
Conformance Checking in the Large:
Partitioning and Topology

Jorge Munoz-Gama1, Josep Carmona1, and Wil M.P. van der Aalst2

1 Universitat Politecnica de Catalunya, Barcelona (Spain)
2 Eindhoven University of Technology, Eindhoven (The Netherlands)

jmunoz@lsi.upc.edu, jcarmona@lsi.upc.edu , w.m.p.v.d.aalst@tue.nl

Abstract. The torrents of event data generated by today’s systems are
an important enabler for process mining. However, at the same time, the
size and variability of the resulting event logs are challenging for today’s
process mining techniques. This paper focuses on “conformance checking
in the large” and presents a novel decomposition technique that parti-
tions larger processes into sets of subprocesses that can be analyzed more
easily. The resulting topological representation of the partitioning can be
used to localize conformance problems. Moreover, we provide techniques
to refine the decomposition such that similar process fragments are not
considered twice during conformance analysis. All the techniques have
been implemented in ProM, and experimental results are provided.

Keywords: Process Mining, Conformance Checking, Process Diagnosis

1 Introduction

The interest in process mining is increasing because of the widespread avail-
ability of event data and the desire to improve performance and compliance of
operational processes. Process mining relates modeled behavior and observed be-
havior [1]. This novel discipline tackles three challenges relating event data (i.e.,
log files) and process models: the discovery of a process model from an event log,
checking the conformance of a process model and a log, and the enhancement
of a process model with the information extracted from a log. Process mining
research resulted in a variety of algorithms that demonstrated to be of great
value for undertaking small or medium-sized problem instances. However, real-
life experiences show that most of the existing algorithms are unable to handle
problems of industrial size.

This paper proposes a technique for determining the conformance of a Petri
net with respect to a log: instead of trying to asses the conformance the whole
event log and the complete Petri net, we check conformance for selected sub-
processes (subnets of the initial Petri net and corresponding sublogs). Subpro-
cesses are identified as fragments of the Petri net that have a single-entry and a
single-exit node (SESE), thus representing an isolated part of the model with a
well-defined interface to the rest of the net [2].

In [3] we presented a conformance checking approach using the so-called
Refined Process Structure Tree (RPST) [2]. The RPST allows for the construction

of hierarchy of SESEs. This paper extends the approach presented in [3]. First
of all, we present a strategy to compute fitness by selecting a partitioning of
the RPST that is enriched with a new set of fragments corresponding to the
interface between place-bordered SESEs. With this extension, one can regard
the fitness of the whole Petri net as the fitness of the whole set of fragments
forming the extended partitioning. Experiments show a considerable reduction
(orders of magnitude) in the decision problem of fitness checking, and moreover
the techniques allow for identifying those subnets that have fitness problems,
allowing the process owner to focus on the problematic parts of a large model.

The RPST-based decomposition is not only used for efficiency reasons. We
also use it to provide diagnostics that help the analyst in localizing conformance
problems. We create a topological structure of SESEs in order to detect the larger
connected components that have fitness problems. Moreover, problematic parts
can be analyzed in isolation and independently of the rest of the model. Finally,
the approach is refined to avoid considering the same problem multiple times.
For example, it makes no sense to consider small or highly overlapping/similar
process fragments.

Related Work. See [1] for an introduction to process mining and the Process
Mining Manifesto [4] for the main challenges in process mining.

Cook et al. [5] were among the first to quantify the relationship between
event logs and process models. They compared event streams of the model with
event steams generated from the event log. Several authors proposing process
discovery algorithms also provide a quality metric (often related to fitness). For
example, in [6] the authors define a fitness function for searching for the optimal
model using a genetic approach.

The first comprehensive approach to conformance analysis was proposed in
[7]. Two different types of metrics are proposed: (a) fitness metrics, i.e., the
extent to which the log traces can be associated with valid execution paths
specified by the process model, and (b) appropriateness metrics, i.e., the degree of
accuracy in which the process model describes the observed behavior, combined
with the degree of clarity in which it is represented. One of the drawbacks of
the approach in [7] and most other approaches that “play the token game”, is
that fitness is typically overestimated. When a model and log do not fit well
together, replay will overload the process model with superfluous tokens. As
a result, the model will allow for too much behavior. Approaches such as the
one in [7] also have problems when the model has “invisible activities” (silent
steps that are not recorded in the event log) or “duplicate activities” (multiple
transitions bearing the same label). To deal with such phenomena state-space
exploration and heuristics are needed to replay the event log. In fact, most
conformance techniques give up after the first non-fitting event or simply “guess”
the corresponding path in the model. Therefore, Adriansyah et al. formulated
conformance checking problems as an optimization problem [8,9].

Lion’s share of attention in conformance checking has been devoted to check-
ing fitness. However, in recent papers researchers started to explore the other

quality dimensions [1,8,10]. For example, Munoz-Gama et al. quantified addi-
tional precision notions [11,12].

