
Using Petri Nets for Modeling Enterprise
Integration Patterns

Dirk Fahland1 and Christian Gierds2

1 Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

d.fahland@tue.nl
2 Humboldt-Universität zu Berlin, Department of Computer Science,

Unter den Linden 6, 10099 Berlin, Germany
gierds@informatik.hu-berlin.de

Abstract. Enterprise Integration Patterns are a collection of widely
used patterns for integrating enterprise applications and business pro-
cesses. These patterns informally represent typical design decisions for
connecting enterprise applications.
For the set of patterns collected by Hohpe and Woolf in “Enterprise
Integration Patterns: Designing, Building, and Deploying Messaging So-
lutions” we presented for each pattern the conceptual translation into
a Coloured Petri Net (CPN). We then show, how to apply these CPN
realizations for defining a formal model based on a system specification
using Enterprise Integration Patterns, which allows us to exploit the full
power of analysis techniques and range of application for CPN.

Keywords: integration, middleware, Enterprise Integration Patterns,
Coloured Petri nets

1 Introduction

In the last decades, companies have developed a multitude of software appli-
cations. The interest of reusing them is not only a matter of convenience, but
also of costs. Reuse of applications often occurs in connection with third par-
ties—another department, or even another company.

In order to allow applications with different backgrounds—viz. different data
types and interfaces—to communicate, all parties have to integrate a communi-
cation solution.

In their best practices book Enterprise Integration Patterns [1], Hohpe and
Woolf have collected a widely used and accepted collection of integration pat-
terns allowing for easier implementation of a communication infrastructure. They
identify four possible solutions for solving communication: file transfer, shared
database, remote procedure invocation, and messaging.

The patterns presented in the book are typical concepts used when imple-
menting a messaging system and have proved to be useful in implementation.
They can cope with the asynchronous nature of message exchange and the facts,

that “Networks are unreliable”, “Networks are slow”, “Any two applications are
different”, and “Change is inevitable.” On the other hand, the modular nature
of patterns allows them to be used efficiently in new implementations.

In the following we present all patterns described by Hohpe and Woolf and
give a realization as Coloured Petri Net. Thus we have Petri net building blocks
allowing us to model a messaging system as Petri net based on a design given
by Enterprise Integration Patterns.

Our goal is to provide means for analysis of a messaging system. Our Coloured
Petri Net realization provides a blue print for implementation that already allows
us to check properties of the messaging system.

We have to accept one limitation though: Messaging systems are able to
cope with highly dynamical situations. Especially, the handling of application
instances created at run-time is normally not an issue for messaging systems. As
we use Petri nets for modeling we are restricted to fixed topologies. A dynami-
cally changing infrastructure can only be modeled to some extent. However, this
issue applies only to very few patterns.

Related Techniques The patterns described by Hohpe and Woolf are not building
blocks of a modeling language, but they describe typical concepts in designing a
messaging system; thus they are an informal specification language.

There exist elaborated modeling techniques like the Business Process Model
and Notation [2] (BPMN) or the Workflow Patterns defined by van der Aalst
et al. [3]. Enterprise Integration Patterns complement these notions by a set of
typical designs found in a messaging infrastructure. Since BPMN and Workflow
Patterns are closely related to Petri nets, we decided to use Coloured Petri Nets
to model EIP, which allows transferring the results to these modeling paradigms.

2 Enterprise Integration Patterns

Before presenting the patterns we shortly introduce Coloured Petri Nets (CPN) [4].
Coloured Petri Nets are used to model distributed, data-depending systems. A
Coloured Petri Net has passive elements called places holding data and active
elements called transitions processing data. Each piece of data, called token, is
typed by a color and represented by a variable-free expression. A place is typed
as well and it can only hold token of the same color. Arc inscriptions describe,
which kind of token is consumed or produced by a transition. A guard may
restrict the execution (firing) of a transition.

Before giving a formal definition of a Coloured Petri Net, we have to introduce
multisets. In contrast to a regular set, a multiset can contain an element more
than once. Formally, for a set C, the multiset M is a function M : C → N

assigning each element of C its number of occurrences in M . We use CMS to
indicate the set of all multisets over a set C.

