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Abstract. Substantial research efforts have been expended to deal with
the state space explosion problem inherent to the analysis of concurrent
systems. Approaches differ in the classes of properties that they are able to
suitably check and this is largely a result of the way they balance the trade-
off between time and space. One interesting class of properties is concerned
with behavioral characteristics of a concurrent system. These properties
are conveniently expressed in terms of runs through the system. In this
paper, the theory of untangling is proposed that exploits a particular
representation of collections of runs to facilitate the analysis. It is shown
that no behavior is lost or added when untangling a concurrent system.

1 Introduction

Systems in which several computations are executing simultaneously, usually
interacting with each other, are called concurrent. Naturally, concurrent systems
are capable of providing a better throughput, computed output relative to the
number and size of tasks at hand, as compared to systems in which all operations
are performed in a centralized manner by a single worker, e.g., a processing unit.
The design of a concurrent system deals with finding an effective coordination
that encourages efficiency of individual workers in the name of a common goal.

Concurrent systems are often extremely complex. The complexity is primarily
due to the amount of uncertainty about the order in which atomic operations can
be executed by different processing units of a concurrent system. The number
of all possible interleavings of operations defined by a concurrent system grows
combinatorially with the number of its simultaneously enabled operations – a phe-
nomenon known as the state space explosion problem. Consequently, techniques
for analysis of concurrent systems constitute one of the most complex classes
of practical problems in computer science. Many techniques for verification of
behavioral characteristics, i.e., properties over all potential computations, are
doomed to explore immense portions of operation interleavings described by a
concurrent system. Besides, the complexity of these explorations depends on the
particular formalism that is used to describe the system.

A number of formalisms for modeling and analyzing concurrent systems have
been developed and systematized [1,2]. Some of them can be used through the
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entire development cycle while others target some particular phase, e.g., analysis.
One of the first formalisms for describing concurrent systems, and by now
one of the most studied, was proposed in Carl Adam Petri’s seminal work on
Petri nets. A concurrent system captured in the Petri net notation, or a net
system, is often reminiscent of a mass of highly interwoven models for individual
computations – a tangle of computations. Every time a Petri net gets instantiated
it carves its way through a maze of pre-designed options into a collection of
desired computations. This paper proposes theoretical foundations for a novel
representation of concurrent systems. We propose to untie Petri net models of
concurrent systems into their representative untanglings, i.e., to free them from
the confusion of individual computations.

An untangling of a concurrent system is a set of its processes [3,4,5], i.e., ab-
stract models for representing causality and concurrency of operations, each
describing a collection of system computations. A representative untangling of a
Petri net system describes the exact behavior of its originative system, is usually
larger than the originative system (with respect to size), but is easier to analyze.
We envision that the proposed theory will eventually lead towards a design of a
novel index structure for representing behaviors of concurrent systems, suitable
for their effective and efficient analysis.

The remainder of this paper is organized as follows. The next section introduces
preliminary notions that will be used later to impart the findings. Section 3
proposes process set systems – abstract models capable of representing chunks
of the non-sequential behavior of concurrent systems. Afterwards, Section 4 is
devoted to the main artifact which is developed in this paper – a representative
untangling of a concurrent system. A representative untangling can be used
to induce a process set system that is behaviorally equivalent to the original
concurrent system, but structurally different. Section 5 demonstrates use of
representative untanglings for analysis of concurrent systems. The paper closes
with a detailed discussion of related work, ideas for future work, and conclusions.

2 Preliminaries

This section introduces formalisms that will be used to support discussions in
the subsequent sections. First, Section 2.1 presents Petri nets – a formalism for
describing concurrent systems. Afterwards, Section 2.2 talks about processes –
abstract models that capture the non-sequential behavior of concurrent systems.

2.1 Petri Nets

Petri nets are a well-known formalism for modeling concurrent systems. This
section introduces the basic Petri net terminology and notations.

Definition 2.1 (Petri net) A Petri net, or a net, is an ordered triple N ∶=
(P,T,F ), where P and T are finite disjoint sets of places and transitions, respec-
tively, and F ⊆ (P × T ) ∪ (T × P ) is a flow relation. ⌟
An element x ∈ P ∪T is a node of N . A node x ∈ P ∪T is an input node of a node
y ∈ P ∪ T iff x and y are in the flow relation, i.e., (x, y) ∈ F . Similarly, a node
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Fig. 1. Net systems (a net at different markings)

x ∈ P ∪T is an output node of a node y ∈ P ∪T iff y and x are in the flow relation,
i.e., (y, x) ∈ F . By ●x, x ∈ P ∪ T , we denote the preset of x – the set of all input
nodes of x, i.e., ●x ∶= {y ∈ P ∪T ∣(y, x) ∈ F}. Likewise, by x●, x ∈ P ∪T , we refer to
the postset of x – the set of all output nodes of x, i.e., x● ∶= {y ∈ P ∪T ∣(x, y) ∈ F}.
For a set of nodes X ⊆ P ∪T , ●X ∶= ⋃x∈X ●x and X● ∶= ⋃x∈X x●. A node x ∈ P ∪T
is a source (sink) node of N iff ●x = ∅ (x● = ∅).

Given a net N ∶= (P,T,F ), by Min(N) we denote the set of all source nodes of
N , i.e., Min(N) ∶= {x ∈ P ∪ T ∣●x = ∅}. Similarly, Max(N) denotes the set of all
sink nodes of N , i.e., Max(N) ∶= {x ∈ P ∪ T ∣x● = ∅}. For technical convenience,
we require all nets to be T-restricted. A net N is T-restricted iff the preset and
postset of every transition is non-empty4, i.e., ∀ t ∈ T ∶ ●t ≠ ∅ ≠ t●.

Execution semantics of a Petri net is based on the notion of a marking. A
marking of a Petri net is the distribution of tokens over the net’s places.

Let K be a universe of tokens.

Definition 2.2 (Marking of a net)
A marking of a net N ∶= (P,T,F ) is an ordered pair M ∶= (K,µ), where K ⊆ K
is a set of tokens and µ ∶K → P assigns a place to each token. ⌟
Finally, a net system is a net at a certain marking.

Definition 2.3 (Net system) A net system, or a system, is an ordered pair
S ∶= (N,M), where N is a net and M is a marking of N . ⌟
In the graphical notation, a common practice is to visualize places as circles,
transitions as rectangles, the flow relation as directed edges, and tokens as black
dots inside assigned places; see Fig. 1 for visualization examples of net systems.

Whether a transition is enabled depends on tokens in its input places. An
enabled transition can occur, which leads to a fresh marking.

