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Abstract. We study open systems modeled as Petri nets with an in-
terface for asynchronous (i.e., buffered) communication with other open
systems. As a minimal requirement for successful communication, we in-
vestigate responsiveness, which guarantees that an open system and its
environment always have the possibility to communicate. We investigate
responsiveness with and without final states and also their respective
bounded variants, where the number of pending messages never exceeds
a previously known bound. Responsiveness accordance describes when
one open system can be safely replaced by another open system. We
present a trace-based characterization for each accordance variant. As
none of the relations turns out to be compositional (i.e., it is no pre-
congruence), we characterize the coarsest compositional relation (i.e.,
the coarsest precongruence) that is contained in each relation, using a
variation of should testing. For the two unbounded variants, the precon-
gruences are not decidable, but for the two bounded variants we show
decidability.

Keywords: Petri nets, Asynchronous communication, Compositionality, Pre-
congruence, Should testing preorder

1 Introduction

Today’s software systems are complex distributed systems that are composed
of less complex open systems. In this paper, we focus on open systems that
have a well-defined interface and communicate with each other via asynchronous
message passing. Service-oriented systems like Web-service applications [27] and
systems based on wireless network technologies like wireless sensor networks [2],
medical systems, transportation systems, or online gaming are examples of such
distributed systems. During system evolution, often one open system is replaced
by another one—for example, when new features have been implemented or
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bugs have been fixed. This requires a refinement notion, which should respect
compositionality.

In this paper, we model an open system as a Petri net extended with an
interface for asynchronous communication. As a minimal requirement for suc-
cessful communication, responsiveness demands that an open system and its
environment (called a controller) always have the possibility to communicate.
An open system is in responsiveness accordance with another one, if it can re-
place the latter as part of a closed system without affecting this property. The
related property of deadlock freedom can be satisfied by one component that
works internally forever. Responsiveness has gained interest because it addition-
ally ensures the possibility to communicate, which is crucial in the setting of
interacting open systems. An example is Microsoft’s asynchronous event driven
programming language P, which is used to implement device drivers [11]. P pro-
grams can be checked for a stricter variant of responsiveness, which additionally
requires that no message in any channel is ignored forever.

We present a trace-based characterization of responsiveness accordance. The
semantics consists of a set of completed traces and responsiveness accordance
is characterized by trace inclusion. Usually, controller-based preorders like ours
are precongruences and, thus, a compositional refinement notion on open sys-
tems; as this is not the case for our responsiveness accordance, we characterize
the coarsest precongruence that is contained in this preorder. Interestingly, we
obtain Vogler’s F+-semantics [33] (which has been later introduced as impos-
sible futures [36]), and the corresponding precongruence is the should testing
preorder [25,6,29]. Such a characterization is vital, because the definition of a
coarsest precongruence considers arbitrary parallel environments and is, there-
fore, hard to check in concrete cases. Also, a declarative characterization furthers
understanding and can, for example, help to decide the precongruence.

In addition, we study responsiveness in the presence of final states. Again,
we characterize the preorder based on traces. To distinguish final and nonfinal
states we collect successfully and unsuccessfully completed traces. As also this
preorder is not a precongruence, we characterize the coarsest precongruence as
a variant of should testing. More precisely, we have to add an additional set
to the F+-semantics collecting all traces that do not lead to a final state. The
precongruence can be defined in line with the should testing preorder.

In unpublished work, we showed that neither the preorders nor the precon-
gruences are decidable. These results are not in the scope of this paper, as the
proof technique applied is very different from those we use here. This motivates
us to investigate beside final and nonfinal states a second dimension of respon-
siveness, boundedness, resulting in two additional variants of responsiveness. For
these two variants, we require the composition of two open systems to be finite-
state and, in particular, that the number of pending messages never exceeds a
previously known bound. This is practically relevant: Distributed systems oper-
ate on a middleware with buffers that are of bounded size. The actual buffer size
can be the result of a static analysis of the underlying middleware or of the com-
munication behavior of an open system, or simply be chosen sufficiently large.
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We give a trace-based characterization for each bounded variant of responsive-
ness accordance, thereby adapting and combining results from the unbounded
variants and work on traces that cannot be used reliably by any controller [21].
Due to the latter traces, accordant systems may violate language inclusion. Giv-
ing an answer to an open question, we show again that none of the accordance
variants turns out to be a precongruence. So we characterize for each variant
its coarsest precongruence that is contained in the preorder. To this end, we
add information about bound violations to the precongruence of the respective
unbounded variant. In fact, as we require a user to define the upper bound b
of pending messages, we obtain a family of preorders and precongruences, each
parameterized by b. Based on our characterization, we prove the two coarsest
precongruences in the bounded case to be decidable: for the first precongruence,
the problem can be reduced to deciding should testing [29]; for the second, we
refine the proof in [29] by further details.

The goal of this article is to contribute to a general theory on open systems
in the presence of an asynchronous unqueued (i.e., buffered) communication
scheme. Although we present only the theory, open systems specified in industrial
languages such as WS-BPEL or BPMN can be translated into our formal model
and then be analyzed [19].

Our contribution can be summarized as follows:

– We give a trace-based characterization for the four variants of responsiveness
accordance.

– For each variant of accordance, we characterize the coarsest precongruence
that is contained in the respective preorder as variants of the should testing
preorder.

– For the two bounded variants, we show decidability of the precongruences.

This article extends previous work of the same authors [35,34]. In [35], we
presented an extended abstract of unbounded responsiveness accordance and the
respective variant in the presence of final states. In this article, we present these
two variants including all proofs. The work in [34], is an extended abstract of the
bounded variant of responsiveness accordance without final states and presents
only a sketch of the main results of the respective variant in the presence of final
states. In this article, we present all the results of the bounded variants including
all proofs.

After some background in Sect. 2, Sect. 3 introduces the basic variant, respon-
siveness (i.e., with possibly unbounded message buffers and without final states),
characterizes the respective accordance relation semantically and presents a char-
acterization of the coarsest precongruence that is contained in this relation. The
presence of final states is investigated in Sect. 4. Section 5 prepares for deal-
ing with boundedness and presents a precongruence for boundedness without
considering responsiveness. Next, Sect. 6 introduces bounded responsiveness,
characterizes the respective accordance relation semantically, presents a charac-
terization of the coarsest precongruence that is contained in this relation, and
proves its decidability. Section 7 characterizes bounded responsiveness in the
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presence of final states. We discuss related work in Sect. 8 and close with a
conclusion in Sect. 9.

2 Preliminaries

This section provides the basic notions, such as Petri nets, open nets for modeling
open systems, and open net environments for describing the semantics of open
nets.

For two sets A and B, let A ] B denote the disjoint union; writing A ] B
implies that A and B are implicitly assumed to be disjoint. Let IN denote the
natural numbers including 0.

2.1 Petri nets

As a basic model, we use place/transition Petri nets extended with a set of final
markings and transition labels.

Definition 2.1 (net). A net N = (P, T, F,mN , Ω) consists of

– a set P of places,
– a set T of transitions such that P and T are disjoint,
– a flow relation F ⊆ (P × T ) ] (T × P ),
– an initial marking mN , where a marking is a mapping m : P → IN, and
– a set Ω of final markings.

Usually, we are interested in finite nets—that is, nets with finite sets P and
T—but for some results (e.g., Theorems 3.17 and 4.17), we also make use of
infinite nets.

Introducing a net N also implicitly introduces its components P, T, F,mN , Ω;
the same applies to nets N ′, N1, etc. and their components P ′, T ′, F ′,mN ′ , Ω

′,
and P1, T1, F1,mN1

, Ω1, respectively—and it also applies to other structures later
on.

Definition 2.2 (labeled net). A labeled net N = (P, T, F,mN , Ω,Σin ,Σout , l)
is a net (P, T, F,mN , Ω) together with an alphabet Σ = Σin ] Σout of disjoint
input actions Σin and output actions Σout and a labeling function l : T →
Σ ] {τ}, where τ represents an invisible, internal action. Two labeled nets are
interface-equivalent if they have the same sets of input and output actions.

Graphically, a circle represents a place, a box represents a transition, and the
directed arcs between places and transitions represent the flow relation. In the
case of a labeled net, a transition label is depicted inside a transition with bold
font to distinguish it from the transition’s identity. A marking is a distribution
of tokens over the places. Graphically, a black dot represents a token.

Let x ∈ P ] T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We interpret presets
and postsets as multisets when used in operations also involving multisets.



5

A marking is a multiset over the set P of places; for example, [p1, 2p2] denotes
a marking m with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. We
define + and − for the sum and the difference of two markings and =, <,>,≤,≥
for comparison of markings in the standard way. We canonically extend the
notion of a marking of N to supersets Q ⊇ P of places; that is, for a mapping
m : P −→ IN, we extend m to the marking m : Q −→ IN such that for all p ∈ Q\P ,
m(p) = 0. Conversely, a marking can be restricted to a subset Q ⊆ P of the
places of N . For a mapping m : P −→ IN, the restriction of m to the places in Q
is denoted by m|Q : Q −→ IN.

Let Σ1, Σ2 be alphabets. For a word w ∈ Σ∗1 and Σ2 ⊆ Σ1, w|Σ2 denotes the
projection of w to the subalphabet Σ2. With v v w we denote that v is a prefix
of w. We write |w| for the length of w, and |w|x denotes how many times x ∈ Σ
occurs in word w. As usual, ε denotes the empty word.

The behavior of a net N relies on the marking of N and changing the marking
by the firing of transitions of N . A transition t ∈ T is enabled at a marking m,

denoted by m
t−→, if for all p ∈ •t, m(p) > 0. If t is enabled at m, it can fire,

thereby changing the current marking m to a marking m′ = m − •t + t•. The

firing of t is denoted by m
t−→ m′; that is, t is enabled at m and firing it results

in m′.
The behavior of N can be extended to sequences: m1

t1−→ . . .
tk−1−−−→ mk is a

run of N if for all 0 < i < k, mi
ti−→ mi+1. A marking m′ is reachable from

a marking m if there exists a (possibly empty) run m1
t1−→ . . .

tk−1−−−→ mk with

m = m1 and m′ = mk; for v = t1 . . . tk−1, we also write m1
v−→ mk. A marking

m′ is reachable if it is reachable from the initial marking. The set MN represents
the set of all reachable markings of N .

In the case of labeled nets, we lift runs to traces: If m1
v−→ mk and w is

obtained from v by replacing each transition with its label and removing all τ
labels, we write m1

w
==⇒ mk and refer to w as a trace whenever m1 = mN . The

language L(N) of a labeled net N is the set of all traces of N . The reachability
graph RG(N) of N has the reachable markings MN as its nodes and a t-labeled

edge from m to m′ whenever m
t−→ m′ in N . In the case of a labeled net, each

edge label t is replaced with l(t).
Finally, we introduce boundedness of nets. A marking m of a net N is b-

bounded for a bound b ∈ IN, if m(p) ≤ b for all p ∈ P . The net N is b-bounded if
every reachable marking is b-bounded; it is bounded, if it is b-bounded for some
b ∈ IN. Throughout the paper, b denotes a bound—a positive natural number.

2.2 Open nets

Like Lohmann et al. [18] and Stahl et al. [30], we model open systems as open
nets [33,18], thereby restricting ourselves to the communication protocol of an
open system. An open net extends a net by an interface. An interface consists
of two disjoint sets of input and output places corresponding to asynchronous
input and output channels. In the model, we abstract from data and represent
each message by a token on the respective interface place. In the initial marking
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and the final markings, interface places are not marked. An input place has an
empty preset, and an output place has an empty postset. We consider only open
nets that have either at least one input and one output place or no input and
output places; open nets with just input or just output places cannot really take
part in a responsive communication.

Definition 2.3 (open net). An open net N is a tuple (P, T, F,mN , I, O,Ω)
such that

– (P ] I ]O, T, F,mN , Ω) is a net;
– for all p ∈ I ]O, mN (p) = 0 and for all m ∈ Ω, m(p) = 0;
– the set I of input places satisfies for all p ∈ I, •p = ∅;
– the set O of output places satisfies for all p ∈ O, p• = ∅; and
– set I = ∅ if and only if set O = ∅.

If I = O = ∅, then N is a closed net. The net inner(N) results from removing
the interface places and their incident arcs from N . Two open nets are interface
equivalent if they have the same sets of input and output places.

Graphically, we represent an open net like a net with a dashed frame around
it. An interface place p is positioned on the frame; an additional arrow indicates
whether p is an input or an output place.

For the composition of open nets, we assume that the sets of transitions are
pairwise disjoint and that no internal place of an open net is a place of any
other open net. In contrast, the interfaces intentionally overlap. We require that
all communication is bilateral and directed ; that is, every shared place p has
only one open net that sends into p and one open net that receives from p. In
addition, we require that either all interface places are shared or there is at least
one input and one output place which are not shared. We refer to open nets
that fulfill these conditions as composable. We compose two composable open
nets N1 and N2 by merging shared interface places and turning these places into
internal places. The definition of composable thereby guarantees that an open
net composition is again an open net (possibly a closed net).

Definition 2.4 (open net composition). Two open nets N1 and N2 are com-
posable if (P1 ] T1 ] I1 ] O1) ∩ (P2 ] T2 ] I2 ] O2) = (I1 ∩ O2) ] (I2 ∩ O1),
and (I1 ] I2) \ (O1 ] O2) and (O1 ] O2) \ (I1 ] I2) are both either empty or
nonempty. The composition of two composable open nets N1 and N2 is the open
net N1 ⊕N2 = (P, T, F,mN , I, O,Ω), where

– P = P1 ] P2 ] (I1 ∩O2) ] (I2 ∩O1),
– T = T1 ] T2,
– F = F1 ] F2,
– mN = mN1

+mN2
,

– I = (I1 ] I2) \ (O1 ]O2),
– O = (O1 ]O2) \ (I1 ] I2), and
– Ω = {m1 +m2 | m1 ∈ Ω1,m2 ∈ Ω2}.
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Fig. 1: Open nets modeling an unreliable time server, a client, and their compo-
sition. In addition to the models, we have ΩS = {[ ]} and ΩC = ΩS⊕C = {[p3]}.

Example 2.1. Figure 1 shows three open systems, each modeled as an open net.
The open net S models an unreliable time server that sends its timing informa-
tion (output place t) to some client and processes its responses (input place r).
Anytime before sending the timing information, an error may happen (output
place e) and the server shuts down (and final marking [ ] can be reached). The
open net C models a client. It repeatedly updates its system time by the tim-
ing information sent by the server (input place t) and responds with a response
packet (output place r). If the client receives an error message from the server
(input place e), it continuously tries to reset the time server (output place r).
The open nets S and C are composable. Their composition S ⊕ C is a closed
net, which is depicted in Fig. 1c. The place r in S ⊕ C is unbounded; thus, the
composition is unbounded, too.

2.3 Environments

To give an open net N a trace-based semantics, we consider its environment
env(N), which we define similarly to Vogler [33]. The net env(N) can be con-
structed from N by adding to each interface place p ∈ I (p ∈ O) a p-labeled
transition p in env(N) and renaming the place p to pi (po). The net env(N)
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shows the possible behaviour of an environment of N—that is, which inputs it
can send to N and which outputs it can receive from N . It is just a tool to
define our characterizations and prove our results. But intuitively, one can un-
derstand the construction as translating the asynchronous interface p of N into
a buffered synchronous interface (with unbounded buffers pi or po) described by
the transition labels of env(N).

Definition 2.5 (open net environment). The environment of an open net
N is the labeled net env(N) = (P ]P I]PO, T ]I]O,F ′,mN , Ω, I, O, l

′), where

– P I = {pi | p ∈ I},
– PO = {po | p ∈ O},
– F ′ = ((P ] T )× (T ] P )) ∩ F

] {(pi, t) | p ∈ I, t ∈ T, (p, t) ∈ F}
] {(t, po) | p ∈ O, t ∈ T, (t, p) ∈ F}
] {(po, p) | p ∈ O}
] {(p, pi) | p ∈ I}, and

– l′(t) =

{
τ, t ∈ T
t, t ∈ I ]O.

Convention: Throughout the paper, each trace set and semantics for labeled
nets is implicitly extended to any open net N via env(N)—for example, the
language of N is defined as L(N) = L(env(N)).

To compose environments of composable open nets in particular and labeled
nets in general, we define a parallel composition operator ‖ where, for each
action a that the components have in common, each a-labeled transition of
one component is synchronized with each a-labeled transition of the other. In
addition, we define a second parallel composition operator ⇑. This operator works
as operator ‖ and, in addition, hides all common actions—that is, changes the
respective labels to τ . Hiding and ‖ are defined as in [33].

Definition 2.6 (parallel composition and hiding). Two labeled nets N1

and N2 are composable if P1 ∩ P2 = Σin1 ∩ Σin2 = Σout1 ∩ Σout2 = ∅. The
parallel composition of two composable labeled nets is the labeled net N1‖N2 =
(P, T, F,mN , Ω,Σin ,Σout , l), where

– P = P1 ] P2,
– T = {(t1, t2) ∈ T1 × T2 | l1(t1) = l2(t2) 6= τ}

] {(t1, τ) ∈ T1 × {τ} | l1(t1) 6∈ Σ2}
] {(τ, t2) ∈ {τ} × T2 | l2(t2) 6∈ Σ1},

– F = {(p, (t1, t2)) ∈ P × T | (p, t1) ∈ F1 ∨ (p, t2) ∈ F2}
] {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

– mN = mN1
+mN2

,
– Ω = {m1 +m2 | m1 ∈ Ω1,m2 ∈ Ω2},
– Σin = (Σin1 ] Σin2) \ (Σout1 ] Σout2),
– Σout = Σout1 ] Σout2, and
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– l(t1, t2) =

{
l1(t1), t1 ∈ T1
l2(t2), otherwise.

For a labeled net N and a set A ⊆ Σ, we obtain N/A from N by hiding all
actions of A, meaning we replace the respective labels in A with τ . The parallel
composition with hiding is the labeled net N1 ⇑ N2 = (N1‖N2)/(Σ1 ∩Σ2).

Example 2.2. Figure 2 shows the environments of the open nets S and C from
Fig. 1, their parallel composition env(S)‖env(C), and their parallel composition
with hiding env(S) ⇑ env(C).

To describe the behavior of compositions, we define parallel compositions of
words and languages; operator ‖ synchronizes common actions, operator ⇑ also
hides them. Observe that in env(N1) ⇑ env(N2) only common transitions are
merged; operator ‖ is needed to relate the respective transition sequences.

Definition 2.7. Let Σ1, Σ2 be alphabets and Σ = (Σ1 ∪Σ2) \ (Σ1 ∩Σ2). Let
w1 ∈ Σ∗1 and w2 ∈ Σ∗2 be words, and let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages.
We define4

– w1‖w2 = {w ∈ (Σ1 ∪Σ2)∗ | w|Σ1 = w1, w|Σ2 = w2},
– w1 ⇑ w2 = {w|Σ | w ∈ w1‖w2},
– L1‖L2 =

⋃
{w1‖w2 | w1 ∈ L1, w2 ∈ L2}, and

– L1 ⇑ L2 =
⋃
{w1 ⇑ w2 | w1 ∈ L1, w2 ∈ L2}.

The next proposition recalls [33, Theorem 3.1.7(4)] and relates a trace of a
composed labeled net to traces of its components.

Proposition 2.8 ([33]). For two markings m1 and m2 of composable labeled

nets N1 and N2, respectively, we have m1 + m2
w

==⇒ m′1 + m′2 in N1‖N2 iff

there exist w1 ∈ Σ∗N1
, w2 ∈ Σ∗N2

such that w ∈ w1‖w2, m1
w1===⇒ m′1 in N1, and

m2
w2===⇒ m′2 in N2.

For the remainder of this section, we fix two composable open nets N1 and
N2, and we put C = env(N1⊕N2), E = env(N1)‖env(N2), and E = env(N1) ⇑
env(N2). The labeled nets E and E differ only in their labelings; C and E
(E) have the same places, except for places p ∈ (I1 ∩ O2) ] (I2 ∩ O1) in C
and the corresponding places pi, po in E (E). We study the relation between
reachable markings of different compositions of N1 and N2. To this end, we
define agreement between markings.

Definition 2.9 (agreement). A marking m of C and a marking m of E (of E)
agree if they coincide on the common places and if for each p ∈ (I1 ∩O2)] (I2 ∩
O1), m(po) +m(pi) = m(p). They strongly agree if, additionally, m(po) = 0.

4 To simplify the notation, we do not add the alphabets of w1 and w2 to operators ‖
and ⇑; the alphabets will be always clear from the context.
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(d) Labeled net env(S) ⇑ env(C)

Fig. 2: The environments of the time server and the client and their parallel
compositions. In addition to the models, we have Ωenv(S) = {[ ]}, Ωenv(C) =
Ωenv(S)‖env(C) = Ωenv(S)⇑env(C) = {[p3]}.

The next proposition recalls [32, Lemma 15] and relates the firing of a tran-
sition of C and E (E).

Proposition 2.10 ([32]). Let the markings m of C and m of E agree, and let
t ∈ TC . Then

1. If m
t−→ m′, then m

t−→ m′ such that m′ and m′ agree.
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2. If m and m strongly agree, all additional transitions of E are disabled at m,

and further m
t−→ m′ implies m

t−→ m′ such that m′ and m′ agree.

As E and E differ only in their labelings, (1)–(2) also hold for E in place of E.

The next proposition recalls [32, Lemma 16(1),(2)] and [32, Lemma 15(4)].
It proves facts about sequences of transitions and relates final states.

Proposition 2.11 ([32]). Let m be a marking of C and m be one of E. Then

1. If m and m strongly agree and m
v−→ m′ in C, then it is possible to insert

transitions from (I1 ∩O2)] (I2 ∩O1) of E into v such that for the resulting

v′: m
v′−→ m′ in E and also m′ and m′ strongly agree.

2. If m and m agree and m
v′−→ m′ in E, then it is possible to delete transitions

from (I1 ∩O2) ] (I2 ∩O1) of E in v′ such that for the resulting v: m
v−→ m′

in C and also m′ and m′ agree.
3. m ∈ ΩC iff m ∈ ΩE iff for i = 1, 2: m|Penv(Ni)

∈ Ωenv(Ni) .

As E and E differ only in their labelings, (1)-(3) also hold for E in place of E.

Agreement between markings of C and E is a weak bisimulation [22].

Lemma 2.12. The labeled nets C and E are weakly bisimilar due to the agree-
ment relation.

Proof. First, we show that if we label each transition of C with itself in C and
E and every transition t ∈ (I1 \ O2) ] (I2 \ O1) in E with τ , then agreement
between the markings of C and E is a weak bisimulation.

The initial markings mC and mE strongly agree by Definitions 2.4 and 2.5.
Writing % for the agreement relation, we now assume that (m,m) ∈ %. To prove
that % is a weak bisimulation, we have to show that

1. If m
t−→ m′, then there exists m′ such that m

t
=⇒ m′ and (m′,m′) ∈ %; and

2. If m
t−→ m′, then there exists m′ such that m

t
=⇒ m′ and (m′,m′) ∈ %.

Consider the first item. By firing all τ -labeled transitions of E that are enabled
at m, we can empty each place po while shifting the tokens to the respective place
pi. Let m′′ be the resulting marking of E. Then m

ε
=⇒ m′′ and m′′ strongly agrees

with m, because firing a τ -labeled transition does not change the marking on
the common places and no place po is marked now. By Proposition 2.10(2), we

have m′′
t−→ m′ such that m′ and m′ agree.

For the second item, we can set m = m′ if t is τ -labeled and, clearly, m′

and m′ agree then. Otherwise, we can conclude from Proposition 2.10(1) that

marking m′ exists such that m′ and m′ agree. Thus, m
t

=⇒ m′ and % is a weak
bisimulation.

Because the original labelings can be obtained by the same relabeling from
the labelings considered in the first part of the proof, agreement is also a weak
bisimulation for C and E. ut
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We introduce a few, more compact notations. Given a set of traces, we define
the prefix closure, suffix closure, and the remainder of this set. The suffix closure
is also called the set of all continuations of a language.

Definition 2.13 (closures, remainder). Let U ∈ P(Σ∗). Then,

– ↓ U = {u ∈ Σ∗ | ∃v ∈ U : u v v} is the prefix closure of U .
– ↑ U = {u ∈ Σ∗ | ∃v ∈ U : v v u} is the suffix closure of U .
– v−1U = {u ∈ Σ∗ | vu ∈ U} is the remainder of v in U .

For the suffix closure, we can show the following properties.

Lemma 2.14. Let X,Y ∈ P(Σ∗). Then the following properties hold:

1. ↑ (X ∪ Y ) = ↑ X ∪ ↑ Y
2. x−1(X ∪ Y ) = x−1X ∪ x−1Y
3. y /∈ ↑ Y implies y−1(X ∪ ↑ Y ) ⊆ ↑ (y−1(X ∪ Y ))

Proof. Items (1) and (2) are trivial. For (3) observe that y−1(X ∪ ↑ Y ) =
y−1X ∪ y−1↑ Y ⊆ ↑ (y−1X) ∪ ↑ (y−1Y ) = ↑ (y−1(X ∪ Y )). ut

3 Unbounded nets and no final markings

In this section, we consider possibly unbounded open nets and ignore final mark-
ings. The resulting notions of responsiveness and r-accordance yield an equiva-
lence, which is similar to P -deadlock equivalence in [33].