Let C = {a, b, c, d}, then the multiset containing 2 times b, 1 time c, and 2
times d can be written as [b, b, c, d, d], or alternatively as 2 b̀+ 1 c̀+ 2 d̀.

2

Definition 1 (Coloured Petri Net).
A Coloured Petri Net is a tuple CPN = (Σ, P, T, F,N,C,G,E, I) where

– Σ is a finite set of types (color sets),
– P and T are finite and disjoint sets of places and transitions,
– F ⊆ P × T ∪ T × P is the flow relation between places and transitions,
– C is a color function C : P → Σ assigning each place a color and thus a

type,
– G is a guard function from T into expressions, such that ∀t ∈ T : Type(G(t)) =

Boolean ∧ Type(Var(G(t))) ⊆ Σ (viz. a guard evaluates to true or false and
the types of the used variables Var(G(t)) are included in the given color set
Σ),

– E is an arc expression function from F into expressions, such that ∀a ∈
F : Type(E(a)) = C(p(a))MS ∧Type(Var(E(a))) ⊆ Σ (viz. an arc expression
must evaluate to the same type/color as the adjacent place p (p(a) means the
place of arc a) and the types of the used variables are included in the given
color set Σ), and

– I is an initialization function from P into variable-free expressions, such
that ∀p ∈ P : Type(I(p)) = C(p)MS (viz. each token/expression on p is a
multiset over the color of p).

The state of a CPN is defined by a marking. A marking is a function M from
P into variable-free expressions, such that ∀p ∈ P : Type(M(p)) = C(p)MS .
Thus a marking assigns to every place a possibly empty multiset of expressions
(and thus values). Each expression is called a token on the corresponding place
and it must have the type color as the place. The initialization function I in
Def. 1 is the initial marking of a CPN.

The behavior of a CPN is defined by firing transitions. In order to fire an
transition t we first need a binding of all variables related to t (viz. all variables
in labels of arcs connect with t, and the variables of the guard of t). A binding
of t assigns to every variable of t a type-correct color, and the guard of t must
evaluate to true. An arc expression E(p, t) for a transition t and one of its
preplaces p evaluates under binding b to E(p, t) ⟨b⟩. A transition t is enabled to
fire for some binding b, if for all preplaces p of t (viz. (p, t) ∈ F) the number of
tokens required by the corresponding arc label is present on the preplace under
binding b: E(p, t) ⟨b⟩ ≤ M(p). When a transition t fires with binding b in a
marking M1, then we reach a new marking M2:

∀p ∈ P : M2(p) = M1(p)− E(p, t) ⟨b⟩+ E(t, p) ⟨b⟩ .

Thus the tokens of the preplaces are removed, and new tokes are produced on
the postplaces.

For defining colorsets and variables, we use the following notation:

– colset <name> = <type>; defines a new color set of type <type> with name
<name>.

3

– var <name>: <colorset>; defines a new variable of the color set <colorset>
with name <name>.

For the patterns we ultimately use the notation used by CPN Tools [5]. An
example is depicted in Fig. 1. As usual, places are depicted as circles, transitions
as rectangles, the flow relations with arcs. If the color of a place is of interest,
we write it close to the place in italics (Fifo for the place p2p chan). Each arc
is labeled with an expression that can contain typed variables like l and x. More
complex labels might even express function application like ins l x, meaning
ins(l, x). Necessary colorset and variable definitions are placed in a separate
box. Each pattern consists of two parts: the contents of the pattern describing
a particular functionality, and the context in which the pattern may be applied.
The contents is highlighted by a gray rectangle.

colset Fifo = list Type;
var x : Type;
var l : Fifo;

p2p
chan

ins l x

hd l

Fifo

push

l

pop
x

l

tl l

Fig. 1: Example of CPN pattern (Point-to-Point Channel)

In the example, the left transition push binds an expression to variable x of
type Type and a corresponding list being of type Fifo to variable l. This type of
l is actually a list of elements of Type as we can see by the colset declaration
of Fifo. A list provides some functions for manipulation of a list, like ins l x for
inserting element x into list l; tl l for return the tail of a list l; and hd l for return
the head element of a list l.

