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Abstract. Process-Aware Information Systems (PAISs) support executions of
operational processes that involve people, resources, and software applications on
the basis of process models. Process models describe vast, often infinite, amounts
of process instances, i.e., workflows supported by the systems. With the increas-
ing adoption of PAISs, large process model repositories emerged in companies
and public organizations. These repositories constitute significant information
resources. Accurate and efficient retrieval of process models and/or process in-
stances from such repositories is interesting for multiple reasons, e.g., searching
for similar models/instances, filtering, reuse, standardization, process compliance
checking, verification of formal properties, etc. This paper proposes a technique
for indexing process models that relies on their alternative representations, called
untanglings. We show the use of untanglings for retrieval of process models based
on process instances that they specify via a solution to the generalized executability
problem. Experiments with industrial process models testify that the proposed
retrieval approach is up to three orders of magnitude faster than the state of the art.

1 Introduction

The Information Systems discipline studies different ways in which information can
be processed, often algorithmically using process modeling practices. Workflow man-
agement systems, business process management systems, and enterprise information
systems are examples of process-aware information systems (PAISs) [1]. PAISs support
executions of operational processes on the basis of process models that are usually
expressed in languages such as the Web Services Business Process Execution Language
(WS-BPEL) or the Business Process Model and Notation (BPMN). For example, Fig. 1
shows a BPMN model that describes various scenarios for handling travel quote requests.

Process models describe vast amounts of executions, or process instances, for handling
similar scenarios. The number of instances that are described in a single process model
is exponential in the number of decisions that one can take when executing the model
and grows combinatorially with the amount of tasks that can be executed simultaneously.
Moreover, a process model can capture an infinite number of executions, in case of loops.

As it becomes increasingly common for organizations to adopt the process-oriented
approach to model and execute their routines, organizations often end up managing
repositories that comprise up to thousands of process models. For example, Suncorp, the
largest Australian insurer, maintains a repository of more than 3,000 models [2,3].

Process model repositories are immense information resources. In order to reduce this
information overload, one should be striving for automated retrieval systems. Accurate
and efficient retrieval of information about process instance that are stored in process
model repositories is interesting for several reasons, including:
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Fig. 1. A BPMN model for handling travel quote requests

o Reuse/redesign. When developing new or modifying existing process models, one
can reuse information that is contained in process model repositories [4], e.g., by
retrieving process models that specify process instances of interest.

o Compliance. Process models are subject to constraints enforced by regulations
and/or laws, often referred to as compliance rules. Effective compliance checking
requires the retrieval of information about process instances [5].

o Standardization. Standard process models are exemplar models that should be used
as references [6]. These models encode best practices for handling similar process
instances across several models in a repository. The starting point of a process model
standardization initiative often deals with identification of similar process models,
i.e., those models that capture identical or similar process instances.

For example, an organization can issue a compliance rule which checks that in every
travel handling scenario it is never possible that both tasks “Get flight preferences” and
“Adjust flight preferences” occur together. This rule can be triggered to avoid internal
adjustments of travel preferences. In this case, the model in Fig. 1 must be retrieved as
one that violates the rule. Alternatively, one may want to redesign routines so that every
time flight and hotel quotes are processed, there is also an option to propose a quote
for renting a car. To implement this intent, one can start by retrieving all models that
describe instances in which both tasks “Get flight quote” and “Get hotel quote” occur.

The contribution of this paper is threefold. First, it proposes an index data structure

that is tailored towards efficient retrieval of process models based on information about
process instances. The index is due to an alternative representation of process models,
called representative untanglings. The unique characteristics of this index allow for
an unmatched querying experience. Second, it demonstrates this querying experience
using query primitives that take form of the generalized version of the classical exe-
cutability problem [7]. Given a process model and a set of tasks as input, the generalized
executability problem deals with deciding if the model describes at least one process
instance in which all tasks from the given set occur. Among other applications, a solution
to the generalized executability problem can be used to implement the above illustrated
retrieval scenarios. Third, it suggests an efficient solution to this problem using represen-
tative untanglings. The approach has been implemented. Experiments with industrial
models show up to three orders of magnitude speed up compared to the state of the art.

The rest of the paper is organized as follows: Sect. 2 positions our research in the

light of related work. Next, Sect. 3 provides preliminary notions. Sect. 4 describes a
novel index data structure. Sect. 5 exemplifies the use of this index for querying process
model repositories. Sect. 6 reports on the performance measurements of a prototype that
implements the developed querying technique. Finally, Sect. 7 concludes the paper.

2 Related Work

Querying deals with retrieving information that is relevant to a given information need
from a collection of information resources. In case of process model querying, informa-
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tion resources are process models (structural information) as well as process instances
that these process models describe (behavioral information).

There exist various techniques to query process model repositories based on structural
information, cf. [2,3,8,9,10]. Given a query specified as a structural pattern, or a structural
template with wildcards, these techniques are capable of retrieving process models which
are formalized as structures that match the pattern, or fit the template. First, indexing
techniques are employed to filter the repository by obtaining a set of candidate models
that fit the indexed features of the query. Second, graph isomorphism or graph-edit
distance techniques [11] are applied to identify the models from the candidate set that
score an exact match, or are sufficiently similar, to the query. Differently, we propose a
technique that retrieves process models based on behavioral information.

Other techniques retrieve process models based on abstractions of behavioral informa-
tion, cf. [12,13]. They accept loss of behavioral information, and consequently decrease
in precision and recall, as the price for efficient retrieval. Our retrieval technique is
precise and sensitive, i.e., it always retrieves all and only models that match the query.

