, if noise redistribution is chosen, this causes a drop in the fitness of
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the models whose clusters are enlarged with noise, since noisy traces do not fit a model

perfectly, while if a noisy cluster is created, its fitness will typically not meet the target

fitness.

2.4. Clone detection in process models

SMD relies on techniques for detecting duplicate fragments (a.k.a. clones) in pro-

cess models. The idea is that these clones will be refactored into shared subprocess

models in order to reduce the overall size and possibly also the complexity of dis-

covered process models. Given that subprocess models must have a clear start point

and a clear end point1 we are interested in extracting single-entry, single-exit (SESE)

fragments. Accordingly, SMD makes use of a clone detection technique based on

a decomposition of process models into a tree representing all SESE fragments in the

model, namely the Refined Process Structure Tree (RPST) [18]. Each node in an RPST

corresponds to a SESE fragment in the underlying process model. The root node cor-

responds to the entire process model. The child nodes of a node N correspond to the

SESE fragments that are contained directly under N. In other words, the parent-child

relation in the RPST corresponds to the containment relation between SESE fragments.

A key characteristic of the RPST is that it can be constructed for any model captured

in a graph-oriented process modeling notation (e.g. BPMN or EPC).

For the purpose of exact clone detection, we make use of the RPSDAG index struc-

ture [19]. Conceptually, an RPSDAG of a collection of models is the union of the

RPSTs of the models in the collection. Hence, a node in the RPSDAG corresponds

to a SESE fragment whereas edges encode the containment relation between SESE

fragments. Importantly, each fragment appears only once in the RPSDAG. If a SESE

fragment appears multiple times in the collection of process models (i.e. it is a clone),

it will have multiple parent fragments in the RPSDAG. This feature allows us to effi-

ciently identify duplicate clones: a duplicate clone is simply a fragment with multiple

parents.

1Observe that top-level process models may have multiple start and end events, but subprocess models
must have a single start and end event in order to comply with the call-and-return semantics of subprocess
invocation.
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In addition to allowing us to identify exact clones, the RPSDAG provides a basis

for approximate clone detection [20]. Approximate clone detection is achieved by

applying clustering techniques on the collection of SESE fragments of an RPSDAG,

using one minus the graph-edit distance as the similarity measure (as defined in [21]).

Two clustering techniques for approximate clone detection based on this principle are

presented in [20]. The first is an adaptation of the Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) algorithm, the second is an adaptation of the

Hierarchical Agglomerative Clustering (HAC) algorithm. Both of these techniques

take as input a collection of process models and return a set of approximate clone

clusters – each cluster representing a set of SESE fragments that are similar within a

certain similarity threshold. To evaluate SMD, we adopted the DBSCAN approach to

approximate clone clustering due to it being more scalable.

2.5. Process model merging

Approximate clone detection allows us to identify clusters of similar SESE frag-

ments in a collection of process models. Having done so, we can replace each of the

identified approximate clones with references to a single subprocess model represent-

ing the union of these similar fragments, so as to reduce the overall size of the collection

of process models. It can be argued that this single subprocess should represent the col-

lective behavior of all the SESE fragments in a cluster, otherwise some behavior would

be lost when replacing the approximate clones with the single shared subprocess.

The technique for process model merging presented in [22] allows us to achieve

this property. This technique takes as input a collection of process models (or SESE

fragments) and returns a single merged process model, such that the set of traces of

the merged model is the union of the traces of the input models. Thus, applying this

technique on fragments of automatically discovered process models does not affect the

fitness, appropriateness or generalization of the particular discovery technique used.

An experimental evaluation reported in [22] shows that, if the input process models (or

fragments) are similar, the size of the merged process model is significantly lower than

the sum of the sizes of the input models. Also, the more similar the merged models are,

the more significant is the size reduction achieved during merging.
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This merging technique is applicable to any graph-oriented process modeling lan-

guage that includes the three connectors XOR, AND and OR (e.g EPCs and BPMN).

3. Complexity-Aware SMD

The idea of SMD is to traverse the dendrogram produced by hierarchical trace clus-

tering in a top-down manner (breadth-first), attempting at each level of the traversal to

produce models of complexity below a certain user-defined threshold. This threshold

can be placed on the size of a model or on its structural complexity measured in terms of

CFC, density or other complexity metrics. For example, the user can specify an upper-

bound of 50 for the number of nodes in a model or a maximum control-flow complexity

of 20 per model. At each level of the traversal, the algorithm applies subprocess ex-

traction based on clones detection, and merging in order to reduce duplication. The

traversal stops at a given cluster d in the dendrogram – meaning that its child clusters

are not visited – if a single model can be mined from d that after subprocess extraction

meets the complexity threshold, or if d is a leaf of the dendrogram, in which case the

model mined from d is returned.