When transition push fires, it consumes the value x (from some place) and
adds it as last element to the list of values on place p2p chan. Similarly, firing
transition pop removes the first element x from the list of values on p2p chan
(and puts it on some place) and the remaining list of values back on p2p chan.

Next we present the patterns presented by Hohpe and Woolf. For each we
provide a short description and how we can realized it as CPN. We follow the
books structure [1, p. xlvii] and refer to it for more details especially on the
description and program implementation of these patterns.

2.1 Pattern overview

We now present the actual patterns. We give a short description of each pattern,
and describe its realization as a Petri Net. Partially we have to refer to other
patterns for realization, as some patterns describe merely concepts and are not
fixed in their realization.

4

We start by describing message channels, the fundamental infrastructure of
a messaging system. A simple form of a message channel can connect two ap-
plications directly, but also broadcasts, multicasts and bus-like communication
can be realized with message channels. A single messages transports a piece of
data, but a specialized form may also carry commands for execution or an event
for logging. Pipes and filters as well as message routers are meant for influencing
message content and direction. A filter can drop unwanted messages, a message
router can direct message based on a message’s content or a system’s state to a
particular destination, and a pipe as a special form of message channel connects
these components. A message translators converts messages like transforming
from one data format into another or extracting only necessary parts of a mes-
sage. Finally, a message endpoint connects an application to a messaging system.
The number after each pattern name refers to the page in Enterprise Integration
Patterns [1], where the corresponding pattern is described in more detail.

Message Channel A message channel connects applications and allows them
to transmit data by connecting a sender with a receiver. This normally follows
a first-in-first-out semantics; however, messaging systems may work differently.

Pattern Message Channel (60)

Pictogram (HW)
Description A point-to-point or publish-subscribe connection for appli-

cations using messaging. A channel acts as logical address,
thus the actual receiver is determined by the messaging
system.

Realization The concrete CPN model of a channel depends on addi-
tional channel properties. For asynchronous out-of-order
communication we simply use a (bounded) place for com-
munication. Otherwise we have to implement a queue or
what ever behavior is required (cf. below).

Messaging Channels Messaging channels can occur in different shapes, depend-
ing how applications should be connected and what qualities a channel should
provide.

Pattern Point-to-Point Channel (103)
Pictogram (HW)

5

Description A unidirectional channel (without additional properties is
technically a bucket. The sender puts data on the channel,
the receiver takes it from the channel. If multiple receivers
are connected to the channel, the actual recipient is not
necessarily determined. However, a particular message is
taken only by one receiver.
The order of messages is a matter of implementation. In
existing messaging systems we can normally assume the
channel to be a queue, thus the messages are received in
order of their sending.

Realization A Point-to-Point Channel is a special pattern for a Message
Channel (60), thus in a Petri Net a Point-to-Point Channel
is basically a place, for which a sender puts token on this
place, and a receiver removes token from this place. De-
pending on further requirements, we have to organize the
correct handling for this place, as shown here.

colset Fifo = list Type;
var x : Type;
var l : Fifo;

p2p
chan

ins l x

hd l

Fifo

push

l

pop
x

l

tl l

Fig. 2: Point-to-Point Channel with fifo semantics

The above figure shows an implementation of a fifo channel
as CPN. The actual channel is organized as a place contain-
ing a single list. We can send a new message to the channel
(left transition) by taking the momentary list l and a new
message x, and inserting x at the end of l via function ins l
x. We can receive a message from the channel (right transi-
tion) by taking the momentary list l, putting back the tail
of l via function tl l and keeping the head element of l via
function hd l. Normally, the channel should be initialized
with an empty list 1 [̀].

p2p
chan

x x

Type

Fig. 3: Point-to-Point Channel with out-of-order
semantics

A structurally simpler implementation can be achieved,
when the order of messages is not important. Then it is
sufficient, if we put a message x on the channel place for
sending, and remove any message x from the channel place
for receiving x.