Model checking is a technique for verifying various properties of process models [7].
This technique usually proceeds by constructing an alternative representation of a process
model and then uses this representation for efficient validation of properties. Model
checking can be used to implement process model retrieval that is based on behavioral in-
formation as well as is precise and sensitive. Indeed, behavioral information needs can be
expressed as properties to be verified. Similarly, our technique makes retrieval decisions
based on alternative representations of process models, called representative untanglings.
Differently, once constructed, representative untanglings can be reused much more often
than artifacts employed for model checking purposes, as model checking usually relies
on a fresh artifact for verification of every new property. This reuse of untanglings yields
significant performance gains when querying process model repositories.

3 Preliminaries

This section introduces formalisms that will be used to support subsequent discussions.

3.1 Petri Nets and Net Systems

Petri nets are a well-established formalism for modeling distributed systems, e.g., PAISs.
For many high-level process modeling languages, including WS-BPEL and BPMN,
there exist mappings to the Petri net formalism [14]. The benefits of such mappings are
twofold: (i) rigorous definition of an execution semantics of a high-level language, and
(ii) reuse of a mathematical theory of Petri nets for analysis of process models.

This section introduces the basic Petri net terminology and notations.

Definition 3.1 (Petri net)
A Petri net, or a net, is an ordered triple N := (P,T,F), where P and T are finite disjoint
sets of places and transitions, respectively, and F € (PxT)u (T x P) is a flow relation. |

A node x € PUT is an input (an outpur) node of a node y e PUT iff (x,y) € F ((y,x) € F).
By ex (xe), x € PUT, we denote the preset (the postset) of x — the set of all input (output)
nodes of x. For a set of nodes X € PUT, X :=J,x ox and Xe :=J, .y xe. Anode xe PUT
is a source (a sink) node of N iff ex = & (xe = @). Given anet N := (P,T,F), by Min(N)
(Max(N)) we denote the set of all source (all sink) nodes of N. For technical convenience,
we require all nets to be T-restricted. A net N is T-restricted iff the preset and postset of
every transition is non-empty, i.e., V¢ € T : of + & # te.
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Fig. 2. A net system that captures semantics of the BPMN model in Fig. 1

Often, it is convenient to distinguish between observable and silent transitions of a
net; this distinction can be made formal by the means of labeled nets.

Definition 3.2 (Labeled net) A labeled netisatuple N:=(P,T,F,T,A), where (P,T,F)
is anet, T is a set of labels, where T € T is a special label, and A : T — T is a function
that assigns to each transition in 7" a label in T .

a

If A(7) # T, where r € T, then ¢ is observable; otherwise, ¢ is silent.

Execution semantics of Petri nets is based on states and state transitions and is best
perceived as a ‘token game’. A state of a net is represented by a marking, which describes
a distribution of tokens on the net’s places.

Definition 3.3 (Marking of a net) A marking, or a state, of a net N := (P, T,F) is a
relation M : P — Ny that assigns to each place p € P a number M(p) of tokens in p.!

a

In the sequel, we shall often refer to a marking M as to the multiset containing M(p)
copies of place p for every p € P.2 A net system is a Petri net at a certain state/marking.

Definition 3.4 (Net system) A net system, or a system, is an ordered pair S := (N,M),
where N is a net and M is a marking of N.

a

In the graphical notation, a common practice is to visualize places as circles, transitions
as rectangles, the flow relation as directed edges, and tokens as black dots inside assigned
places; see Fig. 2 for an example of a net system visualization.

Whether a transition is enabled at a given marking depends on the tokens in its input
places. An enabled transition can occur, which leads to a new marking of the net.

Definition 3.5 (Semantics of a system) Let S:= (N,M), N:= (P,T,F), be a system.

o A transition ¢ € T is enabled in S, denoted by S[¢), iff every input place of ¢ contains
at least one token, i.e., Vpeer: M(p) >O0.

o If a transition ¢ € T is enabled in S, then ¢ can occur, which leads to a step from
Sto a system S’ := (N,M") via t, where M’ is a fresh marking such that M’(p) :=
M(p)-1p((p,1)) +1p((t,p)), p€ P, i.e., t ‘consumes’ one token from every input
place of # and ‘produces’ one token for every output place of 7. 3

a

By S[#)S’, we denote the fact that there exists a step from S to S’ via 7. Note that Fig. 2
shows the labeled net system that formalizes execution semantics of the BPMN model
in Fig. 1. Empty rectangles denote silent transitions. Rectangles with labels inside denote
observable transitions. These labels refer to the short names shown next to task nodes in
Fig. 1. Thus, the full label of transition #, in Fig. 2 is “Get flight preferences”.

A net system induces a set of its occurrence sequences and reachable markings.

! Ny denotes the set of all natural numbers including zero.

2 We shall write [p1,P1,Pp2] to denote the marking that puts two tokens at place p1, one token at
place p;, and no tokens elsewhere.

3 1 denotes the indicator function of F on the set (Px T) U (T x P).
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Definition 3.6 (Occurrence sequence) Let Sy := (N,Mp) be a net system.

o A sequence of transitions ¢ :=t...f,, n € Ny, of N is an occurrence sequence in S,

iff o is empty or there exists a sequence of net systems S; .. .S, such that for every
position 7 in o it holds that S;_ [#;)S;; we say that o leads from Sy to S,,.

o A marking M is reachable in Sy, iff M = My or there exists an occurrence sequence

o in Sy that leads from Sy to (N, M).

a

By XZ(S) and [S), we denote the set of all occurrence sequences and, respectively, the
set of all reachable markings in a net system S. A net system S:= (N,M), N := (P, T,F),
is n-bounded, or bounded, iff there exists a number n € Ny such that for every reachable
marking M’ in S and for every place p € P it holds that the amount of tokens at p is at
most 1, i.e., VM € [S)Vpe P:M'(p) <n. It is easy to see that the set of all reachable
markings in a bounded net system is finite.