In [13] various process mining decomposition approaches are discussed. In
[14] the notion of passages is used to decompose a process model and/or event
log into smaller parts that can be checked or discovered locally. This approach
is generalized in [15] where it is shown that fitness-related problems can be
decomposed as long as the different process fragments only share transitions
having unique labels. This idea is used in this paper. However, unlike [14,15]
we use an RPST-based decomposition that also allows for place-boundaries.
Moreover, the refined RPST-based decomposition and the topological structure
enable additional diagnostics not considered before.

Outline. Section 2 provides some preliminaries, before describing our partition-
ing approach (Section 3). Section 4 presents the notion of a topological graph
to show conformance diagnostics. In Section 5 we discuss a refinement to avoid
inspecting small or highly similar process fragments. Experimental results are
presented in Section 6. Section 7 concludes the paper.

2 Preliminaries

To explain our conformance checking approach we introduce some basic notions.
We use Petri nets (workflow nets to be precise) to model processes.

Definition 1 (Petri Net, Workflow Net). A Petri net[16] is a tuple PN =
(P, T,A) having a finite set of places P and a finite set of transitions T where
P ∩T = ∅, and a flow relation A ⊆ (P×T)∪(T×P).3 The preset and postset of
a node are defined as •x = {y|(y, x) ∈ A} and x• = {y|(x, y) ∈ A}, respectively.
The state of a Petri net is defined by its marking, i.e., a multiset over P . A
workflow net (WF-net) WN = (P, T,A, i, o) is a particular type of Petri net
where the net has one source place i and one sink place o, and all the other
nodes are in a path between them.

Definition 2 (Workflow Graph). Given a Petri net PN = (P, T,A), we
define its workflow graph simply as the structural graph G = (V,E) with no
distinctions between places and transitions, i.e., V = P ∪ T and E = A.

Definition 3 (System Net, Full Firing Sequences). A system net is a tuple
SN = (PN,mi,mo) where mi and mo define the initial and final marking of the
net, respectively. (PN,m1)[σ〉(PN,m2) denotes that a sequence of transitions
σ ∈ T ∗ is enabled in marking m1 and executing σ in m1 results in marking m2.
{σ | (PN,mi)[σ〉(PN,mo)} are all full firing sequences of SN .

An event log is a multiset of traces. Each trace is a sequence of activities (in this
paper corresponding to the set of transitions T). Multiple cases may follow the
same trace.
3 Although the approach is valid also for weighted Petri nets, for the sake of clarity

in this paper we restrict to the case with no weights on the arcs.

Definition 4 (Event Log). An event log L ∈ IB(T ∗) is a multiset of traces.

Fitness can be defined in various ways [1,8,10]. In this paper, we just classify
traces into fitting or non-fitting. Fitting traces correspond to full firing sequences.

Definition 5 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (PN,mi,mo) if
(PN, [mi])[σ〉(PN, [mo]), i.e., σ corresponds to a full firing sequence of SN . An
event log L ∈ IB(T ∗) fits SN if (PN, [mi])[σ〉(PN, [mo]) for all σ ∈ L.

To decompose conformance checking problems, we identify so-called SESE com-
ponents. In the remainder, the following context is assumed: Let G be the work-
flow graph of a given WF-net WN , and let GS = (VS , S) be a connected sub-
graph of G formed by a set of edges S and the vertexes VS = Π(S) induced by
S.4

Definition 6 (Interior, Boundary, Entry and Exit nodes [2]). A node
x ∈ VS is interior with respect to GS iff it is connected only to nodes in VS;
otherwise x is a boundary node of GS. A boundary node y of GS is an entry of
GS iff no incoming edge of y belongs to S or if all outgoing edges of y belong to
S. A boundary node y of GS is an exit of GS iff no outgoing edge of y belongs
to S or if all incoming edges of y belong to S.

For example, consider the subgraph S4 of Fig. 1b containing the arcs b, d, f, h
and the vertexes induced by them. The nodes t1 and t4 are boundary nodes,
while p2, t2 and p4 are interior nodes. Moreover, the node t1 is an entry node,
while t4 is an exit.

(a) workflow net

(b) workflow graph and SESE descomposition

t1
t2

t3
t4

t5

t6
t7

p1
p2

p3

p4

p5
p6 p7 p8

a
b

c

d

e

f

g

h

i

j
k

l

m

n

o p

S6

S7

S3

S4

S5

SS2SS1

S1S

S2S S3S

j opa

S4S S5S S6S S7S

b d f h c e g i k m l n
(c) RPST

Fig. 1: A WF-net, its workflow graph and the RPST and SESE decomposition.

Definition 7 (SESE, Trivial SESE and Canonical SESE [2]). S ⊆ E is
a SESE (Single-Exit-Single-Entry) of graph G = (V,E) iff GS has exactly two
boundary nodes: one entry and one exit. A SESE is trivial if it is composed of a
single edge. S is a canonical SESE of G if it does not partially overlap with any

4 Π(R) =
⋃

(a,b)∈R{a, b} is the set of elements referred to by relation X ⊆ A×B.

other SESE of G, i.e., given any other SESE S′ of G, they are nested (S ⊆ S′ or
S′ ⊆ S) or they are disjoint (S ∩ S′ = ∅). By definition, the source of a WF-net
is an entry to every fragment it belongs to and the sink of the net is an exit from
every fragment it belongs to.