6

p2p
chan

k

Fig. 4: Abstracted Point-to-Point Channel

For the purpose of model checking it might be interesting
to abstract from data. Thus, we have only one color or a
classical place/transition net with black tokens. In such a
net, the order of messages is unimportant, as single pieces
of data cannot be distinguished. However, we still have to
model capacity of a buffer. An example is shown above,
where we have a buffer with capacity k. We use a com-
plementary place to the actual channel place with initially
k tokens. When a message is put on the channel, a token
from the capacity place is removed. Removing a message
from the channel put a token back on the capacity place. If
we put k messages on the channel without removing them,
then the channel is full as the complement place is empty.
We then cannot send any further message over this channel
until at least one message was received and a token was
placed back on the complementary capacity place.

Pattern Publish-Subscribe Channel (106)

Pictogram (HW)
Description A message published (sent) to such a channel is received by

all subscribers. For n subscribers, n copies of the message
have to be provided.

7

Realization In contrast to the Point-to-Point Channel above, every
receiver, which has subscribed to a channel, must receive
every message. Thus a message published on the channel
must be copied for every recipient.

pub

sub1

subn

...

var x : Type;

x x

x

x

x

x

x

Type

Type

Type

Fig. 5: Publish-Subscribe Channel

Pattern Datatype Channel (111)

Pictogram (HW)
Description In order to process incoming messages correctly, a message

should be typed. Thus a data type channel transports only
messages of a certain type. In contrast, a Point-to-Point
Channel may transport messages of arbitrary type.

Realization A Datatype Channel is a typed Point-to-Point Channel.
Thus their CPN realizations are similar.

colset Fifo = list SpecType;
var x : SpecType;
var l : Fifo;

p2p
chan

ins l x

hd l

Fifo

l
x

l

tl l

Fig. 6: Datatype Channel

The main difference is that the place p2p chan of a Datatype
Channel has a particular pre-specified type where in an un-
typed channel, the place has not any type. Note however
that in a CPN each place has a type. Thus, if needed, un-
typed channels could be described as having a general type
being the union of all specific types.

8

Pattern Invalid Message Channel (115)

Pictogram (HW)
Description Because of missing headers or wrongly formatted data a

message might be invalid. Instead of discarding or ignoring
an invalid message, such a message may be forwarded to a
dedicated channel allowing later handling or logging of that
message.

Realization This is just a special type of channel. Its CPN realization
is identical to a Point-to-Point Channel.

Pattern Dead Letter Channel (119)

Pictogram (HW)
Description When a message cannot be delivered, e. g. when the receiver

is no longer available, or the channel was closed, the mes-
sage can be rerouted to a Dead Letter Channel. This was,
the messaging system does not get cluttered up by left-over
messages.

Realization This is a special type of channel. The messaging system
decides, how and when to move a message to a Dead Letter
Channel. Its CPN realization is identical to a Point-to-Point
Channel.

Pattern Guaranteed Delivery (122)

Pictogram (HW)
Description For asynchronous message exchange messaging system usu-

ally use a store-and-forward approach allowing to buffer
messages. This normally happens in volatile memory that
is prone for the loss of power or other failures. Guaranteed
delivery is an implementation approach that allows to store
messages persistently in the messaging system, thus allow-
ing a guaranteed delivery even in case of a problem of the
messaging system.

9

Realization Our model uses Guaranteed Delivery as default. We would
have to model error cases explicitly, if we would need it
for analysis. A possible implementation is shown below in
Fig. 7.

colset Fifo = list Type;
var x : Type;
var l : Fifo;

p2p
chan

ins l x

hd l

Fifo
l

x

l

tl l

lossy

l tl l

Fig. 7: Lossy Point-to-Point Channel

In case we want to abstract from data, a lossy channel has
to remove arbitrary tokens from the channel place. In case
we assume a capacity for the channel (cf. Point-to-Point
Channel), we remove a token from channel and increase the
capacity by putting a token on the complementary place,
as shown in Fig. 8.

p2p
chan

k

lossy

Fig. 8: Abstracted lossy Point-to-Point Channel

.

Pattern Channel Adapter (127)

Pictogram (HW)
Description A Channel Adapter connects an application to a messaging

channel. Instead of changing the application, the adapter is
able to access the application’s API or data and thus trans-
parently connects the application to a messaging system.