Definition 2.4 (Semantics of a net system)
Let S ∶= (N,M), N ∶= (P,T,F ), M ∶= (K,µ), be a net system.
○ A transition t ∈ T is enabled in S, denoted by S[t⟩, iff every input place of t

contains at least one token, i.e., ∀ p ∈ ●t ∃ k ∈K ∶ µ(k) = p.
4 Every Petri net can be trivially T-restricted by adding a single input (output) place

to every transition with empty preset (postset).
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○ If a transition t ∈ T is enabled in S then t can occur, which leads to a
net system S′ ∶= (N,M ′), where M ′ ∶= (K ′, µ′) is a marking obtained by
removing one token from every input place of t and putting one fresh token
at every output place of t as follows:

Let K̂ ⊆ K ∖K be a set of tokens such that ∣K̂ ∣ = ∣t● ∣ and let g ∶ K̂ → t●
be a bijection between K̂ and t●. Let f ⊆ µ▷ ●t, with f a bijection and
∣dom(f)∣ = ∣● t∣. Then, K ′ ∶=K△(dom(f)∪dom(g)) and µ′ ∶= µ△(f ∪g).5 ⌟

By S[t⟩S′, we denote the fact that there exists an occurrence of transition t that
leads from S to S′. Observe that the semantics of net systems relies on holdings
of tokens at places and is independent from the tokens’ identities. This fact gives
rise to the following relation on markings. Two markings M1 ∶= (K1, µ1) and
M2 ∶= (K2, µ2) of a net are equivalent, denoted by M1 ≡M2, if and only if there
exists a bijection β ∶ K1 → K2 such that µ1(k) = (µ2 ○ β)(k), k ∈ K1. Clearly,
the ≡ relation is an equivalence relation. Every equivalence class of this relation
specifies a state of the net (system) that is best identified as a multiset of places.

Definition 2.5 (State of a net system) A state of a net N ∶= (P,T,F ) in-
duced by a marking M ∶= (K,µ) of N is a multiset H of places of N , where every
place p ∈ P appears ∣{k ∈K ∣µ(k) = p}∣ times in H. ⌟
A state of a net system S ∶= (N,M) is a state of N induced by M . Let M1 and
M2 be two markings of a net and let H1 and H2 be two states of the net induced
by M1 and M2, respectively. It is easy to see that H1 =H2 if and only if M1 ≡M2.
Let M1 and M2 be equivalent and let (N,M1) and (N,M2) be two net systems,
N ∶= (P,T,F ). It is obvious that (N,M1)[t⟩ holds if and only if (N,M2)[t⟩ holds,
t ∈ T . Finally, let (N,M ′

1) and (N,M ′
2) be net systems obtained after occurrence

of t in S1 and S2, respectively. Clearly, it holds that M ′
1 ≡M ′

2.
The above observations lead to a notion of a step that describes equivalent

transition occurrences. A step in a net N ∶= (P,T,F ) is an ordered triple χ ∶=
(H1, t,H2), where H1 and H2 are states of N induced by some markings M1 and
M2 of N , respectively, and t ∈ T , such that (N,M1)[t⟩(N,M2) holds.

A net system induces a set of its reachable states/markings/systems.

Definition 2.6 (Run, Reachable state, Occurrence sequence)
Let S0 ∶= (N,M0), N ∶= (P,T,F ), be a net system.
○ A sequence of steps δ ∶= (H0, t1,H1) . . . (Hn−1, tn,Hn), n ∈ N0, in N is a run

in S0, iff δ is empty or H0 is a state of S0.
○ A state H of N is reachable from S0, denoted by H ∈ [S0⟩, iff H is induced

by M0 or there exists a run (H0, t1,H1) . . . (Hn−1, tn,Hn), n ∈ N0, in S0 such
that H =Hn. A marking M of N is reachable from S0 iff there exists a state
H ∈ [S0⟩ such that H is induced by M . A net system (N,M) is reachable
from S0 iff M is reachable from S0.

○ A sequence of transitions σ ∶= t1 . . . tn, n ∈ N0, of N is an occurrence sequence
in S0, iff σ is empty or there is a run (H0, t1,H1) . . . (Hn−1, tn,Hn) in S0. ⌟

5 f▷X denotes the range restriction of function f ∶ Y → Z to the subset of its codomain
X ⊆ Z, i.e., f ▷X ∶= {(y, z) ∈ f ∣z ∈ X}. dom(f) denotes the domain of function f .
Finally, X △ Y denotes the symmetric difference of sets X and Y .
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Let S ∶= (N,M) be a net system. A step (H, t,H ′) in N is a step in S iff H ∈ [S⟩.
A net system S ∶= (N,M) is bounded iff there exists a number n ∈ N0 such that
for every marking M reachable from S it holds that the amount of tokens at
each place of N is at most n, i.e., the set [S⟩ is finite.

The net system in Fig. 1(a) is at a marking that induces state [p1 p2]. This
net system enables transitions t1, t2, and t3. An occurrence of t1 leads to the net
system in Fig. 1(b). Observe that the system in Fig. 1(c) is reachable from the
net system in Fig. 1(b), e.g., via t3, t4 or t3, t4, t6, t3, t2, t5 occurrence sequence.

2.2 Processes of Net Systems

A common way to trace dependencies between transition occurrences in net
systems is by means of runs, cf. Definition 2.6. Runs suit well when it comes to
describing orderings of transition occurrences. Let δ ∶= χ1 . . . χn, n ∈ N0, be a run
in a net system S ∶= (N,M0), N ∶= (P,T,F ), let H0 be a state of N induced by
M0, and let H1 . . .Hn be states of N such that for every position i in the run
χi ∶= (Hi−1, ti,Hi), ti ∈ T . Then, two subsequent steps χi−1 and χi, i ∈ [2 .. n]
represent two subsequent transition occurrences, such that an occurrence of ti−1
leads to a marking that induces Hi−1 and an occurrence of ti takes place at a
marking that induces Hi−1. However, runs of net systems cannot be used to
capture other behavioral phenomena such as causality and concurrency.

In this section, we discuss processes of net systems [3,4,5]. One can rely
on processes to adequately represent causality and concurrency relations on
transition occurrences. A process of a net system is a net of a particular kind,
called causal net (or sometimes occurrence net, see e.g., [5]), together with a
mapping from elements of the causal net to elements of the net system. The
mapping allows interpreting the causal net as a concurrent run of the net system.

Definition 2.7 (Causal net) A net N ∶=(B,E,G), B ⊆ K, is a causal net6, iff :

○ for every b ∈ B it holds that ∣●b ∣ ≤ 1 and ∣ b●∣ ≤ 1 (N is conflict-free), and
○ G+ is irreflexive (N is acyclic).7 ⌟

Elements of E are called events and elements of B are called conditions of N .

One can utilize events of causal nets to represent transition occurrences.
Consequently, conditions in the preset and postset of an event can be interpreted
as tokens consumed and produced, respectively, by the transition occurrence that
corresponds to the event. The intuition discussed above can be formalized in the
notion of a process of a net system as follows.