The detailed description of SMD is given in Algorithm 1. Hereafter we illustrate

this algorithm by means of the example dendrogram shown in Fig. 1 and we use size

12 as the complexity threshold. Observe that the root cluster L1 of the dendrogram is

the log used as input to generate the dendrogram. As we traverse the dendrogram D,

we mark the current position of the dendrogram with the clusters from which process

models need to be mined. At the beginning, the root cluster is the only marked cluster

(line 2). While there are marked trace clusters, we perform the following operations

(lines 3–16). First, we mine a set of process models from marked trace clusters in D

(line 4). As only L1 is marked at the beginning, a single process model m1 is mined.

Let us assume that the model mined from L1 is that shown in Fig. 2. If we reach a leaf

trace cluster of D at any stage, we cannot simplify the process model mined from that

trace cluster anymore by traversing D. Thus, when a leaf of D is reached, we add the

process model mined from that leaf to the set of leaf level process models Ml (line 5).

As L1 is not a leaf, we do not update Ml at this stage. We then unmark all the clusters in

Ml to avoid mining a process model again from these clusters, in next iterations of the
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Algorithm 1: SMD/hierarchical
Input: Dendrogram D, complexity threshold k
Output: Set of root process models Ms, set of subprocesses S

Initialize Ml with ∅1

Mark the root trace cluster of D2

while there are marked trace clusters in D do3

Mine a set of process models M from all marked trace clusters in D4

Add to Ml the set of models from M mined from marked leaves of D5

Unmark all trace clusters used to mine models in Ml6

Invoke Algorithm 2 to extract subprocesses from M∪Ml and obtain a7

simplified set of root process models Ms and a set of subprocesses S
Let Mc be the process models in Ms that do not satisfy k8

Let Sc be the subprocesses in S that do not satisfy k9

Let P be the process models of Ms containing subprocesses in Sc10

Add all models in P to Mc11

Remove Ml from Mc12

if Mc is empty then Unmark all trace clusters in D13

foreach model mc in Mc do14

Get the trace cluster d used to mine mc15

Mark child trace clusters of d in D and unmark d16

return Ms and S17

while cycle (line 6). Then we extract subprocesses using Algorithm 2 (line 7) from the

union of all mined models so far and all models mined from leaves Ml . In our example,

we extract subprocesses only from m1, as Ml is empty.

In Algorithm 2, we first construct the RPSDAG from the set of process models

in input (line 3). Then we identify sets of exact clones using the technique in [19]

(line 4). For each set of exact clones, we create a single subprocess and replace the

occurrence of these clones in their process models with a subprocess activity pointing

to the subprocess just created (lines 6-7). Once exact clones have been factored out, we

identify clusters of approximate clones using the technique in [20] (line 8). For each

fragment cluster, we merge all approximate clones in that cluster into a configurable

fragment (line 11) using the technique in [22].2 If this fragment satisfies the threshold,

2Note that this merging technique is designed to preserve the behavior of the input process models. In
other words, the merged process model contains exactly the union of the behaviors of the input models, thus
the technique does not affect behavioral accuracy (fitness or appropriateness).
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Algorithm 2: Extract subprocesses
Input: Set of process models M, complexity threshold k
Output: Set of root process models Ms, set of subprocesses S

Initialize Ms with M1

Initialize S with ∅2

Let Fs be the set of SESE fragments of Ms3

Let Fe in Fs be the set of exact clones4

Add Fe to S5

foreach fragment f in Fe do6

Replace all occurrences of f in models of Ms∪S with a subprocess activity7

pointing to f
Apply approximate clone detection on Fs \Fe to identify fragment clusters C8

while C is not empty do9

Retrieve the cluster c with highest BCR from C10

Merge fragments in c to obtain a merged fragment fm11

Remove c from C12

if fm satisfies k then13

Add fm to S14

foreach fragment f in c do15

Replace all occurrences of f in models of Ms with a subprocess16

activity pointing to fm
Remove all ascendant and descendant fragments of f from all17

clusters in C
Remove all clusters that are left with less than 2 fragments from C18

return Ms and S19

we embed it into a subprocess (line 14) and replace all occurrences of the corresponding

approximate clones with a subprocess activity pointing to this subprocess (lines 15–16).