Definition 3.1 (responsiveness). Let N1 and N2 be composable open nets.
A marking m of N1 ⊕N2 is responsive if we can reach from m a marking that
enables a transition t with t• ∩ (O1 ] O2) 6= ∅. The open nets N1 and N2 are
responsive if their composition N1 ⊕ N2 is a closed net and every reachable
marking of N1 ⊕N2 is responsive.

Responsiveness ensures that at least one net can talk to the other repeatedly.
This property depends on N1 and N2 in combination: In the composition, each
of them will usually not reach all markings it could reach in other contexts;
also, it suffices that just one component can enable an output transition. We
are actually aiming at a setting with bounded open nets for which the term
‘responsive’ will imply mutual communication, see Sect. 6 for details.

Based on the correctness criterion responsiveness, we define an r-controller
of an open net N as an open net C such that N and C are responsive.

Definition 3.2 (r-controller). An open net C is an r-controller of an open
net N if N and C are responsive.

For every ‘truly’ (i.e., not closed) open net N , there exists an r -controller—
the latter just has to continuously send a message, which is possible, because by
Definition 2.3 N has at least one input place.
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Fig. 3: The open net S′ modeling a patched time server. We have ΩS′ = {[ ]}.

If the r -controllers of an open net are a superset of the r -controllers of an-
other open net, then the first open net is a refinement of the second; intuitively,
it makes more users happy due to responsive interaction than the latter. We
refer to the resulting refinement relation as r-accordance, which gives a neces-
sary requirement for a refinement. For modular reasoning, a refinement relation
should be a precongruence for composition. Because r -accordance shall turn out
not to be one, we will make it stricter (smaller) as far as needed to obtain such
a precongruence, and we already introduce a notation for this coarsest precon-
gruence.

Definition 3.3 (r-accordance). For interface-equivalent open nets Impl and
Spec, Impl r-accords with Spec, denoted by Impl vr ,acc Spec, if for all open
nets C the following holds: If C is an r -controller of Spec, then C is also an
r -controller of Impl .

We denote the coarsest precongruence w.r.t. ⊕ contained in vr ,acc by vcr ,acc .

Example 3.1. In Fig. 1, the open net S is an r -controller of the open net C,
and vice versa: Either they can mutually communicate over the interface places
t and r or C repeatedly produces a token on place r after consuming a token
from e. The open net S′ in Fig. 3 models a patched time server. It has the same
functionality as the open net S, but it never sends an error message. The open
net S′ r -accords with the open net S: Every r -controller C of S must expect an
error from S (i.e., a token on interface place e) and, thus, C is also an r -controller
of S′, where an error may never happen.

For an example that accordance does not guarantee compositionality, see
Fig. 4. Although S′ r -accords with S, S′⊕A does not r -accord with S⊕A: The
open net B is an r -controller of S ⊕A but not of S′ ⊕A, because the transition
catch in S′ ⊕ A can never fire and, thus, firing transition t2 in B leads to a
nonresponsive marking of (S′ ⊕A)⊕B.

In the following, we first give a trace-based characterization for r -accordance.
Afterward, we characterize the coarsest precongruence that is contained in the
r -accordance relation.
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(a) Open net A

x t2
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p7p6

(b) Open net B

Fig. 4: Two open nets proving that r -accordance (and fr -accordance, see Sect. 4)
is not a precongruence with regard to open net composition ⊕. In addition to
the models, we have ΩA = {[p5]} and ΩB = {[p6]}.

3.1 A trace-based semantics for responsiveness

Our trace-based semantics of an open net N considers the set of stop-traces of
its environment env(N). A stop-trace records a run of env(N) that ends in a
marking weakly enabling actions of I only, such that N stops unless some input is
provided. This trace is a weak version of a notion with the same name in [31,32],
where only transitions of I and no τ -transitions are allowed to be enabled.

Definition 3.4 (stop-semantics). Let N be a labeled net. A marking m of

N is a stop except for inputs if there is no o ∈ Σout such that m
o

=⇒. The
stop-semantics of N is defined by the set of traces

stop(N) = {w | mN
w

==⇒ m and m is a stop except for inputs} .

Example 3.2. Consider the open nets S and C in Fig. 1. The language of S is
L(S) = {w ∈ {r, t}∗ | ∀u v w : |u|t ≤ |u|r + 1}

∪ {wev | w, v ∈ {r, t}∗ ∧ ∀u v w : |u|t ≤ |u|r + 1 ∧ |wv|t ≤ |w|r}
Observe that after firing e, transition r is continuously enabled in env(S) while
transition t may also fire because of pending tokens on the place to. Every stop-
trace of S either contains an e or the number of r’s is smaller than the number
of t’s; more precisely,
stop(S) = {w ∈ {r, t}∗ | |w|t = |w|r + 1 ∧ ∀u v w : |u|t ≤ |u|r + 1}

∪ {wev | wev ∈ L(S)}
For C, every stop-trace has an equal number of t’s and r’s, and no stop-trace
contains an e because of transition reset ; more precisely,
stop(C) = {w ∈ {r, t}∗ | |w|t = |w|r ∧ ∀v v w : |v|t ≥ |v|r}.
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The presence of stop-traces in two open nets N1 and N2 is closely related
to the question whether N1 and N2 are responsive. We first relate responsive
markings and stops except for inputs.

Lemma 3.5 (responsive marking vs. stop except for inputs). Let N1

and N2 be composable open nets such that N1 ⊕ N2 is a closed net, and let
E = env(N1)‖env(N2). Let m be a marking of N1 ⊕N2 and m be a marking of
E such that m and m agree. Then the following hold:

1. If m is responsive, then m is not a stop except for inputs.
2. If m and m strongly agree, the converse of (1) also holds.

Proof. We have N1 ⊕N2 = env(N1 ⊕N2) and (I1 ∩O2) ] (I2 ∩O1) = O1 ]O2

because N1 ⊕N2 is a closed net. Let C = N1 ⊕N2 and O = O1 ]O2.
⇒: W.l.o.g., assume that m and m strongly agree; otherwise, m is no stop

except for inputs as there exists an o ∈ O with m
o−→ by Definition 2.9, hence

m
o

=⇒. As m is responsive, we can fire some vt in C such that t is the first

transition produces a token on some x ∈ O, i.e., m
vt−→ m′ in C. Then it is

possible to insert transitions from O of E into v such that for the resulting v′t:

m
v′t−−→ m′ in E and also m′ and m′ strongly agree by Proposition 2.11(1). Hence

either m
y

=⇒ for one of the inserted transitions y or m
x

==⇒, and m is not a stop
except for inputs.
⇐: Because m is no stop except for inputs but does not enable any transition

x ∈ O (by strong agreement), we have m
v−→ m′

t−→ m′′ in E where neither t nor
any transition in v is in O, and m′′ enables a transition x ∈ O disabled at m′.
Hence, xo ∈ t• in E and, consequently, x ∈ t• in C by Definition 2.5. Applying
Proposition 2.11(2), we get m

v−→ m′ in C such that m′ and m′ agree. Thus,
transition t is enabled at m′ in C, and m is responsive. ut

Next, we relate a stop except for inputs in the parallel composition of two
environments to a stop except for inputs in one of the involved environments.

Lemma 3.6 (stop except for inputs vs. stop-semantics). Let N1 and N2

be composable open nets, and let E = env(N1)‖env(N2). Let m1 and m2 be
markings of env(N1) and env(N2), respectively. Then, m = m1 + m2 is a stop
except for inputs in E iff m1 and m2 are stops except for inputs.

Proof. ⇒: W.l.o.g., assume that m1 is not a stop except for inputs due to m1
o

=⇒
with o ∈ O1. As m2 enables o ∈ I2, we get m

o
=⇒ with o ∈ O1 ] O2 by

Proposition 2.8, hence m is no stop except for inputs.
⇐: Because m1 and m2 are stops except for inputs, there is no o ∈ O1 ]O2

such that m1
o

=⇒ in env(N1) and m2
o

=⇒ in env(N2). Applying Proposition 2.8,

m1 +m2
o

=⇒ is not in E; thus, m is a stop except for inputs. ut

The following proposition combines Lemma 3.5 and Lemma 3.6, thereby
relating responsiveness and the stop-semantics.
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Proposition 3.7 (responsiveness vs. stop-semantics). Let N1 and N2 be
composable open nets such that N1 ⊕N2 is a closed net. Then

N1 and N2 are responsive iff stop(N1) ∩ stop(N2) = ∅ .

Proof. Let C = N1 ⊕N2 and E = env(N1)‖env(N2).
⇒: Proof by contraposition. Assume a trace w ∈ stop(N1)∩stop(N2). Hence,

menv(N1)
w

==⇒ m1 in env(N1) and menv(N2)
w

==⇒ m2 in env(N2) such that both
m1 and m2 are stops except for inputs. Applying Proposition 2.8, we have
mE

w
==⇒ m1 + m2 in E and, by Lemma 3.6, m1 + m2 is a stop except for

inputs. Markings mE and mC strongly agree by Definitions 2.4 and 2.5. By
Proposition 2.11(2), a marking m is reachable from mC in C such that m1 +m2

and m agree, and, by Lemma 3.5, m is not responsive. Thus, N1 and N2 are not
responsive.
⇐: Proof by contraposition. Assume a marking m is reachable in C such that

m is not responsive. Markings mE and mC strongly agree by Definitions 2.4
and 2.5. Applying Proposition 2.11(1), we have mE

w
==⇒ m1 +m2 in E for some

w such that m and m1+m2 strongly agree, and, by Lemma 3.5, m1+m2 is a stop
except for inputs. By Proposition 2.8, we have menv(N1)

w
==⇒ m1 in env(N1) and

menv(N2)
w

==⇒ m2 in env(N2), and, by Lemma 3.6, m1 and m2 are stops except
for inputs. Thus, w ∈ stop(N1) ∩ stop(N2). ut

Example 3.3. For the open nets S and C in Fig. 1, the stop-traces are given in
Example 3.2. One can see that stop(S)∩ stop(C) = ∅; thus, S and C are indeed
responsive, as already claimed in Example 3.1.

The next theorem provides a trace-based characterization of r -accordance as
inclusion of stop-traces.

Theorem 3.8 (r-accordance and stop inclusion coincide). For two interface-
equivalent open nets Impl and Spec, we have

Impl vr ,acc Spec iff stop(Impl) ⊆ stop(Spec) .

Proof. ⇐: Proof by contraposition. Consider an open net C such that Impl ⊕C
and, by interface equivalence, Spec ⊕ C are closed nets. Assume that C is not
an r -controller of Impl . Then Impl and C are not responsive by Definition 3.2,
and there exists a trace w ∈ stop(Impl)∩ stop(C) by Proposition 3.7. Because of
stop-inclusion, we have w ∈ stop(Spec) ∩ stop(C). Again with Proposition 3.7,
we see that Spec and C are not responsive; that is, C is not an r -controller of
Spec.
⇒: The idea is to construct for a stop-trace w of Impl a net and show using

the accordance of Impl and Spec that w is also a stop-trace of Spec.
Let I be the input and O be the output places of Impl and of Spec. Let

w ∈ stop(Impl) and w = w1 . . . wn with wj ∈ I ]O, for j = 1, . . . , n. Define the
open net Nw = (P, T, F,m0, O, I, ∅) by

– P = {p0, . . . , pn},
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– T = {t1, . . . , tn},
– F = {(pi, ti+1) | 0 ≤ i ≤ n− 1}

] {(ti, pi) | 1 ≤ i ≤ n}
] {(wi, ti) | 1 ≤ i ≤ n,wi ∈ O}
] {(ti, wi) | 1 ≤ i ≤ n,wi ∈ I}, and

– m0 = [p0].

W.l.o.g., we assume I 6= ∅. Otherwise, I = O = ∅ by Definition 2.3 and, therefore,
stop(Impl) = {ε} ⊆ {ε} = stop(Spec) by Definitions 2.5 and 3.4.

Let o ∈ I be arbitrary but fixed. We extend Nw to an open net Nw,o =
(P ′, T ′, F ′,m′0, O, I,Ω)—see Fig. 5—with

– P ′ = P ] {p, p′} ] {p′0, . . . , p′n−1},
– T ′ = T ] {t, t′0, . . . , t′n−1, t′′0 , . . . , t′′n−1} ] {twi

| wi ∈ O},
– F ′ = F

] {(p′, t), (t, p′), (t, o)}
] {(p, twi) | wi ∈ O}
] {(twi

, p′) | wi ∈ O}
] {(wi, twi

) | wi ∈ O}
] {(pi, t′i) | 0 ≤ i ≤ n− 1}
] {(t′i, p′i) | 0 ≤ i ≤ n− 1}
] {(p′i, t′′i ) | 0 ≤ i ≤ n− 1}
] {(t′′i , p′i) | 0 ≤ i ≤ n− 1}
] {(t′′i , o) | 0 ≤ i ≤ n− 1},

– m′0 = [p0, p], and
– Ω = {[pn, p]}.

At a stop except for inputs of env(Nw,o), no transition t with o ∈ t• (in
Nw,o) is enabled or can be enabled by firing τ -labeled transitions of env(Nw,o)
by Definition 3.4. Hence, a marking of env(Nw,o) is a reachable stop except for
inputs if and only if it is the marking [pn, p] (1)—keep in mind that every a ∈ I
is an output place of Nw,o.

Obviously, Impl⊕Nw,o as well as Spec⊕Nw,o are closed nets by construction
of Nw,o. Because w ∈ stop(Nw,o) according to observation (1), Impl and Nw,o
are not responsive by Proposition 3.7 and choice of w. Hence, Nw,o is not a
controller of Impl by Definition 3.2, and neither a controller of Spec, as Impl
accords with Spec. We conclude that Spec and Nw,o are not responsive because
of Definition 3.2. Again with Proposition 3.7 and Definition 3.4, there exists a
v ∈ (I ]O)∗ such that

menv(Spec)
v

=⇒ m1 and menv(Nw,o)
v

=⇒ m2 , (2)

where both m1 and m2 are stops except for inputs.
According to observation (1), transitions t1, . . . , tn of Nw,o occur in this order

in a run u of env(Nw,o) underlying v and, thus, there is no occurrence of a
transition t′j in u by construction. Furthermore, no transition twi

has fired and
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Fig. 5: Construction of Nw and Nw,b for w = abcdc with b, d ∈ I and a, c ∈ O

removed the token from p. These facts imply that the Parikh vectors of w and v
agree: Each ti consumes a token from or produces a token on wi, but all interface
places are empty at the end of the traces.

In u, each occurrence of tj with wj ∈ t•j (as output place of Nw,o, i.e.,
wj ∈ I) is paired with a succeeding occurrence of wj (as transition of env(Nw,o));
otherwise, transition wj would be enabled at m2 in env(Nw,o) and m2 would
not be a stop except for inputs. As transition wj is not in conflict with any other
transition of env(Nw,o), we assume that wj fires immediately after tj . In the
corresponding rearranged trace v′ of v, all wj ∈ I occur in the same order as in
w, and v′ still leads to m2.

Similarly, each occurrence of tj with wj ∈ •tj (as input place of Nw,o, i.e.,
wj ∈ O) is paired with a preceding occurrence of wj (as transition of env(Nw,o)),
which can be delayed such that it occurs immediately before tj . In the corre-
sponding rearranged trace v′′ of v′, all wj ∈ O occur in the same order as in w,
because v′ and v′′ have the same Parikh vector as w; thus, v′′ is w.

We have transformed v to w by moving wj ∈ I backwards and wj ∈ O
forwards. This can also be done in the run underlying v in env(Spec), because
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the respective transitions have an empty preset and postset, respectively. Thus,

menv(Spec)
w

==⇒ m1 (and menv(Nw,o)
w

==⇒ m2) (3)

and therefore w ∈ stop(Spec). ut

Example 3.4. For the open net S′ in Fig. 3, we have
stop(S′) = {w ∈ {r, t}∗ | |w|t = |w|r + 1 ∧ ∀v v w : |v|t ≤ |v|r + 1} ⊆ stop(S)
(see Example 3.2). We conclude with Theorem 3.8 that S′ r -accords with S.

Accordance, as defined in Definition 3.3, does not guarantee compositionality;
that is, it is not a precongruence w.r.t. open net composition ⊕. We showed this
in Example 3.1 using open nets S and S′. To see the difference between S and S′

consider any trace of env(S) not containing e. In the marking reached, there is
a token on p0, p1, or eo and the trace re is always possible. In contrast, env(S′)
can always refuse re, because env(S′) can never perform an e. Therefore, it is
not possible to differentiate between S and S′ with something even weaker than
standard failure semantics, as introduced by [7] (like the trace semantics we
employed in Definition 3.4).

3.2 Deriving the coarsest precongruence for responsiveness

Taking into account the example in Fig. 4 and the observation that refusal infor-
mation is necessary to distinguish open nets in terms of r -accordance, we shall
characterize the precongruence vcr ,acc in terms of a variant of failure semantics.
For this, we will not use CSP failures, as introduced by Brookes et al. [7], but
Vogler’s F+-semantics [33]. Whereas a failure is a pair (w,X) where w is a trace
of a net and X is a subset of the alphabet—a refusal set—the F+-semantics is a
stronger notion, considering pairs (w,X) where X is a set of traces; such a pair
is a tree failure.

Definition 3.9 (F+-semantics). The F+-semantics of a labeled net N is

F+(N) = {(w,X) ∈ Σ∗ × P(Σ+) | ∃m ∈MN :

mN
w

==⇒ m ∧ @w′ ∈ X : m
w′

==⇒} .

We say that after executing w, N refuses X.

Example 3.5. We can distinguish the open nets S and S′ in Fig. 1a and Fig. 3 by
their F+-semantics: We have (ε, r∗e) ∈ F+(S′) (because no trace of S′ contains
an e) but (ε, r∗e) 6∈ F+(S) (because we cannot prevent trace re after trace ε, as
explained below Example 3.4).

If we consider the composition N1 ⊕ N2 of two open nets N1 and N2, then
its F+-semantics coincides with that of the parallel composition of the two en-
vironments, env(N1) ⇑ env(N2).
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Lemma 3.10. For two composable open nets N1 and N2, we have

F+(env(N1 ⊕N2)) = F+(env(N1) ⇑ env(N2)) .

Proof. Follows directly from Lemma 2.12: If one net has a tree failure (w,X)
due to a marking m, then the other net can reach an agreeing marking m′ via
the trace w. If some trace v ∈ X could be performed from m′, this would also be
possible from m due to weak bisimilarity, yielding a contradiction. Thus, (w,X)
is also a tree failure of the other net. ut

Before determining the F+-semantics for the composition of two open nets,
we first recall how this can be done for the composition of two labeled nets [33,
Theorem 3.3.15] and for the hiding of common actions [33, Theorem 3.4.2]; we
recall this to prepare the next section, where we study a new variation of the
F+-semantics.

Proposition 3.11 (F+-semantics for labeled net composition [33]). For
two composable labeled nets N1 and N2, we have

F+(N1‖N2) = {(w,X) | ∃(w1, X1) ∈ F+(N1), (w2, X2) ∈ F+(N2) :
w ∈ w1‖w2 ∧ ∀x ∈ X :

x ∈ x1‖x2 implies x1 ∈ X1 ∨ x2 ∈ X2} .

In the next proposition recapitulates [33, Theorem 3.4.2]. We consider a
labeled net N/A, A ⊆ Σ and use φ(w) to denote w|Σ\A. We canonically extend
the notion of φ(w) pointwise to sets of traces.

Proposition 3.12 ([33]). For any labeled net N and any label set A ⊆ Σ∗N , we
have

F+(N/A) = {(φ(w), X) | (w, φ−1(X)) ∈ F+(N)} .

We now combine Lemma 3.10 and Propositions 3.12 and 3.11 to show how
the F+-semantics for the composition of two open nets can be determined.

Proposition 3.13 (F+-semantics for open net composition). For two
composable open nets N1 and N2, we have

F+(N1 ⊕N2) = {(w,X) | ∃(w1, X1) ∈ F+(N1), (w2, X2) ∈ F+(N2) :
w ∈ w1 ⇑ w2 ∧ ∀x ∈ X :

x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2} .

Proof. Proposition 3.11 shows that the right part of this equation—with ‖ replac-
ing ⇑—is equal to F+(env(N1)‖env(N2)); then, one can hide the common actions
of env(N1) and env(N2), and by Proposition 3.12 the right hand side is equal to
F+(env(N1) ⇑ env(N2)); the latter is equal to F+(env(N1⊕N2)) = F+(N1⊕N2)
by Lemma 3.10. ut

For the present setting, the tree failures used in the F+-semantics give too
much information about the moment of choice in an open net. This information
can be removed by closing up under an ordering over tree failures. The resulting
modification of the F+-semantics yields the following refinement relation.
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Definition 3.14 (F+-refinement). For two interface-equivalent labeled nets
Impl and Spec, Impl F+-refines Spec, denoted by Impl vF+ Spec, if

∀(w,X) ∈ F+(Impl) : ∃x ∈ {ε} ∪ ↓ X : (wx, x−1X) ∈ F+(Spec) .

For two interface-equivalent open nets Impl and Spec, we define Impl vF+
fin

Spec,

if env(Impl) vF+
fin

env(Spec).

Example 3.6. We have (ε, r∗e) ∈ F+(S′) (see Example 3.5) but for all x ∈
{ε} ∪ ↓ r∗e, (x, x−1r∗e) 6∈ F+(S) because r−1r∗e = r∗e. Thus, S′ does not
F+-refine S.

Using F+-semantics and -refinement is a technically very beneficial reformu-
lation [29] of F++-inclusion in [33]. Our definition of F+-refinement is equivalent
to the definition of the refinement relation vF+ in [29], which coincides with
should (or fair) testing [6,29] as proved in [29, Theorem 36]. Should testing is a
precongruence for composition [29], and with the help of Lemma 3.10, we can
show that it is also a precongruence for the composition operator ⊕.

Theorem 3.15 (precongruence). F+-refinement is a precongruence for the
composition operator ⊕.

Proof. Let Impl and Spec be interface-equivalent open nets with Impl vF+ Spec,
and let C be an open net composable with both. We have to show, Impl⊕C vF+

Spec ⊕ C.
We have F+(env(Spec ⊕ C)) = F+(env(Spec) ⇑ env(C)) by Lemma 3.10.

Let A denote the common actions of env(Spec) and env(C). Then we can re-
place operator ⇑ with operator ‖ and make the hiding explicit, which results in
F+(env(Spec) ⇑ env(C)) = F+((env(Spec)‖env(C))/A). Likewise, we derive
F+(env(Impl ⊕ C)) = F+((env(Impl)‖env(C))/A).

Impl F+-refines Spec and in [29, Lemma 46] F+-refinement for labeled tran-
sition systems has been proved to be a precongruence for the composition oper-
ator ‖, and it is also preserved under hiding of common actions [29, Lemma 45].
Thus, we obtain that (env(Impl)‖env(C))/A vF+ (env(Spec)‖env(C))/A. As
this only depends on the F+-semantics of the two nets, the equations above
show Impl ⊕ C vF+ Spec ⊕ C. ut

The proof of Theorem 3.15 gives the following result.

Proposition 3.16. F+-refinement is a precongruence for ‖ and hiding on la-
beled nets.

With the next theorem, we prove that F+-refinement is the coarsest precon-
gruence that is contained in the r -accordance relation.

Theorem 3.17 (precongruence and F+-refinement coincide). For two
interface-equivalent open nets Impl and Spec, we have

Impl vF+ Spec iff Impl vcr ,acc Spec .
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Proof. ⇒: In the following, we assume a trace w ∈ stop(Impl) and prove w ∈
stop(Spec). Then, applying Theorem 3.8, we get Impl vr ,acc Spec, which in turn
shows the claim with Theorem 3.15 and the definition of vcr ,acc .

So let O be the set of output places of Impl and, equivalently, of Spec. We have
w ∈ stop(Impl) if and only if (w,O) ∈ F+(Impl) by Definition 3.4 and 3.9. Then,
by Impl vF+ Spec, there must be a suitable x ∈ {ε}∪↓ O = {ε}∪O that makes
the defining condition of Definition 3.14 true. We cannot have x ∈ O because
(wx, {ε}) 6∈ F+(Spec) by Definition 3.9. Thus, x = ε and (w,O) ∈ F+(Spec),
implying w ∈ stop(Spec).

⇐: Let (w,X) ∈ F+(Impl). In addition, consider an open net C with the
new output x and the new input y. Open net C has the empty initial marking,
no final marking, and contains only a single transition that can indefinitely
repeat to produce a token in x while consuming a token from y. The idea is
to construct an open net N from (w,X) such that C is not an r -controller of
Impl ⊕ N because of (w,X). For the moment, assume such a net N has been
constructed. By Impl vcr ,acc Spec and because vcr ,acc is a precongruence, we have
Impl ⊕N vcr ,acc Spec⊕N and thus Impl ⊕N vr ,acc Spec ⊕N by Definition 3.3.
Thus, C is also not an r -controller of Spec ⊕N , and from this we will conclude
that (w,X) is covered by F+(Spec) according to Definition 3.14. Then we will
have proved Impl vF+ Spec.