3.2 Processes of Net Systems

Occurrence sequences suit well when it comes to describing orderings of transition
occurrences. In this section, we present processes of net systems [15]. One can rely
on processes to adequately represent causality and concurrency relations on transition
occurrences. A process of a net system is a net of a particular kind, called causal net,
together with a mapping from elements of the causal net to elements of the net system.

Definition 3.7 (Causal net) A net N = (B,E,G) is a causal net, iff : (i) for each b € B
holds |eb| < 1 and |be|< 1, and (ii) N is acyclic, i.e., G* is irreflexive.*

a

Elements of E are called events and elements of B are called conditions of N. Two nodes
x and y of a causal net N := (B, E,G) are causal, iff (x,y) € G*; otherwise x and y are
concurrent. A cut of a causal net is a maximal (with respect to set inclusion) set of its
pairwise concurrent conditions.

One can utilize events of causal nets to represent transition occurrences.

Definition 3.8 (Process) A process of asystem S:=(N,M), N :=(P,T,F), is an ordered
pair 7 := (Ng,p), where N := (B,E,G) is a causal net and p : BUE — PUT is such that:
o p(B)cP, p(E)cT,i.e., p preserves the nature of nodes,
o M =p(Min(Nyr)), i.e., T starts at My, and
o for every event e € E and for every place p € P it holds that [{(p,t) e F |t =p(e)}| =
o~ (p)neeland [{(r,p) € F [1=p(e)}|=|p~" (p) nes],
i.e., p respects the environment of transitions.

a

Let 7w := (Nz,p) be a process of a net system S. It is known that Min(Ny) and Max(Ny)
are cuts [15]. Moreover, every cut of N encodes a reachable marking in S.

Theorem 3.9 (Cuts and reachable markings, cf. [15, Theorem 3.5])
Let 0 := (Ng,p), Np := (B,E,G), be a process of a net system S. If C € B is a cut of Ny,
then M := p(C) is a reachable marking in S.

a

Fig. 3 shows two processes of the net system in Fig. 2. When visualizing processes,
conditions ¢;,c!... refer to place p;, e.g., for the process in Fig. 3(b) it holds that
p(cs) =p(cs) = ps, where ps is the place in Fig. 2. Similarly, we employ events ¢;, e ...
to denote that they refer to transition #;, e.g., p(es) = p(e}) =4 for the process in
Fig. 3(b). Observe that we distinguish between shapes of events that correspond to silent
transitions from those that correspond to observable ones only for clarity considerations.

4 R* denotes the transitive closure of a binary relation R.
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(b)
Fig. 3. Two processes of the net system in Fig. 2

Fig. 3(b) shows a process and four cuts of its causal net N. Each cut is defined as a set of
conditions that intersect with the respective dashed line. For example, cut D; is defined
as the set of conditions {c3,ce}. Note that cuts D,,; and D, are equal to Min(Ny)
and Max(Ny ), respectively. Moreover, both cuts D and D,,,, encode the same marking
p(D1) =[p3,P6] = P(Dmax), which is a reachable marking in the net system in Fig. 2,
for instance via occurrence sequences ff4f Or t1 ty t4t3t5tt7tg o t4. Finally, it is easy to
see that the set of all processes of the net system in Fig. 2 is infinite.

4 Indexing

This section proposes to use untanglings of process models, or more precisely of the
corresponding net systems, as data structures that improve the speed of retrieving process
instances stored in process model repositories. Similar to database indexes, untanglings
require the use of additional storage space to maintain the extra copy of data. However,
at this additional cost, they can be used to quickly discover requested process instances
without having to iterate over all instances, of which there can be infinitely many.

An untangling of a net system is a set of its processes. A process of a system is a static
model that describes a finite portion of its occurrence sequences, cf. Sect. 3.2. For exam-
ple, in [16], Jorg Desel suggests to enhance a causal net N of a process 7 := (Ng,p) of a
system S := (N, M) with a marking M, that puts one token at every source condition of Ny
and no tokens elsewhere. Then, every occurrence sequence in the fresh system (Ny, My)
represents (via mapping p) an occurrence sequence in S. E.g., consider the net system Sy
composed of the causal net in Fig. 3(b) and a marking that puts one token at condition ¢
and no tokens elsewhere. Then, occurrence sequence e e; 3 e4 es e €7 eg €9 eg in Sy repre-
sents occurrence sequence p(e1) p(e2)p(e3) p(ea)p(es)ples)p(er)ples)p(es) p(ey)
=t Iht3t4t5t6t713t9 14 in the net system in Fig. 2. Observe that in total S represents six
occurrence sequences of the net system in Fig. 2.

The number of occurrence sequences that are represented in a single process grows
combinatorially with the amount of its pairwise concurrent events. This fact makes
processes highly suitable for indexing occurrence sequences. Still, it is easy to see that
one might often need an infinite number of processes to represent — as per the above
proposed intuition — all occurrence sequences in a system; e.g., consider the net system
in Fig. 2. Clearly, every index must be finite. To this end, we rely on an enhanced
interpretation of processes, which allows treating a process as a static model that can
represent an infinite number of occurrence sequences. This enhanced interpretation is
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formalized in the notion of a process set system. In turn, every process set system can be
seen as a semantic union of elementary models, called process systems.

A process system is an abstract model that suggests a way a process of a system can
encode a possibly infinite number of occurrence sequences.