10

Realization The realization depends on the actual functionality of a
Channel Adapter. In its simplest form it simply wraps some
data into a message and puts it on a channel, or it provides
data from a message to the application.
As an effect, we can convert synchronous calls to asyn-
chronous ones and vice-versa.

chancom

x

msg x
chan com

x

data x

Fig. 9: Outbound and inbound Channel Adapter

Pattern Messaging Bridge (133)

Pictogram (HW)
Description A Messaging Bridge shall connect two different messaging

systems. Even when using the same underlying technology,
message formats of the two messaging system might need
to be translated into each other.

Realization Since each messaging system has a preferred message for-
mat, a messaging bridge must convert a message of system
1 into a message of system 2 and vice-versa.

chan1-to-2
x enc2 dec1 x

chan

2-to-1 chanchan
x enc1 dec2 x

System 1 System 2

Fig. 10: Messaging Bridge between two systems

The figure shows an example for two channels both of sys-
tem 1 on the left and system 2 on the right. The messaging
bridge provides functions for decoding and encoding mes-
sages for both systems. Thus the bridge decodes a message
from one system into an intermediate format and encodes
it then for the other system. Thus we can also use channel
adapters or messaging endpoints to implement such behav-
ior.

Pattern Message Bus (137)

11

Pictogram (HW)
Description A Message Bus acts as central actor for different applica-

tions. Each application has only to know about the Message
Bus that forwards messages and commands correctly to an
appropriate party. Thus the Message Bus provides a com-
bination of “a canonical data model, a common command
set, and a messaging infrastructure”.

Realization The actual realization of a Message Bus depends on pat-
terns used for implementation.

Bus

Application
1

Application
n

Fig. 11: Message Bus realization using patterns

One idea is to provide a central bus channel for every ap-
plication. Thus this is the only channel an application has
to be aware of. Based on the message content a message
router (cf. pattern Message Router (78)) decides where to
send the messages.

Message A message is the atomic unit transmitted by a message channel. Data
may have to be chunked into smaller packets. Each packet is sent as one message.
A sender has to cut data into small pieces, in order to send this data. Accordingly,
a receiver has to put together the small pieces, in order to get the data. In this
subsection we focus on the different purposes of a message—carrying a command,
a document, or an event— as well as certain patterns implying importance to
certain messages.

Pattern Message (66)

Pictogram (HW)
Description A message is an atomic piece of information sent over a

message channel. Nevertheless a message might be struc-
tured. Typically a message contains at least header and
body that can be structured further. We can partition data
into messages in order to be sent.

12

Realization Given the means of Coloured tokens, structured message
types can be translated into certain colors. Depending on
the aim of modeling, a message can be abstracted to a black
token for the purpose of analysis.

Message Construction The following patterns are about message intent, return-
ing a response, huge amounts of data, and slow messages.

Pattern Command Message (145)

Pictogram (HW) C

Description Running a command locally is easier to handle than a re-
mote procedure call. Thus a command might be encapsu-
lated in a message, forwarded to the called application and
there run locally.

Realization A Command Message is merely a concept and highly de-
pends on the actually setting and the techniques used. The
following example defines an enumeration of all valid com-
mands and arguments are provided as a list of strings.

co l s e t Commands = with Cmd1 | . . . | CmdN;
co l s e t Arguments = l i s t s t r i n g ;
co l s e t CommandMessage =

record cmd :Commands * arg : Arguments ;

Pattern Document Message (147)

Pictogram (HW) D

Description A Document Message encapsulates data into a message,
such that it can be transmitted from one application to
another.

Realization A Document Message is merely a concept and highly de-
pends on the actually setting and the techniques used. Sim-
ilar to a command message we can define structured col-
orsets or a string colorset to represent a document.

13

Pattern Event Message (151)

Pictogram (HW) E

Description An Event Message realizes notification of other applica-
tions. Here, timing is more crucial than for other message
types. A receiver of such a message is most likely some kind
of observer, which logs or reacts to the event.