Definition 2.8 (Process of a net system)
A process of a net system S ∶= (N,M0), N ∶= (P,T,F ), is an ordered pair
π ∶= (Nπ, ρ), where Nπ ∶= (B,E,G) is a causal net and ρ ∶ B ∪E → P ∪ T is s.t.:

○ ρ(B) ⊆ P, ρ(E) ⊆ T (ρ preserves the nature of nodes),
○ M0 ≡ (Min(Nπ), ρ∣Min(Nπ)) (π starts at M0), and

6 For technical convenience, we require that every element of B is an element of K.
7 R+ denotes the transitive closure of a binary relation R.
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Fig. 2. Processes of the net system in Fig. 1(a)

○ for every event e ∈ E and for every place p ∈ P it holds that
∣{(p, t) ∈ F ∣t = ρ(e)}∣ = ∣ρ−1(p)∩●e∣ and ∣{(t, p) ∈ F ∣t = ρ(e)}∣ = ∣ρ−1(p)∩e● ∣
(ρ respects the environment of transitions). ⌟

An event e ∈ E represents an occurrence of transition ρ(e); conditions ●e and e●
relate to tokens that are consumed and produced by the respective transition
occurrence. More precisely, for each condition c ∈ ●e one token should be removed
from place ρ(c) and for each condition c ∈ e● one token should be put at place
ρ(c). The set of all processes of a net system collectively defines its behavior.

Fig. 2 shows three processes of the net system in Fig. 1(a). When visualizing
processes, we use ei, e

′
i . . . to denote events that refer to transition ti; similarly,

conditions ci, c
′
i . . . refer to place pi. Processes capture dependencies between

transition occurrences as follows. Two nodes x and y of a causal net N ∶= (B,E,G)
are causal, iff (x, y) ∈ G+; otherwise x and y are concurrent. For instance, in
Fig. 2(a), events e1 and e6 are causal, i.e., an occurrence of transition t1 is a
prerequisite for an occurrence of transition t6, whereas events e1 and e3 are
concurrent, i.e., t1 and t3 can be enabled at the same time and occur in any order.

In addition to transition occurrences, processes encode reachable markings of
corresponding net systems by means of cuts. A cut of a causal net is a maximal
(with respect to set inclusion) set of its pairwise concurrent conditions.

Theorem 2.9 (Cuts and reachable markings, cf. [5, Theorem 3.5])
Let π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a process of a net system S. If C ⊆ B is a
cut of Nπ, then M ∶= (C,ρ∣C) is a marking that is reachable from S. ⌟

Theorem 2.9 allows interpreting a process as a space-efficient data structure that
stores markings that are reachable from the corresponding net system. Fig. 2(a)
shows four (out of six) cuts of the causal net; a cut is a set of conditions that
intersect a dashed line. Cuts Ca and C ′

a describe the marking in Fig. 1(a), whereas
cuts Cb and Cc refer to the markings in Fig. 1(b) and Fig. 1(c), respectively.

Let π ∶= (Nπ, ρ) be a process of a net system S ∶= (N,M). It is obvious that
Min(Nπ) is a cut [5]. Moreover, by definition, Min(Nπ) is the cut that describes
marking M , i.e., M ≡ (Min(Nπ), ρ∣Min(Nπ)), cf. cut Ca in Fig. 2(a).
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3 Process (Set) Systems

A simple structure of processes, i.e., they are static models captured as causal
nets, permits simple analysis. Processes allow precise reasoning about causality
and concurrency of transition occurrences [5]. However, this simple analysis comes
at a price, as time is traded for space. A net system can often have an infinite
number of processes making any type of analysis on the set of all processes an
infeasible task, e.g., this is the case of the net systems in Fig. 1.

The discussion above triggers a question: Is it possible to represent the
behavior of a net system with a finite number of processes? Clearly, one can give
a positive answer to this question only if the space-efficiency of each individual
process is “high”, i.e., it should be possible to interpret a process in such a way
that it captures an infinite portion of the system’s behavior. The initial insights
into the feasibility of such an interpretation of a process come from the notion of
a reproduction process [6]. A reproduction process (Nπ, ρ) captures a repetitive
behavior as its minimal and maximal cuts, i.e., Min(Nπ) and Max(Nπ) both
refer to the same marking; observe that processes in Fig. 2(a) and Fig. 2(b) are
reproduction processes. We learn from these insights. Our intent is to maximize
encoding of the repetitive behaviors in a single process.

Given a process of a net system, the behavior encoded in the process can
be decoded in terms of the restricted behavior of the corresponding net system.
Formally, we implement the above intuition by means of process systems.

Definition 3.1 (Process system)
A process system is an ordered triple Sπ ∶= (N,M,π), where M is a marking of a
net N and π is a process of a net system (N,M ′); M ′ is a marking of N . ⌟
The semantics of process systems – similarly to the semantics of net systems,
cf. Definition 2.4 – consists of the transition enablement and transition occurrence
rules. The enablement rule of a net system (N,M) depends on the structure of
the net N , i.e., on tokens in presets of transitions of the net. The enablement
rule of a process system (N,M,π) relies on the structure of the process π. The
exact formulation of the rule is due to Theorem 2.9 and the following result.

Proposition 3.2 (Process restricted transition enablement)
Let π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a process of a net system S ∶= (N,M0), let
D ⊆ B be a set of conditions, and let e ∈ E be an event. If ●e ⊆D, then transition
t ∶= ρ(e) is enabled in N at marking M ∶= (D,ρ∣D), i.e., (N,M)[t⟩ holds. ⌟
Proposition 3.2 follows immediately from the fact that ρ preserves the nature
of nodes and environment of transitions, cf. Definition 2.8. Consequently, we
propose the following semantics for process systems.

Definition 3.3 (Semantics of a process system) Let Sπ ∶= (N,M,π), N ∶=
(P,T,F ), π ∶= (Nπ, ρ), Nπ ∶= (B,E,G), be a process system.
○ A transition t ∈ T is enabled in Sπ, denoted by Sπ[t⟩, iff there exists a cut
C ⊆ B of Nπ and an event e ∈ E such that M ≡ (C,ρ∣C), ●e ⊆ C, and t = ρ(e).

○ If a transition t ∈ T is enabled in Sπ then t can occur, which leads to a process
system (N,M ′, π), where M ′ is a marking s.t. (N,M)[t⟩(N,M ′) holds. ⌟
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The semantics of a process system is restricted to those markings that are
equivalent with cuts of the process π and to those transition occurrences encoded
in the process π. For instance, a process system composed of the net and marking
in Fig. 1(a) and the process in Fig. 2(a) enables transitions t1 and t3. Indeed, the
process contains a cut Ca ∶= {c1, c2} that describes the marking in Fig. 1(a) and
it holds that ●e1 ⊆ Ca ⊇ ●e3. Observe that the net system in Fig. 1(a) enables
transition t2, in addition to transitions t1 and t3.

The semantics of a process system Sπ has its natural boundaries on what
portion of system’s behavior can be described by Sπ. In order to overcome these
boundaries, we introduce process set systems that capture behavior of a net
system restricted by a collection of its processes, rather than by a single process.

Definition 3.4 (Process set system)
A process set system is an ordered triple S ∶= (N,M,Π), where M is a marking
of a net N and Π is a set of processes (an untangling) of a net system (N,M ′). ⌟
For technical considerations, we expect that for every two distinct processes
π1, π2 ∈ Π, where π1 ∶= (N1, ρ1), N1 ∶= (B1,E1,G1), and π2 ∶= (N2, ρ2), N2 ∶=
(B2,E2,G2), it holds that (B1 ∪E1)∩ (B2 ∪E2) = ∅. When visualizing processes,
we use the same label though assuming distinct elements, e.g., refer to Fig. 2.