Definition 4.1 (Process system) A process system of a net system S := (N, Mp) induced
by a process 7 of S is an ordered triple Sy := (N,M, ), where M is a marking of N.

a

The semantics of process systems — similarly to the semantics of net systems, cf. Defi-
nition 3.5 — consists of the transition enablement and transition occurrence rules. The
enablement rule of a net system (N, M) depends on the structure of the net N, i.e., on
tokens in presets of transitions of the net. Differently, the enablement rule of a process
system (N, M, 1) relies on the structure of the causal net of 7.

Definition 4.2 (Semantics of a process system) LetS;:=(N,M,x),N:=(P,T,F), =
(Nz,p), Nz := (B,E,G), be a process system of a net system S.
o A transition 7 € T is enabled in Sy, denoted by Sz[r), iff there exists a cut C € B of
Ny and an event e € E such that M = p(C), ee € C, and 7 = p(e).
o If atransition ¢ € T is enabled in Sy then ¢ can occur, which leads to a step from Sy
to Sp:=(N,M’, 1), where M’ is a fresh marking such that (N,M)[¢)(N,M") holds. ,

According to Theorem 3.9, if C € B is a cut, then p(C) is a reachable marking in S.
Moreover, if D € B is a set of conditions, e € E is an event, and ee C D, then transition
t:=p(e) is enabled in N at the marking p(D); this follows immediately from the fact
that p preserves the nature of nodes and environment of transitions, cf. Definition 3.8.
Therefore, a process system Sz := (N,M,x), m:= (Ng,p), restricts the semantics of the
net system (N, M) to those reachable markings that are induced by cuts of Ny and to
those transition occurrences that are captured by events of Ny.

Similar to net systems, a sequence of transitions o is an occurrence sequence in a
process system Sy if ¢ is empty or the first transition in ¢ is enabled in S; and an
occurrence of a transition from ¢ in S (except of an occurrence of the last transition
in 0) leads to a process system that enables the next transition in . We accept that a
process 7 of a net system S := (N, M) represents all those occurrence sequences in S
which are also occurrence sequences in the process system (N, M, ).

As an example consider a process system Sy := (N, M, 1), where (N,M) is the net
system in Fig. 2 and 7 := (Ng,p), Ny := (B,E,G), is the process in Fig. 3(b). It holds
that S;; enables transition #;. Indeed, there exists cut D,,;, of N; and event e, refer to
Fig. 3(b), such that p(Dmin) = [pl] =M, {C]} =e¢| C Dy = {C]}, and p(el) =t;. An
occurrence of #1 leads to a step from Sy, to the process system (N, [ p2, ps], 7). It is easy
to see that a sequence of transitions 1 14y 1315 is an occurrence sequence in Sy which
leads to the process system Sj := (N, [ps], ). Observe that Sy, enables transition #; only,
whereas the net system (N, [pg]) enables transitions #; and fyo; recall that N is the net in
Fig. 2. There exists only one cut in Fig. 3(b) that induces marking [ pg]; this is cut D;.
Finally, it is only event e7 for which it holds that ee7 € D, and p(e7) = #7. Observe that
process system Sy represents infinitely many occurrence sequences in the net system
in Fig. 2; this is due, for instance, to the fact that the process system (N, [p3,ps], )
enables transition #3 via cut D. Moreover, Sy represents infinite occurrence sequences;
those in which transitions #3...#9 can occur infinitely often.

Every process system has its natural boundaries on what portion of process instances
it can describe. Process set systems aim to overcome these boundaries.
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Fig. 4. A process of the net system in Fig. 2

Definition 4.3 (Process set system)
A process set system of a net system S := (N, M) induced by a set of processes IT of S
is an ordered triple Sy := (N,M,II), where M is a marking of N.

The semantics of a process set system S := (N, M, IT) is ‘composed’ of all the semantics
of individual process systems that are induced by processes in I1.

a

Definition 4.4 (Semantics of a process set system)
Let S:= (N,M,II), N := (P,T,F), be a process set system.
o A transitiont € T is enabled in S, denoted by S[z), iff there exists a process 7 € IT
such that (N, M, 7)[¢) holds.
o If a transition ¢ € T is enabled in S, then ¢ can occur, which leads to a step from S
to 8’ := (N,M’,IT"), where M’ is a fresh marking such that (N,M)[¢)(N,M") holds
and IT" :={m eIl | (N,M,)[t)}.
As an example consider a process set system S := (N,M,{m,m}), where (N,M) is,
again, the net system in Fig. 2, and 7y and 7, are the processes in Figs. 3(a) and 3(b),
respectively. The sequence of transitions ¢ f, #3145 is an occurrence sequence in S
which leads to the process set system S’ := (N, [ps], {71, 72 }); again, a sequence of
transitions ¢ is an occurrence sequence in a process set system S if the first transition in
o is enabled in S and an occurrence of a transition from ¢ in S (except that of the last
transition) leads to a process set system that enables the next transition in ¢. Transitions
t7 and t1o are enabled in S’. Transition #; is enabled due to cut D, and event e7 in 7.
Transition #1o is enabled due to cut D and event ejq in 7;. An occurrence of #1g in S’
leads to the process set system (N, [pi1],{7}), which does not enable any transition.
The process set system (N,M,{m;,m,}) from the example above represents a big
portion of the occurrence sequences in (N, M). Still, it fails to represent all of them. E.g.,
it does not represent occurrence sequences in which both #; and #1¢ occur.
Finally, a representative untangling of a net system S is a collection of its processes
that induces a process set system which represents all the occurrence sequences in S.

a

Definition 4.5 (Representative untangling) An untangling IT (i.e., a set of processes)
of a net system S := (N, M) is representative if every occurrence sequence in S is also an
occurrence sequence in the process set system (N, M, IT).

In [17], we demonstrated that: (i) one can always construct a finite representative
untangling of a bounded net system, and (ii) a net system S and a process set system
S of S induced by a representative untangling of S are occurrence net equivalent [18],
i.e., they are two different specifications of the exactly same distributed system.