As to the actual construction of N : The open net N has inputs I = OImpl ]
{x} and outputs O = IImpl ]{y} and enables a transition sequence v = t1 . . . tk.
Each transition in v is connected to an interface place of N such that the corre-
sponding trace of interface actions is w; that is, N contains net Nw as in Fig. 5
(except that pk is called pε here). Thus, we can essentially fire the trace w of
env(N) in Impl ⊕N and, therefore, in Impl ⊕N ⊕ C by firing v instead of the
labeled transitions. This way, we reach in Impl the marking m that refuses X
in env(Impl); in N , there is only one token in the place pε and the token in
the place p has been consumed. This token is necessary to enable a transition t′

that is essential for responsiveness; that is, transitions t and t′ would repeatedly
communicate with C. The place p can only be marked again by firing some tran-
sition t′z with z ∈ X, and this in turn requires the firing of a transition sequence
that—similarly to v—looks to Impl (or rather env(Impl)) like trace z. But this
trace cannot be fired at m; hence, C is not an r -controller of Impl ⊕N .

To achieve the effect just described, the second part of the open netN encodes
the tree part X of tree failure (w,X). Common prefixes thereby correspond to
the same path in the X-part of N . When reaching an element of X, a token can
be produced in the place p. Figure 6 illustrates this construction; it is a small
adaptation of a construction that is used in [33, Fig. 3.19].

Let w = w1 . . . wk such that for j = 1, . . . , k, wj ∈ IImpl ] OImpl . Define the
open net N = (P, T, F,mN , O, I, ∅) by

– P = {p}
] {pi | 0 ≤ i ≤ k − 1}
] {pu | u ∈ ↓ X ∪ {ε}}
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Fig. 6: Illustration of the construction of open net N .

– T = {t, t′}
] {ti | 1 ≤ i ≤ k}
] {tu | u ∈ ↓ X ∧ u 6= ε}
] {t′z | z ∈ X}

– F = {(pi, ti+1) | 0 ≤ i ≤ k − 1}
] {(ti, pi) | 1 ≤ i ≤ k − 1}
] {(x, t), (t, p), (p, t′), (t′, y), (p, tk), (tk, pε)}
] {(pu, tua) | a ∈ IImpl ]OImpl ∧ ua ∈ ↓ X}
] {(tu, pu) | u ∈ ↓ X ∧ u 6= ε}
] {(pz, t′z), (t′z, p) | z ∈ X}
] {(wi, ti) | 1 ≤ i ≤ k ∧ wi ∈ OImpl}
] {(ti, wi) | 1 ≤ i ≤ k ∧ wi ∈ IImpl}
] {(a, tua) | a ∈ OImpl ∧ ua ∈ ↓ X}
] {(tua, a) | a ∈ IImpl ∧ ua ∈ ↓ X}, and

– mN = [p0, p].

As argued previously, we now have that C is not an r -controller of Spec⊕N ;
that is, a marking m1 can be reached in Spec ⊕ N ⊕ C where responsiveness
is violated. Clearly, p must be empty in m1; thus, v has been fired in N and
possibly also some transitions in its X-part. There is only one token in the
places of inner(N), and it is in some pu with u ∈ ↓ X ∪ {ε}. Let m2 be the
projection of m1 onto the places of Spec. From the point of view of Spec, we
have fired a trace wu of env(Spec), reaching m2. Because in Spec ⊕ N ⊕ C no
t′uu′ can become enabled (otherwise, C would be an r -controller), u′ cannot be
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fired in env(Spec) at m2. Thus, (wu, {u′ | uu′ ∈ X}) ∈ F+(Spec) and, therefore,
Impl vF+ Spec. ut

Example 3.7. We already showed with Fig. 4 that for the open nets S and S′

S′ vcr ,acc S does not hold. This is now confirmed with Theorem 3.17 because S′

does not F+-refine S by Example 3.6.

4 Unbounded nets and final markings

In this section, we consider possibly unbounded open nets and final markings.
We refer to the resulting variant of responsiveness as final-responsiveness or
f -responsiveness for short.

Definition 4.1 (f -responsiveness). Let N1 and N2 be composable open nets.
A marking m of N1⊕N2 is f -responsive if either m is responsive or we can reach
a final marking of N1 ⊕ N2 from m. Open nets N1 and N2 are f -responsive if
their composition N1⊕N2 is a closed net and every reachable marking in N1⊕N2

is f -responsive.

The notion of f -responsiveness generalizes responsiveness defined in Defini-
tion 3.1. While responsiveness requires at least one net of the composition to
repeatedly talk to the other net, f -responsiveness also allows the composition to
terminate instead—that is, to reach a common final marking.

Next, we redefine the notion of a controller and accordance for this variant
of responsiveness which yields fr -controllers and fr -accordance. Again, because
fr -accordance will turn out not to be a precongruence, we also introduce its
coarsest precongruence.

As for responsiveness, for every open net N , there exists an fr -controller—
again, this open net just has to continuously send a message.

Definition 4.2 (fr-controller, fr-accordance). An open net C is an fr-controller
of an open net N if N and C are f -responsive.

For two interface-equivalent open nets Impl and Spec, Impl fr-accords with
Spec, denoted by Impl vfr ,acc Spec, if for all open nets C: C is an fr -controller
of Spec implies C is an fr -controller of Impl .

We denote the coarsest precongruence w.r.t. ⊕ contained in vfr ,acc by vcfr ,acc .

Example 4.1. The open net C ′ in Fig. 7a represents another client for the unre-
liable time server S in Fig. 1a. The client C ′ repeatedly updates its system time
and responds with a response packet. However, if the time server sends an error
message, C ′ receives this message (input place e) and terminates (final marking
[p4]). The open nets S and C ′ are composable; their composition S ⊕ C ′ is a
closed net, which is depicted in Fig. 7b. C ′ is not an r -controller of S, because the
nonresponsive marking [p4] is reachable in their composition S⊕C ′. In contrast,
C ′ is an fr -controller of S because [p4] is a final marking of S ⊕ C ′.



25

r
response

e

t

catch
update

p2 p3

p4

(a) Open net C′

process

r

e

t

error
send

p1p0

response

catch
update

p2 p3

p4

(b) Open net S ⊕ C′

Fig. 7: Open net C ′ modeling a terminating client for the open net S in Fig. 1a
and their composition S⊕C ′. In addition to the models, we have ΩC′ = ΩS⊕C′ =
{[p4]}.

The open net S′ in Fig. 3 fr -accords with the open net S in Fig. 1a. Every
fr -controller C of S must provide a token on r for each token on t; otherwise,
S can get stuck in a nonfinal marking with a token on p1. (Additionally, the fr -
controller must be able to consume a token from e and reach a final marking.)
Thus, S′ and C are responsive and C is an fr -controller of S′.

Like r -accordance, also fr -accordance does not guarantee compositionality;
that is, it is not a precongruence with respect to open net composition ⊕. Con-
sider again Fig. 4 for a counterexample. The open net S′ fr -accords with the
open net S, but S′ ⊕A does not fr -accord with S ⊕A, because the open net B
is an fr -controller of S ⊕A but not of S′ ⊕A: The only final marking [p5, p6] is
not reachable in (S′⊕A)⊕B, and the trace x is a stop-trace of both S′⊕A and
B.

We continue by first giving a trace-based characterization for fr -accordance.
Afterward, we characterize the coarsest precongruence that is contained in the
fr -accordance relation.

4.1 A trace-based semantics for final-responsiveness

We extend Definition 3.4 by a set of dead-traces, a weak version of a notion with
the same name in [31,32]. A dead-trace is a stop-trace leading to a nonfinal stop
except for inputs—that is, a marking that is dead except for inputs.

Definition 4.3 (stopdead-semantics). Let N be a labeled net. A marking m
of N is dead except for inputs if m is a stop except for inputs and there exists no
final marking m′ of N with m

ε
=⇒ m′. The stopdead-semantics of N is defined

by the sets of traces

– stop(N) and

– dead(N) = {w | mN
w

==⇒ m and m is dead except for inputs} .
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Example 4.2. For the open nets S and C ′ in Fig. 1a and 7a, [ ] is the only final
marking of S and [p4] is the only final marking C ′. Therefore, we have
dead(S) = {w ∈ {r, t}∗ | |w|t = |w|r + 1 ∧ ∀v v w : |v|t ≤ |v|r + 1}

∪ {wev ∈ L(S) | |wv|t < |wv|r}
Furthermore, we have
stop(C ′) = stop(C) ∪ {wev | w ∈ {r, t}∗ ∧ v ∈ {r, t, e}∗ ∧ ∀u v wv : |u|r ≤ |u|t}
and
dead(C ′) = stop(C) ∪ {wev | w ∈ {r, t}∗ ∧ v ∈ {r, t, e}∗ ∧ ∀u v wv :

|u|r ≤ |u|t ∧ (|wv|t > |wv|r ∨ |v|e ≥ 1)}
where stop(C) has been defined in Example 3.2).

The presence of dead-traces in open nets N1 and N2 is closely related to
the question whether N1 and N2 are f -responsive. We continue by relating first
f -responsive and then the stopdead -semantics to markings that are dead except
for inputs.

Lemma 4.4 (f -responsive vs. dead except for inputs). Let N1 and N2 be
composable open nets such that N1⊕N2 is a closed net. Let E = env(N1)‖env(N2),
and let m be a marking of N1 ⊕N2 and m be a marking of E such that m and
m agree. If m is f -responsive, then m is not dead except for inputs. If m and m
strongly agree, the converse also holds.

Proof. We have N1 ⊕ N2 = env(N1 ⊕ N2) =: C and (I1 ∩ O2) ] (I2 ∩ O1) =
O1 ]O2 =: O, because N1 ⊕N2 is a closed net. Note that only transitions in O
are not τ -labeled in E.
⇒: If m is responsive or if m and m do not strongly agree, we are done

by Lemma 3.5. Otherwise, there is a final marking m′ of C reachable from m.
According to Proposition 2.11(1), there is a marking m′ reachable from m in E
such that m′ and m′ agree (even strongly). Marking m′ is a final marking of E
by Proposition 2.11(3). Thus, m is not dead except for inputs by Definition 4.3.
⇐: If m is not a stop except for inputs, then m is responsive by Lemma 3.5

and therefore f -responsive. Otherwise, there is a final marking m′ of E reachable
from m. Applying Proposition 2.11(2), there is a marking m′ reachable from
m in C such that m′ and m′ agree. Marking m′ is a final marking of C by
Proposition 2.11(3), proving f -responsiveness of m. ut

Lemma 4.5 (dead except for inputs vs. stopdead-semantics). Let N1 and
N2 be composable open nets, and let E = env(N1)‖env(N2). Let m1 and m2 be
markings of env(N1) and env(N2), respectively. Then, m = m1 + m2 is dead
except for inputs in E iff m1 is a stop except for inputs and m2 is dead except
for inputs, or vice versa.

Proof. ⇒: Because m is a stop except for inputs by Definition 4.3, both m1 and
m2 are stops except for inputs by Lemma 3.6. Assume neither m1 nor m2 are
dead except for inputs due to m′1 and m′2 respectively. Then m = m1 +m2

ε
=⇒

m′1+m′2 by Proposition 2.8 andm′1+m′2 is a final marking by Proposition 2.11(3).
This contradicts the assumption.
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⇐: Due to Lemma 3.6, m is a stop except for inputs. W.l.o.g., assume m2 is
dead except for inputs. Whenever m

ε
=⇒ m′, Proposition 2.8 gives us m1

ε
=⇒ m′1

and m2
ε

=⇒ m′2 where neither m′2 nor—by Proposition 2.11(3)—m′ = m′1 +m′2
are final. Thus, m is dead except for inputs in E by Definition 4.3. ut

We combine Lemma 4.4 and Lemma 4.5 and show how the stopdead -semantics
can be used to characterize f -responsiveness.

Proposition 4.6 (f -responsiveness vs. stopdead-semantics). Let N1 and
N2 be composable open nets such that N1 ⊕N2 is a closed net. Then

N1 and N2 are f -responsive iff stop(N1) ∩ dead(N2) = ∅ and
dead(N1) ∩ stop(N2) = ∅ .

Proof. Let C = N1 ⊕N2 and E = env(N1)‖env(N2).
⇒: Proof by contraposition. W.l.o.g., we assume a trace w ∈ stop(N1) ∩

dead(N2). Hence, menv(N1)
w

==⇒ m1 in env(N1) and menv(N2)
w

==⇒ m2 in env(N2)
such that m1 is a stop except for inputs and m2 is dead except for inputs. By
Lemma 4.5, m1 + m2 is dead except for inputs in E. By Proposition 2.11(2),
a marking m is reachable in C such that m and m1 + m2 agree, and m is not
f -responsive by Lemma 4.4.
⇐: Proof by contraposition. Assume mC

ε
=⇒ m in C such that m is not

f -responsive. Applying Proposition 2.11(1), we can reach some m1 + m2 in E
(with mi a marking of Ni, i = 1, 2) such that m and m1 + m2 strongly agree,
and, by Lemma 4.4, m1 +m2 is dead except for inputs. By Proposition 2.8, we
have menv(N1)

w
==⇒ m1 in env(N1) and menv(N2)

w
==⇒ m2 in env(N2), and by

Lemma 4.5, m1 is a stop except for inputs and m2 is dead except for inputs, or
vice versa. Thus, w ∈ stop(N1) ∩ dead(N2) or w ∈ dead(N1) ∩ stop(N2). ut

Example 4.3. Consider again Examples 3.2 and 4.2. One can see that stop(S)∩
dead(C ′) = ∅ and dead(S) ∩ stop(C ′) = ∅; thus, C ′ is indeed an fr -controller of
S, as already claimed in Example 4.1.

Inclusion of the stop- and dead-traces of open nets defines a refinement re-
lation. With the next theorem, we prove that an open net Impl fr -accords with
an open net Spec if and only if every stop-trace of Impl is contained in the stop-
traces of Spec and every dead-trace of Impl is contained in the dead-traces of
Spec. In other words, we provide a trace-based characterization of fr -accordance.

Theorem 4.7 (fr-accordance and stopdead-inclusion coincide). For two
interface-equivalent open nets Impl and Spec, we have

Impl vfr ,acc Spec iff stop(Impl) ⊆ stop(Spec) and
dead(Impl) ⊆ dead(Spec) .

Proof. ⇐: Proof by contraposition. Consider an open net C such that Impl ⊕
C and, equivalently, Spec ⊕ C are closed nets. Assume that C is not an fr -
controller of Impl . Then Impl and C are not f -responsive by Definition 4.2,
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and we find a trace w ∈ stop(Impl) ∩ dead(C) or w ∈ dead(Impl) ∩ stop(C) by
Proposition 4.6. Due to stopdead -inclusion, we have w ∈ stop(Spec) ∩ dead(C)
and w ∈ dead(Spec) ∩ stop(C), respectively. Again with Proposition 4.6, Spec
and C are not f -responsive; that is, C is not an fr -controller of Spec.

⇒: Let I be the input and O be the output places of Impl and, equivalently,
of Spec. If I = O = ∅, we have stop(Impl) = {ε} = stop(Spec). Furthermore,
either dead(Impl) = ∅ (and we are done) or dead(Impl) = {ε} and we consider
an open net C just consisting of a marked place, giving a final marking; C is not
a controller of Impl , hence not of Spec, implying dead(Spec) = {ε}.

For the case I 6= ∅ 6= O, we consider a trace w ∈ dead(Impl). Let w =
w1 . . . wn with wj ∈ I ]O, for j = 1, . . . , n, and let o ∈ I be arbitrary but fixed.
We define an open net Nw,o = (P ′, T ′, F ′,m′0, O, I,Ω) exactly as in the proof
of Theorem 3.8; see Fig. 5. As there, we see that a marking of env(Nw,o) is a
reachable stop except for inputs if and only if it is the only final marking [pn, p]
(1′), i.e., dead(Nw,o) = ∅.

Obviously, Impl⊕Nw,o as well as Spec⊕Nw,o are closed nets by construction
of Nw,o. Because w ∈ stop(Nw,o) according to observation (1′), Impl and Nw,o
are not f -responsive by Proposition 4.6 and choice of w. Hence, Nw,o is not an fr -
controller of Impl and neither an fr -controller of Spec, because Impl fr -accords
with Spec. Thus, Spec and Nw,o are not f -responsive because of Definition 4.2.
Again with Proposition 4.6 and Definition 4.3, there exists v ∈ (I ]O)∗ with

menv(Spec)
v

=⇒ m1 and menv(Nw,o)
v

=⇒ m2 (2′)

such that both m1 and m2 are stops except for inputs, and additionally m1 or
m2 is dead except for inputs. As dead(Nw,o) = ∅, m1 is dead except for inputs
of env(Spec); furthermore, m2 = [pn, p].

As in the proof of Theorem 3.8, we derive

menv(Spec)
w

==⇒ m1 and menv(Nw,o)
w

==⇒ m2 (3′)

and therefore w ∈ dead(Spec).

For a trace w ∈ stop(Impl), we fix some arbitrary o ∈ I and define an
open net N ′w,o = (P ′, T ′, F ′,m′0, O, I, ∅), which is identical to Nw,o except for
its empty set of final markings. Thus, w ∈ dead(N ′w,o), and we succeed with an
argumentation similar to the previous one. ut

Example 4.4. In Example 3.4, we showed that stop(S′) ⊆ stop(S). Each w ∈
stop(S′) can reach the nonfinal marking [p1] in S′ and in S, hence stop(S′) =
dead(S′) and stop(S′) ⊆ dead(S) (see Examples 3.4 and 4.2). Therefore, S′

fr -accords with S.

As shown in Example 4.1, fr -accordance is not a precongruence with respect
to open net composition ⊕. Therefore, we characterize the coarsest precongru-
ence, which is contained in fr -accordance in the following.
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4.2 Deriving the coarsest precongruence for final-responsiveness

The notion of f -responsiveness distinguishes between final and nonfinal mark-
ings. This information is needed to determine whether a marking is dead except
for inputs. As we cannot derive this information from the F+-semantics, we
must enhance it. The idea is basically to add an additional ingredient to a tree
failure (w,X) yielding a triple (w,X, Y ). This ingredient is a set Y , collecting
traces that cannot lead the net to a final marking—including traces that cannot
be performed at all. We bind the traces in Y to a certain marking m that is
reached by executing w. Different markings m can be reached by w because of
nondeterminism, so different sets Y may be assigned to them. This construction
ensures that we can identify traces in dead(N).

Definition 4.8 (F+
fin-semantics). The F+

fin -semantics of a labeled net N is a
set of fintree failures and defined as

F+
fin(N) = {(w,X, Y ) ∈ Σ∗ × P(Σ+)× P(Σ∗) |

∃m ∈MN : mN
w

==⇒ m

∧ ∀x ∈ X : m 6 x==⇒
∧ ∀y ∈ Y : ∀m′ : m

y
=⇒ m′ implies m′ /∈ ΩN} .

We say that after executing w, N refuses X and fin-refuses Y .

Example 4.5. We can distinguish the open nets S and S′ in Fig. 1a and 3 by
their F+

fin -semantics: We have (ε, ∅, (tr)∗e) 6∈ F+
fin(S); that is, after executing ε

reaching [p0], [e], or [p1, t] we can always perform some w ∈ (tr)∗r and reach
a final marking. However, (ε, ∅, (tr)∗e) ∈ F+

fin(S′) because env(S′) can never
perform e.

The F+
fin -refinement relation is similarly defined as the F+-refinement rela-

tion in Definition 3.14 by closing up under an ordering over the fintree failures
in F+

fin ; this removes the too detailed information about the moment of choice
in an open net.

Definition 4.9 (F+
fin-refinement). For two interface-equivalent labeled nets

Impl and Spec, Impl F+
fin -refines Spec, denoted by Impl vF+

fin
Spec, if

∀(w,X, Y ) ∈ F+
fin(Impl) :

∃x ∈ {ε} ∪ ↓ X ∪ ↓ Y : (wx, x−1X,x−1Y ) ∈ F+
fin(Spec) .

For two interface-equivalent open nets Impl and Spec, we define Impl vF+
fin

Spec,

if env(Impl) vF+
fin

env(Spec).

Example 4.6. We have (ε, ∅, (tr)∗e) ∈ F+
fin(S′) by Example 4.5. For all w ∈ (tr)∗,

we have (w, ∅, (tr)∗e) 6∈ F+
fin(S): After w, we reach any of the markings [p0],

[p1, t], or [e] from which we can always reach the final marking [ ] with trace e
or tre. Furthermore, for all v ∈ (tr)∗t, we have (v, ∅, r(tr)∗e) 6∈ F+

fin(S): After v,
we are in the marking [p1] from which we reach the final marking [ ] with trace
re. Thus, S′ does not F+

fin -refine S.
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We will now show that F+
fin -refinement is a precongruence for the composition

operator ⊕. The proof will turn out to be fairly difficult. As in Sect. 3.2, we relate
⊕ to ⇑ on labeled nets and use that ⇑ is ‖ followed by hiding of common actions.

If we consider the composition of two open nets N1 and N2, then its F+
fin -

semantics coincides with that of the parallel composition of the two environ-
ments, env(N1) and env(N2).

Lemma 4.10. For two composable open nets N1 and N2, we have

F+
fin(env(N1 ⊕N2)) = F+

fin(env(N1) ⇑ env(N2)) .

Proof. This lemma follows directly from Lemma 2.12: If one net has a fintree
failure (w,X, Y ) due to a marking m, then the other net can reach an agreeing
marking m′ with the trace w. If a trace x ∈ X could be performed from m′

in the second net, this would also be possible from m in the first net due to
bisimilarity, yielding a contradiction.

If a final marking m′1 could be reached from m′ by performing y ∈ Y , then
an agreeing m1 can be reached from m. In the second net, all merged interface
places p or their derived pi and po are empty at m′1, as they are at m1. Hence, m1

and m′1 coincide on the common places and m1 is final. This is a contradiction,
and (w,X, Y ) is also a fintree failure of the second net. ut

Next, we show how to determine the F+
fin -semantics for the composition of

two labeled nets. Here and below, we use π1(w) and π2(w) to denote w|Σ1 and
w|Σ2

for labeled nets N1 and N2 with alphabets Σ1 and Σ2. For a labeled net
N/A with A ⊆ Σ, φ(w) denotes w|Σ\A. We canonically extend the notions of
πi(w) and φ(w) pointwise to sets of traces.

Lemma 4.11 (F+
fin-semantics for labeled net composition). For compos-

able labeled nets N1 and N2, we have

F+
fin(N1‖N2) = {(w,X1 ∪X2, Y1 ∪ Y2) | (π1(w), π1(X1), π1(Y1)) ∈ F+

fin(N1),

(π2(w), π2(X2), π2(Y2)) ∈ F+
fin(N2)} .

Proof. ⊆: Let E = N1‖N2 and let (w,X, Y ) be a fintree failure of E. Then

there exists a marking m with mE
w

==⇒ m according to Definition 4.8. Applying
Proposition 2.8, we can project w onto w1 = π1(w) and w2 = π2(w) such that

w ∈ w1‖w2, mN1
= mE |P1

w1==⇒ m|P1
, and mN2

= mE |P2

w2==⇒ m|P2
. For each

x ∈ X, we have m|P1
6 π1(x)
====⇒ or m|P2

6 π2(x)
====⇒ by Proposition 3.11. Set X1 consists

of the x with the first and set X2 of the x with the second property, where X1 and
X2 might overlap. Likewise, we can subdivide Y by Proposition 2.8. Note that if
a y ∈ Y can be performed at m at all, then it does not reach a final marking; that
is, neither π1(y) nor π2(y) ever reach a final marking. Thus, no trace in π1(X1)
can be performed from m|P1

and no trace in π1(Y1) can reach a final marking
from m|P1

. Hence, (π1(w), π1(X1), π1(Y1)) ∈ F+
fin(N1), and similarly for N2.

⊇: Likewise, given (w,X1∪X2, Y1∪Y2) with (π1(w), π1(X1), π1(Y1)) ∈ F+
fin(N1)

and (π2(w), π1(X2), π1(Y2)) ∈ F+
fin(N2) due to m1 and m2, one finds that w is a

trace of E reaching m1 +m2, which justifies the first fintree failure. ut
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From the F+-semantics in Proposition 3.12, we adapt the following construc-
tion of F+

fin(N/A).

Lemma 4.12. For any labeled net N and any label set A ⊆ Σ∗N , we have

F+
fin(N/A) = {(φ(w), X, Y ) | (w, φ−1(X), φ−1(Y )) ∈ F+

fin(N)} .

The next proposition yields the F+
fin -semantics for the composition of two

open nets.

Proposition 4.13 (F+
fin-semantics for open net composition). For com-

posable open nets N1 and N2, we have

F+
fin(N1 ⊕N2) = {(w,X, Y ) | ∃(w1, X1, Y1) ∈ F+

fin(N1), (w2, X2, Y2) ∈ F+
fin(N2) :

w ∈ w1 ⇑ w2 ∧ ∀x ∈ X, y ∈ Y :
(x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2)
∧ (y ∈ y1 ⇑ y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)} .

Proof. Follows the same argumentation as the proof of Proposition 3.13, because
the sets X and Y are treated analogously. ut

Having characterized the F+
fin -semantics for composition and hiding, we shall

show that F+
fin -refinement is a precongruence for the composition operator ⊕.

First, we show the precongruence result for labeled nets and operator ‖. Then,
we show that this result is also preserved under hiding. Finally, we combine these
results to show the precongruence for open nets and the operator ⊕.