A cluster of approximate clones may contain the parent or the child of a fragment

contained in another cluster. As a fragment that has been used to extract a subprocess

does no longer exist, we need to also remove its parent and child fragments occurring

in other clusters (lines 17–18). We use the RPSDAG to identify these containment

relationships efficiently. One or more fragment clusters may be affected by this opera-

tion. Thus, we have to order the processing of the approximate clones clusters based on

some benefit-cost-ratio (BCR), so as to prioritize those clusters that maximize the num-

ber of process models satisfying the threshold after approximate clones extraction (line

10). If we set our threshold on size, we can use the BCR defined in [20], which is the
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Figure 1: A possible dendrogram generated by hierarchical trace clustering.

ratio between overall size reduction (benefit) and distance between approximate clones

within a cluster (cost). Similar BCRs can be defined on other complexity metrics.

Coming back to our example, we can see there are two exact clones ( f 6 and f 8)

and two approximate clones ( f 4 and f 9) in m1, as highlighted in Fig. 2. After applying

Algorithm 2 we obtain the process model collection in Fig. 3, where we have two sub-

processes (s1 and s2) with s2 being a configurable model. In particular, we can observe

that s2 has two configurable gateways – the XOR-split and the XOR-join represented

with a thicker border – so that the selection of outgoing edges of the XOR-split (in-

coming edges of the XOR-join) is constrained by the annotated fragment identifiers.

In addition, s2 has an annotated activity to keep track of the original labels for that

activity in f 4 and f 9. For example, if we want to replay the behavior of f 4, only the

top and bottom branches of this merged model will be available with the bottom branch

bearing activity “Perform external procurements”.

Once subprocesses have been extracted, we add all models that have to be further

simplified to set Mc (lines 8–12 of Algorithm 1). Mc contains all non-leaf models not

satisfying the threshold and all non-leaf models containing subprocesses not satisfying

the threshold. Algorithm 1 terminates if Mc is empty (line 13). Otherwise, for each

model in Mc, we mark the respective cluster (lines 14–16) and reiterate the while loop.

In our example, the size of m1 after subprocess extraction is 19, which does not

satisfy the threshold 12. Thus, we discard m1 and mine two process models m2 and

m3 from L2 and L3, which are shown in Fig. 4. m2 and m3 contain two exact clones

( f 24 and f 31) and two approximate clones ( f 22 and f 34). Now we apply Algorithm 2
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on m2 and m3 and obtain the process model collection shown in Fig. 5. The sizes of

m2 and m3 after subprocess extraction are 14 and 11 respectively. Thus, m3 satisfies

our threshold while m2 has to be further simplified. We then discard m2 and mine two

fresh models m4 and m5 from L4 and L5 and so on.
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Figure 2: Process model m1 with similar fragments.
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Figure 3: Process model m1 and subprocess s1 after subprocess extraction.

The complexity of Algorithm 1 depends on four external algorithms which are

used to i) discover process models from the clusters of the dendrogram (line 4), ii)

detect exact clones (line 4 of Algorithm 2), iii) detect approximate clones (line 8 of

Algorithm 2) and iv) merge approximate clones (line 11 of Algorithm 2). Let c1,

c2, c3 and c4 be the respective costs of these algorithms. The complexity of exact
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Figure 4: Process models m2 and m3 mined from trace clusters L2 and L3.
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Figure 5: Process models and subprocesses after subprocess extraction from m2 and m3.

clone detection is determined by the insertion of fragments into the RPSDAG, which

dominates the complexity of deleting fragments [19]. The complexity of approximate

clone detection is dominated by that of computing the graph-edit distance between

fragments [20]. Let F be the set of all SESE fragments of the process models that can

be discovered from all trace clusters of dendrogram D, i.e. F is the union of all Fs.

In the worst case, we need to discover a process model from each cluster of the den-
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drogram, which is O(|D|c1); insert all fragments in the RPSDAG, which is O(|F |c2);

compute the graph-edit distance of all pairs of fragments, which is O(|F |2c3); and

merge |F |/2 fragments, which is O(|F |c4). Thus, the worst-case complexity of Al-

gorithm 1 is O(|D|c1 + |F |(c2 + c4)+ |F |2c3). c1 depends on the specific discovery

technique used. For example, the Heuristic Miner is quadratic on the number of event

classes in the log. Theoretically, c2 is factorial in the number of nodes with the same

label inside a single SESE fragment, though in practice this number is often very small

or equal to zero thanks to various optimizations of exact clone detection [19]. Thus

in practice c2 is linear on |F | [19]. c3 is cubic on the size n of the largest fragment if

using a greedy algorithm [21], as in the experiments reported in this paper. Finally, c4

is O(n log(n)).