In [17], we proposed the first algorithm for constructing representative untanglings of
bounded net systems. Given the net system in Fig. 2 as input, this algorithm returns two
processes shown in Figs. 3(a) and 4 as its representative untangling.

5 Instance-based Retrieval

A representative untangling of a system S is its another specification that represents
all and only occurrence sequences in S. This section shows how one can employ the
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unique characteristics of representative untanglings to engineer a process model querying
technique. To this end, Sect. 5.1 proposes the generalized executability problem and
its efficient solution in terms of representative untanglings, whereas Sect. 5.2 uses this
solution to formulate basic query primitives.

5.1 Executability

Given a net system S:= (N,M), N := (P,T,F'), and a set of transitions U ¢ T, the classical
executability problem deals with deciding whether some transition in U can ever be
‘executed’ (can occur) in S. It is a fundamental problem in concurrency theory, e.g., a
solution to the executability problem can help deciding reachability and safety [7].

Definition 5.1 (Executability)
A net system S := (N,M), N := (P,T,F), can execute some transition in U ¢ T, iff there
exist an occurrence sequence o in S and a transition ¢ € U such that ¢ occurs in ©.

a

One can solve the executability problem of a system using its representative untangling.

Lemma 5.2 (Executability)
Let IT be a representative untangling of a net system S := (N,M), N := (P,T,F). Then, S
can execute some transition in U C T, iff there exist a process 7t := (Ng,p), Nr:= (B,E,G),
in I, a transition t € U, and an event e € E for which it holds that p(e) =1.

a

The proof of Lemma 5.2 is similar to the proof of correctness of a solution to the
generalized executability problem that is proposed below.

For example, according to Lemma 5.2, one can decide that the net system S in Fig. 2
describes an occurrence sequence that contains transition #3 using event e3 of the process
7 in Fig. 3(a) for which it holds that p(e3) = f3. Moreover, one can use 7T to generate
sample occurrence sequences that contain f3; these are occurrence sequences in a process
system of S induced by 7 that contain 73, e.g., 1 f2 1413 is one such sequence.

The executability problem is a decision problem on the level of process instances and
as such can be naturally applied to formulate queries for searching process models and/or
process instances. E.g., a query that relies on a solution to the executability problem can
be formulated as follows: “Find all process models that describe a process instance in
which a given transition occurs.” Alternatively, one can search for exemplary process
instances in which a given task occurs. Clearly, one can answer both these questions
efficiently using representative untanglings and the result of Lemma 5.2.

In fact, representative untanglings can be used to efficiently solve the generalized
version of the classical executability problem. As we shall see, this solution broadens the
applicability of representative untanglings when searching process model repositories.

Given a net system S:= (N,M), N := (P,T,F), and a set of transitions U ¢ T, the
generalized executability problem deals with deciding whether there exists an occurrence
sequence in S which contains all the transitions in U.

Definition 5.3 (Generalized executability)
A net system S := (N,M), N := (P, T,F), can execute all transitions in U ¢ T, iff there
exists an occurrence sequence o in S such that every transition ¢ € U occurs in ©.

a

The generalized executability problem can be solved using representative untanglings.
The proof of correctness of this solution relies on the next corollary.

Corollary 5.4 (Processes and occurrence sequences) Let 7:=(Ng,p), Ny:=(B,E,G),
be a process of a net system S. Then, there exists an occurrence sequence o in S such
that for every event e € E it holds that transition p(e) occurs in ©.

a
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Please note that Corollary 5.4 is the special case of Lemma 1 in [16]. Finally, the solution
to the generalized executability problem proceeds as follows.

Lemma 5.5 (Generalized executability) Let I1 be a representative untangling of a net
system S:= (N,M), N := (P, T,F). Then, S can execute all transitions in U C T, iff there
exists a process T := (Ng,p), Ng := (B,E,G), in I1 such that for every transition t e U
there exists an event e € E for which it holds that p(e) =t.
Proof. We prove each direction of the statement separately.
(=) Proof by construction. Assume that S can execute all transitions in U. According to
Definition 5.3, there exists an occurrence sequence o in S such that every transition
t € U occurs in . Then, according to Definition 4.4 and Definition 4.5, there exists
aprocess T := (Ng,p), Ng := (B,E,G), in II such that ¢ is an occurrence sequence
in the process system (N, M, x). Thus, for every transition in ¢ there exists an event
e € E for which it holds that p(e) = . This concludes the proof of the “only if”” part.
(<) Proof by contradiction. Assume that there exists a process 7 := (Ng,p), Ny =
(B,E,G), in IT such that for every transition 7 € U there exists an event e € E of Ny
for which it holds that p(e) = ¢, but S cannot execute all transitions in U. According
to Corollary 5.4, there exists an occurrence sequence ¢ in S such that for every
event e € E it holds that transition p(e) occurs in ¢ and, hence, every transition ¢ € U
occurs in . We reached a contradiction. This concludes the proof of the “if” part. =

a

For instance, according to Lemma 5.5, one can decide that the net system S in Fig. 2
describes an occurrence sequence that contains transitions f3, #7, and f9 using events e3,
e7, and eg of the process 7 in Fig. 4 for which it holds that p(e3) =3, p(e7) =17, and
p(e9) =19. This conclusion is due to a process system Sy of S induced by 7; e.g., 11 ...ty
is one of infinitely many occurrence sequences in Sy that contains all the three transitions.
The generalized executability problem can be solved efficiently using untanglings.