The decomposition based on canonical SESEs is a well studied problem in the
literature, and can be computed in linear time. In [17], the authors proposed the
algorithm for constructing the Refined Process Structure Tree (RPST), i.e., an
hierarchical structure containing all the canonical SESEs of a model. In [2], the
computation of the RPST is considerably simplified and generalized by introduc-
ing a pre-processing step that reduces the implementation effort considerably.

Definition 8 (RPST-based Decomposition [2]). Let G be the workflow
graph of the WF-net WN .5 The Refined Process Structured Tree (RPST) of
G is the tree composed by the set of all its canonical SESEs, such that, the par-
ent of a canonical SESE S is the smallest canonical SESE that contains S. The
root of the tree is the entire graph, and the leaves are the trivial SESEs. The set
of all the nodes of the tree is denoted as S.

In the remainder of the paper, we will refer to canonical SESEs resulting from
the RPST decomposition simply as SESEs. Also note that the SESEs are defined
as a set of edges (i.e., S) over the workflow graph (not as subgraphs, i.e., GS).
However, for simplicity and when the context is clear, we will use the term SESE
to refer also to the subgraph of the workflow graph or Petri net induced by those
edges (PN S = (P ∩Π(S), T ∩Π(S), A∩S)). For example, the SESE S4 of Fig. 1b
containing the edges b, d, f and h, refers also to the Petri net composed by the
transitions t1, t2 and t4, the places p2 and p4, and the arcs between them in the
WF-net of Fig. 1a.

3 Partitioning Conformance Diagnosis

In this section, we propose a divide-and-conquer approach for conformance check-
ing, preserving the SESE decomposition’s underlying semantics. Moreover, we
show that a trace is fitting the overall model if and only if it is fitting the individ-
ual fragments. The proposed approach is based on selecting a set of RPST nodes
that partition the whole process model. The maximum size of the components to
by analyzed can be limited in order to deal with computation time restrictions
or to control the complexity of individual components. Formally:

Definition 9 (k-partitioning over a SESE decomposition). Given the
SESE decomposition S of a WF-net WN , we define P = {S1, . . . , Sn} ⊆ S:
a partitioning of SESEs such that each arc in WN is contained in exactly one
Si. A k-partitioning of S is a set of SESEs P = {S1, . . . , Sn} ⊆ S where each Si

contains at most k arcs.

5 Although the approach presented in this paper can be generalized to graphs with
several sources and sinks, for the sake of clarity in this paper we restrict to the case
with only one source and only one sink [2].

Algorithm 1 k-partitioning algorithm

procedure k-part(RPST,k)
V = {root(RPST)}
P = ∅
while V 6= ∅ do

v ← pop(V)
if |v.arcs()| ≤ k then P = P ∪ {v}
else V = V ∪ {children(v)}

Lemma 1 (k-partitioning existence). Given a SESE decomposition S over
the WF-net WN = (P, T,A, i, o), and given any k such that 1 ≤ k ≤ |A|, there
always exists a k-partitioning of S.

Proof. By definition, any edge is a SESE (and they appear as leaves of the
RPST). Therefore, a trivial partitioning with all parts being trivial SESEs is
always possible. ut

Algorithm 1 shows how to compute a k-partitioning. The algorithm has linear
complexity (with respect to the size of the RPST) and termination is guaranteed
by Lemma 1.

Given a partitioning, we use it to decompose conformance checking. Remem-
ber that SESEs only interface the rest of the net through the single entry and
single exit nodes, which may be shared by different SESEs. The rest of nodes of
a SESE (i.e., the interior nodes) have no connection with other SESEs. For the
interface nodes, we distinguish two cases: transition bounded and place bounded.

As proven in [15], transition bounded net fragments can be checked in iso-
lation. For a partitioning into SESEs where all entry and single nodes are tran-
sitions the following holds: a trace perfectly fitting the whole WF-net will also
fit all individual SESEs (projected trace on corresponding transitions) and vice
versa. For example, consider the WF-net in Fig. 2a, and the partitioning shown
in Fig. 2b. The existence of d in both S2 and S1 ensures that both subnets move
synchronously when replaying a trace. For instance, trace abcddefg (non-fitting
in the original net due the double d) is fitting on S2 (on S2, the preset of d is
empty), but not in S1. On the other hand, trace abcefg (also non-fitting in the
original net) is fitting in neither S1 nor S2.

(a) original model
(b) original partition

a
b

c

S1

d

e

f
g

S2 a
b

c

S1

d

d

e

f
g

S2

Fig. 2: Example of partitioning with transition boundary.