The semantics of a process set system S ∶= (N,M,Π) is “composed” of the
semantics of process systems induced by processes in Π.

Definition 3.5 (Semantics of a process set system)
Let S ∶= (N,M,Π), N ∶= (P,T,F ), be a process set system.
○ A transition t ∈ T is enabled in S, denoted by S[t⟩, iff there exists a process
π ∈Π such that Sπ[t⟩ holds, where Sπ ∶= (N,M,π).

○ If a transition t ∈ T is enabled in S, then t can occur, which leads to a process
set system (N,M ′,Π ′), where M ′ is a marking s.t. (N,M)[t⟩(N,M ′) holds
and Π ′ ∶= {π ∈Π ∣(N,M,π)[t⟩}. ⌟

By S[t⟩S ′, we denote the fact that there exists an occurrence of transition
t ∈ T that leads from a process (set) system S to a process (set) system S ′.
Let S0 ∶= (N,M,Γ ), N ∶= (P,T,F ), be a process (set) system. Similar to net
systems, the state H of N induced by M is the state of S0. A sequence of steps
δ ∶= (H0, t1,H1) . . . (Hn−1, tn,Hn), n ∈ N0, is a run in S0, iff δ is empty or there
exists a sequence of process (set) systems S1 . . .Sn such that for every position i in
δ it holds that Si−1[ti⟩Si and Hi−1 and Hi are states of Si−1 and Si, respectively.
Accordingly, such notions as a reachable state/marking/process (set) system, and
an occurrence sequence in a process (set) system are defined similar to those for
net systems, cf. Definition 2.6, but considering runs in process (set) systems.

Let S ′ ∶= (N,M,Π) be a process set system reachable from a process set
system S via a run δ. Then, for each π ∈Π it holds that δ is a run in (N,M,π).
A process set system S that is composed of the net and marking in Fig. 1(a)
and the processes in Fig. 2(a) and Fig. 2(b) enables transitions t1, t2, and t3. An
occurrence of transition t1 leads to the process set system composed of the net
and marking in Fig. 1(b) and the process in Fig. 2(a), which enables transition t3.
Indeed, the process in Fig. 2(b) does not describe an occurrence of transition t1.
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4 Representative Untanglings

This section proposes the notion of representative untangling. A representative
untangling of a net system is a set of its processes that collectively allow the
behavior of this net system and disallow any other. The next section defines the
notion of a representative untangling of a net system. Afterwards, Section 4.2
proposes an algorithm for constructing representative untanglings.

4.1 Definition

A net system can be untangled into a set of processes in many possible ways. Every
such set contains information on some portion of the net system’s behavior. The
precise definition of this portion depends on a particular semantics of processes.
If one expects to employ the untangled processes for analysis, it is demanding
that they capture the exact behavior (recall the discussion in Section 3). Next,
we characterize those sets of processes that according to the semantics from
Section 3 represent the exact behavior of the corresponding net systems.

Definition 4.1 (Representative untangling)
Let S ∶= (N,M) be a net system and let Π be a set of processes of S.
○ A process π ∈Π represents a step (H, t,H ′) in S iff it holds that (N,M ′, π)[t⟩,

where M ′ is a marking of N that induces H.
○ A process π ∈Π represents a run δ in S, either finite or infinite, iff π represents

every step in δ.
○ The set Π is a representative untangling of S iff for every run δ in S there

exists a process π ∈Π that represents δ. ⌟
Let Π be a representative untangling of a net system S ∶= (N,M). Then, the
net system S and the process set system S ∶= (N,M,Π) are in a strong behavior
equivalence relation. In fact, from the point of view of an external observer, S
and S specify the same system. Both S and S induce occurrences of transitions
from the net N . Thus, whenever a transition occurs in either of two systems
it occurs in the same environment, i.e., the same preset and postset of places.
Because a run δ in S is represented by some process π ∈Π, it holds that δ is a
run in S. The converse, i.e., the result that a run δ in S is also a run in S, can be
obtained by referring to Proposition 3.2 at each step along the run δ. The above
observations lead to a conclusion that S and S are occurrence net equivalent [7],
which is the strongest behavioral equivalence notion for models of concurrent
systems [8], that states that unfoldings [9,10] of both systems are isomorphic.

A representative untangling Π of a net system S induces a process set system
that allows all the behavior of the net system and disallows any other. Moreover,
the set Π provides an alternative specification of the behavior encoded in S that
is particularly appealing for analysis purposes because of its relation between
runs in S and processes in Π; every run in S is represented by some process π ∈Π
which provides a dedicated object with a limited scope as input for analysis. That
is, one can check if there exists a run in S with certain properties by checking
if there exists a process in Π that allows a run with these properties. Likewise,
it is possible to check if some property holds for all runs in S by validating it
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against all processes in Π. Finally, as processes adequately represent the ordering,
causality, and concurrency relation on transition occurrences, one can explore
these relations when designing properties to be checked; note that it is often
possible to derive the conflict relation from events in different processes.

4.2 Construction

This section proposes an algorithm that given a bounded net system constructs
its representative untangling. The section starts by suggesting a method for
representing processes in pseudocode. Afterwards, this representation is employed
in an algorithm that given a run in a net system constructs its induced process. The
algorithm for constructing representative untanglings relies on this construction
as it attempts to discover those runs in the input net system that induce set
of processes with desired characteristics. After having presented the untangling
algorithm, this section closes with its termination and correctness analysis.

Representation of Processes. One can represent processes in several ways.
For instance, one can adopt the approach proposed in [11]. A process can be
represented as a set of conditions and events, where a condition is captured as an
ordered pair of a place it refers to and the only event in its preset (or ∅ in the case
of a source condition), while an event is captured as an ordered pair of a transition
it refers to and a set of conditions in its preset. This representation is designed to
describe nets without backward conflicts. Processes are captured as causal nets
and, thus, forbid backward and forward conflicts, cf. Definition 2.8. Consequently,
we take a different approach and represent conditions (B) and events (E) as
tokens and sets of tokens, respectively, i.e., B ⊆ K and E ⊆ P≥1(K).8 A binary
relation ρ ⊆ (B×P )∪(E×T ) is used to specify the mapping of conditions to places
(P ) and events to transitions (T ). As usual, the structure of a process is given by
the flow relation G ⊆ (B ×E) ∪ (E ×B). The idea of the process representation
proposed above allows implementing an intuition of every condition being the
holding of a token at a certain place and an event being the occurrence of a
transition at a certain marking. Next, we realize this intuition.

From Runs to Processes. A natural way to address construction of a process
is by iteratively appending fresh events to a causal net. The input to such a
procedure is a sequence of transition occurrences – a run. Algorithm 1 summarizes
a procedure that given a run of a net system constructs an induced process. The
algorithm follows the intuition of the proof of Theorem 3.6 in [5].