Proposition 5.6 Given a representative untangling IT of a net system S:= (N,M), N :=
(P,T,F), and a set of transitions U c T, the following problem can be solved in the
linear time in the size of I1: To decide if S can execute all transitions in U.

a

The proof of Proposition 5.6 is due to Lemma 5.5. Clearly, one can solve the generalized
executability problem by visiting each event of the representative untangling once.
Hence, representative untanglings can be used to efficiently retrieve process models
and/or exemplary process instances in which all tasks from a given set of tasks occur.
Note that, in general, the existence of certain tasks in a process model does not imply
the fact that this model describes a process instance in which all these task occur; this is
due to conflicting process instances and/or behavioral anomalies, like deadlocks [19].

5.2 Query Primitives

This section proposes query primitives that are founded on the definition of the (gener-
alized) executability problem. The seminal construct for all the subsequently proposed
primitives is a predicate that given a labeled system S and a set of labels L tests if there
exists an occurrence sequence o in S such that some transitions that are labeled with
labels in L occur in o. This seminal predicate can be specialized into four tests:

o CanOccurOne(labeled system S, set of labels L) :=30 € X(S)3leL:l¢ o}
CanOccurOne predicate tests if there exists an occurrence sequence in S which
contains at least one transition labeled with some label in L.

5 ] € 6 holds if there exists a transition in o that is labeled with /.
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o CannotOccurOne(labeled system S, set of labels L) :=V o e Z(S)V/IeL:l¢0;
CannotOccurOne predicate tests if there exists no occurrence sequence in .S which
contains at least one transition labeled with some label in L.

o CanOccurAll(labeled system S, set of labels L) ;=30 € X(S)VIeL:l € o;
CanOccurAll predicate tests if there exists an occurrence sequence in S which for
every label / in L contains a transition labeled with /.

o CannotOccurAll(labeled system S, set of labels L) :=V o e X(S)3lecL:1¢o;
CannotOccurAll predicate tests if there exists no occurrence sequence in S which
for every label / in L contains a transition labeled with .

For example, one can find all process models that describe a process instance in which
task “Obtain flight price” occurs by selecting every model M (from a given repertoire of
models) for which test CanOccurOne(S,{“Obtain flight price”}) evaluates to true, where
S is a labeled net system that corresponds to M (refer to Sect. 3.1).

Process model repositories often suffer from inconsistent usage of labels, i.e., semanti-
cally similar tasks might wear different labels, e.g., “Get flight quote” and “Obtain flight
price”. Consequently, the search procedure that is exemplified above will miss to retrieve
the process model in Fig. 1, which can be accepted as a model that is semantically
matches the query. To address this issue, we ‘expand’ the predicates. In information
retrieval, a query expansion is a process of reformulating a seed query to improve effec-
tiveness of search results. Every label that is used as input to one of the above proposed
seed predicates can be expanded to a set of semantically similar labels, e.g., using the
approach in [20]. Accordingly, the predicates get reformulated as follows:

o CanOccurOneExpanded(labeled system S, set of sets of labels £:= {L;...L,}) :=
JoeX(S)ILeLIleL:leo0; CanOccurOneExpanded predicate tests if there
exists an occurrence sequence o in S and a set of labels L in £ such that o contains
a transition labeled with some label in L.

o CannotOccurOneExpanded(labeled system S, set of sets of labels £:={L;...L,})
=VoeX(S)VLeLVIeL:l¢o; CannotOccurOneExpanded predicate tests if
there exists no occurrence sequence o in S and no set of labels L in £ such that o
contains a transition labeled with some label in L.

o CanOccurAllExpanded(labeled system S, set of sets of labels £:={L;...L,}) :=
JoeX(S)VLeL3IleL:leo; CanOccurAllExpanded predicate tests if there
exists an occurrence sequence ¢ in S such that for every set of labels L in £ it holds
that o contains a transition labeled with some label in L.

o CannotOccurAllExpanded(labeled system S, set of sets of labels £:={L;...L,})
=VoeX(S)ILeLVIeL:l¢o; CannotOccurAl1Expanded predicate tests if
there exists no occurrence sequence o in S such that for every set of labels L in £ it
holds that ¢ contains a transition labeled with some label in L.

For instance, if one is interested in process instances (or models) in which tasks “Obtain
flight price” and “Obtain hotel price” (or semantically similar tasks) occur together, one
can start by constructing sets of similar labels, e.g., L; :={“Obtain flight price”,“Get
Slight quote”} and L, :={*“Obtain hotel price”,“Get hotel quote”}. Then, the model in
Fig. 1 is a match to the query CanOccurAl1Expanded(S,{L,L,}), where S, again, is
the net system in Fig. 2. Indeed, the model in Fig. 1 describes process instances in which
both tasks “Get flight quote” and “Get hotel quote” occur. Finally, the model in Fig. 1 can
be ranked as one that is less relevant to the query as some other model that is retrieved
based on labels “Obtain flight price” and “Obtain hotel price”, as these labels were
initially provided as input, cf. [20] for further details on how results can be ranked.
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The proposed predicates explore all possible configurations of the (generalized)
executability problem and the above suggested query expansion principle. We pro-
vide them for the sake of completeness. However, only three (out of the total of
eight) checks specify distinct computation patterns. Indeed, every CannotOccurXY, X €
{‘One’,A11’}, Y € {,‘Expanded’}, predicate is the negation of the CanOccurXY check.
CanOccurOneExpanded(S, £) can be implemented as CanOccurOne(S, U ., L) test.
Note that two out of the three remaining predicates can be expressed in terms of the third
one, i.e., CanOccur0One(S, L) := V¢, CanOccurAll(S,{l/}) and CanOccurAllExpanded
(S, {L1 - Ln})=Nregqyy.. 1o} |heLy, ... ne Ly} Can0ccurAll(S,L). However, these two last
definitions imply multiple CanOccurAll checks which require multiple (and as it turns
out unnecessary) traversals of representative untanglings at the computation time.