However, the case of place bounded SESEs (i.e., entry and/or exit nodes cor-
respond to places) is completely different. Places, unlike transitions, have no
reflection in the log, and therefore, cannot be used to synchronize the individual
SESEs during replay. Consider, for example, the net in Fig. 3a, and the parti-
tioning shown in Fig. 3b. There is a strong dependency between the execution of
S1 and the initial marking considered for S2. For example, consider a marking
of one token on p and the trace abcdef . Such trace fits the original model, but it
does not fit S2 (i.e., it requires two tokens on p). On the other hand, considering
an initial marking of S2 with two tokens on p, the trace abdecf fits S1 and S2

but does not fit the original net.

a
b

c

d

e
f

p

a
b

c p

d

e
f

p

a
b

c

d

e
f

b

c

d

ep

S1 S2

S1

S2

S'1 S'2
B1

(a) original model

(c) extended partition

(b) original partition

Fig. 3: Example of partitioning with place boundary.

Thus, in case of place-boundaries, we extend the isolated fitness calculation
by considering a new element that we call bridge. A bridge simply contains the
pre and post sets of the boundary place. Bridges replicate the behavior on the
boundary places thus synchronizing all components connected to such place. For
example, given the place boundary of Fig. 3a, besides the two SESE components
S′1 and S′2, a third component B1 is constructed explicitly, containing the place
p, its preset, and its postset (cf. Fig. 3c). Although bridges do not satisfy the
SESE definition, their structure is very specific (i.e., nets with only one place).
Given that the bridge makes the synchronization explicit on the boundary place,
SESEs having this boundary place no longer need it, and therefore, it is removed
from all the SESEs (cf. S′1 and S′2 on Fig. 3c). Note that the modified SESEs do
not longer satisfy the SESE definition, but have a set of input and output tran-
sitions. Remarkably, the removal of boundary places in the original SESEs and
the introduction of bridges ensures transition bounded fragments, and therefore,
the results of [15] can be applied directly. We now formally define the so-called
extended partitioning:

Definition 10 (Extended partitioning over a SESE decomposition). Let
P = {S1, . . . Sn} be a partitioning of the WF-net WN = (P, T,A, i, o). Let IP =

{i1, . . . , in} and OP = {o1, . . . , on} be the set of all entry and exit nodes of the
SESEs in P. B = {p1, . . . , pk} = ((IP ∪ OP) ∩ P) \ {i, o} = (IP ∩ OP) ∩ P is the
set of boundary places, i.e., entry and exit nodes of the SESEs that are places
but not the source or sink place of the WF-net WN . The extended partitioning
P′ = {S′1, . . . S′n, B1 . . . Bk} of P is constructed as follows:

• For all 1 ≤ i ≤ n: S′i = {(x, y) ∈ Si | {x, y} ∩ B = ∅} (boundary places are
removed from the SESEs).

• For 1 ≤ j ≤ k: Bj = {(x, y) ∈ A | pj ∈ {x, y}} (bridges are added).

Lemma 2 shows that, given any extended partitioning, fitness is preserved among
its components, i.e., a trace fits the whole WF-net if and only if it fits all the
parts of the extended partitioning.

Lemma 2 (Decomposed Fitness Checking). Let L be a log and SN =
(WN,mi,mo) be a system net where WN = (P, T,A, i, o) is a WF-net. Let P′ be
any extended partitioning over WN . A trace σ ∈ L fits SN (i.e., (WN, [mi])[σ〉
(WN, [mo])) if and only if it fits all the parts, i.e., for all S ∈ P′, PN S =
(PS , TS , AS) = (P∩Π(S), T∩Π(S), A∩S): (PN S , [mi↓PS

])[σ↓TS
〉(PN S , [mo↓PS

])).6

Proof. Special case of the more general Theorem 2 in [15]. If the overall trace
σ fits SN , then each of the projected traces σ↓Tx fits the corresponding SESE.
If this is not the case, then at least there exist one projected trace σ↓Tx that
does not fit. If the projected traces σ↓Tx fit the corresponding SESEs, then these
traces can be stitched back into a trace σ that fits SN .

Although the use of a partitioning makes it possible to decompose a complex
problem as conformance checking into smaller subproblems, there are applica-
tions (e.g., process diagnosis) where a more fined-grained analysis is required. In
other words, we need to be able to navigate zooming in and out of the model,
to get a better understanding (see Chapter 13 in [1]). With this idea in mind,
the theory proposed on this section can be combined with the properties of the
RPST to obtain a hierarchy of fitness results based on SESEs. Therefore, given
an RPST, an extension based on bridges is performed over each level of the tree,
and the fitness is checked for the complete level. Unlike other techniques (like
in [3]), this analysis guarantees the fitness for the complete level. Note that, the
RPST contains the whole net as its root. Therefore, in those cases where the
complete system cannot be checked due its complexity, this is also not possible
with this technique. However, a greedy procedure can be developed, that starts
processing the higher levels of the RPST hierarchy (root is at level 0), and goes
up until it reaches a level non-computable due to complexity or time reasons.
Algorithm 2 describes the resulting conformance checking technique.