For the first and second step, we can build upon the proof ideas introduced
for should testing in [29, Lemma 46], where saturation conditions like SAT1-3
below are employed. The key idea in [29] is to shift traces from the refusal set
of Impl . We apply the same proof strategy for the X-part of the fintree failures,
which is closed under suffix (SAT3). Because this does not hold for the Y -part,
we cannot directly apply this idea here. We overcome this problem by adding
the set X to the set Y , thereby using the fourth of the following saturation
conditions on fintree failures.

SAT1: (w,X, Y ) ∈ F+
fin(N), X ′ ⊆ X,Y ′ ⊆ Y implies (w,X ′, Y ′) ∈ F+

fin(N)

SAT2: (w,X, Y ) ∈ F+
fin(N) ∧ ∀z ∈ Z : (wz, z−1X, z−1Y ) 6∈ F+

fin(N) implies

(w,X ∪ Z, Y ∪ Z) ∈ F+
fin(N)

SAT3: (w,X, Y ) ∈ F+
fin(N) implies (w, ↑ X,Y ) ∈ F+

fin(N)

SAT4: (w,X, Y ) ∈ F+
fin(N) implies (w,X,X ∪ Y ) ∈ F+

fin(N)

SAT1 states that, given a fintree failure (w,X, Y ), the sets X and Y can be
arbitrarily decreased and the resulting triple is again a fintree failure. Further-
more, the refusal part of F+

fin is saturated in the sense that the sets X and Y

can be extended by any set of traces z such that (wz, z−1X, z−1Y ) 6∈ F+
fin(N)

(SAT2). SAT3 states that the X-part is closed under suffix, and SAT4 shows
that the refusal part of F+

fin is saturated in the sense that the set X can be added
to Y .

SAT1, SAT3 and SAT4 are obvious; to see SAT2, assume that some z could
be performed from the marking m justifying the tree failure (w,X, Y ).
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Remark 4.1. We have also explored the idea to encode each w ∈ Y by wX for
a new symbol X. Then, one can add the resulting traces to X and work with
something that looks like an ordinary tree failure. The hope was that this would
allow us to use the result [29, Lemma 46] instead of its proof idea, but we have
not managed to show the necessary saturation conditions for the domain used
in [29].

Lemma 4.14. F+
fin -refinement is a precongruence for labeled nets for the com-

position operator ‖.

Proof. Let Impl and Spec be interface-equivalent open nets, and let open net C
be composable with Spec. Let further Impl vF+ Spec. We show that Impl‖C vF+

Spec‖C, following to a large extent the proof of [29, Lemma 46]. For understand-
ability, we also show the full proof for the case ΣSpec = ΣC here, because in this
case the projection functions in the construction of the synchronized fintree fail-
ures become the identity over the complete alphabet and hence disappear.

Consider a fintree failure (w,XImpl ∪XC , YImpl ∪ YC) ∈ F+
fin(Impl‖C) such

that (w,XImpl , YImpl) ∈ F+
fin(Impl) and (w,XC , YC) ∈ F+

fin(C). Define the set

W = {v | (wv, v−1XC , v
−1YC) 6∈ F+

fin(C)}

which contains those traces that can be added to XC and YC according to SAT2.
We shift the traces in W from Impl to C. To this end, we define four sets

X ′Impl = XImpl \ ↑W,

Y ′Impl = YImpl \ ↑W,

X ′C = XC ∪ ↑W,
Y ′C = YC ∪ ↑W .

We immediately see: XImpl ∪ XC ⊆ X ′Impl ∪ X ′C as well as YImpl ∪ YC ⊆
Y ′Impl ∪ Y ′C and X ′Impl ∪ Y ′Impl ⊆ XImpl ∪ YImpl ∪ XC ∪ YC . By SAT1, we have

(w,X ′Impl , Y
′

Impl) ∈ F
+
fin(Impl).

Due to Impl vF+ Spec, there exists x ∈ {ε} ∪ ↓ X ′Impl ∪ ↓ Y ′Impl such that

(wx, x−1X ′Impl , x
−1Y ′Impl) ∈ F+

fin(Spec) (1).

We have x /∈ ↑W . Assume the contrary: x = ε implies ε ∈ W which is a
contradiction to the construction of W . x ∈ ↓ X ′Impl implies ∃x′ ∈ X ′Impl : x v
x′ ∧ ∃v ∈ W : v v x v x′ which is a contradiction to the definition of X ′Impl .
The same argument also applies to x ∈ Y ′Impl .

From x /∈W , it follows that (wx, x−1XC , x
−1YC) ∈ F+

fin(C). Further, for all

u ∈ x−1W (i.e., xu ∈W ), (wxu, u−1x−1XC , u
−1x−1YC) /∈ F+

fin(C).

By SAT2, (wx, x−1(XC ∪W ), x−1(YC ∪W )) ∈ F+
fin(C). Consider now the

second ingredient, x−1(XC ∪W ). By SAT3, this implies ↑ x−1(XC ∪W ). With
Lemma 2.14(3), we have ↑ x−1(XC ∪W ) ⊇ x−1(XC ∪ ↑W ) = x−1X ′C . Now,
according to SAT1, x−1X ′C can replace x−1(XC ∪W ).
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Consider now the third ingredient, x−1(YC ∪W ). By SAT4, we extend this
set to x−1(YC ∪W ) ∪ x−1X ′C ⊇ x−1↑W ∪ x−1YC = x−1(↑W ∪ YC) = x−1Y ′C .
Now, SAT1 allows that x−1Y ′C can replace x−1(YC ∪W ).

Combining these results, we get (wx, x−1X ′C , x
−1Y ′C) ∈ F+

fin(C). Then, by

Lemma 4.11 and (1), we obtain (wx, x−1(X ′Impl ∪ X ′C), x−1(Y ′Impl ∪ Y ′C)) ∈
F+

fin(Spec‖C) . By SAT1, we have (wx, x−1(XImpl ∪ XC), x−1(YImpl ∪ YC)) ∈
F+

fin(Spec‖C) where x ∈ ({ε} ∪ ↓ X ′Impl ∪ ↓ Y ′Impl) ⊆ ({ε} ∪ ↓ XImpl ∪ ↓ YImpl ∪
↓ XC ∪ ↓ YC).

Now consider the general case. Let π and πC denote projections, projecting
onto the alphabets ΣSpec = ΣImpl and ΣC , respectively. We have

1. π(V ∪W ) = π(V ) ∪ π(W )
2. π(↑ V ) ⊆ ↑ π(V )
3. π(w−1V ) ⊆ π(w)−1π(V )

Consider a fintree failure (w,XImpl ∪ XC , YImpl ∪ YC) ∈ F+
fin(Impl‖C) such

that (π(w), π(XImpl), π(YImpl)) ∈ F+
fin(Impl) and (πC(w), πC(XC), πC(YC)) ∈

F+
fin(C). Define the set

W = {v | (πC(wv), πC(v−1XC), πC(v−1YC)) 6∈ F+
fin(C)} .

We shift the traces in W from Impl to C. To this end, we define four sets

X ′Impl = XImpl \ ↑W,

Y ′Impl = YImpl \ ↑W,

X ′C = XC ∪ ↑W,
Y ′C = YC ∪ ↑W .

We immediately see: XImpl ∪XC ⊆ X ′Impl ∪X ′C as well as
YImpl ∪YC ⊆ Y ′Impl ∪Y ′C and X ′Impl ∪Y ′Impl ⊆ XImpl ∪YImpl ∪XC ∪YC . By SAT1,

we have (π(w), π(X ′Impl), π(Y ′Impl)) ∈ F
+
fin(Impl).

Because of Impl vF+ Spec, there exists x ∈ {ε}∪↓ X ′Impl ∪↓ Y ′Impl such that

(π(wx), π(x)−1π(X ′Impl), π(x)−1π(Y ′Impl)) ∈ F
+
fin(Spec). Hence, we have

(π(wx), π(x−1X ′Impl), π(x−1Y ′Impl)) ∈ F+
fin(Spec) (2)

due to Item 3 and SAT1.
Again, trace x /∈ ↑W (by the same argumentation as in the proof of the

case ΣSpec = ΣC), and we conclude that (πC(wx), πC(x−1XC), πC(x−1YC)) ∈
F+

fin(C). Further, for all u ∈ x−1W (i.e., xu ∈ W ),

(πC(wxu), πC(u−1x−1XC), πC(u−1x−1YC)) /∈ F+
fin(C), due to the definition of

W .
Now, (πC(wxu), πC(u)−1πC(x−1XC), πC(u)−1πC(x−1YC)) /∈ F+

fin(C) with
Item 3 and SAT1, and we obtain, by Item 1 and SAT2,

(πC(wx), πC(x−1(XC ∪W )), πC(x−1(YC ∪W ))) ∈ F+
fin(C) .
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Consider the second ingredient, πC(x−1(XC ∪ W )) of this fintree failure.
Applying SAT3, we obtain ↑ πC(x−1(XC ∪W )) and with SAT1 and Item 2,
πC(↑ x−1(XC ∪W )). Because x /∈ ↑W , we can apply Lemma 2.14(3) and SAT1,
and we arrive at πC(x−1(XC ∪ ↑W )) = πC(x−1X ′C).

For the third ingredient πC(x−1(YC ∪W )) of this fintree failure, we obtain
by SAT4 πC(x−1(YC ∪W ))∪πC(x−1X ′C). By Item 1, we can transform this into
πC(x−1(YC ∪W ∪X ′C)) and by SAT1 into πC(x−1(YC ∪ ↑W )) = πC(x−1Y ′C).

Combining these results yields (πC(wx), πC(x−1X ′C), πC(x−1Y ′C)) ∈ F+
fin(C).

Then, with Lemma 4.11 and (2), we obtain

(wx, x−1(X ′Impl ∪X ′C), x−1(Y ′Impl ∪ Y ′C)) ∈ F+
fin(Spec‖C) .

Applying SAT1 yields (wx, x−1(XImpl ∪ XC), x−1(YImpl ∪ YC) ∈ F+
fin(Spec‖C)

where x ∈ ({ε}∪↓ X ′Impl ∪↓ Y ′Impl) ⊆ ({ε}∪↓ XImpl ∪↓ YImpl ∪↓ XC∪↓ YC). ut

Remark 4.2. The proof of Lemma 4.14 is not restricted to sets of fintree failures
of labeled nets, but holds for general sets of fintree failures for which the four
saturation SAT1 – SAT4 hold.

We show that F+
fin -refinement for labeled nets is preserved under hiding.

Lemma 4.15. F+
fin -refinement for labeled nets is preserved under hiding.

Proof. Let Impl and Spec be interface-equivalent labeled nets such that
Impl vF+

fin
Spec. Further, let A ⊆ Σ∗ and (w,X, Y ) ∈ F+

fin(Impl/A). Consider

(v, φ−1(X), φ−1(Y )) ∈ F+
fin(Impl) with w = φ(v). Because Impl F+

fin -refines

Spec, there is x ∈ {ε}∪↓ φ−1(X)∪↓ φ−1(Y ) with (vx, x−1φ−1(X), x−1φ−1(Y )) ∈
F+

fin(Spec). It can be shown that φ−1(φ(x)−1X) = x−1φ−1(X). Using this ob-

servation together with (v, φ−1(X), φ−1(Y )) ∈ F+
fin(Impl), we conclude that

(φ(vx), φ(x)−1X,φ(x)−1Y ) ∈ F+
fin(Spec/A) and additionally

(φ(v)φ(x), φ(x)−1X,φ(x)−1Y ) ∈ F+
fin(Spec/A). Because φ(v) = w and φ(x) ∈

{ε} ∪ ↓ (X) ∪ ↓ (Y ), the lemma holds. ut

With Lemma 4.14 and Lemma 4.15, we have the ingredients to show that
F+

fin -refinement is also a precongruence for the composition operator ⊕.

Theorem 4.16 (precongruence). F+
fin -refinement is a precongruence for the

composition operator ⊕.

Proof. The proof is analogous to the proof of Theorem 3.15. By Lemma 4.14 and
Lemma 4.15, F+

fin -refinement is a precongruence for the composition operator ⇑
and, by Lemma 4.10, also for for the composition operator ⊕. ut

With the next theorem, we show that F+
fin -refinement and the coarsest pre-

congruence that is contained in the fr -accordance relation coincide.
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Theorem 4.17 (precongruence and F+
fin-refinement coincide). For two

interface-equivalent open nets Impl and Spec, we have

Impl vF+
fin

Spec iff Impl vcfr ,acc Spec .

Proof. ⇒: Consider a trace w ∈ stop(Impl) (w ∈ dead(Impl)); we prove w ∈
stop(Spec) (w ∈ dead(Spec)). Then, applying Theorem 4.7, we get Impl vfr ,acc

Spec, and this in turn also shows the claim with Theorem 4.16 and the definition
of vcfr ,acc . So let O be the set of output places of Impl and of Spec.

We have w ∈ stop(Impl) iff (w,O, ∅) ∈ F+
fin(Impl) by Definitions 3.4 and 3.9.

Then, by Impl vF+
fin

Spec, there must be a suitable x ∈ {ε} ∪ O = {ε} ∪ ↓ O
that satisfies the defining condition of Definition 4.8. We cannot have x ∈ O
because (wx, {ε}, ∅) /∈ F+

fin(Spec) by Definition 4.8. Thus, x = ε and (w,O, ∅) ∈
F+

fin(Spec), implying w ∈ stop(Spec).

We have w ∈ dead(Impl) iff (w,O, {ε}) ∈ F+
fin(Impl) by Definition 4.3. Again,

x = ε and thus (w,O, {ε}) ∈ F+
fin(Spec), implying w ∈ dead(Spec).

⇐: Suppose Impl vcfr ,acc Spec, and let (w,X, Y ) ∈ F+
fin(Impl). In addition,

consider an open net C with the new output x and the new input y. Open net
C has the empty initial marking and contains only a single transition that can
indefinitely repeat to produce a token in x while consuming a token from place y.
In addition, its final marking is the empty marking. The idea is to construct an
open netN from (w,X, Y ) such that C is not an fr -controller of Impl⊕N because
of (w,X, Y ). By Impl vcfr ,acc Spec and because vcfr ,acc is a precongruence, we
have Impl ⊕ N vcfr ,acc Spec ⊕ N and thus Impl ⊕ N vfr ,acc Spec ⊕ N by
Definition 4.2. Hence, C is also not an fr -controller of Spec⊕N , and from this we
shall conclude that (w,X, Y ) is covered by F+

fin(Spec) according to Definition 4.9.
Then we will have proved Impl vF+

fin
Spec.

The construction of the open net N is similar to the one in the proof of
(the reverse implication of) Theorem 3.17; the tree part on the right-hand side
of Fig. 6 corresponds to X ∪ Y now. The open net N has input places I =
OImpl ] {x}, output places O = IImpl ] {y}, and enables a transition sequence
v = t1 . . . tk. Each transition in v is connected to an interface place of N such that
the corresponding trace of interface actions is w; that is, the net N contains net
Nw as in Fig. 5. Thus, we can essentially fire the trace w of env(N) in Impl ⊕N
and, therefore, in Impl⊕N⊕C by firing v instead of the labeled transitions. This
way, we reach in Impl a marking m that refuses X in env(Impl); in N , there is
only one token in a place pε and the token in a place p has been consumed. This
token is necessary to enable transition t′ that is—together with transition t—
essential for f -responsiveness, because they can repeatedly communicate with C.
The place p can only be marked again by firing some transition t′x with x ∈ X,
and this in turn requires the firing of a transition sequence that—similarly to
v—looks to Impl like the trace x. But this trace cannot be fired at m. In addition,
every trace y ∈ Y that cannot lead to a final marking in Impl leads to a final
marking in the tree part of N . This construction guarantees that there is a
marking reachable in the composition Impl ⊕N ⊕C which is neither responsive
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(because place p is not marked and hence there is no communication between C
and N) nor reaches a final marking (because if N ⊕C is in a final marking, then
Impl is not). As a consequence, Impl ⊕N ⊕ C is not f -responsive and, thus, C
is not an fr -controller of Impl ⊕N .

To achieve the effect just described, the second part of the open netN encodes
the tree part for X and Y of fintree failure (w,X, Y ); this second part is a tree
representing X ∪ Y . Common prefixes thereby correspond to the same path in
this part. If a path corresponds to some y ∈ Y , a token on the place at the end
of this path is a final marking of N ; if for example b ∈ Y , then the marking with
just one token on the place pb is final; see Fig. 6. For a path corresponding to
some x ∈ X, a token in the respective place allows to mark p again.

Let w = w1 . . . wk such that for j = 1, . . . , k, wj ∈ IImpl ] OImpl . Let N =
(P, T, F,mN , O, I,Ω) be an open net like the one in the proof of Theorem 3.17,
but replace every occurrence of ↓ X with ↓ X ∪↓ Y and add Ω = {[pz] | z ∈ Y }.

As argued previously, we now have that C is not an fr -controller of Spec⊕N ;
that is, some marking m1 can be reached in Spec⊕N⊕C where f -responsiveness
is violated. Clearly, places p, x, and y must be empty in m1; thus, v has been
fired in N plus possibly some transitions in the fintree part of the net. There
is just one token in the places of inner(N), and it is in some pu with uu′ ∈ X
(resp. uu′ ∈ Y ). Let m2 be the projection of m1 onto the places of Spec. From
the point of view of Spec, we have fired a trace wu of env(Spec) reaching m2.
Because in Spec ⊕ N ⊕ C no t′uu′ can become enabled and the composition
cannot reach a final marking—otherwise, C would be an fr -controller—no u′

can be fired in env(Spec) at m2 and a final marking is not reachable. Thus,
we conclude (wu, {u′ | uu′ ∈ X}, {u′ | uu′ ∈ Y }) ∈ F+

fin(Spec) and, therefore,
Impl vF+

fin
Spec. ut

Example 4.7. As shown in Example 4.1, S′ vcfr ,acc S does not hold. This is now

confirmed with Theorem 4.17, because S′ does not F+
fin -refine S by Example 4.6.

5 Bounded nets without responsiveness

In the two previous sections, we presented precongruences for responsiveness and
f -responsiveness. The former notion does not take into account final markings
whereas the latter notion does. In this section, we study another property of open
net compositions: boundedness. We first consider boundedness in isolation—that
is, without requiring open nets to be responsive or to have final markings—
and add boundedness to responsiveness and f -responsiveness in the subsequent
sections. That way, technicalities become simpler.

The next two definitions define the notion of a controller and of accordance
for boundedness.

Definition 5.1 (b-controller, b-accordance). An open net C is a b-controller
of an open net N if their composition N ⊕ C is a b-bounded, closed net.
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For interface-equivalent open nets Impl and Spec, Impl b-accords with Spec,
denoted by Impl vb,acc Spec, if for all open nets C: C is a b-controller of Spec
implies C is a b-controller of Impl .

Example 5.1. The open net C ′ in Fig. 7a is a 1-controller of the open net S in
Fig. 1a because their composition S ⊕ C ′ in Fig. 7b is a 1-bounded closed net.
Consequently, C ′ is a b-controller of S for every b ∈ IN+. In contrast, the open
net C in Fig. 1b is not a b-controller of S for any b ∈ IN+ because the place
r is unbounded in their composition S ⊕ C in Fig. 1c after the error has been
caught.

While every open net has at least one r -controller and one fr -controller, there
exist open nets that do not have any b-controller. An example is an open net
that performs a self loop and in every cycle produces a token in an output place,
thereby violating any bound.

In the rest of this section, we give a trace-based semantics for open nets based
on which we prove b-accordance to be a precongruence with regard to the open
net composition operator ⊕.

Our trace-based semantics for b-boundedness of an open net N is part of the
b-bounded stopdead -semantics [31,32]. A bound violation is a marking that is not
b-bounded, and we investigate the traces leading to such a bound violation, called
strict boundb-violators. A bound violation is regarded as catastrophic because it
cannot be corrected. Thus, the behavior after a bound violation does not matter,
and we will hide all possible differences by treating all strict boundb-violators
and their continuations in the same way. Technically, we achieve the hiding by
including all continuations of strict boundb-violators in a set boundb , the set
of boundb-violators. For the same reason, boundb is contained in the second
component of our b-bounded semantics, the language of N . This technique is
called flooding in [14].

Definition 5.2 (b-bounded semantics). Let N be a labeled net. A trace w is

a strict boundb-violator of N if there exists a marking m with mN
w

==⇒ m that
is not b-bounded; a continuation of a strict boundb-violator of N is a boundb-
violator of N . The b-bounded semantics of N is defined by

– boundb(N) = {w ∈ (I ]O)∗ | w is a boundb-violator of N} and
– Lb(N) = L(N) ∪ boundb(N) .

We recall properties of boundb and Lb , and how the boundb- and Lb-semantics
of a composition is calculated. We also consider a labeled netN/A, A ⊆ Σ and we
use φ(w) to denote w|Σ\A. We canonically extend the notion of φ(w) pointwise
to sets of traces.

Proposition 5.3. For two composable labeled nets N1 and N2, we have

1. boundb(N1‖N2) = ↑
((

boundb(N1)‖Lb(N2)
)
∪
(
Lb(N1)‖boundb(N2)

))
2. boundb(N1 ⇑ N2) = ↑

((
boundb(N1) ⇑ Lb(N2)

)
∪
(
Lb(N1) ⇑ boundb(N2)

))
,
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3. Lb(N1‖N2) = (Lb(N1)‖Lb(N2)) ∪ boundb(N1‖N2),
4. Lb(N1 ⇑ N2) = (Lb(N1) ⇑ Lb(N2)) ∪ boundb(N1 ⇑ N2),
5. boundb(N/A) = {φ(w) | w ∈ boundb(N)},
6. Lb(N/A) = {φ(w) | w ∈ Lb(N)},

and for two composable open nets N1 and N2, we have

7. boundb(N1 ⊕N2) = ↑
((

boundb(N1) ⇑ Lb(N2)
)
∪
(
Lb(N1) ⇑ boundb(N2)

))
8. Lb(N1 ⊕N2) =

(
Lb(N1) ⇑ Lb(N2)

)
∪ boundb(N1 ⊕N2).

Proof. (1) has already been proved for b = 1 in [33, Theorem 3.3.3]; we can
use the same considerations to show that this result can be generalized to an
arbitrary bound b ∈ IN+; (2) follows directly from (1) by Definition 2.7;

(3) Lb(N1‖N2)
= (L(N1) ∪ boundb(N1))‖(L(N2) ∪ boundb(N2)) ∪ boundb(N1‖N2)
= (L(N1)‖L(N2)) ∪ (boundb(N1)‖L(N2)) ∪ (boundb(N2)‖L(N1))
∪ (boundb(N1)‖boundb(N2)) ∪ boundb(N1‖N2)
{ By L(N2) ⊆ Lb(N2), L(N1) ⊆ Lb(N1), boundb(N1) ⊆ Lb(N1), (1) }

= L(N1)‖L(N2) ∪ boundb(N1‖N2)
{ by [33, Theorem 3.1.7(4)] }

= L(N1‖N2) ∪ boundb(N1‖N2)

(4) follows the same argumentation as (3); (5) and (6) are obvious; and (7)
and (8) have already been proved in [32, Theorem 30]. ut

If we consider the composition of two open nets N1 and N2, then its b-
bounded semantics coincides with that of the parallel composition of the two
environments env(N1) ⇑ env(N2).

Lemma 5.4. For two composable open nets N1 and N2, we have

1. boundb(N1 ⊕N2) = boundb(env(N1) ⇑ env(N2)) , and
2. Lb(N1 ⊕N2) = Lb(env(N1) ⇑ env(N2)) .

Proof. The first item follows by Proposition 5.3(2) and (7). For the second item,
we have Lb(N1 ⊕N2) = L(N1 ⊕N2)∪ boundb(N1 ⊕N2) by Definition 5.2. With
L(N1⊕N2) = L(env(N1) ⇑ env(N2)) by [32, Theorem 18(1)] and the first item,
we conclude with Definition 5.2 that Lb(N1⊕N2) = Lb(env(N1) ⇑ env(N2)). ut

The presence of boundb-violators of N1 and N2 is closely related to the ques-
tion whether N1 and N2 are b-controller of each other. This result directly follows
from Proposition 5.3(7).

Corollary 5.5 (b-boundedness vs. b-bounded semantics). For two com-
posable open nets N1 and N2 such that N1 ⊕N2 is a closed net, we have

N1 is a b-controller of N2 iff Lb(N1) ∩ boundb(N2) = ∅ and
boundb(N1) ∩ Lb(N2) = ∅ .
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The inclusion of the b-bounded semantics of open nets defines a refinement
relation. With the next theorem, we prove that it coincides with b-accordance;
in other words, we provide a trace-based characterization for the latter.

Theorem 5.6 (b-accordance and b-bounded semantics inclusion coin-
cide). For two interface-equivalent open nets Impl and Spec, we have

Impl vb,acc Spec iff boundb(Impl) ⊆ boundb(Spec) and
Lb(Impl) ⊆ Lb(Spec) .

Proof. ⇒: Use the proof of [32, Theorem 33].
⇐: Proof by contraposition. Consider an open net C such that Impl ⊕C and

Spec ⊕C are closed nets. Assume that C is not a b-controller of Impl . Then we
have Lb(Impl) ∩ boundb(C) 6= ∅ or boundb(Impl) ∩ Lb(C) 6= ∅ by Corollary 5.5.
Because of the assumed inclusions, we also have Lb(Spec) ∩ boundb(C) 6= ∅ or
boundb(Spec) ∩ Lb(C) 6= ∅. Again with Corollary 5.5, we see that C is not a
b-controller of Spec. ut

We show that b-accordance is a precongruence for the composition operators
‖ and ⊕.