SMD relies on a breadth-first exploration of the dendrogram. In this respect, one

could wonder if a possible optimization would be to employ depth-first search instead.

This modification however is not straightforward, since at each level of the dendrogram

traversal, SMD needs to extract sub-processes shared across all process models at the

current level, in order to determine which process models require further slicing to

reach the complexity threshold. In other words, the alternation of slicing and dicing

steps is a fundamental characteristic of SMD, thus precluding a depth-first exploration

of the dendrogram based purely on a series of slicing steps.

As with any process mining technique, the outcome of SMD is affected by the

quality of the logs used as input. In other words, any noise (e.g. due to logging errors)

in the input log may have an impact on the usefulness of the discovered process models.

While SMD itself does not address issues arising from imperfect logs, SMD has the

advantage that it can be combined with various trace clustering or process discovery

techniques that address such issues. In this respect, SMD preserves the behavioral

accuracy (fitness and appropriateness) of the base techniques upon which it builds.

What SMD adds on top of the base techniques are the operations for refactoring exact

and approximate clones, and these operations do not affect the behavioral accuracy of

the discovered process models.
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4. Fitness-Aware SMD

In the previous section, we showed how SMD can be combined with hierarchical

trace clustering techniques to make them complexity-aware while factoring out dupli-

cation across the discovered models. In this section we show that SMD can also be

combined with a fitness-aware trace clustering technique to control both complexity

and accuracy of the discovered models. Specifically, we use ActiTraC (cf. Section 2.3)

as the baseline clustering technique since it builds fitness-aware clusters.

ActiTraC is a flat trace clustering technique, i.e. it produces a flat collection of pro-

cess models rather than a hierarchy. Using the technique “as-is” with SMD as a stop

condition when building the flat collection of clusters would produce a suboptimal so-

lution where the number of process models and the overall collection’s size would not

necessarily be minimized. A more promising approach is to build a top-down variant of

ActiTraC that incrementally constructs a dendrogram, and use SMD to point out which

branches to further explore at each iteration of ActiTraC. To realize this approach, we

embedded the original ActiTraC algorithm as the subroutine in a divisive clustering al-

gorithm, where via SMD the complexity of each model underlying a cluster determines

whether the cluster should be subdivided (the model is too complex) or not (the model

is within the complexity threshold).

The detailed description of SMD on top of a flat trace clustering technique is given

in Algorithm 3. This is a variant of Algorithm 1 which takes as input the root log r

rather than a prebuilt dendrogram D, and populates a set T with the trace clusters that

need to be analyzed at each iteration of the procedure.

At each iteration of the while loop in Algorithm 3, the ActiTraC subroutine is

applied to each trace cluster whose underlying process model Mc is too complex. In

order to keep the dendrogram balanced, we set the number of clusters to be generated

by ActiTraC to two and enable redistribution of noisy traces, as shown in Figure 6.

This leads to three possible cases:

• Clusters c1 and c2 are non-empty (typical case). After noise redistribution, if

any, the two clusters will be added to the set of clusters T upon which to apply

SMD.
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Algorithm 3: SMD/flat
Input: Root log r, complexity threshold k
Output: Set of root process models Ms, set of subprocesses S

Initialize Ml with ∅ and add r to set T1

while T is non-empty do2

Mine a set of process models M from all trace clusters in T3

Add to Ml the set of models from M mined from singleton clusters in T4

Remove from T all trace clusters used to mine models in Ml5

Invoke Algorithm 2 to extract subprocesses from M∪Ml and obtain a6

simplified set of root process models Ms and a set of subprocesses S
Let Mc be the process models in Ms that do not satisfy k7

Let Sc be the subprocesses in S that do not satisfy k8

Let P be the process models of Ms containing subprocesses in Sc9

Add all models in P to Mc10

Remove Ml from Mc11

if Mc is empty then Remove all trace clusters from T12

foreach model mc in Mc do13

Get the trace cluster d used to mine mc14

Invoke ActiTraC on d to obtain two clusters c1 and c215

Add c1 and c2 to T and remove d from T16

return Ms and S17

• c2 is empty, c1 and n are not. If the fitness threshold is too strict (e.g. 1), it

may be impossible to even find a single trace in the set of remaining traces from

which to discover a perfectly fitting model. This depends on the underlying

mining algorithm chosen. For example, Heuristics Miner cannot guarantee to

build a perfectly fitting process model out of any single sequence of events. In

this scenario, the noise is not redistributed but considered as the second cluster.

• c2 and n are empty, or c1 and c2 are both empty. Again, this is due to the fitness

threshold being too strict. In this case, ActiTraC will fail to create two clusters.