Realization An Event Message is merely a concept and highly depends
on the actually setting and the techniques used. Such a
message may contain a string with a log message, or similar
to a command message an enumeration type for a set of
predefined events and additional arguments.

Pattern Request-Reply (154)

Pictogram (HW)
Description This is a communication pattern allowing two-way commu-

nication between two applications. Especially one applica-
tion makes an request and the second application replies on
a separate channel. Invocation of the requester might be a
synchronous block, or using asynchronous callback.

Realization As Request-Reply is a communication pattern, realization
depends on the actual goal of the request-reply interaction,
thus messages exchanged and channels used.

var x : RequestType;
var z : ReplyType;

send
req

chan1

chan2

recv
req

send
rep

recv
rep

x x x

RequestType

ReplyType

zzz

enforce
reply

Fig. 12: Request-Reply communication

14

One possibility for realizing this pattern is the use of two
Point-to-Point Channels. On the left-hand side of the fig-
ure an application wants to send a request and waits for the
reply. The application on the right-hand shall process the
request and provide an appropriate reply. We use two dis-
tinguished channels: chan1 for sending the request, chan2
for sending the reply. In order to bundle these two channels,
we add a control-flow place enforce reply. After a request, a
reply must return.
The dependency between request message x and reply z may
be arbitrary loose. However it is likely that a Correlation
Identifier (163) correlates both messages.
If we want to be more flexible, such that even applications
unknown to the processing party can send a request, the
requesting application may add a return address (see below)
in the request. Thus the reply does not go statically back
to the requesting party, but the reply is routed dynamically
where needed.

Pattern Return Address (159)

Pictogram (HW)
Description When an application may receive requests from multiple

parties, then it has to send the reply to the appropriate
sender. A requester can add a Return Address to the mes-
sages header, such that the application knows, where to
send the reply to.

Realization This pattern relates to reference passing. When assuming
a static setting, the return address can be either stored
separately or kept in the original request. When sending
the answer, we have guarded choices, where a guard simply
checks, if the return address fits to a certain channel.

var x : Type;
var address : AddressType;
fun returnAddress x = …;

chan1
recv
req

send
rep

send
rep

chan2

chan3

x

returnAddress x

address

address

[address = "chan3"]

[address = "chan2"]

AddressType

Fig. 13: Using Return Address for selecting recipient

15

In a dynamic setting, where not all applications are known
at design time, the reply may be sent to a message bus. In
order to arrive at the right destination, the reply needs to
include the return address as recipient.

Pattern Correlation Identifier (163)

Pictogram (HW) A B

Description A Correlation Identifier is used to correlate sent and re-
ceived messages, when dealing with a multitude of message.
For instance, a correlation identifier may by used to corre-
late a reply to a corresponding request. This is a message
header information.

Realization As a Correlation Identifier is part of a message, realization
is purely on the data level. Guards can be used to select
correlated messages.

colset Request = product CorrelationIDType * RequestType;
colset Reply = product CorrelationIDType * ReplyType;
var x : RequestType;
var z : ReplyType;
var cid : CorrelationIDType;
fun id x = …;

send
req

chan1

chan2

recv
req

send
rep

recv
rep

(id x, x) (cid, x)

Request

Reply

enforce
reply

(cid, x)

(cid, z)(cid, z)(cid, z)

cid

cid

CorrelationIDType

Fig. 14: Using Correlation Identifier in Request-Reply

In Fig. 14 we apply the idea of message correlation on the
Request-Reply pattern. When sending request x, function id
creates a correlation identifier for the request. Subsequently,
only tuples with the correlation identifier cid as first element
are used—in the request as well as in the reply. Additionally,
the enforce reply place keeps a copy of all identifiers, such
that only a reply with a valid correlation identifier can be
sent back.

16

Pattern Message Sequence (170)

Pictogram (HW) 1 2 3

Description When data is too much to be sent in one message, data
has to be split into several messages. A solution is to use a
sequence identifier for messages belonging together, a po-
sition identifier for the order of messages, and size or end
indicator.