The starting point for the construction is a process composed of conditions
that correspond to tokens from the marking of the net system and no events,
cf. lines 1–2 in Algorithm 1. The construction proceeds by appending events
to the process stepwise, via the for loop of lines 4–11. Every appended event
corresponds to a transition occurrence that is described by a step in the input
run. Events get appended in the order in which respective steps appear in the
run. Every fresh event that gets appended to the process and has corresponding
transition t is appended together with output conditions that correspond to

8 P≥1(X) denotes the set of all non-empty subsets of set X, including X itself.
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output places of t, which are constructed at line 6. Observe that line 6 ensures
that output conditions are fresh with respect to the history of the run. The flow
relation gets completed, respecting the environment of t at line 8. Note that at
the start of every iteration of the for loop, the pair (K,µ) represents a marking
that enables an occurrence of transition ti, i.e., induces Hi−1.

Algorithm 1: Process(S, δ) – Construct process induced by run

Input: A run δ ∶= (H0, t1,H1) . . . (Hn−1, tn,Hn), n ∈ N0, in a net system
S ∶= (N,M0), N ∶= (P,T,F ), M0 ∶= (K0, µ0), ti ∈ T , i ∈ [1 .. n]

Output: A process π of S induced by δ

1 B ∶=K0; E ∶= ∅; G ∶= ∅; // initialize conditions, events, and flow

2 ρ ∶= µ0; // initialize mapping of nodes

3 K ∶=K0; µ ∶= µ0;
4 for i ∶= 1 to n do // iterate over positions in δ

// prepare

5 f ⊆ µ▷ ●ti is a bijection such that ∣dom(f)∣ = ∣●ti∣;
6 X ⊆ K ∖B is a set of tokens such that ∣X ∣ = ∣ti●∣;
7 g ∶X → ti● is a bijection between X and ti●;

// construct

8 B ∶= B ∪X; E ∶= E ∪ {K}; G ∶= G ∪ (dom(f) × {K}) ∪ ({K} × dom(g));
9 ρ ∶= ρ ∪ {(K, ti)} ∪ g;

10 µ ∶= µ△ (f ∪ g); K ∶= dom(µ);
11 end
12 return π ∶= ((B,E,G), ρ);

The construction in Algorithm 1 is not unique but is always possible. Moreover, a
process resulting from the algorithm represents the run it was constructed from.

Proposition 4.2 (Processes and runs)
Let δ be a run in a net system S. Then, Process(S, δ) represents δ. ⌟
Let δ ∶= (H0, t1,H1) . . . (Hn−1, tn,Hn), n ∈ N0, be a run in a net system S. For
every start of the i-th iteration of the for loop of lines 4–11, the set C ∶=
Max((B,E,G)) is a cut of (B,E,G) and (C,ρ∣C) is a marking of N that induces
state Hi−1 cf. [5]. By the end of the i-th iteration, a fresh event that corresponds to
transition ti is appended to a process under construction with its preset completely
in C. Hence, Process(S, δ) represents every step in δ, cf. Definition 4.1.

Algorithm. Next, an algorithm for the construction of representative untanglings
is proposed. The algorithm expects a bounded net system as input and is a state
space search algorithm that discovers runs of the input net system that induce its
representative untangling. Searching a state space means systematically observing
transition occurrences so as to visit the states of the net system. Subsequent
transition occurrences make up runs of the net system. If one attempts to employ
the discovered runs to induce a representative untangling of a net system, one
must ensure that these runs contain sufficient amount of information on the net
system’s behavior. Construction of a run can terminate naturally, i.e., when a
net system reachable via the run does not enable any transition. Additionally,
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we propose to terminate construction of a run if it encodes a repetitive behavior
that can be reconstructed from other steps in the run – the run is insignificant
with respect to repetitive behaviors. A significant run is defined as follows.

Definition 4.3 (Significant run)
A run χ1 . . . χn, n ∈ N0, in a net system is repetition significant, or significant, iff :

∀ i, j ∈ [1 .. n], i < j, χi = χj ∃ k ∈ (i .. j) ∀m ∈ [1 .. i) ∪ (j .. n] ∶ χk ≠ χm. ⌟
A run that is not significant is insignificant. Considering the net system in Fig. 1(a),
occurrence sequence t1, t3, t4, t6, t1, t3, t4, t6 is induced by the insignificant run.
Note that the run which induces sequence t1, t3, t4, t6, t1, t4, t3, t6 is significant.

Let α and β be two sequences. Then, α + β is the sequence obtained by
concatenating α and β, i.e., joining them end-to-end. Let δ ∶= χ1 . . . χn, n ∈ N0, be
a run in a net system S. By PE(S, δ) we denote the set of all possible extensions
of δ, i.e., the set of all steps in S such that for every step χ ∈ PE(S, δ) it holds
that δ + χ is a run in S. Finally, Algorithm 2 exploits the significant property of
runs to construct a representative untangling of a bounded net system.

Algorithm 2: RPS(S) – Construct representative untangling

Input: A bounded net system S ∶= (N,M0)
Output: A representative untangling of S

1 ∆ ∶= {∅}; // ∆ is a set of runs in S,R ∶= {∅},A ∶= {∅}
2 RS

n ∶= ∅; // initialize result with the empty set

3 while ∆ ≠ ∅ do
4 ∆ ∶=∆ ∖ {δ}, δ ∈∆; // δ is a run in S

5 if PE(S, δ) = ∅ then RS
n ∶=RS

n ∪ {Process(S, δ)}; // collect result

6 else
7 allExtIns ∶= true;
8 foreach χ ∈ PE(S, δ) do
9 if δ + χ is significant then

10 ∆ ∶=∆ ∪ {δ + χ}; // R ∶= R ∪ {δ + χ},A ∶= A ∪ {(δ, δ + χ)}
11 allExtIns ∶= false;

12 end

13 end

14 if allExtIns then RS
n ∶=RS

n ∪ {Process(S, δ)}; // collect result

15 end

16 end

17 return RS
n;

Termination Analysis. The while loop of lines 3–16 iterates as long as there
are runs in the set ∆. Prior to the first iteration of the loop, the set ∆ is initialized
with the empty run at line 1. At every iteration of the while loop, one run δ is
drawn from ∆ at line 4. If δ has no possible extensions (see the check at line
5), then no runs are added to ∆ in the same iteration of the loop. Otherwise,
in the foreach loop of lines 8–13, every possible extension of δ that leads to a
significant run (refer to the check at line 9) triggers the insertion of this extended
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run into the set ∆ at line 10. Observe that no run is added to the set ∆ within a
single iteration of the while loop of lines 3–16 if every possible extension of δ
leads to an insignificant run in S (check at line 9 does not evaluate to true).

Given a net system, Algorithm 2 systematically explores its runs. Let R be a
set that collects runs that are added to the set ∆ at lines 1 and 10 along a course
of execution of Algorithm 2 – a set of visited runs ; the set R can be constructed
as specified in the comments of respective lines of the algorithm (if executed). It
is easy to see that the while loop of lines 3–16 maintains the following invariant.