Because of Proposition 5.6, the CanOccurAl11(S, L) test can be accomplished in linear
time in the size of a representative untangling IT of S; one has to verify if I1 contains
a process that for each label / in L contains an event that describes an occurrence of a
transition which is labeled with /. Similarly, because of Lemma 5.2, when evaluating
the CanOccurOne(S,L) predicate one needs to search for a process in I1 that contains an
event that describes an occurrence of a transition labeled with some label in L. Finally,
because of Lemma 5.5, in order to fulfill the CanOccurAllExpanded(S, £) predicate,
there should exist a process in IT that for every set of labels L in £ contains an event
which describes occurrence of a transition labeled with some label in L.

6 Evaluation

The proposed querying approach has been implemented and is publicly available as part
of the jBPT initiative [21].% Using this implementation, we conducted an experiment to
assess the performance of the approach in terms of querying time and quality of results.
The experiment was performed on a computer with a dual core Intel CPU with 2.26 GHz,
4GB of memory, running Windows 7 and SUN JVM 1.7 (with standard allocation of
memory). To eliminate load time from the measures, each test was executed six times,
and we recorded average times of the second to sixth execution.

The study was conducted on a collection of 448 bounded systems that model processes
from financial services, telecommunications, and other domains. These systems were
selected from a larger collection of 735 models [19]; systems that do not model concur-
rency were filtered out as they do not suffer from the state space explosion problem and
can be handled efficiently using structural analysis methods.

The study is subdivided into two stages. First, representative untanglings of all systems
from the dataset get constructed — the indexing stage. Then, constructed untanglings
are employed for efficient validation of queries — the querying stage.

An extensive experiment that assesses the performance of the indexing stage is reported
in [17]. This experiment can be downloaded and reproduced.” Next, we summarize basic
measures on constructing representative untanglings of the 448 systems. The indexing
stage requires 2.72s. Hence, on average, a representative untangling is constructed in
6.06ms; the minimal and maximal construction times are 0.58ms and 22 1ms, respectively.
The average duplication factor, i.e., the average number of times the size of an untangling
is larger than the size of its corresponding system (in the number of nodes), is 3.54.

Once constructed, representative untanglings are stored and reused for querying
purposes. Table 1 reports average times (in microseconds) of performing CanOccurOne

6 http://code.google.com/p/jbpt
7 http://code.google.com/p/jbpt/wiki/UntanglingsExperiment
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Table 1. Average times of checking query primitives (in microseconds)

Net systems CanOccurOne (is) CanOccurAll (us)

Sizz_ [ n 1 [ 2] 3475 1 [2] 3] 4715
1-50 221 | 1.56 | 093 | 0.88 | 0.87|0.84 | 243 | 19 1.9 2.4 2.36
51-100 | 164 | 4.27 35 323 [3.06|288 | 713 |7.17| 735 | 7.19 | 7.39
101-150 | 44 | 12.1 10.5 | 9.36 | 8.87 | 7.23 22 1203 206 | 21.7 | 237
151-200 | 9 254 | 348 | 185 | 169 | 13.6 35 412 437 | 463 | 46.2
201250 | 7 533 | 49.6 | 327 23 | 19.8 69 [92.6| 87.5 | 100.6 | 94.2
251-300 | 3 | 221.6 | 147.2 | 133.8 | 89.5 | 81.2 | 353.9 | 372 | 505.9 | 390.7 | 424.4

1-300 [448 [ 635 [ 475 [ 431 [372[ 33 [ 101 [103] 113 [ 111 [ 114

and CanOccurAll checks. The first two columns report on the characteristics of the
model collection by providing information on the number ‘n’ of systems within a given
‘Size’ range (measured as the number of nodes). The number of labels used as input
to queries ranged from one to five, see the second row and columns three to twelve in
the table. Each value is measured as the average time of executing 100 random queries.
For example, the value of 9.36 in the fifth row and fifth column in Table 1 reports the
average time (in microseconds) of performing CanOccurOne checks for the input of
three random labels over 44 systems, each of the size within the range from 101 to 150
nodes; in total, 4400 different queries were checked to obtain this average value. The
last row in the table shows average times of performing queries over all systems in the
collection; these are plotted in Fig. 5(a). One can observe a quasi-linear dependency
between the average time of issuing a single check and the size of the set of labels
provided as input. The average values for CanOccurOne checks show a negative slope.
Indeed, as the size of the input set of labels increases, the chance of discovering an
occurrence sequence that includes at least one transition labeled with a label from the
input set of labels increases as well. On the other hand, more labels in the input sets of
CanOccurAll queries lead to slower checks as more conditions need to be satisfied.

Table 2 shows average querying times (columns two to seven) and compares quality
of retrieved results with label filtering techniques (columns eight to thirteen). The first
column lists sizes of input sets of labels; we also vary the sizes of sets used as inputs
to CanOccurAllExpanded checks. For instance, the value of 7.32 in the fifth row and
fifth column in Table 2 is the average time (in milliseconds) of querying 448 systems
using the CanOccurAllExpanded primitive for an input set that contains two sets, each
composed of three labels. Average querying times report on a quasi-linear dependency
with the size of the input set of labels, cf. Fig. 5(b).