Proposition 5.7. Inclusion of boundb- and Lb-traces is a precongruence for ‖
and hiding on labeled nets.

Proof. Follows from Proposition 5.3(1),(3),(5),(6).

Theorem 5.8 (b-accordance is a precongruence). The b-accordance rela-
tion vb,acc is a precongruence w.r.t. the composition operator ⊕.

Proof. Let Impl and Spec be interface-equivalent open nets such that Impl vb,acc

Spec, and let C be an open net that is composable with Impl (and Spec by
interface equivalence). Then:

boundb(Impl ⊕ C) = { by Proposition 5.3(7) }

↑
((

boundb(Impl) ⇑ Lb(C)
)
∪
(
Lb(Impl) ⇑ boundb(C)

))
⊆ { by Theorem 5.6 and Definition 2.7 }

↑
((

boundb(Spec) ⇑ Lb(C)
)
∪
(
Lb(Spec) ⇑ boundb(C)

))
= boundb(Spec ⊕ C) by Proposition 5.3(7)

Lb(Impl ⊕ C) = { by Proposition 5.3(8) }(
Lb(Impl) ⇑ Lb(C)

)
∪ boundb(Impl ⊕ C)

⊆ { by Theorem 5.6 and Definition 2.7 }(
Lb(Spec) ⇑ Lb(C)

)
∪ boundb(Impl ⊕ C)

⊆ { by boundb(Impl ⊕ C) ⊆ boundb(Spec ⊕ C)}(
Lb(Spec) ⇑ Lb(C)

)
∪ boundb(Spec ⊕ C)

= Lb(Spec ⊕ C) by Proposition 5.3(8).

Thus, Impl ⊕ C vb,acc Spec ⊕ C by Theorem 5.6. ut
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6 Bounded nets and no final markings

In this section, we require the composition of open nets to be bounded and
responsive; that is, we ignore final markings as in Sect. 3. The resulting variant
of responsiveness, bounded responsiveness or b-responsiveness for short, is similar
to safe P -deadlock equivalence in [33].

Definition 6.1 (b-responsiveness). Let N1 and N2 be composable open nets.
A marking of N1⊕N2 is b-responsive if it is responsive and b-bounded. The open
nets N1 and N2 are b-responsive if their composition N1 ⊕ N2 is a closed net
and every reachable marking in N1 ⊕N2 is b-responsive.

Two open nets are b-responsive if at least one net can repeatedly talk while re-
specting the message bound b. In fact, we can prove that, due to b-responsiveness,
each net always has the chance to send a message (possibly after some messages
from the other net). Thus, the word ‘responsive’ is really justified here.

Proposition 6.2. Let open nets N1 and N2 be b-responsive. Then, from any
reachable marking m of N1 ⊕N2, markings m1 and m2 are reachable such that

m1
t1−→ and m2

t2−→ with t•1 ∩O1 6= ∅ and t•2 ∩O2 6= ∅.

Proof. Proof by contradiction. Assume that there exists a marking m from which
no suitable m1 or m2 is reachable. This contradicts Definition 6.1, because all
markings in N1 ⊕N2 are b-responsive and thus responsive.

Now assume that there exists anm from which only a markingm1 is reachable
but no m2. Then, in N1 ⊕N2 there exists a run to a marking m1 enabling some
t1. No tokens are put onto I1 = O2 in this run; otherwise, we would have found
an m2 just before such a firing. Hence, no transitions of N2 are needed to enable
t1, and we can assume that all transitions of the run belong to N1. Consequently,
no token is removed from O1 = I2. Now we fire t1 and reach some m′ with at
least one token more on O1. If m′ has an m′2 as claimed in the lemma, this
can also serve for m as m2. Hence, m′2 does not exist, but some m′1 must, as
argued previously. We repeat this argument, and each time the token count on
O1 increases until bound b is violated. However, this contradicts Definition 6.1,
stating that N1 ⊕ N2 is b-bounded. As a consequence, a marking m2 must be
reachable from m. ut

We redefine the notion of a controller and of accordance for this variant of
responsiveness to br -controller and br -accordance. As br -accordance shall turn
out not to be a precongruence, we also introduce its coarsest precongruence.

Definition 6.3 (br-controller, br-accordance). An open net C is a br-controller
of an open net N if N and C are b-responsive.

For interface-equivalent open nets Impl and Spec, Impl br-accords with Spec,
denoted by Impl vbr ,acc Spec, if for all open nets C holds: C is a br -controller
of Spec implies C is a br -controller of Impl .

We denote the coarsest precongruence contained in vbr ,acc by vcbr ,acc .
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Fig. 8: Open nets modeling a database server, a user, and their composition. In
addition to the models, we have ΩD = {[ ]}, ΩU = {[p4]} and ΩD⊕U = {[p4]}.

Example 6.1. Figure 8 shows three open systems, each modeled as an open net.
The open net D models a database server. After processing a query (input place
q), it responds with the retrieved data (output place d). A user may shut down D
by sending a shutdown message (input place s). D has the (unused) capability
to forward messages (output place f). The open net U models a user of the
database. It repeatedly queries the database and analyzes the returned data.
U never sends a shutdown message and ignores any forwarded message from D.
The open nets D and U are composable. Their composition D⊕U is a 1-bounded
closed net, which is depicted in Fig. 8c.

Figure 9 depicts a modified database server D′. It has the same functionality
as D but forwards a shutdown message to the output place f . No br -controller
of D sends a message s, as otherwise D could fire shutdown and then could not
produce any output, contradicting Proposition 6.2. Thus, D′ br -accords with D.
Vice versa, no br -controller of D′ sends a message s because after sending f , D′

cannot produce any token on d or f . Thus, also D br -accords with D′. Observe
that these two statements hold for any bound b.

Extending the example with the open nets X and Y in Fig. 10, we can show
that br -accordance is not compositional: X is a br -controller of D′ ⊕ Y but not
of D ⊕ Y . Whereas the transition activate of Y can be fired in (D′ ⊕ Y ) ⊕ X
(enabling br -responsiveness), it cannot be fired in (D ⊕ Y )⊕X.



42

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

Fig. 9: The open net D′ modeling a modified database server. We have ΩD′ =
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Fig. 10: Two open nets proving that br -accordance (and bfr -accordance, see
Sect. 7) is not a precongruence with regard to open net composition ⊕. In addi-
tion to the models, we have ΩX = {[p3]} and ΩY = {[p7]}.

As in Sect. 4, we give a trace-based semantics for b-responsiveness. Then, we
characterize the coarsest precongruence that is contained in the br -accordance
relation.

6.1 A trace-based semantics for bounded responsiveness

Our trace-based semantics for b-responsiveness of an open net N essentially
combines the stop-semantics of Definition 3.4 and the b-bounded semantics of
Definition 5.2. It consists of the set of all boundb-violators, the flooded language,
and the flooded stop-semantics.

Definition 6.4 (b-bounded stop-semantics). The b-bounded stop-semantics
of a labeled net N is defined by the sets of traces

– boundb(N),
– Lb(N), and
– stopb(N) = stop(N) ∪ boundb(N) .

The following lemma implies that, for the purpose of characterizing br -
controllers in Proposition 6.6 below, we could also work with a variant of the
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b-bounded stop-semantics that contains stop-traces instead of stopb-traces. This
observation makes the proof of Proposition 6.6 easy. Still, we use the stopb-traces
in this semantics because it gives a better sufficient condition for br -accordance
in Theorem 6.7.

Lemma 6.5. For composable open nets N1 and N2 with Lb(N1)∩boundb(N2) =
∅ and boundb(N1) ∩ Lb(N2) = ∅, we have

stop(N1) ∩ stop(N2) = ∅ iff stopb(N1) ∩ stopb(N2) = ∅ .

Proof. ⇐: Follows immediately from Definition 6.4.
⇒: We can write stopb(N1) ∩ stopb(N2) as a union of four intersections

stopb(N1) ∩ stopb(N2) = (stop(N1) ∩ boundb(N2))
∪ (boundb(N1) ∩ stop(N2))
∪ (boundb(N1) ∩ boundb(N2))
∪ (stop(N1) ∩ stop(N2)),

all of which are empty:

– stop(N1) ∩ boundb(N2) = ∅, by Lb(N1) ∩ boundb(N2) = ∅ and stop(N1) ⊆
L(N1) ⊆ Lb(N1)

– boundb(N1) ∩ stop(N2) = ∅, by boundb(N1) ∩ Lb(N2) = ∅ and stop(N2) ⊆
L(N2) ⊆ Lb(N2)

– boundb(N1)∩boundb(N2) = ∅, by boundb(N1)∩Lb(N2) = ∅ and boundb(N2) ⊆
Lb(N2)

– stop(N1) ∩ stop(N2) = ∅ by assumption. ut

Some open net C is a br -controller if and only if it is a b-controller and
an r-controller. Thus, Corollary 5.5 and Proposition 3.7 in combination with
Lemma 6.5 give the following characterization of b-responsiveness.

Proposition 6.6 (b-responsiveness vs. b-bounded stop-semantics). For
composable open nets N1 and N2 such that N1 ⊕N2 is a closed net, we have

stopb(N1) ∩ stopb(N2) = ∅ and
N1 and N2 are b-responsive iff Lb(N1) ∩ boundb(N2) = ∅ and

boundb(N1) ∩ Lb(N2) = ∅ .

Inclusion of the b-bounded stop-semantics defines a refinement relation which
implies br -accordance.

Theorem 6.7 (b-bounded stop-inclusion implies br-accordance). For two
interface-equivalent open nets Impl and Spec, we have

boundb(Impl) ⊆ boundb(Spec) and
Lb(Impl) ⊆ Lb(Spec) and implies Impl vbr ,acc Spec .
stopb(Impl) ⊆ stopb(Spec)
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Proof. Proof by contraposition. Consider an open net C such that Impl ⊕C and
Spec ⊕ C are closed nets. Assume that C is not a br -controller of Impl . Then,
Impl and C are not b-responsive by Definition 6.3, and we have stopb(Impl) ∩
stopb(C) 6= ∅, Lb(Impl)∩boundb(C) 6= ∅, or boundb(Impl)∩Lb(C) 6= ∅ by Propo-
sition 6.6. Because of the assumed inclusions, we have stopb(Spec)∩stopb(C) 6= ∅,
Lb(Spec) ∩ boundb(C) 6= ∅, or boundb(Spec) ∩ Lb(C) 6= ∅. Again with Proposi-
tion 6.6, we see that Spec and C are not b-responsive; that is, C is not a br -
controller of Spec. ut

The converse of Theorem 6.7 does not hold in general, as the next example
shows.

Example 6.2. Recall that the open net D′ br -accords with the open net D for
every b ∈ IN+ (see Example 6.1) although the language of D′ is not contained
in the language of D. For instance, we have sf ∈ Lb(D′) \ Lb(D). However, sf
cannot be used reliably by any br -controller of D.

The cause of the counterexample in Example 6.2 and, thus, the reason why
the converse of Theorem 6.7 does not hold is that br -accordance ignores those
parts of open nets Impl and Spec that cannot be used reliably—that is, those
markings that cannot be covered in the composition with any br -controller. In
contrast, standard trace-based semantics compare the two open nets as a whole.

That standard language inclusion can be too strict has been observed for a
stronger criterion than b-responsiveness in [21,5,23]. Mooij et al. [23] propose two
solutions to overcome this problem. The first idea is to restrict the class of open
nets considered to those where every place and transition can be covered. The
second idea is to encode the covering nature of br -accordance in the trace-based
semantics. In the following, we work out the latter idea in the present setting.

6.2 A coverable trace-based semantics for b-responsiveness

We aim to encode the covering nature of br -accordance in the b-bounded stop-
semantics. To achieve this, we introduce a set that captures all br-uncoverable
traces; that is, traces w that cannot be executed by (the environment of) any
br -controller of N , regardless whether w can be executed in env(N) or not.

Replacing in every trace set of the b-bounded stop-semantics of an open net
N the set of boundb-violators by the set of br -uncoverable traces yields the cov-
erable b-bounded stop-semantics of N . This semantics differs from the previous
trace semantics, as the br -uncoverable traces are an external characterization—
they quantify over all br -controllers of N . The latter does not cause a problem,
because we can calculate this set.

Definition 6.8 (coverable b-bounded stop-semantics). Let N be an open
net. A word w ∈ (I ] O)∗ is a br-uncoverable trace of N if there does not exist
a br -controller C of N with w ∈ Lb(C). The coverable b-bounded stop-semantics
of N is defined by the three sets of traces

– uncovbr (N) = {w ∈ (I ]O)∗ | w is an br -uncoverable trace of N},
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– uLbr (N) = L(N) ∪ uncovbr (N), and
– ustopbr (N) = stop(N) ∪ uncovbr (N) .

Example 6.3. As mentioned in Example 6.1, for any bound b, there exists no
br -controller of D or D′ that marks the place s. Thus, s ∈ uncovbr (D) and
s ∈ uncovbr (D′), for instance.

By Proposition 6.6, a boundb-violator of an open net is an br -uncoverable
trace of N . So we directly conclude that the set of boundb-violators of N is
contained in the set of br -uncoverable traces of N . As a result, the coverable b-
bounded stop-semantics extends the b-bounded stop-semantics by flooding more
traces: boundb-violators and br -uncoverable traces.

Lemma 6.9 (b-bounded stop-semantics is included). For any open net N ,
we have

– boundb(N) ⊆ uncovbr (N),
– Lb(N) ⊆ uLbr (N), and
– stopb(N) ⊆ ustopbr (N).

Inclusion of the flooded stop-traces, the flooded language, and the br -uncover-
able traces defines a refinement relation. We show that an open net Impl br -
accords with an open net Spec if the respective traces of Impl ’s coverable b-
bounded stop-semantics are included in the respective traces of Spec’s coverable
b-bounded stop-semantics. For the proof, we use the following two lemmata.
The first lemma states that for every trace w, which is neither a trace nor a
br -uncoverable trace of N , there exists a br -controller of N containing w in its
set of boundb-violators.

Lemma 6.10. Let N be an open net. If w 6∈ uLbr (N), then there exists a br-
controller C of N with w ∈ boundb(C).

Proof. Let w 6∈ uLbr (N) with w = w1 . . . wk for j = 1, . . . , k, wj ∈ IN ] ON .
As w 6∈ uncovbr (N), there exists a br -controller C of N with w ∈ Lb(C) by
Definition 6.8. If w /∈ boundb(C), we construct from w and C a br -controller
N bound
w ⊕C ′ of N with boundb-violator w as follows: In a first step, we construct

an open net Nw that basically shifts all tokens from N to C, and vice versa.
Moreover, Nw tracks whether a firing sequence in C is a prefix of w, and sub-
sequently moving a token in Nw from an initially marked place p0 to a place
pk. Intuitively, a token on a place pj means we already encountered the trace
w1 . . . wj . For shifting, we introduce several interface transitions in Nw for each
interface place in N . In a second step, if and only if the place pk is marked—
that is, we encountered the trace w1 . . . wk = w—a “disaster” transition tdisaster

will be enabled, which may produce an unlimited number of tokens onto an
inner place pdisaster . The latter construction yields the open net Nbound

w . This
construction guarantees that w is a boundb-violator of Nbound

w ⊕ C ′.
Let I ′ = {i′ | i ∈ IC} and O′ = {o′ | o ∈ OC} be “fresh” copies of IC and OC .

We derive the open net C ′ = (PC , TC , F
′
C ,mC , I

′, O′, ∅) from C by renaming the
interface of C and adjusting the flow relation accordingly. We define the open
net Nw = (P ′, T ′, F ′,mNw , ON ]OC′ , IN ] IC′ , ∅) with
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Fig. 11: Illustration of the construction of the open net Nw for N with ON = {a},
IN = {b}, and w = ab.

– P ′ = {pi | 0 ≤ i ≤ k}
] {perr},

– T ′ = {txi | 0 ≤ i ≤ k − 1 ∧ x ∈ ON ] IN}
] {txerr | x ∈ ON ] IN}
] {terr},

– F ′ = {(x, txi ), (txi , x
′), (pi, t

x
i ) | 0 ≤ i ≤ k − 1 ∧ x ∈ ON}

] {(x′, txi ), (txi , x), (pi, t
x
i ) | 0 ≤ i ≤ k − 1 ∧ x ∈ IN}

] {(txi , pi+1) | 0 ≤ i ≤ k − 1 ∧ x ∈ ON ] IN ∧ x = wi+1}
] {(txi , perr) | 0 ≤ i ≤ k − 1 ∧ x ∈ ON ] IN ∧ x 6= wi+1}
] {(x, txerr), (txerr, x′), (perr, txerr), (txerr, perr) | x ∈ ON}
] {(x′, txerr), (txerr, x), (perr, t

x
err), (t

x
err, perr) | x ∈ IN}

] {(pk, terr), (terr, perr)},
– mNw = [p0].

Figure 11 illustrates the construction of Nw. Clearly, we have L(C) = L(Nw ⊕
C ′), boundb(C) = boundb(Nw ⊕ C ′), and stop(C) = stop(Nw ⊕ C ′). Therefore,
the open net Nw ⊕ C ′ is a br -controller of N by Proposition 6.6.

The places p0, . . . , pk, perr together always carry one token, and pk gets
marked if and only if we encountered a trace whose prefix is w. Next, we
extend Nw to an open net Nbound

w by adding a disaster transition tdisaster .
The transition tdisaster may produce an unlimited number of tokens onto an
inner place pdisaster of Nbound

w . Formally, we define the open net Nbound
w =

(P ′]{pdisaster}, T ′]{tdisaster}, F ′]F ′′,mNw , ON ]OC′ , IN ] IC′ , ∅) with F ′′ =
{(pk, tdisaster ), (tdisaster , pk), (tdisaster , pdisaster )}. Thus, w ∈ boundb(Nbound

w ⊕C ′)
for the br -controller Nbound

w ⊕ C ′ of N . ut

The second lemma states that for every trace w of N , which is neither a
stop-trace nor br -uncoverable, there exists a br -controller of N containing w in
its set of stop-traces.
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Lemma 6.11. Let N be an open net. If w ∈ L(N) \ ustopbr (N), then there
exists a br-controller C of N with w ∈ stop(C).

Proof. Let w ∈ L(N) \ ustopbr (N) with w = w1 . . . wk for j = 1, . . . , k, wj ∈
IN]ON . As w 6∈ uncovbr (N), there exists a br -controller C of N with w ∈ Lb(C)
by Definition 6.8. Then w ∈ L(C)\boundb(C); otherwise, C is not a br -controller
of N by Proposition 6.6. As w is no stop-trace of N , there exists an output
o ∈ ON such that menv(N)

wo
===⇒. We conclude that wo ∈ L(N) and wo ∈ L(C),

thus wo is not a boundb-violator of N by Proposition 6.6.

Like in the proof of Lemma 6.10, we construct a br -controller Nw ⊕C ′ of N
with stop-trace w: We track whether a firing sequence in C is a prefix of w by
composing C with another open net Nw, and subsequently moving a token in
Nw from an initially marked place p0 to a place pk. Later, if and only if the place
pk is marked—that is, we encountered the trace w1 . . . wk = w—we prevent any
output from Nw, but allow input to Nw. This will make w a stop-trace. Once
Nw receives one input—for example, o ∈ ON as discussed above—we make Nw
transparent again.

Let I ′ = {i′ | i ∈ IC} and O′ = {o′ | o ∈ OC} be “fresh” copies of IC and OC .
We derive the open net C ′ = (PC , TC , F

′
C ,mC , I

′, O′, ∅) from C by renaming the
interface of C and adjusting the flow relation accordingly. We define the open
net Nw = (P ′, T ′, F ′,mNw , ON ]OC′ , IN ] IC′ , ∅) with

– P ′ = {pi | 0 ≤ i ≤ k}
] {perr},

– T ′ = {txi | 0 ≤ i ≤ k ∧ x ∈ ON}
] {txi | 0 ≤ i ≤ k − 1 ∧ x ∈ IN}
] {txerr | x ∈ ON ] IN}
] {terr},

– F ′ = {(x, txi ), (txi , x
′), (pi, t

x
i ) | 0 ≤ i ≤ k ∧ x ∈ ON}

] {(x′, txi ), (txi , x), (pi, t
x
i ) | 0 ≤ i ≤ k − 1 ∧ x ∈ IN}

] {(txi , pi+1) | 0 ≤ i ≤ k − 1 ∧ x ∈ ON ] IN ∧ x = wi+1}
] {(txi , perr) | 0 ≤ i ≤ k − 1 ∧ x ∈ ON ] IN ∧ x 6= wi+1}
] {(txk, perr) | x ∈ ON}
] {(x, txerr), (txerr, x′), (perr, txerr), (txerr, perr) | x ∈ ON}
] {(x′, txerr), (txerr, x), (perr, t

x
err), (t

x
err, perr) | x ∈ IN}

] {(pk, terr), (terr, perr)},

– mNw = [p0].

Figure 12 illustrates the construction of Nw. Clearly, we have w ∈ stop(Nw⊕C ′),
and the open net Nw ⊕ C ′ is a br -controller of N . ut

Finally, we show that br -accordance coincides with the refinement relation
defined by inclusion of the coverable b-bounded stop-semantics.
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Fig. 12: Illustration of the construction of the open net Nw for N with ON = {a},
IN = {b}, and w = ab.

Theorem 6.12 (coverable b-bounded stop-inclusion vs. br-accordance).
For two interface-equivalent open nets Impl and Spec, we have

uncovbr (Impl) ⊆ uncovbr (Spec),
Impl vbr ,acc Spec iff uLbr (Impl) ⊆ uLbr (Spec), and

ustopbr (Impl) ⊆ ustopbr (Spec) .

Proof. ⇒: Let w /∈ uncovbr (Spec); that is, there exists a br -controller C of Spec
with w ∈ Lb(C). Clearly, C is a br -controller of Impl by Impl vbr ,acc Spec and,
thus, w /∈ uncovbr (Impl). This proves uncovbr (Impl) ⊆ uncovbr (Spec).

Let w ∈ uLbr (Impl)\uncovbr (Impl) and assume w 6∈ uLbr (Spec). There exists
a br -controller C of Spec with w ∈ boundb(C) by Lemma 6.10. Clearly, C is not
a br -controller of Impl by Proposition 6.6, and we have a contradiction to our
assumption that Impl vbr ,acc Spec. Thus, w ∈ uLbr (Spec).

Let w ∈ ustopbr (Impl)\uncovbr (Impl) and assume w 6∈ ustopbr (Spec). Then,
w ∈ stop(Impl) ⊆ L(Impl) and w ∈ L(Spec), as uLbr (Impl) ⊆ uLbr (Spec) has
been shown already. We can construct a br -controller C of Spec with w ∈ stop(C)
by Lemma 6.11. Clearly, C is not a br -controller of Impl by Proposition 6.6,
and we have a contradiction to our assumption that Impl vbr ,acc Spec. Thus,
w ∈ ustopbr (Spec).
⇐: Proof by contraposition. Assume that the three inclusions hold and that

C is not a br -controller of Impl . We show that C is not a br -controller of Spec
either. If Impl and C are not b-responsive, we have Lb(Impl) ∩ boundb(C) 6= ∅,
or boundb(Impl)∩Lb(C) 6= ∅, or stopb(Impl)∩ stopb(C) 6= ∅ by Proposition 6.6.
We consider each case separately:

– w ∈ Lb(Impl)∩boundb(C) : Then w ∈ Lb(Impl) ⊆ uLbr (Impl) ⊆ uLbr (Spec)
by Lemma 6.9 and assumption. If w ∈ L(Spec) then C is not a br -controller of
Spec by w ∈ boundb(C) and Proposition 6.6; otherwise, if w ∈ uncovbr (Spec),
then C is not a br -controller of Spec by w ∈ boundb(C) ⊆ Lb(C) and Defi-
nition 4.3.
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– w ∈ boundb(Impl) ∩ Lb(C) : Then w ∈ boundb(Impl) ⊆ uncovbr (Impl) ⊆
uncovbr (Spec) by Lemma 6.9 and assumption. Then C is not a br -controller
of Spec by Definition 4.3.

– w ∈ stopb(Impl) ∩ stopb(C) : Then, w ∈ stopb(Impl) ⊆ ustopbr (Impl) ⊆
ustopbr (Spec) by Lemma 6.9 and assumption. If w ∈ stop(Spec) then C is
not a br -controller of Spec by w ∈ stopb(C) and Proposition 6.6; otherwise, if
w ∈ uncovbr (Spec), then C is not a br -controller of Spec by w ∈ stopb(C) ⊆
Lb(C) and Definition 4.3. ut

Example 6.4. Example 6.2 shows that D′ vbr ,acc D although sf ∈ Lb(D′) \
Lb(D). This difference is hidden in the coverable b-bounded stop-semantics due
to flooding: sf ∈ uLbr (D′) ⊆ uLbr (D).

Despite the external characterization of the trace set uncovbr , we can compute
the coverable b-bounded stop-semantics of an open net N by using the notion
of a most permissive controller [37], which is a controller that can visit all the
markings that can be visited using any controller. So, the coverable markings of
an open net are the markings that can be visited by a most permissive controller.
The construction is not the focus of this article and hence not shown.

As shown in Example 6.1, br -accordance is not a precongruence. The next sec-
tion characterizes the coarsest precongruence that is contained in br -accordance.