To cope with this situation, we compute the Euclidean distance matrix between

the traces in the log using the bag-of-activities profile in [5]. Based on this, we

then apply hierarchical agglomerative clustering to the log used as input to form

two clusters.
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Figure 6: ActiTraC generating two clusters with noise redistribution.

5. Evaluation

We implemented the SMD technique on top of the Apromore [23] platform.3 Us-

ing this implementation, we evaluated the technique on two event logs extracted from a

large insurance company and on the log of the BPI challenge 20124 (herein called BPI

Log). The first log of the insurance company (herein Motor Log) was taken from a mo-

tor insurance claims handling process for windscreen claims. The second log (herein

Commercial Log) was taken from a commercial insurance claims handling process.

We extracted completed traces from the first two months of each log, leading to a total

of 4,300 to 5,300 traces. As we can see from Tab. 1, the three logs exhibit different

characteristics despite similar number of traces. In particular, there is a substantial

difference in duplication ratio (i.e. the ratio between events and event classes).

As a baseline for the experiments, we used the three hierarchical trace clustering

techniques by Song et al. [11, 4], Bose et al. [13, 5] and the DWS technique by Greco,

de Medeiros et al. [2, 3]. Both algorithms proposed by Song and Bose generate a hierar-

chy of trace clusters where the leaves are singletons. We adapted these two techniques

to traverse down the dendrogram until we find a set of trace clusters whose mined mod-

3The tool is available at www.apromore.org/platform/tools
4http://www.win.tue.nl/bpi2012/doku.php?id=challenge
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Log Traces Events Event classes Duplication ratio
Motor 4,293 33,202 292 114
Commercial 4,852 54,134 81 668
BPI5 5,312 91,949 36 2,554

Table 1: Characteristics of event logs used in the experiments.

els have complexity lower than or equal to the threshold. The DWS technique uses the

K-Means clustering algorithm for clustering traces. It performs hierarchical trace clus-

tering by applying K-Means at each level to obtain the next level clusters. We adapted

the DWS technique to split clusters until the process models mined from all trace clus-

ters have complexity lower than or equal to the threshold. Further, we configured this

technique to split each cluster into two child clusters at each level (K=2).

We also implemented a hierarchical (divisive) version of ActiTraC based on the

algorithm in Section 4, but without the refactoring steps. In other words, the algorithm

runs ArtiTraC once, and for each obtained cluster that does not produce a process model

meeting the complexity threshold, it re-runs ArtiTraC recursively until it reaches clus-

ters that produce models meeting the complexity threshold. This hierarchical version

of ActiTraC is hereby called ActiTraCH . Besides using the parameters of ActiTraC

described in Section 4, we used distance-based selective sampling, we set the fitness

threshold to its strictest value of 1 and the minimal clustering size to 50% (this means

the algorithm tries to add to cluster c1 at least half the traces in the root log).

Finally, we included in the experiments the SMD versions of the above four al-

gorithms. This means SMD on top of Song et al. [11, 4], Bose et al. [13, 5] and de

Medeiros at al. using Algorithm 1 to post-process the dendrogram of clusters produced

by these techniques, as well as SMD on top of ActiTraCH as defined in Algorithm 3.

For consistency, we used the Heuristics Miner [9] to discover process models from

the clusters retrieved by all four techniques. For clone detection we used the implemen-

tation described in [19] while for approximate clone clustering, we used the implemen-

5The extract of the BPI log used in these experiments contains multiple end events, thus we had to add
an artificial single end event to every trace. After this, the total number of traces in this log becomes 97,261
with 37 instead of 36 event classes. This log is available at www.apromore.org/platform/tools
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tation of the DBSCAN algorithm described in [20] with graph-edit distance threshold

of 0.4. These implementations, as well as that of the technique for merging process

models described in [22], were also integrated into our tool.

We set the user-defined complexity threshold on the model size, as it has been

shown that size has the largest impact on perceived process model complexity [6].

We targeted the lowest possible size threshold in the experiments, taking into account

however that there is an implicit lower limit on the minimum size each mined process

model can have. This limit, which is a lower-bound for the user-defined threshold,

depends on the number and size of the clones we can identify in the process models

discovered from the trace clusters. The risk of choosing a threshold lower than this

limit is that we may end up with a proliferation of process models, many of which still

with size above the threshold since fundamentally a process model discovered from a

cluster cannot be smaller than the size of the largest trace in that cluster.6

To discover this implicit limit we would need to run SMD using a size threshold

of 1, so as to fully explore the dendrogram, and then measure the size of the largest

resulting process model. This would be inefficient. However, we empirically found

out that a good approximation of this implicit limit is given by the size of the largest

process model that can be mined from a single trace.