When searching for process models, one often starts by performing a filtering step,
e.g., filtering out those models that do not contain tasks with labels of interest [9,10].

g CanOccurOne & CanOccurAll i Querying time
S 16 T T T T g 35F T T T T T T T T =l
2 141 COO: f(x) = -0.71x + 6.62 -~ - - 18 COO: f(x) = -0.17x + 2.48 ——
& COA: f(x) = 0.34x +9.82 —— Z 30 COA:f(x) = 0.31x + 3.80 1
E 12 7 E 5| COAE2:f(x) = 1.86x +3.83 |
€ 10 W E COAE3: f(x) = 2.03x + 3.24 — :
¥ @ 20 COAE4: f(x) = 2.27x +2.37 ==
L2 8r 1 £ COAES: f(x) = 2.53x + 1.43 ——
o 4+ o 15 - 1
© 6F I - £
s Rt TR
@ 4 + T J HS 10 ‘ ]
£ RRREE I s K Xooo3g----
) 1 8¢ " -
2 9 . S0 ] I T + + + +
o 0 1 2 3 4 5 6 <>( 0 1 2 3 4 5 6 7 8 9
< Size of the input set of labels Size of the input set of labels

(a) (b)

Fig. 5. (a) Average times of performing one check, and (b) average querying times (over 448
systems); C00 stands for CanOccurOne, COA—CanOccurAll, and COAEn, n € 2..5, stands for
CanOccurAllExpanded, where n is the size of each set in the input set of sets of labels.
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Table 2. Average times of querying a collection of 448 systems (in milliseconds) and
average numbers of retrieved systems (using behavioral/structural querying)

Query time (ms) Net systems retrieved (using behavioral/structural querying)
Query coo | coa CanOccurAllExpanded 00 coA CanOccurAllExpanded
size 2 ]3J4]5 2 ] 3 4] 5

2.4814.03|545|5.05(4.22]| 3.71 | 32.5/33.6 |32.5/33.6|67.8/70.7|90.2/93.5|119.2/124 | 131.8/136.5
2.02(4.53|7.82(7.32|7.05| 6.69 | 68.8/72.6 |1.23/2.84(5.74/9.47|15.8/21.8|22.4/34.8 | 31.3/42.3
2.09|4.86[9.75|9.76 | 9.56 | 9.28 | 90.8/94.1 | 0.16/0.54 | 1.4/2.64 | 2.7/6.67 | 4.51/10.4 | 9.78/19.3
1731 5 |11.1|11.211.7| 11.7 | 102/106.2 | 0.01/0.05 | 0.13/0.62|0.54/2.55| 2.84/5.87 | 4.13/10.2
1.46 [5.25|12.9 | 13.4 | 13.4| 13.5 |138.6/144.5| 0/0.01 [0.02/0.16| 0.15/1 | 0.67/2.95| 1.39/6.95
132522 14 |14.5] 15 | 155 [148.8/154.4| 0/0.01 |0.02/0.13|0.05/0.47 | 0.17/1.61 0.55/3.7
1.4816.83|18.8|19.2(20.3| 21.4 |183.5/189.6 0/0 0/0.02 |0.02/0.32| 0.04/0.98 | 0.28/2.54
8 [121(596(17.9(18.6|19.4| 20.6 |194.2/200.5 0/0 0/0.01 |0.02/0.25| 0.05/0.67 | 0.09/1.8

NN B W =

(*) CO0 and COA stand for CanOccurOne and CanOccurAll, respectively

Afterwards, computation intensive methods (either structural or behavioral, cf. Section 2)
are applied on a much smaller pre-selected collection of models. Query primitives from
Section 5.2 can improve effectiveness of existing filtering techniques. To verify this
experimentally, we implemented filtering primitives that ‘mimic’ the primitives from
Section 5.2; these fresh primitives analyze process models rather than process instances.
For instance, the filtering counterpart of the CanOccurOne check from Section 5.2
verifies if a given process model contains a task labeled with some label from a given
set of labels. In Table 2, columns eight to thirteen report average numbers of retrieved
systems over 100 random queries using both types of primitives. For example, 2.7/6.67
in the sixth row and eleventh column reports that, on average, CanOccurAllExpanded
primitive which analyzes process instances retrieved 2.7 systems while that which
analyzes process models retrieved 6.67 systems. The additional systems selected by
analyzing models rather than their instances are the false positives in case one is interested
in systems that describe occurrence sequences in which certain transitions occur together.
Finally, we experimented with a querying approach that relies on a model checking
technique described in [7]. Model checking of query primitives from Section 5.2 requires,
on average, 4ms (based on an implementation that relies on Uma®). Though this is
approximately 2ms faster than constructing a representative untangling (see above),
untanglings can be reused multiple infinite numbers of times when checking suggested
query primitives. Observe that the time of 4ms, which is required to perform a single
model checking exercise, is comparable with the average time of performing a query
over 448 systems that we report in Table 2 (refer to the forth row and third column).’

7 Conclusion

This paper proposed a technique for instance-based retrieval of process models from
process model repositories. The technique relies on the use of an index data structure
which is optimized towards accurate and efficient retrieval of process instances. The
use of this index is exemplified via a family of query primitives that are founded on the
generalized version of the classical executability problem. The seminal construct for
all the primitives is a check on existence of a process instance in which all tasks from
a given set of tasks occur. As exemplified, these primitives can be effectively applied
in practice, e.g., during process reuse, process compliance, and process standardization

8 http://service-technology.org/uma/
9 All the experiments reported in this section can be downloaded and reproduced:
http://code.google.com/p/jbpt/wiki/QueryingExperiment
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exercises. Finally, a set of experiments conducted on a large repository of process models
from practice showed that during retrieval the use of our index leads to an up to three
orders of magnitude speed-up as compared to techniques that rely on model checking.

We envision that our index can be of great use when designing efficient implementa-
tions of other query primitives, e.g., those that are founded on relations of causality and
concurrency [22]. Operationalization of these primitives will contribute to maturity of
process model query languages, e.g., BPMN-Q [9] and APQL [23].
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