6.3 Deriving the coarsest precongruence for b-responsiveness

To derive the coarsest precongruence for b-responsiveness, we need to cope with
the restriction to b-boundedness and, therefore, add information about boundb-
violators to the F+-semantics in Definition 3.9. For br -accordance, we observed
that it does not imply Lb-inclusion (see Example 6.2, whereas it implies uLbr -
inclusion (see Theorem 6.12). Therefore, one could wonder whether we should
consider uncoverable traces rather than boundb-violators. The following lemma
shows that for the coarsest precongruence the situation is different because this
precongruence implies Lb-inclusion.

Lemma 6.13 (vcbr ,acc implies vb,acc). For interface-equivalent open nets Impl
and Spec, we have

Impl vcbr ,acc Spec implies Impl vb,acc Spec .

Proof. Assume Impl 6vb,acc Spec and consider a b-controller A of Spec which is
not a b-controller of Impl . Then the construction in Fig. 13 shows that open net
C in Fig. 13b is a br -controller of Spec⊕A′ but not of Impl⊕A′. This contradicts
that Impl vcbr ,acc Spec. ut

In the light of Lemma 6.13, we add information about boundb-violators to the
F+-semantics in Definition 3.9. The resulting b-bounded F+-semantics consists
of the b-bounded semantics and the F+-semantics extended with all tree failures
(w,X) where w is a trace of boundb and X is any subset of the language.
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Fig. 13: Construction for proof of Lemma 6.13

Definition 6.14 (b-bounded F+-semantics). For a labeled net N , we define
fboundb(N) = {(w,X) | w ∈ boundb(N) ∧X ∈ P((I ]O)+)} and the b-bounded
F+-semantics of N by

1. boundb(N) and
2. F+

b (N) = F+(N) ∪ fboundb(N) .

The F+
b -refinement relation combines b-accordance (see Definition 5.1) and

the F+-refinement relation (see Definition 3.14). It is a pleasant surprise that
this combination works.

Definition 6.15 (F+
b -refinement). For two interface-equivalent labeled nets

Impl and Spec, Impl F+
b -refines Spec, denoted by Impl vF+

b
Spec, if

1. boundb(Impl) ⊆ boundb(Spec) and
2. ∀(w,X) ∈ F+

b (Impl) : ∃x ∈ {ε} ∪ ↓ X : (wx, x−1X) ∈ F+
b (Spec) .

We say (w,X) is dominated by (wx, x−1X). For two interface-equivalent open
nets Impl and Spec, we define Impl vF+

b
Spec, if env(Impl) vF+

b
env(Spec).

Example 6.5. Consider again the open nets D and D′. For any bound b, we have
(sf , ∅) ∈ F+

b (D′) but (sf , ∅) /∈ F+
b (D); thus, D′ does not F+

b -refine D.

The next lemma shows that the b-bounded F+-semantics refines the b-bounded
semantics as it should in view of Lemma 6.13.

Lemma 6.16 (F+
b -refinement implies language inclusion). For labeled

nets Impl and Spec, we have

Impl vF+
b

Spec implies Lb(Impl) ⊆ Lb(Spec) .

Proof. Let w ∈ Lb(Impl). Then (w, ∅) ∈ F+
b (Impl) by Definition 6.14, and

(w, ∅) ∈ F+
b (Spec) by Definition 6.15 which immediately implies w ∈ Lb(Spec)

by Definition 6.14. ut
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If we consider the composition of two open nets N1 and N2, then its b-
bounded F+-semantics coincides with that of the parallel composition of the
two environments, env(N1) ⇑ env(N2).

Lemma 6.17. For composable open nets N1 and N2, we have

F+
b (N1 ⊕N2) = F+

b (env(N1) ⇑ env(N2)) .

Proof. Follows directly from Lemma 2.12: If one net has a boundb-violator w
due to marking m, then the other net can reach an agreeing marking m′ with
trace w; thus w is also a boundb-violator for the other net (where, if the latter
is env(N1) ⇑ env(N2), we fire ‘interface transitions’ to make the markings agree
strongly if necessary). Likewise, if one net has a tree failure (w,X) due to marking
m, then the other net can reach an agreeing marking m′ with trace w. If w is a
boundb-violator in the other net, then X is a refusal set by definition of the b-
bounded F+-semantics. Otherwise, if some trace v ∈ X could be performed
from m′, this would also be possible from m due to bisimilarity, yielding a
contradiction. Thus, (w,X) is also a tree failure of the other net. ut

We want to show that F+
b -refinement is a precongruence on open nets for

composition operator ⊕, and for this we will use the precongruence results
for F+-refinement and b-accordance. First, we characterize the b-bounded F+-
semantics for labeled net composition and hiding, and then combine these results
for open net composition.

Lemma 6.18 (b-bounded F+-semantics for labeled net composition).
For composable labeled nets N1 and N2, we have

F+
b (N1‖N2) = {(w,X) | ∃(w1, X1) ∈ F+

b (N1), (w2, X2) ∈ F+
b (N2) :

w ∈ w1‖w2 ∧ ∀x ∈ X :
x ∈ x1‖x2 implies x1 ∈ X1 ∨ x2 ∈ X2}

∪ fboundb(N1‖N2) .

Proof. We write E for N1‖N2.
⊆: Let (w,X) ∈ F+

b (E). If w is not a boundb-violator of E, then (w,X) ∈
F+(E) by Definition 6.14, and we conclude with Proposition 3.11 and Defini-
tion 6.14 that it is contained in the first set on the right hand side. If w is a
boundb-violator of E, then (w,X) ∈ fboundb(E) by Definition 6.14.
⊇: Let i = 1, 2. If both (wi, Xi) ∈ F+(Ni), then (w,X) ∈ F+(E) by

Proposition 3.11 and F+(E) ⊆ F+
b (E). Assume now that at least one tree

failure (wi, Xi) is not contained in the respective F+-semantics. Then trace wi
is a boundb-violator by Definition 6.14 and so is w by Proposition 5.3(1), be-
cause w3−i ∈ Lb(N3−i) as argued in the proof of Lemma 6.16. Thus, (w,X) ∈
fboundb(E) ⊆ F+

b (E) due to Definition 6.14. Furthermore, fboundb(E) ⊆ F+
b (E)

by Definition 6.14. ut

In the next lemma, we consider a labeled net N/A, A ⊆ Σ and we use φ(w)
to denote w|Σ\A. We canonically extend the notion of φ(w) pointwise to sets of
traces.
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Lemma 6.19. For any labeled net N and any label set A ⊆ Σ∗N , we have

F+
b (N/A) = {(φ(w), X) | (w, φ−1(X)) ∈ F+

b (N)} .

Proof. Follows by Proposition 5.3(5) and Proposition 3.12. ut

Recall Proposition 5.3(7), which shows how to determine boundb(N1 ⊕ N2)
from the boundb- and the Lb-semantics of the components; in our setting, we
can read off the Lb-semantics from the b-bounded F+-semantics; see the proof
of Lemma 6.16. The next proposition similarly characterizes the b-bounded F+-
semantics for open net composition, also using the b-bounded semantics. In the
proofs of the following two results, we will denote the first set on the right-hand
side in Lemma 6.18 by F1+b (N1, N2).

Proposition 6.20 (b-bounded F+-semantics for open net composition).
For composable open nets N1 and N2, we have

F+
b (N1 ⊕N2) = {(w,X) | ∃(w1, X1) ∈ F+

b (N1), (w2, X2) ∈ F+
b (N2) :

w ∈ w1 ⇑ w2 ∧ ∀x ∈ X :
x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2}

∪ fboundb(N1 ⊕N2) .

Proof. According to Lemma 6.17, we can consider F+
b (env(N1) ⇑ env(N2)) in-

stead of F+
b (N1 ⊕ N2). Because ⇑ is ‖ followed by hiding, we can determine

this set by applying hiding (according to Proposition 5.3(5) and Lemma 6.19)
to the right-hand side of Lemma 6.18. As a result, F1+b (N1, N2) turns into the
first set in the present proposition, just as Proposition 3.13 results from Propo-
sition 3.11 in combination with Proposition 3.12. More easily, fboundb(N1‖N2)
is analogously translated into fboundb(N1⊕N2) according to Proposition 5.3(1)
and 5.3(7). ut

Next, we show that F+
b -refinement is a precongruence on labeled nets for the

composition operator ‖. We will use the following three saturation conditions,
which also hold for the F+-semantics [29]:

SAT1: (w,X) ∈ F+
b (N), X ′ ⊆ X implies (w,X ′) ∈ F+

b (N)
SAT2: (w,X) ∈ F+

b (N) ∧ ∀z ∈ Z : (wz, z−1X) 6∈ F+
b (N) implies

(w,X ∪ Z) ∈ F+
b (N)

SAT3: (w,X) ∈ F+
b (N) implies (w, ↑ X) ∈ F+

b (N)

In [29], ‖ is defined directly on sets of tree failures, taking essentially the
equation in Proposition 3.11 as definition. Then, just from the saturation con-
ditions, it is shown that F+-refinement (defined as in Definition 6.15(2)) is a
precongruence for ‖. We will make use of this, although this defining equation
does not match Lemma 6.18, but just gives F1+b (N1, N2).

Lemma 6.21. F+
b -refinement is a precongruence on labeled nets for the com-

position operator ‖.
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Proof. To see the three saturation conditions, consider first some (w,X) ∈
F+(N) ⊆ F+

b (N). Then, SAT1 and SAT3 follow directly from [29], as does
SAT2 once we observe that (wz, z−1X) 6∈ F+

b (N) implies (wz, z−1X) 6∈ F+(N).
Second, consider a tree failure (w,X) with w ∈ boundb(N); here, all three con-
ditions are immediate because (w, Y ) ∈ F+

b (N) for any Y ∈ P((I ]O)+).

Now let Impl vF+
b

Spec and C be a composable labeled net for Impl and

Spec. We have to check the two items of Definition 6.15 in order to prove that
Impl‖C vF+

b
Spec‖C.

The first item follows from Proposition 5.3(1) because our assumption implies
boundb(Impl) ⊆ boundb(Spec) and—due to Lemma 6.16—Lb(Impl) ⊆ Lb(Spec).

For the second item, we first consider some (w,X) ∈ F1+b (Impl , C). We
observe that, due to Definition 6.15(2), F+

b (Impl) is related to F+
b (Spec) in the

sense of F+-refinement. Thus, according to the precongruence result of [29],
∃x ∈ {ε} ∪ ↓ X : (wx, x−1X) ∈ F1+b (Spec, C) ⊆ F+

b (Spec‖C). Second, we
consider some (w,X) ∈ fboundb(Impl‖C). This time, due to boundb(Impl‖C) ⊆
boundb(Spec‖C), we even have (w,X) ∈ fboundb(Spec‖C) ⊆ F+

b (Spec‖C)—that
is, Definition 6.15(2) is satisfied taking x = ε. ut

We show that F+
b -refinement for labeled nets is preserved under hiding.

Lemma 6.22. F+
b -refinement is a precongruence on labeled nets for hiding.

Proof. Let Impl and Spec be labeled nets with Impl vF+
b

Spec, and A ⊆
Σ∗. Then Proposition 5.3(5) directly implies Definition 6.15(1) for Impl/A and
Spec/A. Furthermore, the characterization in Lemma 6.19 corresponds to the
defining equation for hiding in [29], so Definition 6.15(2) is inherited from the
precongruence result in [29] for F+-refinement and hiding. ut

Now we directly get the first main result of this section that also the F+
b -

refinement relation is a precongruence for composition operator ⊕.

Theorem 6.23 (precongruence). F+
b -refinement is a precongruence for the

composition operator ⊕.

Proof. This is now completely analogous to the proof of Theorem 3.15, except
that here the semantics associates two sets with a net and we use Lemma 6.21
and 6.22 on the basis of Lemma 6.17 and Lemma 5.4. ut

With the next theorem, we prove that the coarsest precongruence which is
contained in the br -accordance and F+

b -refinement coincide.

Theorem 6.24 (precongruence and F+
b -refinement coincide). For two

interface-equivalent open nets Impl and Spec, we have

Impl vcbr ,acc Spec iff Impl vF+
b

Spec .
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Proof. ⇒: By Lemma 6.13,vcbr ,acc impliesvb,acc from which we conclude boundb-

inclusion. It remains to show F+
b -inclusion. Let (w,X) ∈ F+

b (Impl). If w ∈
boundb(Impl) ⊆ boundb(Spec) (by boundb-inclusion), then (w,X) ∈ F+

b (Spec)
and we are done. Otherwise, we use net N in Fig. 6 and the open net C as
in the proof of (the reverse implication of) Theorem 3.17. Following the argu-
mentation in the proof of Theorem 3.17, we have that C is not a br -controller
of Impl ⊕ N so it is not a br -controller of Spec ⊕ N . We distinguish three
cases: If w ∈ boundb(Spec), then (w,X) ∈ F+

b (Spec) by Definition 6.14. If
wu ∈ boundb(Spec) with u ∈ ↓ X, then (wu, u−1X) ∈ F+

b (Spec) by Defini-
tion 6.14. Otherwise, we use the argumentation in the proof of Theorem 3.17 to
conclude that for some u, (wu, u−1X) ∈ F+(Spec) ⊆ F+

b (Spec).
⇐: We show that Impl vF+

b
Spec implies boundb-inclusion, Lb-inclusion and

stopb-inclusion from which we conclude by Theorem 6.7 that Impl vbr ,acc Spec.
The latter, in turn, also shows that Impl vF+

b
Spec implies Impl vcbr ,acc Spec

with Theorem 6.23 and the definition of vcbr ,acc .
boundb-inclusion follows directly from Definition 6.15, and Lb-inclusion fol-

lows from Lemma 6.16. It remains to show stopb-inclusion: Let O be the set of
output places of Impl and, equivalently, of Spec. We have w ∈ stopb(Impl) iff
(w,O) ∈ F+

b (Impl) by Definition 6.14. Then Impl vF+
b

Spec implies (w,O) ∈
F+

b (Spec), thus w ∈ stopb(Spec). ut

Note that stop-inclusion does not hold because (w,O) ∈ F+
b (Spec) does not

imply w ∈ stop(Spec).

Example 6.6. For our example open nets D and D′, we have shown in Exam-
ple 6.1 that D′ br -accords with D, but D′ does not F+

b -refine D as illustrated
in Example 6.5. As a consequence, D′ vcbr ,acc D does not hold.

6.4 Decidability of F+
b -refinement

In this section, we show that checking F+
b -refinement is decidable. For this,

we work with the reachability graph RG(N) of a labeled net N and the set
B(N) ⊆ MN of bound violations of N . Actually, our approach works for arbi-
trary labeled transition systems and the difference between inputs and outputs
does not matter. To stress the generality of our approach and to abstract from
the not so relevant details of open nets, we assume we are given an arbitrary
LTS S (as used in [29, Theorem 61]) where the state set of S is partitioned into
Q]B(S) with a finite set Q of states that are reachable from the initial state mS

(i.e., MN −B(S) in N) and a possibly infinite set B(S) of bad states (i.e., B(N)
in N). For such an LTS S, we can define boundb(S), F+(S) and F+-refinement
(as for labeled nets). Let BF+

b (S) = {(w,X) | w ∈ boundb(S), X ⊆ (I ∪ O)+}
and F+

b (S) = F+(S) ∪BF+
b (S); define F+

b -refinement as in Definition 6.15.
Checking F+

b -refinement entails checking both items of Definition 6.15. The
first item of Definition 6.15—that is, checking boundb-inclusion—is decidable
because we can represent the languages boundb(S) as a finite automaton. To



55

[p1] s

[p1,qi]

q

[p2]

[p2,qi]

q

[p1,do] d

[p1,qi,do]

q

d

[p2,do]

!

!

[p2,qi,do]

q

! !

U

q

!

!q q

q

d

d

s,q,d,f

s

s

s

s

s

s

s

(a) Automaton for bound1(D)

[p1] s

[p1,qi]

q

[p2]

[p2,qi]

q

[p1,do] d

[p1,qi,do]

q

d

[p2,do]

!

!

[p2,qi,do]

q

! !

U1

q

!

!q q

q

d

d

s,q,d,f

s

s

s

s

s

s

s

U2
s,q,d,f

q

q

!

!q

q
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Fig. 14: Sketches of the two finite automata used in the proof of Theorem 6.28.
A transition involving s is indicated by an arrow without sink.

this end, we merge all bad states into a single state U ; more formally, we add
a new state U with a self-loop for each action a ∈ I ] O, and replace each arc
m

a−→ m′ by m
a−→ U whenever m /∈ B(S) while m′ ∈ B(S); finally, we restrict

the LTS to the states reachable from mS (which are all in Q) and consider only
U as final state. Now checking boundb-inclusion reduces to checking language
inclusion for two finite automata.

Example 6.7. Figure 14a sketches the automaton that represents bound1(D).
Parts of the automaton in Fig. 14a that can only be reached with an s-transition
are not shown. For example, we have {qq , qqqq , qqf } ⊆ bound1(D). The mark-

ing [p1, q
i, qi] is not 1-bounded; therefore, the transition [p1, q

i]
q−→ [p1, q

i, qi] in

RG(env(D)) was replaced with [p1, q
i]

q−→ U . The traces qq and qqqq are strict
bound1-violators, as they lead from the initial state [p1] to the final state U while
visiting state U only once (for trace qqqq with three τ -transitions in-between).
The traces qqqq and qqf visit U more than once.

To decide refinement of the tree failures—that is, the second item of Defini-
tion 6.15—we shall use the construction of Rensink and Vogler [29, Theorem 61]
for deciding F+-refinement for finite-state systems. As checking F+-refinement
is known to be decidable [29, Theorem 61], we can conclude that checking F+

b -
refinement is decidable, too.

The automaton we constructed above for S also represents the language
Lb(S) if we regard all states as final. But it is not suitable for representing
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F+
b (S), since we cannot distinguish the boundb-violators that can be performed

from those that have only been added as continuations; thus, the refusal sets
are not represented properly. Therefore, we propose a different finite-state rep-
resentation of F+

b (S) on which checking F+-refinement coincides with checking
F+

b -refinement for S.
We construct the finite LTS U12(S) as follows. The state set of U12(S) is

Q ] {U1, U2}, the start state is mS , B(U12(S)) = {U1, U2} is the set of bound
violations, and the transition relation is defined as

{m a−→ m′ | m,m′ ∈ Q, a ∈ I ∪O ∪ {τ},m a−→ m′ in S}
∪ {m a−→ U1,m

a−→ U2 | m ∈ Q,∃m′ ∈ B(S), a ∈ I ∪O ∪ {τ} : m
a−→ m′ in S}

∪ {U1
a−→ U1, U1

a−→ U2 | a ∈ I ∪O}.

Example 6.8. Figure 14b shows a part of the automaton U12(D). For example, we
have (qqqq , {f}) ∈ F+

b (D)∩F+(U12(D)), because the trace qqqq may lead to the
state U2 and then refuse f . Further, we have (q , {qqf }) ∈ F+

b (D)\F+(U12(D))—
observe f can never fire in env(D), while any state reached by q in U12(D) can
reach U1 with qq and then add f . There is q ∈ ↓ {qqf } \ {qqf } and the trace qq
is a bound1-violator of D.

The next lemma, gives three observations about U12(S).

Lemma 6.25. Let S be an LTS. Then the following facts hold for U12(S).

1. w ∈ boundb(S) iff mN
w

==⇒ U1 iff mN
w

==⇒ U2.
2. BF+

b (S) ⊆ F+(U12(S)) (i.e., U2 can refuse all X ⊆ (I ∪O)+)
3. F+(U12(S)) ⊆ F+

b (S) and (w,X) ∈ F+
b (S) \ F+(U12(S)) implies ∃u ∈

↓ X \X such that wu ∈ boundb(S)

Proof. The first item follows immediately from the definition of U12(S), and the
second item is an implication of the first item. Consider the third item. The sets
agree on those (w,X) with w ∈ boundb(S) by Item 2. So consider w /∈ boundb(S).

If (w,X) ∈ F+(U12(S)) due to mS
w

==⇒ m, then we also have mS
w

==⇒ m in S
with the same run. In U12(S), m could only have more traces due to runs using
U1, so it can only refuse less. Thus, (w,X) ∈ F+(S) and inclusion follows.

If (w,X) ∈ F+
b (S) due to m, but (w,X) /∈ F+(U12(S)), then this must be

due to a run from m that touches U1. Assume this happens for the first time

after u 6= ε; that is, we have mN
w

==⇒ m
u

==⇒ U1
u′

==⇒ with uu′ ∈ X. Thus,
wu ∈ boundb(S) and u ∈ ↓ X. As mN

w
==⇒ m

u
==⇒ also in S, we further have

u /∈ X. ut

The following lemma gives another prerequisite for the decidability proof.

Lemma 6.26. For X,Y ∈ P(Σ∗), let x ∈ ↓ Y ∪ {ε} and X = x−1Y . Then

1. u ∈ ↓ X implies xu ∈ ↓ Y
2. u /∈ X implies xu /∈ Y
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Proof. (1) Due to uu′ ∈ X and xuu′ ∈ Y .

(2) Suppose xu ∈ Y . Then u ∈ X and we have a contradiction. ut

With the next lemma and the subsequent theorem, we return to speaking
about open nets – though we could as well talk about two LTS. The lemma
shows that deciding F+

b -refinement for two open nets Impl and Spec reduces to
checking F+-refinement of their automata U12(Spec) and U12(Impl).

Lemma 6.27. For two open nets Impl and Spec such that boundb(Impl) ⊆
boundb(Spec), we have

Impl vF+
b

Spec iff U12(Impl) vF+ U12(Spec) .

Proof. ⇒: Each (v, Y ) ∈ F+(U12(Impl)) ⊆ F+
b (Impl) (by Lemma 6.25(3)) is

dominated by some (w,X) ∈ F+
b (Spec) due to some x ∈ ↓ Y ∪ {ε}, i.e., X =

x−1Y , w = vx. If (w,X) ∈ F+(U12(Impl)), we are done. So assume otherwise
and consider u ∈ ↓ X \X according to Lemma 6.25(3). Then xu ∈ ↓ Y \ Y by
Lemma 6.26 and (vxu, (xu)−1Y ) ∈ F+(U12(Spec)) because vxu ∈ boundb(Spec)
and ε /∈ (xu)−1Y . Hence, (v, Y ) is also covered in this case.

⇐: Each (w,X) ∈ F+(U12(Impl)) is dominated by F+(U12(Spec)) ⊆ F+
b (Spec)

by Lemma 6.25(3). So consider (w,X) ∈ F+
b (Impl)\F+(U12(Impl)) and respec-

tively u ∈ ↓ X \X according to Lemma 6.25(3). Then, (wu, u−1X) ∈ F+
b (Spec)

because wu ∈ boundb(Impl) ⊆ boundb(Spec) and ε /∈ u−1X. Thus, (w,X) is also
dominated in this case. ut

With Lemma 6.27, we have shown:

Theorem 6.28 (F+
b -refinement is decidable). For two interface-equivalent

open nets Impl and Spec, checking whether Impl vF+
b

Spec is decidable.

7 Bounded nets and final markings

In this section, we consider open nets with final markings and whose composition
is bounded. We refer to this notion of responsiveness as bf -responsiveness.

Definition 7.1 (bf -responsiveness). Let N1 and N2 be composable open
nets. A marking of N1⊕N2 is bf -responsive if it is f -responsive and b-bounded.
Open nets N1 and N2 are bf -responsive if their composition N1⊕N2 is a closed
net and every reachable marking in N1 ⊕N2 is bf -responsive.

Two open nets are bf -responsive if and only if they are f -responsive and
their composition is b-bounded. In the presence of final markings, we can prove
a stronger semantical characterization of responsiveness than in Proposition 6.2.
Due to bf -responsiveness each net has always the chance to send a message or
the composition terminates.
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Fig. 15: Open net U ′ modeling another user of open net D in Fig. 8a and their
composition D ⊕ U ′. In addition to the models, we have ΩU ′ = ΩD⊕U ′ = {[ ]}.

Proposition 7.2. Let open nets N1 and N2 be bf -responsive. Then, from any

reachable marking m, markings m1 and m2 are reachable such that m1
t1−→ with

t•1 ∩O1 6= ∅ and m2
t2−→ with t•2 ∩O2 6= ∅, or a final marking is reachable.

Proof. Direct consequence of Proposition 6.2 and Definitions 7.1 and 4.1. ut

Again, we redefine the notion of a controller and of accordance for this vari-
ant of responsiveness to bfr -controller and bfr -accordance. Also bfr -accordance
shall turn out not to be a precongruence; thus, we also introduce its coarsest
precongruence.

Definition 7.3 (bfr-controller, bfr-accordance). An open net C is a bfr-
controller of an open net N if N and C are bf -responsive.

For interface-equivalent open nets Impl and Spec, Impl bfr-accords with Spec,
denoted by Impl vbfr ,acc Spec, if for all open nets C holds: C is a bfr -controller
of Spec implies C is a bfr -controller of Impl .

We denote the coarsest precongruence contained in vbfr ,acc by vcbfr ,acc .