We set the size threshold to this approximate implicit limit, which is 37 for the

Motor log, 34 for the Commercial log and 56 for the BPI log.7 The results of the

experiments are shown in Fig. 7 (Motor Log), Fig. 8 (Commercial Log) and Fig. 9

(BPI Log), where “S”, “B”, “M” and “A” stand for the technique of Song et al., Bose

et al., Medeiros et al., and ArtiTraCH respectively, while “SMDS”, “SMLB”, “SMDM”

and “SMDA” refer to their respective SMD extensions.

As we can observe from the histograms, SMDB, SMDM , SMDS and SMDA consis-

tently yield a significant reduction in the overall size across all three logs and all four

trace clustering techniques used. This reduction ranges from 13.5% (with SMDA on

the Commercial log) to 63.9% (with SMDM on the BPI log), as evidenced by Tab. 2.

6Except if there is repetition in the trace and if this repetition can be captured via a cycle in the process
model, but even then there is a minimum possible size of the model once the repetition has been factored out

7It turns out that these values correspond to the actual implicit size limits of the three logs.
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Figure 7: Overall size and number of models obtained from the Motor log.
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Figure 8: Overall size and number of models obtained from the Commercial log.
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Figure 9: Overall size and number of models obtained from the BPI log.

In particular, we can observe that despite the technique of de Medeiros et al. always

produces the lowest overall size while that of Bose et al. produces the highest one

among the trace clustering techniques, these differences are thinned out by SMD. This

is because SMD refactors redundancies across clusters that are typically introduced by

trace clustering techniques.

We also observe significant reductions in the number of models, ranging from 22%

(with SMDM on the Commercial log) to 65.8% (with SMDM on the BPI log) if con-

23



sidering root models only (see Tab. 2). Adding subprocesses to the count, the extent

of this reduction is clearly diminished (there is even a slight increase of 1.6% in the

total number of models in the case of SMDS on the Motor log). These results should

be interpreted as an indication that SMD can often achieve the complexity threshold

with less process models (particularly less root process models) compared to the three

baseline trace clustering techniques used in the experiments.

In the case of SMDA we observe that the overall repository size and number of

models are comparable to those achieved by SMD on top of the other three techniques.

In the case of the Motor log, the repository size produced by ArtiTraCH and SMDA is

slightly larger than those produced by the other techniques. This could be explained by

the fact that the motor claims process is very irregular (high variability), thus requiring

slightly larger models in order to achieve a level of fitness close to 1. We note that the

fitness achieved by ArtiTraCH (and hence SMDA) on the three logs was between 0.95

and 0.98. As explained in Section 2.3, the reason why ArtiTraC does not achieve a

fitness of 1 is because of redistribution of traces in the noise cluster.

Log Method Size savings (%) (Root) models number savings (%)
Motor SMDS 21.6 (22.6) -1.6

SMDB 19.1 (35.4) 12.2
SMDM 14.2 (25.0) 15.1
SMDA 17.4 (38.0) 16.6

Commercial SMDS 25.5 (27.8) 4.0
SMDB 25.2 (28.7) 6.7
SMDM 19.4 (22.0) 9.2
SMDA 22.0 (29.9) 8.8

BPI SMDS 60.0 (63.2) 43.1
SMDB 61.8 (66.3) 45.0
SMDM 63.9 (65.8) 55.5
SMDA 60.0 (65.6) 55.6

Table 2: Savings in the overall size and number of models obtained with SMD.

From Tab. 2 we can also observe that the extent of model count and overall size

reduction is more significant when the log’s duplication ratio is higher (see Tab. 1).

Indeed, there is a strong correlation between duplication ratio and overall size reduction

produced by SMD (correlation of 0.99), and between duplication ratio and model count
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reduction (correlation of 0.95). Thus, we conclude that the amount of improvement

achieved by SMD depends on the amount of duplication in the log. This observation

was expected, as the size reduction achieved by clone refactoring is proportional to the

similarity between the process models [20].

Further, the average size and structural complexity of individual models reported

in Tab. 3, indicate that SMD achieves the size threshold on individual models without

affecting structural complexity. The table shows that on average, structural complexity

remains largely unchanged after applying SMD (the increase in density is due to the

inverse correlation of density and size). It is also worth noting that in most cases,

average model size is reduced after applying SMD.