4 Topological Graph of a Partitioning

In this section we present the topological graph of a partitioning, and some tech-
niques that can use it to improve the diagnosis. Given an extended partitioning,

6 σ↓T is the projection of sequence σ onto transitions T and m↓P is the projection of
marking m onto the set of places P .

Algorithm 2 Extended RPST Conformance algorithm

procedure ConfExtRPST(RPST,log)
level← heigth(RPST)
while level ≥ 0 and level computable do
{S1 . . . Sn} ← Find partitioning containing the SESEs in level of the RPST
{S′

1 . . . S
′
n, B1 . . . Bk} ← Extend partitioning {S1 . . . Sn} with bridges

check fitness for the pairs (S′
1, log↓T1

), . . . , (Bk, log↓Tk
)

level← level − 1

the topological graph is the directed graph that represents the connections via
boundary nodes between the parts. Formally:

Definition 11 (Topological Graph of a Partitioning). Let P = {S1, . . . Sn}
be a partitioning of the WF-net WN = (P, T,A, i, o), with boundary places
{p1, . . . , pk}. Given an extended partitioning P′ = {S′1, . . . S′n, B1, . . . Bk} (cf.
Def. 10), we define its topological graph T = (P′, C) as the graph whose vertexes
are the parts of P′, and the set of edges is C = {(S′i, S′j)|1 ≤ i, j ≤ n ∧ (y, x) ∈
Si ∧ (x, z) ∈ Sj} ∪ {(S′i, Bj)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ∧ (y, pj) ∈ Si} ∪
{(Bj , S

′
i)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ∧ (pj , y) ∈ Si}.

(a) partition of the net in SESEs (S1..S8) and its additional bridges (B1 and B2)

(b) topological graph and fitness for the trace <t1,t3,t4,t5,t7,t7,t9>

t1
t2

t3
t4

t5

t6
t9

p1
p2

p3

p4

p5
p6 p9 p10

S6S3

S4 S5

S

S2SS1

p7

p8

t7

t8
t4

t5

t6p6
t9

p9

t7

t8

2BB1

S1

S2S

S3S

S4 B1

S5

S6

2B S7 S8

t5 t9
p6 p9p7

t7

t8

t1 t4
p4p2

t2

t1 t4
p4p2

t2 t5 t9
p6 p9p7

t7

t8t8
(c) non fitting connected components

(d) non fitting net resulting of combining S2, S4, B1, S5 and B2

S7 S8

S5 2B+

2S

Fig. 4: Example of partitioning, topological graph, and its corresponding non-
fitting connected components, and non-fitting net.

Note that the topological graph has as vertexes the transition-bordered parts of
the extended partitioning, but some arcs of this graph (those regarding connec-
tion to bridges) are defined over the parts of the original partitioning P, since
in the extended partitioning boundary places have been removed. One of the
functions of the topological graph is to aid in the visualization of the extended
partitioning resulting from applying the techniques developed in Sec. 3. For ex-
ample, let us consider an extended partitioning that arises from a 4-partitioning
of the WF-net in Fig. 4a (a slightly modification of the model in Fig. 1). The

resulting extended partitioning is composed by the SESEs S′1 . . . S
′
8 and the two

bridges B1 and B2 corresponding with the two boundary places p6 and p9. The
corresponding topological graph is shown in Fig. 4b. Besides simply showing the
connections through boundary nodes, the topological graph can be enhanced
with other information. For instance, in this example, bridges are represented
with dotted borders, while SESEs with solid borders. Moreover, the size of the
nodes in the graph is directly related with the size of the corresponding parts,
i.e., larger parts will have more importance in the representation and will appear
larger than smaller parts. Finally, the graph can be enhanced with the confor-
mance analysis results. In this example we have considered the fitness dimension
of the model with respect to the log composed by only one trace t1t3t4t5t7t7t7.
Considering this trace, three parts contain fitness anomalies (filled in gray): in
S′2, t4 is fired without firing t2; in S′5, t7 is executed twice, but this requires the
firing of t5 also twice; finally, in the bridge B2, t7 is fired twice, but t9 only once,
leaving a token remaining in p9.

Although the topological graph is an important aid for the process diagnosis
by itself, it can also guide subsequent analysis. In the remainder of this section
we present and motivate some ideas.

The topological graph extended with conformance information can be used
to identify maximal process fragments with fitness problems. This allows us to
focus on the problematic parts of a model, discarding those parts of the model
perfectly fitting. Algorithm 3 describes a procedure that is based on detect-
ing connected components on the graph induced by the non-fitting vertexes.
First, the topological graph is filtered, leaving only non-fitting vertexes, and the
edges connecting them. Then, for each set of weakly connected components (i.e.,
connected vertexes without considering the direction of the edges), we project
the elements of the original net they refer to. Note that this algorithm priori-
tizes the connectivity among vertexes resulting in weakly connected components.
However, alternative versions of the algorithm yielding strongly connected com-
ponents are possible. For instance, given the example of Fig. 4b, two connected
components are found as shown in Fig. 4c: S2 and S5 +B2.