Example 7.1. The open net U ′ in Fig. 15a represents another user of the database
server D in Fig. 8a. It has the same functionality as the open net U in Fig. 8b,
but may additionally decide to quit and shut down the database (output place
s). The open nets D and U ′ are composable; their composition D⊕U ′ is a closed
net, which is depicted in Fig. 15b. U ′ is not a br -controller of D because the
nonresponsive marking [ ] is reachable in D⊕U ′, but U ′ is a bfr -controller of D
because [ ] is a final marking of D ⊕ U ′. Moreover, U ′ is not a br -controller of
D′ because D′ ⊕ U ′ can reach the non-bf -responsive marking [f ] (see Proposi-
tion 7.2). Thus, although D′ br -accords with D (see Example 6.1) it does not
bfr -accord with D.

As shown in Example 6.1, D br -accords with D′. No bfr -controller of D′

can send s as otherwise this can lead to the marking [f ]. Thus, we also have D
bfr -accords with D′.
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Like the previous responsiveness variants, bounded final accordance is not
a precongruence either. D bfr -accords with D′, but D ⊕ Y does not bfr -accord
with D′⊕Y , because open net X is a bfr -controller of D′⊕Y but not of D⊕Y
(see Fig. 10).

We continue by giving a trace-based semantics for bf -responsiveness. Then,
we formalize the coarsest precongruence, which is contained in the bfr -accordance
relation.

7.1 A trace-based semantics for bounded final responsiveness

Our trace-based semantics for bf -responsiveness of an open net N combines
the stopdead -semantics of Definition 4.1 and the b-bounded stop-semantics of
Definition 6.1. The resulting b-bounded stopdead-semantics consists of four sets
of traces: boundb-violators, the language, stop-traces, and dead-traces.

Definition 7.4 (b-bounded stopdead-semantics). The b-bounded stopdead-
semantics of a labeled net N is defined by the sets of traces

– boundb(N),
– Lb(N),
– stopb(N), and
– deadb(N) = dead(N) ∪ boundb(N) .

For the purpose of characterizing bfr -controllers, we could also work with
a variant of the b-bounded stopdead -semantics that contains stop-traces and
dead-traces instead of the flooded version. This is similar to the characterization
of br -controllers in Sect. 6.1. Still, we use stopb-traces and deadb-traces in this
semantics because it gives a better sufficient condition for bfr -accordance in
Theorem 7.7 below.

Lemma 7.5. For composable open nets N1 and N2 with Lb(N1)∩boundb(N2) =
∅ and boundb(N1) ∩ Lb(N2) = ∅, we have

stop(N1) ∩ dead(N2) = ∅ and iff stopb(N1) ∩ deadb(N2) = ∅ and
dead(N1) ∩ stop(N2) = ∅ deadb(N1) ∩ stopb(N2) = ∅ .

Proof. ⇐: Follows immediately from Definition 7.4.
⇒: We can write stopb(N1) ∩ deadb(N2) as a union of four intersections

stopb(N1) ∩ deadb(N2) = (stop(N1) ∩ dead(N2))
∪ (boundb(N1) ∩ dead(N2))
∪ (stop(N1) ∩ boundb(N2))
∪ (boundb(N1) ∩ boundb(N2)),

all of which are empty:

– stop(N1) ∩ dead(N2) = ∅ by assumption
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– boundb(N1) ∩ dead(N2) = ∅, by boundb(N1) ∩ Lb(N2) = ∅ (Corollary 5.5)
and dead(N2) ⊆ L(N2) ⊆ Lb(N2)

– stop(N1)∩boundb(N2) = ∅, by Lb(N1)∩boundb(N2) = ∅ (Corollary 5.5) and
stop(N1) ⊆ L(N1) ⊆ Lb(N1)

– boundb(N1) ∩ boundb(N2) = ∅, by boundb(N1) ∩ Lb(N2) = ∅ (Corollary 5.5)
and boundb(N2) ⊆ Lb(N2)

A similar argument applies to deadb(N1) ∩ stopb(N2) = ∅. ut

An open net C is a bfr -controller of an open net N if and only if it is an
fr -controller and a b-controller of N . Thus, by Proposition 4.6 and Corollary 5.5
in combination with Lemma 7.5, we give the following characterization of bf -
responsiveness.

Proposition 7.6 (bf -responsiveness vs. b-bounded stopdead-semantics).
Let N1 and N2 be composable open nets such that N1⊕N2 is a closed net. Then

stopb(N1) ∩ deadb(N2) = ∅ and
N1 and N2 are bf -responsive iff deadb(N1) ∩ stopb(N2) = ∅ and

Lb(N1) ∩ boundb(N2) = ∅ and
boundb(N1) ∩ Lb(N2) = ∅ .

Inclusion of the b-bounded stopdead -semantics defines a refinement relation
which implies bf -responsiveness.

Theorem 7.7 (b-bounded stopdead-inclusion implies bfr-accordance). For
two interface-equivalent open nets Impl and Spec, we have

boundb(Impl) ⊆ boundb(Spec) and
Lb(Impl) ⊆ Lb(Spec) and implies Impl vbfr ,acc Spec .
stopb(Impl) ⊆ stopb(Spec) and
deadb(Impl) ⊆ deadb(Spec)

Proof. Proof by contraposition. Consider an open net C such that Impl ⊕ C
and, equivalently, Spec ⊕ C are closed nets. Otherwise, C is neither a bfr -
controller of Impl nor of Spec. Assume that C is not a bfr -controller of Impl .
Then, Impl and C are not bf -responsive by Definition 7.3, and we have either
stopb(Impl)∩deadb(C) 6= ∅, deadb(Impl)∩stopb(C) 6= ∅, Lb(Impl)∩boundb(C) 6=
∅, or boundb(Impl) ∩ Lb(C) 6= ∅ by Proposition 7.6. Because of the assumed in-
clusions, we have either stopb(Spec)∩deadb(C) 6= ∅, deadb(Spec)∩ stopb(C) 6= ∅,
Lb(Spec) ∩ boundb(C) 6= ∅, or boundb(Spec) ∩ Lb(C) 6= ∅. Again with Propo-
sition 7.6, we see that Spec and C are not bf -responsive; that is, C is not a
bfr -controller of Spec and thus Impl vbfr ,acc Spec. ut

As for Theorem 6.7, the converse of Theorem 7.7 does not hold in general
either, because bounded final responsiveness considers only the reliable part of
open nets.
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Example 7.2. Consider the open nets D and D′, this time, with the empty sets
of final markings. No bfr -controller of D will send an s because this would
eventually lead to firing of shutdown, yielding a non-bf -responsive marking where
neither p1 nor p2 contains a token. Thus, we conclude that D′ bfr -accords with
D. Now we can apply the same trace sf as in Example 6.2 and obtain sf ∈
Lb(D′) \ Lb(D).

For this reason, we adapt the coverable b-bounded stop-semantics from the
previous section.

7.2 A coverable trace-based semantics for bounded final
responsiveness

We combine the idea of the coverable b-bounded stop-semantics in Definition 6.8
and the stopdead -semantics in Definition 4.3 yielding the coverable b-bounded
stopdead-semantics. For this, we define the notion of an bfr -uncoverable trace. As
for the language and the stop-traces in the coverable b-bounded stop-semantics,
we also flood the dead-traces in our new semantics.

Definition 7.8 (coverable b-bounded stopdead-semantics). Let N be an
open net. A word w ∈ (I ] O)∗ is a bfr-uncoverable trace of N if there does
not exist a bfr -controller C of N with w ∈ Lb(C). The coverable b-bounded
stopdead-semantics of N is defined by the sets of traces

– uncovbfr (N) = {w ∈ (I ]O)∗ | w is a bfr -uncoverable trace of N},
– uLbfr (N) = L(N) ∪ uncovbfr (N),
– ustopbfr (N) = stop(N) ∪ uncovbfr (N), and
– udeadbfr (N) = dead(N) ∪ uncovbr (N) .

Example 7.3. We showed in Example 7.1 that D bfr -accords with D′. Now ob-
serve that s ∈ stopb(D) but s 6∈ stopb(D′); that is, stopb-inclusion fails. However,
no bfr -controller of D′ has trace s in its language; otherwise, D′ may reach the
non-bfr -responsive marking [ ]. Thus, we have s ∈ uncovbfr (D′) and s is also in
the flooded stop-set of D′, i.e., s ∈ ustopbr (D′).

By Proposition 7.6, a boundb-violator of an open net is an bfr -uncoverable
trace of N . So we directly conclude that the set of boundb-violators of N is
contained in the set of bfr -uncoverable traces of N . As a result, the coverable
b-bounded stopdead -semantics includes the b-bounded stopdead -semantics.

Lemma 7.9 (b-bounded stopdead-semantics is included). For any open
net N , we have

– boundb(N) ⊆ uncovbfr (N),
– Lb(N) ⊆ uLbfr (N),
– stopb(N) ⊆ ustopbfr (N), and
– deadb(N) ⊆ udeadbfr (N).
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Next, we characterize bfr -accordance. For the proof, we restate Lemmata 6.10
and 6.11 for bf -responsiveness. In addition, we show that for every trace w of N ,
which is neither a dead-trace nor bfr -uncoverable, there exists a bfr -controller
of N containing w in its set of stop-traces.

Lemma 7.10. Let N be an open net. Then

1. If w 6∈ uLbfr (N), then there exists a bfr-controller C of N with w ∈ boundb(C).

2. If w ∈ L(N) \ ustopbfr (N), then there exists a bfr-controller C of N with
w ∈ dead(C).

3. If w ∈ L(N) \ udeadbfr (N), then there exists a bfr-controller C of N with
w ∈ stop(C).

Proof. (1) This is analogous to the proof of Lemma 6.10, except that C is
a bfr -controller of N and we have to consider the final markings. The final
markings of N bound

w are ΩNbound
w

= {[p] | p ∈ {p0, . . . , pk, perr}}. That way

we do not add additional dead-traces to N bound
w ⊕ C ′ beside continuations of

w ∈ boundb(N bound
w ⊕ C ′). Clearly, N bound

w ⊕ C ′ is still a bfr -controller of N
because of w 6∈ uLbr (N) and Proposition 7.6.

(2) This is analogous to the proof of Lemma 6.11, except that C is a bfr -
controller of N and we put ΩNw = {[p] | p ∈ {p0, . . . , pk−1, perr}}. As [pk] is not
a final marking of Nw, the stop-trace w of Nw ⊕ C ′ is a dead-trace of Nw ⊕ C ′.

(3) This is analogous to the proof of Lemma 6.11, except that C is a bfr -
controller of N and we have to change Nw slightly: The introduced stop-trace w
of Nw ⊕ C ′ may be a stop-trace of N , i.e., w ∈ stop(N) \ dead(N). Thus, after
Nw recognizes w, we buffer all messages from C ′ to Nw inside Nw and define
all markings of Nw and C ′ as final markings. That way, we do not introduce an
additional dead-trace of Nw ⊕ C ′. ut

Theorem 7.11 (coverable b-bounded stopdead-inclusion vs. bfr-accordance).
For two interface-equivalent open nets Impl and Spec, we have

uncovbfr (Impl) ⊆ uncovbfr (Spec),
Impl vbfr ,acc Spec iff uLbfr (Impl) ⊆ uLbfr (Spec),

ustopbfr (Impl) ⊆ ustopbfr (Spec), and
udeadbfr (Impl) ⊆ udeadbfr (Spec) .

Proof. ⇒: For the first three trace inclusions, we apply the same argumentation
as in the proof of Theorem 6.12 by replacing Proposition 6.6, Lemma 6.10, and
Lemma 6.11 with Proposition 7.6, Lemma 7.10(1) and(2), respectively.

Let w ∈ udeadbfr (Impl) \ uncovbfr (Impl) and assume w /∈ udeadbfr (Spec).
Then, w ∈ dead(Impl) ⊆ L(Impl) and w ∈ L(Spec), as uLbfr (Impl) ⊆ uLbfr (Spec)
has been shown already. We can construct a bfr -controller C of Spec with w ∈
stop(C) by Lemma 7.10(3). Clearly, C is not a bfr -controller of Impl by Proposi-
tion 7.6, and we have a contradiction to our assumption that Impl vbfr ,acc Spec.
Thus, w ∈ udeadbfr (Spec).
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⇐: Proof by contraposition. Assume that the four inclusions hold and that
C is not a bfr -controller of Impl . We show that C is not a bfr -controller of Spec
either.

Impl and C are not bf -responsive by Definition 7.3, and we have stopb(Impl)∩
deadb(C) 6= ∅, deadb(Impl) ∩ stopb(C) 6= ∅, Lb(Impl) ∩ boundb(C) 6= ∅, or
boundb(Impl)∩Lb(C) 6= ∅ by Proposition 7.6. We consider each case separately:

– w ∈ stopb(Impl) ∩ deadb(C) : Then, w ∈ ustopbfr (Impl) ⊆ ustopbfr (Spec) by
Lemma 7.9 and assumption. If w ∈ stop(Spec) then C is not a bfr -controller
of Spec by Proposition 7.6; otherwise, if w ∈ uncovbfr (Spec), then C is not a
bfr -controller of Spec by w ∈ deadb(C) ⊆ Lb(C) and Definition 7.8.

– w ∈ deadb(Impl)∩stopb(C) : Then, w ∈ udeadbfr (Impl) ⊆ udeadbfr (Spec) by
Lemma 7.9 and assumption. If w ∈ dead(Spec) then C is not a bfr -controller
of Spec by Proposition 7.6; otherwise, if w ∈ uncovbfr (Spec), then C is not a
bfr -controller of Spec by w ∈ stopb(C) ⊆ Lb(C) and Definition 7.8.

– w ∈ Lb(Impl) ∩ boundb(C) or w ∈ boundb(Impl) ∩ Lb(C) : same argumen-
tation as in the proof of Theorem 6.12 by replacing Proposition 6.6 and
Lemma 6.9 with Proposition 7.6 and Lemma 7.9, respectively. ut

Like the trace set uncovbr , also the trace set uncovbfr can be calculated using
the notion of a most permissive controller. However, as this calculation is not
the focus of this article, we do not show it.

7.3 Deriving the coarsest precongruence for bounded final
responsiveness

In this section, we shall derive the coarsest precongruence for bf -responsiveness.
To cope with the combination of f -responsiveness and b-boundedness, we add in-
formation about boundb-violators to the F+

fin -semantics (Definition 4.8), similarly

as we did to derive the b-bounded F+-semantics from the F+-semantics. The
resulting semantics is the b-bounded F+

fin -semantics, where an element (w,X, Y )
is called b-bounded fintree failure.

Definition 7.12 (b-bounded F+
fin-semantics). For a labeled net N , we define

finboundb(N) = boundb(N)×P(Σ+)×P(Σ∗) and the b-bounded F+
fin -semantics

of N by

– boundb(N) and
– F+

b,fin(N) = F+
fin(N) ∪ finboundb(N) .

The F+
b,fin -refinement relation combines the F+

fin -refinement relation (see Def-
inition 4.9) and b-accordance (see Definition 5.1).

Definition 7.13 (F+
b,fin-refinement). For two interface-equivalent labeled nets

Impl and Spec, Impl F+
b,fin -refines Spec, denoted by Impl vF+

b,fin
Spec, if

1. boundb(Impl) ⊆ boundb(Spec) and
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2. ∀(w,X, Y ) ∈ F+
b,fin(Impl) : ∃x ∈ {ε} ∪ ↓ X ∪ ↓ Y : (wx, x−1X,x−1Y ) ∈

F+
b,fin(Spec) .

We say (w,X, Y ) is dominated by (wx, x−1X,x−1Y ). For two interface-equivalent
open nets Impl and Spec, we define Impl vF+

b,fin
Spec, if env(Impl) vF+

b,fin

env(Spec).

If two open nets are in the F+
b,fin -refinement relation, then this implies inclu-

sion of their bounded languages, stop-traces, and dead-traces.

Lemma 7.14. For two labeled nets Impl and Spec, we have

1. Impl vF+
b,fin

Spec implies Lb(Impl) ⊆ Lb(Spec).

2. Impl vF+
b,fin

Spec implies stopb(Impl) ⊆ stopb(Spec).

3. Impl vF+
b,fin

Spec implies deadb(Impl) ⊆ deadb(Spec).

Proof. (1) Let w ∈ Lb(Impl). Then (w, ∅, ∅) ∈ F+
b,fin(Impl) by Definition 7.12

and (w, ∅, ∅) ∈ F+
b,fin(Spec) by Definition 7.13, which immediately implies w ∈

Lb(Spec) by Definition 7.12.
(2) Let w ∈ stopb(Impl). Then we use the proof of (the implication of)

Theorem 4.17 by replacing stop by stopb to conclude that w ∈ stopb(Spec).
(3) Similar argumentation as for (2). ut

Example 7.4. In Example 7.2, we showed for the open nets D and D′ with
the empty set of final markings that Lb-inclusion does not hold. Thus, with
Lemma 7.14(1) we conclude that D′ does not F+

b,fin -refine D.

Again, the composition of two open nets N1 and N2 has the same b-bounded
F+

fin -semantics as the parallel composition of the two environments, env(N1) ⇑
env(N2).

Lemma 7.15. For composable open nets N1 and N2, we have

F+
b,fin(N1 ⊕N2) = F+

b,fin(env(N1) ⇑ env(N2)) .

Proof. Follows directly from Lemma 2.12: If one net has a boundb-violator w due
to marking m, then the other net can reach an agreeing marking m′ with trace
w; thus w is also a boundb-violator for the other net. Likewise, by applying the
same argumentation as in the proof of Lemma 4.10, we conclude that if one net
has a b-bounded fintree failure (w,X, Y ) so does the other net. ut

We shall show that F+
b,fin -refinement is a precongruence on open nets for ⊕,

thereby using the precongruence results for F+
fin -refinement and b-accordance.

We characterize the b-bounded F+
fin -semantics for labeled net composition and

hiding and finally combine these results to determine the b-bounded F+
fin -semantics

for open net composition. First, we consider the b-bounded F+
fin -semantics for

the composition of two labeled nets. Here and below, we use π1(w) and π2(w)
to denote w|Σ1

and w|Σ2
for labeled nets N1 and N2 with alphabets Σ1 and Σ2.
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Lemma 7.16 (F+
b,fin-semantics for labeled net composition). For two

composable labeled nets N1 and N2, we have

F+
b,fin(N1‖N2) = {(w,X1 ∪X2, Y1 ∪ Y2) | (π1(w), π1(X1), π1(Y1)) ∈ F+

b,fin(N1),

(π2(w), π2(X2), π2(Y2)) ∈ F+
b,fin(N2)}

∪ finboundb(N1‖N2) .

Proof. We write E for N1‖N2.
⊆: Let (w,X, Y ) ∈ F+

b,fin(E). If w is not a boundb-violator, then (w,X, Y ) ∈
F+

fin(E) by Definition 7.12, and we conclude with Lemma 4.11 and Definition 7.12
that it is contained in the first set on the right hand side. If w is a boundb-violator
of E, then (w,X, Y ) ∈ finboundb(N1‖N2) by Definition 7.12.
⊇: Let i = 1, 2. If both (πi(w), πi(Xi), πi(Yi)) ∈ F+

fin(Ni), then (w,X1 ∪
X2, Y1 ∪ Y2) ∈ F+

fin(E) by Lemma 4.11 and F+
fin(E) ⊆ F+

b,fin(E). Assume now
that at least one b-bounded fintree failure (πi(w), πi(Xi), πi(Yi)) is not contained
in the respective F+

fin -semantics. Then trace πi(w) is a boundb-violator by Defi-
nition 7.12 and so is w by Proposition 5.3(1), because π3−i(w) ∈ Lb(N3−i) as ar-
gued in the proof of Lemma 7.14(1). Thus, (w,X1∪X2, Y1∪Y2) ∈ finboundb(E) ⊆
F+

b,fin(E) due to Definition 7.12. ut

In the next lemma, we consider a labeled net N/A, A ⊆ Σ and we use φ(w)
to denote w|Σ\A. We canonically extend the notion of φ(w) pointwise to sets of
traces.

Lemma 7.17. For any labeled net N and any label set A ⊆ Σ∗N , we have

F+
b,fin(N/A) = {(φ(w), X, Y ) | (w, φ−1(X), φ−1(Y )) ∈ F+

b,fin(N)} .

Proof. Follows from Lemma 4.12. ut

The next proposition characterizes the b-bounded F+
fin -semantics for open

net composition. In the proofs of the following two results, we will denote the
first set on the right-hand side in Lemma 7.16 by F1+b,fin(N1, N2).

Proposition 7.18 (F+
b,fin-semantics for open net composition). For two

composable open nets N1 and N2, we have

F+
b,fin(N1⊕N2) = {(w,X, Y ) | ∃(w1, X1, Y1) ∈ F+

b,fin(N1), (w2, X2, Y2) ∈ F+
b,fin(N2) :

w ∈ w1 ⇑ w2 ∧ ∀x ∈ X, y ∈ Y :
(x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2)
∧ (y ∈ y1 ⇑ y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)}

∪ finboundb(N1 ⊕N2) .

Proof. According to Lemma 7.15, we can consider F+
b,fin(env(N1) ⇑ env(N2))

instead of F+
b,fin(N1 ⊕N2). Because ⇑ is ‖ followed by hiding, we can determine

this set by applying hiding (according to Lemma 7.17) to the right-hand side
of Lemma 7.16. As a result, F1+b (N1, N2) turns into the first set in the present
proposition, just as Proposition 4.13 results from Lemma 4.11 with Lemma 4.12.
More easily, finboundb(N1‖N2) is analogously translated into finboundb(N1⊕N2)
according to Proposition 5.3(1) and 5.3(7). ut
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Lemma 7.19. F+
b -refinement is a precongruence on labeled nets for composi-

tion operator ‖.

Proof. For this proof, we will use that the following four saturation conditions,
which hold for the F+

fin -semantics (see Lemma 4.14), also hold for the b-bounded

F+
fin -semantics:

SAT1: (w,X, Y ) ∈ F+
b,fin(N), X ′ ⊆ X,Y ′ ⊆ Y implies (w,X ′, Y ′) ∈ F+

b,fin(N)

SAT2: (w,X, Y ) ∈ F+
b,fin(N) ∧ ∀z ∈ Z : (wz, z−1X, z−1Y ) 6∈ F+

b,fin(N) implies

(w,X ∪ Z, Y ∪ Z) ∈ F+
b,fin(N)

SAT3: (w,X, Y ) ∈ F+
b,fin(N) implies (w, ↑ X,Y ) ∈ F+

b,fin(N)

SAT4: (w,X, Y ) ∈ F+
b,fin(N) implies (w,X,X ∪ Y ) ∈ F+

b,fin(N)

To see these conditions, consider first some (w,X, Y ) ∈ F+
fin(N) ⊆ F+

b,fin(N).
Then, SAT1 – SAT4 follow directly from Lemma 4.14. Now, consider a b-bounded
fintree failure (w,X, Y ) with w ∈ boundb(N); here, all four conditions are
immediate because (w,X ′, Y ′) ∈ F+

b,fin(N) for any X ′ ∈ P((I ] O)+) and
Y ′ ∈ P((I ]O)∗).

The precongruence result for F+
fin -refinement holds for general sets of fintree

failures (see Remark 4.2 below Lemma 4.14). We make use of this, although this
defining equation does not match Lemma 7.16, but just gives F1+b,fin(N1, N2).

Now let Impl vF+
b,fin

Spec and C be a composable labeled net for Impl and

Spec. We have to check the two items of Definition 6.15 in order to prove that
Impl‖C vF+

b,fin
Spec‖C.

The first item follows from Proposition 5.3(1) (which holds for labeled nets in
general) because our assumption implies boundb(Impl) ⊆ boundb(Spec) as well
as—due to Lemma 7.14(1)—Lb(Impl) ⊆ Lb(Spec).

For the second item, we first consider some (w,X, Y ) ∈ F1+b,fin(Impl , C). We

observe that, due to Definition 7.13(2), F+
b,fin(Impl) is related to F+

b,fin(Spec) in

the sense of F+
fin -refinement. Thus, according to Lemma 4.14, ∃x ∈ {ε} ∪ ↓ X ∪

↓ Y : (wx, x−1X,x−1Y ) ∈ F1+b,fin(Spec, C) ⊆ F+
b,fin(Spec‖C). Second, we con-

sider some (w,X, Y ) ∈ finboundb(Impl‖C). This time, due to boundb(Impl‖C) ⊆
boundb(Spec‖C), we even have (w,X, Y ) ∈ finboundb(Spec‖C) ⊆ F+

b,fin(Spec‖C);
that is, Definition 7.13(2) is satisfied taking x = ε. ut

Lemma 7.20. F+
b,fin -refinement is a precongruence on labeled nets for hiding.

Proof. Let Impl and Spec be labeled nets with Impl vF+
b,fin

Spec, and A ⊆ Σ∗.

Then Lemma 7.17(1) directly implies Definition 7.13(1) for Impl/A and Spec/A.
Furthermore, the characterization in Lemma 7.17(2) corresponds to the defining
equation for hiding in Lemma 4.15, so Definition 7.13(2) is inherited from the
precongruence result in Lemma 4.15 for F+

fin -refinement and hiding. ut

Now we directly get the first main result of this section.
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Theorem 7.21 (precongruence). F+
b,fin -refinement is a precongruence on open

nets for composition operator ⊕.

Proof. This is now completely analogous to the proof of Theorem 4.16, except
that here the semantics associates two sets with a net and we use Lemma 7.19
and 7.20 on the basis of Lemma 4.14 and Lemma 4.15. ut

As for vcbr ,acc in Lemma 6.13, we show that vcbfr ,acc implies vb,acc .