Invariant 4.4 (Fresh runs – the while loop of lines 3–16)
Let R be the set of visited runs up to the current execution point in Algorithm 2.
Prior to every execution of line 10, it holds that the run δ + χ is not in R. ⌟
Proof. Assume that before some execution of line 10, it holds that δ + χ is in
R. Then, in the course of the same execution of Algorithm 2 there exist two
iterations of the while loop of lines 3–16 that selected the same run as δ at line
4. This means that there exists an iteration of the while loop in the course of
this execution such that before line 10 it holds that δ is in R. By applying the
above reasoning iteratively, one can conclude that there exist two iterations of
the while loop that selected the empty run as δ at line 4. However, one can
clearly see from the structure of the algorithm that the empty run is always
selected at line 4 in the first iteration of the while loop and never afterwards. ◾

The logic of Algorithm 2 makes it apparent that its execution will never terminate
if the input net system has an infinite significant run. Next, we show that a
bounded net system has no infinite significant runs.

Lemma 4.5 (Infinite runs)
An infinite run in a bounded net system is insignificant. ⌟
Proof. Let δ ∶= χ1, χ2 . . . be an infinite run in a bounded net system S ∶= (N,M),
N ∶= (P,T,F ). Assume that σ is significant. Let Σ be the set of all steps (H, t,H ′),
t ∈ T , in N , where H is a state of N reachable from S. Because S is bounded
and T is finite, it holds that Σ is finite. There exists a step χ ∈ Σ such that χ
occurs infinitely often in δ; otherwise δ is finite. Then, there also exists an infinite
sequence γ of positions in δ (in ascending order) such that for every element n in
γ it holds that χ = χn. Consequently, for every pair of subsequent elements i and
j in γ there exists k ∈ (i .. j) such that for all m ∈ [1 .. i) ∪ (j ..∞] it holds that
χk ≠ χm; otherwise δ is insignificant. Then, χ occurs at most ∣Σ∣ times in δ. ◾

In other words, all significant runs in a bounded net system are finite. Another
threat that can cause Algorithm 2 run forever stems from the necessity to explore
an infinite number of finite significant runs. Next, we show that there is a finite
number of significant runs in a bounded net system.

Lemma 4.6 (Significant runs)
The set of all significant runs in a bounded net system is finite. ⌟
Proof. Let S ∶= (N,M), N ∶= (P,T,F ), be a bounded net system and let Σ be
the set of all steps (H, t,H ′), t ∈ T , in S. As S is bounded and T is finite, it holds
that Σ is finite. As per Lemma 4.5, every significant run in S is finite. Then,
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there is n ∈ N0 such that every significant run in S is a sequence of at most n
steps. Thus, the number of significant runs in S is bounded above by the size of
a dictionary of all words of length at most n such that every word is composed
of symbols drawn from the fixed alphabet Σ; this dictionary is finite. ◾
Finally, Theorem 4.7 collects all the above results to show that Algorithm 2
indeed terminates for every input bounded net system.

Theorem 4.7 (Termination) Algorithm 2 always terminates. ⌟
Proof. Algorithm 2 terminates if the while loop of lines 3–16 terminates. We
associate a measure with every iteration of the while loop. Let R be a set of
visited runs that gets constructed at lines 1 and 10 in a course of execution
of Algorithm 2. Let the measure of the i-th iteration of the while loop be an
ordered pair (∆i,Ri), where ∆i and Ri are the values of ∆ and R, respectively,
at the time of the check at line 3 (prior to executing the body of the loop). For
example, ∆1 and R1 are both equal to {∅}. One can classify every scenario of
a single iteration of the while loop into two cases, according to which relation
between the current and the next iteration measure this scenario leads.

(i) ∣∆i+1∣− ∣∆i∣ = n, n ∈ N0, and Ri ⊂ Ri+1. This case corresponds to the scenario
when a run δ chosen at line 4 has at least one significant extension and, hence,
line 10 is executed one or more times in the i-th iteration of the while loop.
Observe that both ∣∆i∣ ≤ ∣∆i+1∣ and Ri ⊂ Ri+1 hold because of Invariant 4.4.

(ii) ∆i+1 ⊂∆i and Ri = Ri+1. This case corresponds to the scenario when a run
δ chosen at line 4 has no extensions or all its extensions result in insignificant
runs and, thus, line 10 is not executed in the i-th iteration of the while loop.

The key observation here is that execution of the while loop can take scenario
that falls under case (i) only a finite number of times. It is easy to see that the
algorithm preserves the invariant of R being composed of significant runs and
the set of all significant runs is finite, refer to Lemma 4.6. Every time the while

loop is executed according to scenario (i), the size of the set ∆ stays unchanged
or is increased by some number n. Therefore, there exists an iteration of the
loop from which on execution of every subsequent iteration will always follow
scenario (ii) and at that moment in time the set ∆ is finite. Thus, the set ∆ will
eventually become empty and the condition at line 3 will evaluate to false. ◾

Correctness Analysis. Let δ be a run in a net system S. The set of processes
Π of S is representative if there exists π ∈ Π that represents every step in δ,
cf. Definition 4.1. According to Proposition 4.2, a process represents all the steps
in a run that it is constructed from (as per Algorithm 1). Next, we show that for
every run in a bounded net system S it holds that it is composed of steps that
also participate in some run that is used to induce a process in the set RSn .

Algorithm 2 explores runs in the input net system. Every fresh run that gets
explored is obtained from the one priorly observed, refer to lines 4 and 10 of the
algorithm. This fact gives rise to the following relation on runs of the net system.

Definition 4.8 (Graph of runs)
Let R be the set of visited runs constructed by Algorithm 2 for an input bounded
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net system S. A graph of runs of S is an ordered pair G ∶= (R,A), where A is
the set of ordered pairs (δ, δ +χ) constructed for every pair of values for δ and χ
observed at line 10 during execution of Algorithm 2 for input S. ⌟
Note that the precise construction of the set A is specified in the comments to
lines 1 and 10 of Algorithm 2. Next, we point out two interesting invariants of
the while loop of lines 3–16 with respect to the graph of runs.

Invariant 4.9 (Tree of runs – the while loop of lines 3–16)
Let ∆i, RSn,i, and Gi ∶= (Ri,Ai), be the values for ∆, the set of runs used to

induce the set of processes RSn , and the graph of runs, respectively, at the start
of the i-th iteration of the while loop of lines 3–16 in Algorithm 2. Then, the
following statements hold at the start of the i-th iteration:
(i) Gi is a tree, (ii) ∆i ∪RSn,i are all the leaves of the tree Gi rooted at ∅ ∈ Ri. ⌟
Proof. We show that (i) and (ii) hold prior to the first iteration of the loop, and
if (i) and (ii) hold before an iteration, then they hold before the next iteration.