Algorithm 3 Non-Fitting Weakly Connected Components Algorithm

function nfwcc(T,V) . Let V be the non-fitting vertexes
Cc = ∅
remove from T all arcs c = {x, y} such that x, y 6∈ V . Graph induced by V
remove from T all vertexes z 6∈ V
while T has vertexes do . Find Weakly Connected Components

v1 ← select random vertex on T
{v1, . . . vn} ← get vertexes weakly connected with v1 using Depth-first search
remove {v1, . . . vn} from T
Cc = Cc ∪ {(

⋃n
1 places(vi),

⋃n
1 trans(vi),

⋃n
1 arcs(vi))}

return Cc

The topological graph extended with conformance information can also be
used to create one complete subnet that includes all non-fitting parts of the
extended partitioning. We use a heuristic based on the greedy expansion of
the largest non-fitting connected component (based on Algorithm 3), to get
connected with the second largest component, until all the non-fitting behavior
is connected, trying to include as few fitting nodes as possible. A schema of
the procedure is shown in Algorithm 4. Given the example of Fig. 4b, the net
resulting (shown in Fig. 4d) contains the elements of S2, S4, B1, S5 and B2. In
Sec. 6 we provide experimental results on large models for the two techniques
proposed in this section.

Algorithm 4 Non-Fitting Subnet Algorithm

function nfn(T,V) . Let V be the non-fitting vertexes
while graph G induced by V on T is not connected do

c1 ← get the largest connected component of G
c2 ← get the second largest connected component of G
{v1 . . . vn} ← shortest path vertexes(T, c1, c2)
V = V ∪ {v1 . . . vn}.

return Petri net induced by V

5 RPST Simplifications

Although the decomposition of a model based on SESEs and their RPST is in-
tuitive and fine-grained, it remains different from the conceptual decomposition
typically on the mind of the process analysts. In [3], the results of an experiment
performed over 7 subjects identify three main differences between their manual
decomposition and the one provided by the RPST: 1) predisposition of the ana-
lysts to discard small components, 2) to not consider twice similar components,
and 3) to not make grow the depth of the hierarchy unnecessarily. In this section
we formalize the two last items into a similarity metric between parent-child
SESEs, enabling discarding child components when the similarity with the par-
ent is above some threshold. Also we tackle 1) by defining a threshold on the
minimal size of a SESE to consider. Note that in the case of 1), Lemma 2 may not
be applicable (since a partitioning of the net may not be possible) and therefore
these RPST simplifications can only be applied without any guarantee.

In particular we present a metric (cf. Def.12) for estimating the similarity
between a node S and its single child S′ based on two factors: size and sim-
plicity. The size factor is straightforwardly related with the number of arcs of S
not included on S′. The more arcs shared by both components, the more simi-
lar they are. For instance, considering the component S1 of Fig. 5a, all its arcs
are included in S2 except two, i.e., S2 is in essence S1. Therefore, a detailed
conformance diagnosis over S1 may be sufficient for understanding both subpro-
cesses. The simplicity factor refers to the simplicity of part of the parent S not

included on the child S′. When such part defines a simple behavior (e.g., the
strictly sequential behavior of S3 not included in S4, in Fig. 5b), the analysis
and understanding of the parent may again be enough. On the other hand, when
the behavior not included in S′ contains complex constructions (e.g., mixtures of
concurrency and choice) it may be more advisable to analyze both subprocesses.
Formally:

(a) similar size among SESEs

S3 S4SS2SS1

(b) high simplicity among SESEs

Fig. 5: Example of cases with high similarity between nested SESEs.

Definition 12 (Similarity Metric). Let SP = (VP , FP) be an RPST node,
and let SC = (VC , FC) be its only child. Let size define the difference on size
between them, i.e., size = |FC |/|FP |. Let FO = FP \ FC be the set of non-
intersecting arcs. Let F ∗O be the arcs in FO that have a source vertex with only
one outgoing edge, and a target vertex with only one incoming edge, i.e., F ∗O =
{(x, y) ∈ FO : |(x, v) ∈ FO| = 1 ∧ |(w, y) ∈ FO| = 1}. Let simplicity define
the simplicity of the non-intersecting arcs, i.e., simplicity = |F ∗O|/|FO|. The
similarity between SP and SC is the harmonic mean between size and simplicity:

similarity = 2 · size · simplicity
size+ simplicity

Both simplification techniques (small components and similarity merging)
have been implemented and tested. In Sec. 6 we show the effects of their appli-
cation on large models.

6 Experimental Results

All techniques presented on this paper have been implemented within ProM
framework and are accessible through the JorgeMunozGama package.7 To test
performance we created various benchmarks generated by PLG tool [18].8 In
this section we first highlight the empirical differences with related conformance
checking approaches described in the literature and the partitioning-based pro-
posed in this paper. Second, we provide some results on the application of the
topological graph algorithms. Finally, we illustrate the effects of the simplifica-
tion methods proposed on large models.