Log Method Size8 CFC ACD CNC Density
avg min max savings (%) avg avg avg avg

Motor S 22.75 4 37 22.8 12.07 2.71 1.26 0.07
SMDS 17.57 4 37 10.07 2.34 1.21 0.11
B 20.01 4 37 9.8 9.97 2.51 1.2 0.08
SMDB 18.04 4 37 10.05 2.38 1.2 0.11
M 15.73 3 49 -1.1 7.36 2.14 1.12 0.11
SMDM 15.9 4 37 8.34 2.12 1.14 0.12
A 21.50 6 37 5.6 10.31 2.60 1.21 0.07
SMDA 20.30 6 37 10.34 2.56 1.27 0.10

Commercial S 24.07 6 34 22.4 13.65 2.96 1.32 0.06
SMDS 18.67 2 34 11.34 2.49 1.24 0.10
B 21.11 2 34 20.3 11.04 2.65 1.23 0.07
SMDB 16.82 2 34 9.73 2.29 1.18 0.12
M 18.86 2 40 11.1 10.18 2.47 1.22 0.09
SMDM 16.76 2 34 9.71 2.38 1.21 0.11
A 22.54 7 34 14.5 11.69 2.84 1.27 0.06
SMDA 19.28 2 34 11.89 2.76 1.31 0.09

BPI S 47.32 15 56 29.7 20.77 2.34 1.24 0.03
SMDS 33.27 4 56 20.18 2.41 1.28 0.07
B 46.54 13 56 30.6 20.48 2.35 1.23 0.03
SMDB 32.3 4 56 19.29 2.33 1.27 0.07
M 46.48 21 61 18.9 21.16 2.34 1.24 0.03
SMDM 37.71 7 56 25.29 2.38 1.3 0.04
A 46.57 27 56 9.9 19.81 4.10 1.12 0.08
SMDA 41.96 10 56 20.75 4.10 1.14 0.08

Table 3: Size and structural complexity metrics for model collections obtained with SMD.

In most of the experiments, SMD took more time than the corresponding baseline

trace clustering technique. This is attributable to the reliance on graph-edit distance for

8The size values do not include artificial start and end events that were added when creating subprocesses.
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process model comparison. In the worst case, SMD took double the time required by

the baseline (e.g., 58 mins instead 28 mins of Medeiros et al. on the Commercial log).

However, in other cases, SMD took less time than the baseline (e.g., 17 mins instead

of 22 mins of Bose et al. on the BPI log). This is because if SMD mines less models

relative to its baseline trace clustering technique, the time saved by the mining steps

can compensate for the time taken to compute graph-edit distances.

In any case, the execution times of SMD are in the same order of magnitude as other

trace clustering techniques, entailing in particular that execution times in the order of

hours can be expected for more complex event logs. This weakness in terms of scal-

ability can be addressed by means of parallelization techniques, which are orthogonal

to the contribution of this paper and left as future work.

6. Related work

To the best of our knowledge two methods have previously been put forward to

discover hierarchies of process models: one by Bose et al. [24] and another by Greco

et al. [25, 2].

Bose et al. [24] present a method that discovers a single process model decomposed

into sub-processes, each subprocess corresponding to a recurrent motif observed in

the log traces. Given that this method is aimed at discovering process models with

subprocesses, it is related to the dicing phase of the SMD technique. The difference

is that the dicing phase in SMD discovers subprocesses that are shared by multiple

parent processes, with the aim of reducing duplication across the parent processes.

This choice is driven by the fact that the dicing phase of SMD is aimed at reducing

some of the duplication introduced by the slicing phase. In contrast, Bose et al. [24]

extract sub-processes out of one single parent process model. This having been said, the

technique in Bose et al. [24] could be combined with the SMD technique. Specifically,

for any trace cluster in the hierarchy produced by SMD, one could apply the technique

of Bose et al. to identify motifs that could be factored out as non-shared subprocesses,

in addition to the shared subprocesses identified by SMD. In this respect, SMD and the

method of Bose et al. are orthogonal and complementary.
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Meanwhile, Greco et al. [25, 2] use trace clustering to discover hierarchies of pro-

cess models. In these hierarchies, the models associated to leaf nodes correspond to

“concrete” models. In contrast, the models associated to inner nodes correspond to

generalizations, resulting from the abstraction of one or several activities of models of

descendant nodes. Thus the end result is a generalization-specialization hierarchy of

process models. In a similar vein, SMD constructs a generalization-specialization hi-

erarchy (like other trace clustering methods) but additionally, it extracts sub-processes

shared by multiple leaf nodes in the hierarchy. Thus the resulting models are linked

both by process-subprocess relations and generalization-specialization relations. An-

other key difference between SMD and the technique in Greco et al. is that in SMD the

expansion of the dendrogram is controlled by the complexity of the discovered models.