Initialization: (i) G1 ∶= ({∅},∅). (ii) ∆1 ∪RSn,1 = {∅}.
Maintenance: (i) Because of Invariant 4.4, it holds for every two subsequent

iterations of the while loop that ∣Ri+1∣− ∣Ri∣ = ∣Ai+1∣− ∣Ai∣. Therefore, it holds
that ∣Ai+1∣ = ∣Ri+1∣ − 1. Moreover, it holds that Gi+1 is connected. (ii) A run
δ selected from ∆i at line 4 is a leaf node of Gi rooted at ∅ (empty run).
Observe that δ is removed from ∆i+1 at line 4. If δ has extensions that lead
to significant runs then, because of Invariant 4.4, a child run is added to δ in
Gi+1 at line 10 (and also to ∆i+1); otherwise no fresh run is added to Ri+1
and, thus, δ is the leaf node of Gi+1, and it is added to RSn,i+1 (line 14). ◾

Moreover, it is immediate to see that at every moment in the course of execution of
Algorithm 2, the set RSn is composed of processes induced by maximal significant
runs, where a significant run is maximal if every its extension leads to an
insignificant run. Indeed, a run induces a process in RSn either if it has no
extensions (line 5) or all its extensions are insignificant (allExtIns flag is set to
true at line 14). In the sequel, we propose several results on run significance that
will be later orchestrated to show that Algorithm 2 is correct. We proceed with
the claim that each extension of an insignificant run leads to an insignificant run.

Proposition 4.10 (Insignificance invariant) Let δ be an insignificant run in
a net system S. A run δ + χ, χ ∈ PE(S, δ), is insignificant. ⌟
The proof of Proposition 4.10 follows immediately from Definition 4.3.

Proposition 4.11 (Infinite and finite runs)
Let δ be an infinite run in a bounded net system S. There is a finite run δ′ in S
s.t. for every step χ in δ there is a step χ′ in δ′ for which it holds that χ = χ′. ⌟

Proof. Let δ ∶= χ1, χ2 . . . be an infinite run in a bounded net system S ∶= (N,M),
N ∶= (P,T,F ). Let Σ be the set of steps in δ. Because S is bounded and T is
finite, it holds that Σ is finite. Let Ω be the set that for every step χ ∈ Σ contains
the smallest position i in δ at which χ occurs, i.e., χ = χi. Then, the subsequence
δ′ of δ that removes all the elements after position maxΩ is finite. Moreover, for
every step χ in δ there is a step χ′ in δ′ for which χ = χ′. ◾
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An important observation is that for every finite insignificant run δ there exists
a significant run that “uses” all the steps from δ.

Lemma 4.12 (Significant and insignificant runs) Let δ be a finite insignif-
icant run in a net system S. There exists a significant run δ′ in S such that for
every step χ in δ there exists a step χ′ in δ′ for which it holds that χ = χ′. ⌟
Proof. By infinite descent on subsequences of a run. Let δ ∶= χ1 . . . χn, n ∈ N0, be
a finite insignificant run in S. For δ it holds that: (i) there exist two positions i
and j in δ such that i < j and χi = χj , and (ii) for every k ∈ (i .. j) there exists
m ∈ [1 .. i) ∪ (j .. n] such that χk = χm. Let δ′ be a subsequence of δ obtained
via a reduction operation that removes all elements after position i up to and
including element at position j, i.e., δ′ ∶= (χ1 . . . χi) + (χj+1 . . . χn). Clearly δ′ is
a run in S. Moreover, because of (ii), for every step χ in δ there exists a step
χ′ in δ′ for which it holds that χ = χ′. Observe that the length of δ′ is strictly
smaller than the length of δ. Assume that δ′ is always insignificant. Then, one
can construct an infinite sequence of insignificant runs in S that starts with δ
and every other run in the sequence is obtained from the previous run via the
reduction operation proposed above, which is impossible. ◾

Observe that the proof of Lemma 4.12 defines a construction to obtain a significant
run with all the steps of a given insignificant run. The following corollary is an
immediate consequence of Lemma 4.11 and Lemma 4.12.

Corollary 4.13 (Runs and significant runs) Let δ be a run in a bounded
net system S, either finite or infinite. There is a significant run δ′ in S such that
for every step χ in δ there exists a step χ′ in δ′ for which it holds that χ=χ′ ⌟
Finally, Theorem 4.14 collects all the above results to demonstrate that Algo-
rithm 2 is correct in the sense that given a bounded net system it, certainly,
computes its representative untangling.

Theorem 4.14 (Correctness)
Let S be a bounded net system. RSn is a representative untangling of S. ⌟
Proof. Upon termination of Algorithm 2, it holds that ∆ = ∅ and, hence, the set
RSn contains processes induced by all the runs that correspond to the leaf nodes in
the tree of runs G ∶= (R,A) of S, refer to Invariant 4.9. Therefore, for every run δ
in S that is composed of steps that also participate in some leaf run in G it holds
that there exists a process in RSn that represents δ, refer to Proposition 4.2. Next,
we show that the above statement holds for every significant run in S. Observe
that R is composed of significant runs, see the check at line 9 of Algorithm 2,
and every internal run in G is a subrun (a subsequence) of some leaf run in G.
Moreover, as leaf runs in G are maximal and because of Proposition 4.10, it holds
that R is the set of all significant runs in S. Finally, according to Corollary 4.13,
it holds that every insignificant run is composed from steps of some significant
run that, in turn, is composed from steps of some leaf run in G. ◾

Example. Algorithm 2 provides a theoretic foundation for constructing represen-
tative untanglings. However, in practice, it may build a high number of processes.
For instance, the tree of runs of the net system in Fig. 1(a) consists of 508
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significant runs, 152 of which are maximal. If one prunes the tree by iteratively
removing those leaves that are composed of steps observed in some internal run
in the tree, one can use the maximal runs in the pruned tree to construct eleven
unique processes out of which six contain the other five as subgraphs. These six
processes consitute a representative untangling of the system. Observe that the
set with exactly one process in Fig. 2(c) is another representative untangling of
the net system in Fig. 1(a). It encodes all 152 significant runs of the system and,
thus, all its runs. In future work, we plan to develop fast untangling algorithms
that are interesting from the practical point of view, as well as look for the
canonical (or minimal) representative untanglings.

5 Behavioral Properties

This section demonstrates how representative untanglings can be utilized for
efficient verification of behavioral properties. We keep extensive studies for future
work and, in the following, rather give some illustrative examples that should
provide the reader with a grip on untangling-based analysis of concurrent systems.

The executability problem deals with deciding whether a system can execute
any transition out of a given set of transitions. It is a fundamental problem in the
concurrency theory as many others can be reduced to this one, e.g., a solution to
the executability problem can help deciding reachability and safety [12,13].

Lemma 5.1 (Executability) Let Π be a representative untangling of a bounded
net system S ∶= (N,M), N ∶= (P,T,F ). A transition t ∈ U ⊆ T can be executed in
S, i.e., is part of some occurrence sequence in S, iff there is a process π ∶= (Nπ, ρ),
Nπ ∶= (B,E,G), in Π that contains an event e ∈ E for which ρ(e) = t. ⌟
The proof of Lemma 5.1 follows immediately from the definition of a representative
untangling, which can be always constructed for a bounded net system.

Another important problem in the concurrency theory is deadlock freedom.
It deals with answering the question whether there exists a deadlock marking
reachable from a net system. A marking M of a net N ∶= (P,T,F ) is a deadlock
marking of N if and only if it does not enable any transition in N , i.e., the set
{t ∈ T ∣ (N,M)[t⟩} is empty. A net system S ∶= (N,M) is deadlock free if and
only if none of the markings reachable from S is a deadlock marking of N .