7 Download from http://www.promtools.org/prom6/nightly/.
8 These are publicly available via http://www.lsi.upc.edu/~jmunoz/software.html.

Table 1 shows the ability to handle conformance problems of industrial size
using our approach. The experiment is composed of several large models (having
P places and T transitions), and their corresponding logs. For each benchmark,
the table contains the fitness value (f) and the time required for analyzing their
conformance using the approach proposed in [9,11] (t). Dashes denote the lack of
results after 10 hours of computation. The rest of the table contains the results
of applying the same conformance technique over a 50, 100 or 200 SESE-based
extended partitioning, respectively. For each k-partitioning the table provides
the number of parts (S SESEs and B bridges), the number of parts containing
more than 5 arcs (> 5), and the total time required for the fitness analysis
(t). In addition, the table shows the number of parts with a fitness value lower
than one (i.e., non-fitting nf) and the percentage of arcs they represent within
the whole model. Remarkably, the time required to compute the RPST and the
k-partitioning is negligible (i.e., never more than few seconds).

Table 1: Comparison between k-partitioning and [9,11].

[9,11] k = 50 k = 100 k = 200
P T f t S/B >5 nf t S/B >5 nf t S/B >5 nf t

prAm6 347 363 0.92 75 129/57 29 7(3%) 423 62/27 14 1(9%) 323 27/12 7 1(10%) 180
prBm6 317 317 1 88 93/38 22 0(0%) 608 66/29 14 0(0%) 318 36/16 8 0(0%) 114
prCm6 317 317 0.57 2743 93/38 22 58(92%) 189 66/29 14 41(94%) 185 36/16 8 22(96%) 502
prDm6 529 429 - - 105/34 33 5(8%) 1386 60/23 18 4(14%) 986 33/15 9 4(23%) 1284
prEm6 277 275 0.97 3566 82/35 20 2(5%) 529 35/13 11 2(5%) 343 15/7 5 2(6%) 211
prFm6 362 299 - - 108/43 28 2(6%) 1667 57/23 15 2(21%) 863 21/9 5 1(23%) 562
prGm6 357 335 - - 94/37 25 2(8%) 867 67/31 15 2(8%) 850 51/25 11 2(8%) 474

Table 1 shows that partitioning yields significant speedups in case event logs
are not perfectly fitting the model [9,11]. In cases with a perfect fitting (e.g.,
prBm6) the time required for the proposed approach is higher, due the over-
head caused by creating and storing in memory the generated parts. However,
in real cases where the log is poorly fitting the model, the time needed for con-
formance checking is reduced in one order of magnitude using k-partitioning.
More important, the proposed approach is able to tackle and provide confor-
mance information for those cases where [9,11] is not able to provide a result
(e.g., prDm6, prFm6 and prGm6).

Table 1 also shows the capability of the proposed approach to detect and
isolate the subprocesses causing the fitness problems. In particular, the approach
is able to identify those cases were all the fitness problems are located in only
a few parts of the process, e.g., in prEm6, all the fitness problems of a net with
277 transitions can be restricted to 2 subprocesses that represent only the 5% of
the model. Note that, although the number of parts generated by the approach
can be considered high, most of them are trivial parts with less than 5 arcs.
Importantly, the number of large parts remains low, and its maximum size can
be controlled by the parameter k of Algorithm 1.

The second experiment aims at illustrating the role of the topological graph.
Figure 6 shows a graphical example on how the techniques of Sec. 4 can be used
for diagnosis: given a large model having conformance problems (denoted in red),

Fig. 6: The 50-partition as a diagnosis tool for the prFm6 benchmark.

Table 2: Results of NFWCC and NFN algorithms.

NFWCC NFN

P T |CC | |V̄ | |P̄ | |T̄ | |V | |P | |T |
prAm6 317 317 7 1 2.1 3 14 15 14
prCm6 317 317 38 1.5 8.2 9.5 113 315 317
prDm6 529 429 5 1 9.4 9.4 31 55 52
prEm6 277 275 2 1 1 2 31 29 40
prFm6 362 299 2 1 13 11 7 27 25
prGm6 357 335 2 1 16.5 14.5 5 34 29

Algorithms NFWCC and NFN can be used to identify one subprocess with confor-
mance problems or a connected subnet including all the subprocesses with con-
formance problems, respectively. Table 2 reports on the performance of these two
algorithms using the examples of the previous experiment.9 For the experiments,
we have considered the topological graph resulting from the 50-partitioning for
the different log-model combinations. For the NFWCC algorithm, the table con-
tains the number of non-fitting weakly connected components (|CC |), the average
size (places |P̄ | and transitions |T̄ |) and average number of vertexes (|V̄ |) whose
connected components are composed of. For the NFN algorithm, the table pro-
vides the size of the derived non-fitting net (|P | and |T |), and the number of
topology vertexes it includes. The table illustrates the benefits of the proposed
algorithms to detect and isolate the fitness mismatches. In case the fitness prob-
lems are spread all over the whole model, the resulting net is almost the original
net (e.g., prCm6). However, when the fitness problems are local, the net that
encloses all problem spots may be orders of magnitude smaller than the original
net, thus easing the diagnosis.