As other trace clustering techniques, SMD relies on the idea of partitioning an

event log into sub logs. Recently, approaches to partition an event log for the purpose

of parallelizing the automated discovery of a process model have been studied [26, 27].

The idea of these techniques is to split the task of discovering one process model into

several smaller sub-tasks that can be processed in parallel, such that the outputs of the

sub-tasks can be recombined to produce a single process model. While these proposals

also consider the problem of splitting a log into sub-logs, the purpose is different. Trace

clustering techniques aim at producing multiple process models – each representing a

variant of the process – whereas parallelization techniques [26, 27] aim at producing

process model fragments that can later be recombined into a single model.

The terms slicing and dicing in the context of process mining are also used in [28].

However, in this latter work, the terms slicing and dicing are used in the sense of

operations on data cubes. Specifically, data in an event log is represented as a data

cube consisting of three dimensions: a temporal dimension, a “case” dimension (one

value for each case) and an event type dimension. Slicing refers to projecting the cube

over two of its three dimensions (i.e. removing a dimension), for example restricting

the log to events occurring in a given month and focusing on the cases and event types

occurring only during the month in question. The dice operation refers to computing

a sub-cube by selecting values across multiple dimensions, for example restricting the

log only to events occurring during a certain time window (e.g. 2-3 most recent months)
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and only cases that satisfy a given condition (e.g. cases where customers lodged a

complaint during the execution of the case). Meanwhile, SMD uses the term slicing

in the sense of spitting a process into variants according to similarity of traces, while

dicing refers to splitting a process into sub-processes.

This article is an extended version of a conference paper [29]. With respect to the

conference version, the main extension relates to the ability to take into account fitness

during the discovery of collections of process models in addition to complexity. This

is achieved by integrating the principles of the SMD technique with the ActiTraC dis-

covery technique. The experimental evaluation has also been extended to demonstrate

that it is possible to control both fitness and complexity of discovered models without

impacting on model count or overall size of the generated model collection.

7. Conclusion

SMD advances the state-of-the-art in automated process discovery along two di-

rections. First, it provides a framework for designing automated process discovery

techniques that produce collections of process models taking into account user-defined

complexity thresholds. Second, SMD provides significant reductions in overall size of

output process models relative to existing process discovery techniques based on trace

clustering. The experimental evaluation shows overall size reductions of up to 64%,

with little impact on structural complexity metrics of individual process models – bar-

ring an increase in density attributable to the dependency of this complexity metric on

size (lower size generally entailing higher density).

A key feature of SMD is that it does not substitute itself to existing trace clustering

techniques, but rather complements them. In other words, SMD can be seen as an en-

hancer of other trace clustering techniques rather than a completely new technique. In

this paper, we have shown how SMD can be applied on top of three existing techniques

for hierarchical trace clustering in order to make these techniques complexity-aware

while producing collections of models with less duplication and thus smaller cumula-

tive size. Next we showed how SMD can be combined with a fitness-aware automated

process discovery technique that produces flat collections of process models, thus lead-

ing to a technique that is both fitness-aware and complexity-aware. The versatility of
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SMD opens up manifold possibilities for combining SMD with other trace cluster-

ing techniques (hierarchical or flat) that address various optimization objectives. In

essence, what SMD brings on top of other trace clustering techniques is the ability to

control the complexity of each output process model, while reducing duplication in

the resulting collection of process models and preserving accuracy relative to the base

process discovery technique employed.

While complexity metrics have been shown to be correlated with comprehensibil-

ity [7], it is unclear how exactly to tune the thresholds used by SMD so as to produce

models that users would best comprehend. While methods for determining complex-

ity thresholds on individual models have been put forward [30], the interplay between

overall size of a collection of process models, size of individual models and their struc-

tural complexity is less understood. Building an empirical understanding on how to set

complexity thresholds for automated process discovery is a direction for future work.

Another direction for future work is to optimize SMD in order to reduce its execu-

tion time. Given that SMD uses a top-down (breadth-first search) approach to traverse

or unfold a dendrogram, there is an opportunity to parallelize the processing of sibling

nodes at each level of the breadth-first search. Secondly, there is an option to com-

bine SMD with parallel (map-reduce) techniques for automated process discovery of

individual process models [26]. Finally and perhaps more significant would be to par-

allelize the computation of GED matrices required by the approximate clone detection

technique, which is the most complex step from a computational complexity viewpoint.
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