Realization This pattern is also highly related to the actual data of mes-
sages. However, we have to split and join single messages
in order to handle large data.

data split pipe

send
last

[size x > chunkSize]

[size x <= chunkSize]

x

x – chunk x

chunk x

x

lastOf x

pipe
rec
first

datasenddata
x x

[seq x = 0]

x x

join

x

mess + x

mess

[isComplete x]

rec data
x x

[seq x > 0]

Fig. 15: Sending and receiving a Message Sequence

On the left data is split. Each single message is also enriched
with the necessary sequence number and position. On the
right incoming messages are joined again into a single data
item.
A corresponding definition for the data transported might
look as follows:

co l s e t seqNo = INT ;
co l s e t chunkPos = INT ;
co l s e t chunk =

record seq : seqNo * pos : chunkPos *
data : Type ;

For each chunk we provide a sequence number. All chunks
with the same sequence number represent part of the same
data. The position is literally the position in the sequence
of chunks. For the actual data chunk we provide a corre-
sponding field as well.
There are several possibilities, how the receiver can recog-
nize, whether the last chunk has passed. Either the chunks
arrive in order, then a special last chunk message can be
sent, or we have to store the number of all chunks, either
separately or as additional field in each chunk.

Pattern Message Expiration (176)

Pictogram (HW)

17

Description A message’s content or its validity might expire after a cer-
tain amount of time. Then the message is either ignored or
rerouted to a Dead Letter Channel.

Realization We could introduce timing constraints to Petri Nets. Oth-
erwise we can non-deterministically decide to invalidate a
message with Message Expiration.

Pattern Format Indicator (180)
Pictogram (HW)
Description As an application evolves, new data formats may be intro-

duced. To make messaging more robust to changes in data
format, a Format Indicator should be included in messages.
This way existing channels can be reused and a receiver
knows, how to distinguish old and new data formats.

Realization The Format Indicator pattern deals only with format of
data, which we can exploit in subsequent patterns trans-
lating different data formats. However, we focus on flow
of control and data, and the semantic aspects of data are
orthogonal to our focus.

Pipes and Filters, Message Router Pipes and Filters are a form of indirec-
tion between sender and receiver. They allow to process, validate, or transform
messages. A combination of several pipes and filters is also possible.

Routing applications abstract from the need to select a message channel and
a receiver in advance. An application may simply send a message to a message
router that then decides (on-the-fly) where the message should be sent to.

Pattern Pipes and Filters (70)

Pictogram (HW)

18

Description A filter (gray box) is a simple processing function with one
inbound and one outbound pipe (arc). A pipe simply con-
nects the output of one filter with the input of a second
filter. Thus complex processing of messages can be mod-
eled by connecting a series of filters. (N.B. This restriction
can of course be relaxed.) Filters might be implemented
on different machines. A pipe is a special form of message
channel.

Realization In our setting, a filter is a transition processing a token
from a preplace and outputting the result on a postplaces.
Accordingly, these places then act as pipes. Depending on
the transformation, it might be realized by a high- level
function arc-inscription, or the transition might be refined
to fulfill the transformation.
In Fig. 16 we have two filters: the first one filters a message
x resulting in f x; the second one results analogously in g y.

filterpipe pipe filter pipe
x yf x g y

Fig. 16: Pipes and Filters

Issue: A pipeline architecture allows processing of messages
concurrently. The first filter immediately starts processing
the second message, when it has completed the first one. It
does not have to wait for subsequent filters to finish. If we
consider a pipe simply as a place, we cannot maintain order
of messages without further infrastructure. By default we
would only support an out-of-order processing of messages
or we have to define a FIFO pipe like in the Point-to-Point
Channel pattern above.

Pattern Message Router (78)

Pictogram (HW)
Description Extension of the Pipes and Filters idea. Filters are not sim-

ply connected by pipes, but the choice for a filter is made
by a Message Router depending on certain conditions. A
message router therefore can be seen as a special kind of
filter.