The final experiment illustrates the effects of the simplification over the
RPST decomposition on the number of components and hierarchy levels. Fig-
ure 7 shows the simplification of two models used in the previous experiments

9 Only non-fitting models of Table 1 are considered in Table 2.

of this section. For each model, the figure provides the number of components
at each level of the RPST (being 1 the root of the RPST, and 14 the deepest
level). The figure contains the number components for the original RPST, after
removing the small components (less than 10 arcs), and after merging similar
nested nodes (i.e., similarity degree over 0.8). Both charts reflect the difference
between the number of components on the original RPST and the one after
removing the small components, i.e., most of the RPST nodes are small. After
removing small nodes the depth of the RPST only decreases two levels (from 14
to 13). On the other hand, the effect on the depth after merging similar nodes is
high. In both cases, the number of levels is reduced significantly (from 12 to 6),
providing a decomposition with less redundance and more aligned with human
perception [3].

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RPST 1 9 3 39 19 133 53 201 56 211 40 160 25 76

Small 1 1 3 8 13 12 21 12 13 7 8 3

Similar 1 3 9 15 23 23

0

50

100

150

200

250

p
rC

m
6

(a) prCm6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RPST 1 7 2 15 8 40 21 111 62 328 127 501 73 248

Small 1 1 2 3 8 8 21 21 46 29 29 9

Similar 1 2 5 12 33 66

0

100

200

300

400

500

600

p
rD

m
6

(b) prDm6

Fig. 7: Effect of the simplification techniques.

7 Conclusions and Future Work

The practical relevance of process mining increases as more event data becomes
available. More and more events are being recorded and already today’s event
logs provide massive amounts of process related data. However, as event logs
and processes become larger, many computational challenges emerge.

In this paper, we presented an approach to decompose conformance checking
techniques by identifying canonical SESEs using the so-called Refined Process
Structured Tree (RPST). Analysis can be done at any level in the RPST tree.
The approach makes it possible to discover conformance problems more effi-
ciently both in terms of computation and diagnostics. Although our experimen-
tal results support these claims, more real-life case studies need to be conducted.
For example, we would like to empirically show that the diagnostics based on
the topological graph are indeed more insightful because the analyst can focus
on the problem spots. Moreover, the inclusion of other conformance dimensions
into the proposed approach, together with the possibility of tackle invisible and
duplicate transitions, is another direction for future work.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin (2011)

2. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generaliza-
tion of the refined process structure tree. In Bravetti, M., Bultan, T., eds.: WS-FM.
Volume 6551 of Lecture Notes in Computer Science., Springer (2010) 25–41

3. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Conformance
Checking of Process Models Based on Event Logs. In: Applications and Theory of
Petri Nets. TR: http://www.lsi.upc.edu/~techreps/files/R13-5.zip. (2013)

4. IEEE Task Force on Process Mining: Process Mining Manifesto. In Daniel, F.,
Barkaoui, K., Dustdar, S., eds.: Business Process Management Workshops. Vol-
ume 99 of Lecture Notes in Business Information Processing., Springer-Verlag,
Berlin (2012) 169–194

5. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Cor-
respondence of a Process to a Model. ACM Transactions on Software Engineering
and Methodology 8(2) (1999) 147–176

6. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process
Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery
14(2) (2007) 245–304

7. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1) (2008) 64–95

8. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. WIREs
Data Mining and Knowledge Discovery 2(2) (2012) 182–192

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: EDOC, IEEE Computer Society (2011) 55–64

10. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Multi-Dimensional
Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-
Life Event Logs. Information Systems 37(7) (2012) 654–676

11. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment Based Precision Checking. In Rosa, M., Soffer, P., eds.: Busi-
ness Process Management Workshops, International Workshop on Business Pro-
cess Intelligence (BPI 2012). Volume 132 of Lecture Notes in Business Information
Processing., Springer-Verlag, Berlin (2013) 137–149

12. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance:
Stability, Confidence and Severity. In Chawla, N., King, I., Sperduti, A., eds.:
IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011),
Paris, France, IEEE (April 2011) 184–191

13. van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking.
In Lara, J., Zisman, A., eds.: International Conference on Fundamental Approaches
to Software Engineering (FASE 2012). Volume 7212 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2012) 1–25

14. van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In
Haddad, S., Pomello, L., eds.: Applications and Theory of Petri Nets 2012. Volume
7347 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2012) 72–91

15. van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. BPM Center Report BPM-12-20, BPMcenter.org (2012)

16. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–580

17. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9) (2009) 793–818

18. Burattin, A., Sperduti, A.: Plg: A framework for the generation of business process
models and their execution logs. In zur Muehlen, M., Su, J., eds.: Business Process
Management Workshops. Volume 66 of Lecture Notes in Business Information
Processing., Springer (2010) 214–219