Lemma 5.2 (Deadlock freedom) Let Π be a representative untangling of a
bounded net system S ∶= (N,M). S is deadlock free iff for each process π ∶= (Nπ, ρ)
inΠ it holds that (C,ρ∣C), with C ∶=Max(Nπ), is not a deadlock marking of N . ⌟
Proof. We prove each direction of the statement separately.
(⇒) If S is deadlock free then every marking that is reachable from S is not a

deadlock marking of N . Because every maximal cut of every process in Π
corresponds to a marking reachable from S, refer to Theorem 2.9, it holds that
all maximal cuts of processes in Π do not correspond to deadlock markings.

(⇐) Assume that for every process π ∶= (Nπ, ρ) in Π it holds that (C,ρ∣C),
where C ∶= Max(Nπ), is not a deadlock marking of N , but S is not deadlock
free. Then, there exists a deadlock marking M ′ reachable from S via some
run δ in S. There also exists a process π ∶= (Nπ, ρ) in Π that represents δ.
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Because π represents every step in δ, it holds that there exists a cut C of Nπ
that corresponds to marking M ′. If C is not the maximal cut of Nπ, then M ′

is not a deadlock marking of N (M ′ enables transition ρ(e), where ●e ⊆ C).
Then, C is the maximal cut of Nπ, which leads to a contradiction. ◾

Executability and deadlock freedom of a concurrent system can be checked
efficiently on its representative untangling.

Proposition 5.3 Given a representative untangling of a bounded net system S,
the following problems can be solved in linear time:
○ To decide if a transition (from a set of transitions) can be executed in S.
○ To decide if S is deadlock free. ⌟

The proof of Proposition 5.3 is a direct consequence of Lemma 5.1 and Lemma 5.2.
Indeed, in the worst case, one can verify executability by visiting every event
of a representative untangling once, whereas deadlock freedom can be decided
by checking maximal cuts of untangled processes. Observe that the results
in Proposition 5.3 are due to the representative property that we enforce on
untanglings; executability is due to the fact that every step needs to be represented
and deadlock freedom is partly owed to the fact that every run must be represented.
We believe that, in a similar way, many other behavioral properties of concurrent
systems can exploit the representative property of untanglings leading to efficient
(in practice) implementations of verification algorithms.

Considering the representative untangling in Fig. 2(c), one can conclude that
the net system in Fig. 1(a) is deadlock free and confirm executability of every
transition; the maximal cut Cmax ∶= {c′6} in Fig. 2(c) describes the marking in
Fig. 1(c) that is not a deadlock marking as it enables transition t6.

6 Related Work

A representative untangling of a system is a novel mathematical formalism for
the description and analysis of behavior encoded in the system. In the following,
we discuss several existing formalisms that address the same problematics.

State space techniques are popular when it comes to the automatic analysis
and verification of concurrent systems. Rather than performing analysis directly
on a given concurrent system, these methods explore its induced representation
called transition system. In a nutshell, a transition system induced by a concurrent
system S is a graph with states reachable from S as its nodes and an edge from
state H to state H ′ whenever there is a step from H to H ′ in S. Unfortunately,
state space techniques suffer from the state space explosion problem. In the worst
case, all nodes of the induced transition system must be explored to accomplish
the envisioned analysis task, and there can be exponentially many nodes based
on the number of concurrent components of the system under analysis.

An unfolding of a concurrent system is a mathematical structure (often infi-
nite) that explicitly represents concurrency and causal relations between system
operations, as well as the points of choice between qualitatively different be-
haviors. Unfoldings are special partially ordered graphs that describe reachable
states of a system as combinations of nodes rather than dedicating every node
to a single state. In [9,10], McMillan observed that one can represent all the
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information contained in an unfolding in its truncated finite initial part, called
complete prefix unfolding. If adequate construction algorithms are employed, size
of a complete prefix unfolding of a concurrent system is never larger – and in
practice is by far smaller – than the size of the transition system induced by the
same system. A classical condition for prefix truncation is completeness, where
a prefix induced by a concurrent system is complete if it encodes all the steps
(reachable states and possible moves) in the system. Completeness of prefixes
helps to “unveil” some of the behavioral properties of concurrent systems by
allowing their validation in time that is linear in the size of the prefix, e.g., exe-
cutability [12], while preserving other properties sufficiently “concealed”, e.g., the
problem of deciding deadlock freedom [14] using complete prefix unfoldings is
NP-complete [10]. In order to unveil these hidden behavioral properties in finite
parts of unfoldings, one must rely on special unfolding truncation criteria. In [12],
truncation criteria that address executability, repeated executability, livelock,
and properties expressible in linear temporal logic, are systematized. The strong
coupling of behavioral properties of a system with different constellations of finite
prefixes of its unfolding is mainly due to implicit dependencies between transition
occurrences encoded in finite prefixes which stem from unfolding truncations.

Merged processes, proposed in [15], are compressed representations of complete
prefix unfoldings with most of the advantages and disadvantages of unfoldings
that were discussed above. The compression is achieved by addressing such
sources of state space explosion as sequences of choices and non-safeness. Many
results initially proposed for unfoldings can be transferred to merged processes.

Similar to unfoldings, untanglings are partially ordered graphs that repre-
sent concurrency and causal relations between events of individual transition
occurrences. Thus, fundamentally, untanglings address state space explosion to a
similar extent as unfoldings. Representative untanglings describe all the steps
of a system and, additionally to unfoldings, provide clear scopes for analysis of
systems that target individual computations (each run is represented by some
untangled process). Some implications of such characterization of behavior are
demonstrated in Section 5. We believe that further studies of representative
untanglings should confirm their applicability as general purpose index structures
for behavioral analysis of highly concurrent and repetitive systems.

7 Conclusion and Future Work

This paper develops theoretical foundations that lead to a novel characterization
of behavior encoded in a concurrent system. A representative untangling of a
concurrent system is our proposal for a new compromise between size of a model
that describes behavior and time required for its analysis. Behavioral properties
of concurrent systems often relate to existence of an instance, or a collection of
instances, of the system with certain characteristics. We rely on the partial-order
semantics of concurrent systems in order to minimize size of untanglings, and
enforce a strong correspondence between (parts of) representative untanglings
and instances of behavior that they specify, in order to facilitate analysis.

This work is the first step in the journey towards effective and efficient
untanglings of concurrent systems. Preliminary experiments show that untanglings
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can be computed fast on reduced systems; reductions can then be efficiently
reverted, similar to the approach proposed in [16], to obtain untanglings of
original systems. Observe that a representative untangling of a net system can be
as small as its complete prefix unfolding. It is evident that size of untanglings can
often be noticeably decreased by representing them as branching processes [17]
which can be constructed by merging isomorphic histories of untangled processes.
Inspired by some of the ideas in [15], we foresee that the obtained branching
processes can be further packed into novel acyclic models that will inherit analysis
effectiveness of untanglings. This could be achieved by merging isomorphic futures
of the original untangled processes. In future work, we plan to study all the above
stated ideas in depth.
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