Lemma 7.22 (vcbfr ,acc implies vb,acc). For two open nets Impl and Spec, we
have

Impl vcbfr ,acc Spec implies Impl vb,acc Spec .

Proof. Use the proof of Lemma 6.13 while assuming the set of final markings to
be the empty set for all open nets. ut

Next, we prove our second main result of this section: F+
b,fin -refinement co-

incides with the coarsest precongruence that is contained in the bfr -accordance
relation.

Theorem 7.23 (precongruence and F+
b,fin-refinement coincide). For two

interface-equivalent open nets Impl and Spec, we have

Impl vcbfr ,acc Spec iff Impl vF+
b,fin

Spec .

Proof. ⇒: By Lemma 7.22, vcbfr ,acc implies vb,acc from which we conclude

boundb-inclusion. It remains to show F+
b,fin -inclusion. Let (w,X, Y ) ∈ F+

b,fin(Impl)
with w /∈ boundb(Impl). Otherwise, w ∈ boundb(Impl) ⊆ boundb(Spec) by
boundb-inclusion, and (w,X, Y ) ∈ F+

b,fin(Spec) by Definition 7.12. We use net
N in Fig. 6 as in the proof of Theorem 4.17. Following the argumentation in
the proof of Theorem 4.17, we have that if an open net C is not a bfr -controller
of Impl ⊕ N so it is not a bfr -controller of Spec ⊕ N . We distinguish three
cases: If w ∈ boundb(Spec), then (w,X, Y ) ∈ F+

b,fin(Spec) by Definition 7.12. If

wu ∈ boundb(Spec) with u ∈ ↓ X ∪ ↓ Y , then (wu, u−1X,u−1Y ) ∈ F+
b,fin(Spec)

by Definition 7.12. Otherwise, we use the argumentation in the proof of Theo-
rem 4.17 to conclude that (w,X, Y ) ∈ F+

b,fin(Spec).

⇐: Let Impl vF+
b,fin

Spec. We conclude boundb-inclusion by Definition 7.13(2)

and Lb-, stopb-, and deadb-inclusion by Lemma 7.14. Now Theorem 7.7 implies
Impl vbfr ,acc Spec, and this, in turn, also shows that Impl vF+

b,fin
Spec implies

Impl vcbfr ,acc Spec with Theorem 7.21 and the definition of vcbfr ,acc . ut

Example 7.5. In Example 7.2, we showed that D′ bfr -accords with D (with the
empty set of final markings) but D′ does not F+

b,fin -refine D by Example 7.4.
Consequently, D′ vcbfr ,acc D does not hold.
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7.4 Decidability of F+
b,fin -refinement

In this section, we show that checking F+
b,fin -refinement is decidable. Checking

F+
b,fin -refinement entails checking both items of Definition 7.13. The first item of

Definition 7.13—that is, checking boundb-inclusion—is decidable; see Sect. 6.4.
To decide refinement of the b-bounded fintree failures—that is, the second item
of Definition 7.13—we apply a similar proof strategy as in the case of F+

b -
refinement. First, we show that the construction of Rensink and Vogler [29,
Theorem 61] for deciding F+-refinement of two finite LTS can be generalized to
decide F+

fin -refinement. Then we present an encoding of the b-bounded fintree

failures of two open nets as finite LTS on which we decide F+
fin -refinement. That

way, we can conclude decidability of F+
b,fin -refinement.

Deciding F+
fin -refinement for finite LTS We assume two finite transition

systems Impl and Spec with initial states p0 and q0 such that L(Impl) ⊆ L(Spec).
Checking language inclusion is known to be decidable. We denote the transition
relations with −→Impl and =⇒Impl .

We can view each finite transition system as a finite automaton where all
states are accepting. For an automaton A with some state s (we write s ∈ A),
LA(s) denotes the language of the automaton if we change the initial state to
s. Observe that the arc label τ corresponds to the empty word in automata
theory. We consider an automaton A with two types of accepting states, called
1-accepting and 2-accepting. With Li(A) we denote the language of A when i-
accepting states are considered to be accepting states, for i = 1, 2. For the sake
of notation, L(A) denotes L1(A)∪L2(A). We call a state productive, if it lies on
a path from the initial state to some accepting state—that is, if it is used by the
automaton when accepting a word.

As a first step, we extend the automaton Impl to an automaton of automata
AA by adding a family of pairs of deterministic automata (A1

p, A
2
p), p ∈ Impl ,

such that for every p ∈ Impl the language of A1
p is the set Σ∗ \LImpl(p) of traces

that Impl cannot perform from p, and the language of A2
p is the set Σ∗ \Lfin(p)

with Lfin(p) = {w | p w−→ p′ ∧ p′ ∈ ΩImpl}. The following holds:

(w,X, Y ) ∈ F+
b,fin(Impl) iff ∃p0

w
==⇒AA p : X ⊆ L(A1

p) ∧ Y ⊆ L(A2
p).

Thus the automata Ap represent some b-bounded fintree failures (w,X, Y ) ∈
F+

b,fin(Impl) in the sense that there is a p ∈ Impl with p0
w

==⇒AA p and X ⊆
L(A1

p) and Y ⊆ L(A2
p); in particular, they represent all maximal b-bounded

fintree failures—that is, all those (w,X, Y ) ∈ F+
b,fin(Impl) with maximal X and

Y . Note that in a finite transition system Impl , there exists for each (v,X ′, Y ′) ∈
F+

b,fin(Impl) a maximal (v,X, Y ) ∈ F+
b,fin(Impl) with X ′ ⊆ X and Y ′ ⊆ Y .

Similar, we construct an automaton of pairs of automata for Spec, but this
time, we additionally make Spec deterministic more or less by the usual powerset
construction. This results in a deterministic automaton of pairs of automata BB ,
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which is a deterministic automaton extended with a family BBQ, Q ∈ BB . For
each state Q (being a set of states of Spec), BBQ is a pair of deterministic au-
tomata (B1

q , B
2
q ), q ∈ Q with L(B1

q ) ⊆ Σ \LSpec(q) and L(B2
q ) ⊆ Σ \Lfin,Spec(q).

More in detail, the automaton part of BB is defined as follows: The initial

state of BB is Q0 = {q | q0
τ∗−→Spec q}; the transition relation is defined by

Q
a−→BB Q′ if Q′ = {q′ | ∃q ∈ Q : q

a−→Spec
τ∗−→Spec q

′}. We restrict BB to the
nonempty states reachable from Q0 and let each state of BB be accepting. As a
consequence, all states of BB are productive and L(BB) ⊆ L(Spec).

This way, Q0
w

==⇒BB Q iff Q = {q | q0
w

==⇒Spec q} for all w ∈ Σ∗ and

(w,X, Y ) ∈ F+
b,fin(Spec) iff

∃Q0
w

==⇒BB Q, (B1, B2) ∈ BBQ : X ⊆ L(B1) ∧ Y ⊆ L(B2).

First, we construct the following partial product automaton S, which can
also be seen as the minimal simulation from AA to BB :

– (p0, Q0) ∈ S is the initial state of S and all states are accepting.

– If (p,Q) ∈ S, a ∈ Σ and p
a−→AA p′, then by language inclusion and definition

of BB , there is a unique Q′ ∈ BB such that Q
a−→BB Q′; we add (p′, Q′) and

the transition (p,Q)
a−→ (p′, Q′) to S.

– If (p,Q) ∈ S and p
τ−→AA p′, then we add (p′, Q) and the transition (p,Q)

τ−→
(p′, Q) to S (recall that BB has no τ labeled arcs).

Checking F+
b,fin -refinement entails checking whether for all (w,X, Y ) ∈ F+

b,fin(Impl)

with X ∪ Y 6= ∅, we have (wu, u−1X,u−1Y ) ∈ F+
b,fin(Spec) for some u ∈

↓ (X ∪ Y ). Recall that by language inclusion we do not have to check triples
(w, ∅, ∅). We have to check for each (p,Q) ∈ S and each pair (X,Y ) with
X ⊆ L(A1

p), Y ⊆ L(A2
p), and X ∪ Y 6= ∅ that

∃u ∈ ↓ (X ∪ Y ), Q′ ∈ BB , (B1, B2) ∈ BBQ′ :

Q
u

==⇒BB Q′ ∧ u−1X ⊆ L(B1), u−1Y ⊆ L(B2)
(1)

Let us fix (p,Q); we now show how to check (1) for all suitable (X,Y ). This
means that we have to compare runs in A1

p or A2
p (u in (1)) with runs of BB .

To do this, we construct another (partial) product automaton P , similar to the
previous one, but this time between the automata A1

p, A
2
p (whose initial states

we also denote by p) and BB where the initial state is changed to Q. Another
difference with the case above is that, this time, we do not necessarily have
L(A1

p) ∪ L(A2
p) ⊆ LBB (Q)—that is, BB might not be able to simulate both, A1

p

and A2
p—but still we want to represent all of L(A1

p) ∪ L(A2
p) in order to check

the inclusion in (1). Therefore, P is constructed as follows (here ∗ is a dummy
element, not appearing anywhere else):

– (p, p,Q) ∈ P is the initial state;
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– (p1, p2, Q
′) ∈ P and p1

a−→A1
p
p′1 or p2

a−→A2
p
p′2 (implying p1 6= ∗ 6= p′1 or

p2 6= ∗ 6= p′2), we add state (p′′1 , p
′′
2 , Q

′′) and the transition (p1, p2, Q
′)

a−→
(p′′1 , p

′′
2 , Q

′′) where

• p′′i is p′i if pi
a−→Ai

p
p′i and ∗ otherwise (in particular if pi = ∗) for i = 1, 2

• Q′′ satisfies Q′
a−→BB Q′′ (in particular, Q′ = ∗ or is ∗ otherwise

– (p1, p2, Q
′) is i-accepting if pi is accepting in Aip, i = 1, 2.

Because the Aip and BB are deterministic, P is also deterministic, and we have

Li(P ) ⊆ L(Aip) for i = 1, 2 by construction. We will call R a productive subau-
tomaton of P , if R is obtained from P by restricting all components (in particular
also the accepting states) to a subset M of the state set such that each state of
R is productive in R5. We will show that (1) is satisfied for all suitable (X,Y )
if and only if for each productive subautomaton R of P

∃(p1, p2, Q′) ∈ R,Q′ ∈ BB , (B1, B2) ∈ BBQ′ :

LiR(p1, p2, Q
′) ⊆ L(Bi), for i = 1, 2

(2)

Because the latter is clearly decidable, it then follows that F+
b,fin -refinement

is decidable. Note that Q′ ∈ BB in (2) is equivalent to Q′ 6= ∗.
So assume (1) is satisfied for all suitable (X,Y ). If R is a productive sub-

automaton, then L1(R) ⊆ L1(P ) ∧ L2(R) ⊆ L2(P ) ∧ L1(R) ∪ L2(R) 6= ∅.
Hence, due to (1) and the construction of P , ∃u ∈ ↓ L1(R) ∪ ↓ L2(R), Q′ ∈
BB , (B1, B2) ∈ BBQ′ : Q

u
==⇒BB Q′ and u−1Li(R) ⊆ L(Bi), for i = 1, 2. Then

(p, p,Q)
u

==⇒R (p1, p2, Q
′) for some p1, p2; because R is deterministic, (p1, p2, Q

′)
is uniquely determined by u, and therefore u−1Li(R) = LiR((p1, p2, Q

′)). Thus,
(p1, p2, Q

′) and (B1, B2) are the state and automaton pair whose existence is
asserted in (2).

Vice versa, assume that (2) holds for each productive subautomaton R and
take some X ⊆ L(A1

p) and Y ⊆ L(A2
p) with X∪Y 6= ∅. The set of states that are

needed in P to accept the words of X∪Y (recall the construction of P ) defines a
productive subautomaton R withX ⊆ L1(R) and Y ⊆ L2(R). Take (p1, p2, Q

′) ∈
R and (B1, B2) ∈ BBQ′ that satisfies (2). Then there is some u ∈ ↓ X ∪ ↓ Y
with (p, p,Q)

u
==⇒P (p1, p2, Q

′) by choice of R and Q
u

==⇒BB Q′ by construction
of P and because Q′ ∈ BB . Now u−1X ⊆ u−1L1(R) = L1

R((p1, p2, Q
′)) and

u−1Y ⊆ u−1L2(R) = L1
R((p1, p2, Q

′)) by determinism of R, and we can conclude
that u−1X ⊆ L(B1) and u−1Y ⊆ L(B2).

Therefore, we have shown:

Proposition 7.24. Checking F+
fin -refinement for two finite LTS is decidable.

5 Recall that a state of an automaton is productive if it lies on a path from the initial
to some accepting state.
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Fig. 16: Sketch of the finite automaton U12(D) as used in the proof of Theo-
rem 7.28. The two final states U1 and [ ] are depicted by a thick frame. An arrow
without sink sketches a transition, with sketched dashed transitions always lead-
ing to state U2.

Reducing decision of F+
b,fin -refinement to F+

fin -refinement As we did

for F+
b -refinement in Sect. 6.4, we prove decidability of F+

b,fin -refinement for
arbitrary LTS rather than for reachability graphs of labeled nets. For an LTS S,
we construct a finite LTS U12(S) (see Sect. 6.4). In this section we consider—in
contrast to Sect. 6.4—LTS with final states and define the set of final states of
U12(S) by the final states of S and additionally U1.

Example 7.6. Figure 16 sketches the automaton that represents bound1(D). Parts
of the automaton in Fig. 16 that can only be reached with an s-labeled transition
are not shown. Likewise, the q-labeled transition leaving the state [p1, s

i] is not
shown. The set of final markings of the open net D is {[ ]}; thus, U12(D) has
final states [ ] and U1.

The next lemma, gives three observations about U12(S).

Lemma 7.25. Let S be an LTS. Then the following facts hold for U12(S).

1. w ∈ boundb(S) iff mN
w

==⇒ U1 iff mN
w

==⇒ U2.
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2. BF+
b,fin(S) ⊆ F+

fin(U12(S)) (i.e., U2 can refuse all X ⊆ (I ∪ O)+ and fin-
refuse all Y ⊆ (I ∪O)∗)

3. F+
fin(U12(S)) ⊆ F+

b,fin(S) and (w,X, Y ) ∈ F+
b,fin(S) \ F+

fin(U12(S)) implies
∃u ∈ ↓ (X ∪ Y ) \X such that wu ∈ boundb(S)

Proof. (1) follows immediately from the definition of U12(S), and (2) is an im-
plication of (1). (3) The sets agree on those (w,X, Y ) with w ∈ boundb(S) by

(2). So consider w /∈ boundb(S). If (w,X, Y ) ∈ F+
fin(U12(S)) due to mS

w
==⇒ m,

then we also have mS
w

==⇒ m in S with the same run. In U12(S), m could only
have more traces (possibly to final states) due to runs using U1, so it can only
refuse and fin-refuse less. Thus, (w,X, Y ) ∈ F+

fin(S) and inclusion follows.

If (w,X, Y ) ∈ F+
b,fin(S) due to m, but (w,X, Y ) /∈ F+

fin(U12(S)), then this
must be due to a run from m that touches U1; assume this happens for the first

time after u 6= ε; that is, we have mN
w

==⇒ m
u

==⇒ U1
u′

==⇒ with uu′ ∈ X ∪ Y .
Thus, wu ∈ boundb(S) and u ∈ ↓ (X ∪ Y ). Because mN

w
==⇒ m

u
==⇒ also in S,

we further have u /∈ X. ut

The following lemma gives another prerequisite for the decidability proof.

Lemma 7.26. For X,Y ∈ P(Σ∗), let x ∈ ↓ (X ∪ Y ) ∪ {ε}, X ′ = x−1X and
Y ′ = x−1Y . Then

1. u ∈ ↓ (X ′ ∪ Y ′) implies xu ∈ ↓ (X ∪ Y )
2. u /∈ X ′ implies xu /∈ X

Proof. (1) Due to uu′ ∈ X ′ ∪ Y ′ and xuu′ ∈ X ∪ Y .
(2) Suppose xu ∈ Y . Then u ∈ X and we have a contradiction. ut

With the next lemma, we show that deciding F+
b,fin -refinement for two open

nets Impl and Spec reduces to check F+
fin -refinement of their finite automata

U12(Spec) and U12(Impl).

Lemma 7.27. For two open nets Impl and Spec such that boundb(Impl) ⊆
boundb(Spec), we have

Impl vF+
b,fin

Spec iff U12(Impl) vF+
fin
U12(Spec) .

Proof. ⇒: Each (v,X, Y ) ∈ F+
fin(U12(Impl)) ⊆ F+

b,fin(Impl) (by Lemma 7.25(3))

is dominated by some (w,X ′, Y ′) ∈ F+
b,fin(Spec) due to some x ∈ ↓ (X ∪ Y )∪{ε}

i.e., X ′ = x−1X, Y ′ = x−1Y , w = vx. If (w,X ′, Y ′) ∈ F+
fin(U12(Impl)), we

are done. So assume otherwise and consider u ∈ ↓ (X ′ ∪ Y ′) \ X ′ according to
Lemma 7.25(3). Then xu ∈ ↓ (X ∪ Y ) \ X by Lemma 7.26 and
(vxu, (xu)−1X, (xu)−1Y ) ∈ F+

fin(U12(Spec)) because vxu ∈ boundb(Spec) and

ε /∈ (xu)−1X. Hence, (v,X, Y ) is also covered in this case.
⇐: Each (w,X, Y ) ∈ F+

fin(U12(Impl)) is dominated by F+
fin(U12(Spec)) ⊆

F+
b,fin(Spec) by Lemma 7.25(3). So consider (w,X, Y ) ∈ F+

b,fin(Impl)\
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F+
fin(U12(Impl)) and respectively u ∈ ↓ (X ∪ Y )\X according to Lemma 7.25(3).

Then, (wu, u−1X,u−1Y ) ∈ F+
b,fin(Spec) because wu ∈ boundb(Impl) ⊆ boundb(Spec)

and ε /∈ u−1X. Thus, (w,X, Y ) is also dominated in this case. ut

With Lemma 7.27 and Proposition 7.24, we have shown:

Theorem 7.28 (F+
b,fin-refinement is decidable). For two interface-equivalent

open nets Impl and Spec, checking whether Impl vF+
b,fin

Spec is decidable.

8 Related Work

The idea of responsiveness for finite state open systems with final states has been
coined by Wolf in [37]: An open net N is responsive if inner(N) is b-bounded
and from every reachable marking we can reach either a final marking or a mark-
ing that enables a transition with an output place in its postset [37]. In other
words, Wolf defines responsiveness for single open nets and considers only such
responsive nets; this guarantees a stricter form of our respective responsiveness
variant. More generally, we also deal with open nets that are responsive in some
open net compositions but not in others. Lohmann and Wolf [20] present a more
efficient decision procedure for the responsiveness in [37], but on an automaton
model. Responsiveness in [37,20] is mainly motivated by algorithmic consider-
ations for deciding the respective accordance, but without characterizing the
latter semantically or studying compositionality. Müller [24] presents an asym-
metrical definition from the point of view of one individual open system in a
composition. Our notion of responsiveness leads to precongruences, where the
related equivalence is similar to P-deadlock equivalence in [33]. Desai et al. [11]
define responsiveness for bounded message queues. Their notion of responsive-
ness is stricter than ours because it additionally requires that no message in any
channel is ignored forever.

In other work, the term responsiveness refers to different properties: Reed
et al. [28] aim at excluding certain deadlocks, whereas responsiveness in our
setting refers to the ability to communicate. The works [16,1,13] consider with
the π-calculus a more expressive model than open nets but in the setting of
synchronous communication, whereas we consider asynchronous communication.
Moreover, responsiveness in [1,13] and lock-freedom in [16] guarantee that com-
munication over a certain channel is eventually possible. In contrast, our notion
of responsiveness requires that communication over some channel is always pos-
sible. Kobayashi [16] defines responsiveness over the infinite runs of the system,
thereby using a strong fairness for the channel synchronization. Moreover, the
language considered in [16] does not support choices. Acciai and Boreale [1] use
a type system and reduction rules different from Kobayashi, and they give an
example of a responsive process that cannot be expressed in [16]. Gamboni and
Ravara [13] use a variant of the π-calculus that is more expressive than the one
in [16]: Choices are part of the language and it is also possible to express how
many times a communication over a certain channel should take place. In ad-
dition to responsiveness in [1] (called activeness in [13]), Gamboni and Ravara
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require that whenever communication takes place over a channel, then the re-
spective processes conform to to a specified protocol. The latter property is called
responsiveness in [13]. Recently, Padovani [26] takes up lock-freedom from [16].
He defines a behavioral type system using asynchronously communicating ses-
sion types and considers the progress property. Progress is a stricter notion than
bounded final responsiveness as it (like responsiveness in [11]) additionally re-
quires that no message in any channel is ignored forever.

Trace-based semantics like ours (in particular in Sect. 5) where the language
is flooded with error traces go back to the work of Dill [12]. Errors in [12]
arise from communication mismatches and are similar to our bound-violators. In
contrast to our asynchronous (i.e., buffered) setting, Dill considers a synchronous
(i.e., an unbuffered) setting. Dill’s semantics can be seen as declarative whereas
interface automata, as defined by Alfaro and Henzinger in [10], take up the same
ideas on an operational (i.e., automaton) model. Dill’s refinement relations are
trace inclusions like our characterizations of the four responsiveness preorders.
In contrast, refinement of interface automata is characterized by an alternating
simulation relation similar to the refinement of modal transition systems [17].
Chen et al. [8] (long version in [9]) present more recent work that is based
on languages. They consider with quiescent traces a kind of stop traces. The
precongruence defined in [8] is based on traces but in a synchronous setting.
In contrast, our precongruences are variants of the should testing preorder [29].
Moreover, our notion of divergence (i.e., “infinite internal chatter”) is different
from the one in [9]: If two open systems indefinitely interact with each other, then
they are responsive and, hence, we do not treat such trace as problematic, but
Chen et al. [8] do. The reason is that, intuitively, we assume a stronger fairness.
Common for the synchronous setting of Dill [12], Alfaro and Henzinger [10], and
Chen et al. [8] is that they all have to apply some kind of output pruning: In
the composition of two open systems, if a sequence of output transitions leads
to an error state, these transitions and the states involved have to be removed.

Compared to our previous work on deadlock freedom in [32], finer trace sets
are required to characterize the preorders based on responsiveness. While traces
are adequate for the precongruence dealing with deadlock freedom [32], they do
not suffice to characterize the coarsest precongruence for responsiveness, and
we had to use some kind of failures instead. In unpublished work, we showed
undecidability for the unbounded preorders and precongruences.

The results in Sect. 5 on boundedness without responsiveness are mainly
extracted from the bounded variant of deadlock freedom in [32]. Brand and
Zafiropolu investigated channel boundedness in [4]. Haddad et al. [15] study
channel properties for asynchronously communicating Petri nets, present com-
positionality results, and show decidability. The considered properties are con-
cerned with the consumption of messages sent on a channel, such as upper and
lower bounds for pending messages, in the presence and absence of fairness. In
contrast, boundedness in our setting only restricts the number of pending mes-
sages and is, thus, a more abstract and fundamental concept. We do not require
that pending messages have to be consumed. Moreover, we assume a strong no-
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tion of fairness by considering a state as satisfactory where it is possible to reach
a final state or a state where communication is possible.

The notion of uncoverable states has been observed as the set of certain con-
flicts by Malik et al. [21] for a stronger correctness criterion than responsiveness.
A similar phenomenon occurs in the safe-must preorder [3], where a process
and its observer must reach a success state before reaching a catastrophic (i.e.,
diverging) one.

9 Conclusion

We studied an accordance preorder describing whether an open system can safely
be replaced by another open system, thereby guaranteeing responsiveness of
the overall system. The latter guarantees deadlock freedom and the permanent
possibility to mutually communicate. Responsiveness can be seen as a minimal
correctness criterion for open systems. We investigated two dimensions of respon-
siveness, where we can additionally consider final states or require boundedness
of the composition due to maintaining a previously known message bound. Al-
together, this resulted in four variants of the accordance preorder.

For each variant of accordance, we presented a trace-based characterization.
In its basic form, the semantics consist of a set collecting completed traces. In
the presence of final states, an additional set is needed to distinguish successfully
and unsuccessfully completed traces. To deal with boundedness, we had to add
the language and a set of uncoverable traces collecting catastrophic traces that
cannot be used reliably.

We showed that none of the four accordance preorders is a precongruence
and characterized the coarsest precongruence that is contained in the respec-
tive preorder. For basic responsiveness, this precongruence is the should testing
preorder [29]. In the presence of final states, it is the should testing preorder ex-
tended with traces that do not lead to a final marking. For boundedness, we had
to extend the should testing preorder by information about bound violations.
In the unbounded setting, we showed in unpublished work that neither the pre-
orders nor the precongruences are decidable. This gives an important motivation
to deal with the bounded setting. For the latter setting, we proved decidability
of the precongruences.

It is future work to study the relation of our semantics and the compact
representation of all controllers in [20]. In particular, we are interested in us-
ing such representations to decide the coarsest precongruences. Another issue is
the minimal requirement weak termination (e.g., [21,23]): Reaching a final state
should always be possible. This criterion is very close to the idea of should test-
ing, but it is not clear how to characterize the respective accordance (which is
a precongruence itself). In contrast, we characterized precongruences related to
responsiveness with semantical ideas that also worked for should testing.
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