19

Realization For a given input pipe and one of several output pipes we
have to connect the input with one output. The pattern
can be realized by firing a transition with a correspond-
ing condition. All conditions together should be mutually
exclusive for deterministic behavior, and the should cover
all possibilities, such that no message can get stuck in the
message router. The conditions can be used as guards for
the transitions forwarding a message to a certain pipe.

pipe

pipe

pipe

pipe

[cond1]

[cond2]

[cond3]

x

x

x

x

x

x

Fig. 17: Message Router

Please note that we are a bit sloppy about the conditions
in Fig. 17. The condition does not need to depend on the
message x, but the “condition” may be a round-robin or
a time-dependent choice of a destination pipe. Thus, the
condition may be extended or replayed by control places.

Message Routing The following routing patterns are specializations of the Mes-
sage Router pattern. They differ in how the destination pipe is chosen. Further-
more, we introduce more complex patterns describing important principles often
expressible by a combination of basic patterns.

Pattern Content-Based Router (230)

Pictogram (HW)
Description Depending on a message’s content, the message might be

routed to different destinations.
Realization In the realization we have different transitions each checking

for a certain condition depending on a message’s content. If
a condition is fulfilled a message is put into the appropriate
pipe.

pipe

pipe

pipe

pipe

[cond1 x]

[cond2 x]

[cond3 x]

x

x

x

x

x

x

Fig. 18: Content-Based Router

20

Pattern Message Filter (237)

Pictogram (HW)
Description A Message Filter checks messages on a channel for a certain

criterion. If a message fulfills the criterion, the message is
forwarded, otherwise dropped.

Realization The pattern can be realized by two alternative transitions:
one that forwards a valid message, another that drops an
invalid message.

pipe

drop

[cond x]

x x

x

pipe
[not cond x]

Fig. 19: Message Filter for dropping messages

Pattern Dynamic Router (243)

Pictogram (HW)
Description A Dynamic Router acts as central message router for a

changing messaging system (viz. actual participating appli-
cations and channels). The dynamic router has two aspects:
first, it is able to react to newly added or removed channels
and address them appropriately; second, even for a fixed set
of channels, it may change the conditions, where to send a
message based on a rule base.

Realization For the dynamic router we can only realize the second as-
pect, the consideration of a rule base for addressing re-
cipients. We are limited to fixed topologies; i. e., where all
possible endpoints and channels are known.

pipe

pipe

pipe

pipe

[cond1 x r]

[cond2 x r]

[cond3 x r]

x

x

x

x

x

x

rule
base

r

rr

Fig. 20: Dynamic Router using additional rule base

21

Pattern Recipient List (249)

Pictogram (HW)
Description This pattern allows to send a message to multiple recipients

based on a dynamically changing list.
Realization In the realization we assume the set of potential recipients

to be fixed. However, depending on a list we decide, whether
a recipient receives the message or not.

pipe1

pipe2

pipe3

addr

list

pipe
(x,l)

x

x

SLcolset SL = list String;

colset valWithList = product Type * SL;

var x : Type;

var l : SL;

fun inList l string = …;

x

[inList l "pipe1"]

l (x,l)

(x,l)

(x,l)

(x,l)

(x,l)

(x,l)

(x,l)

(x,l)

x

[inList l "pipe2"]

[inList l "pipe3"]

[not inList l "pipe1"]

[not inList l "pipe2"]

[not inList l "pipe3"]

valWithList

valWithList

valWithList

Fig. 21: Recipient List using address list

We first retrieve the address list and make a copy of the
message to be sent including the list of addresses for every
potential recipient. To facilitate things, let us assume the
address list contains the corresponding pipes as recipients.
Then for each copy i of the message we have to check, if
the corresponding pipe is in the list of addresses ([inList l
”pipei”], meaning forwarding the message to pipe i, or if
not, meaning discarding the copy.
Alternatively, the recipient list can be part of the message,
and it has to be extracted for deciding, whether a recipient
is valid or not.

Pattern Splitter (259)

Pictogram (HW)

22

Description A Splitter breaks a complex message into smaller parts. It
does this either iteratively (e. g. by splitting a tree structure
into subtrees), or statically (viz. into a fixed number of
parts).
Breaking a complex message into smaller parts normally is
necessary, when the parts should be processed separately.
One of the above router pattern then can direct the parts
to the appropriate processing applications.

Realization The iterative splitter takes a piece of data and breaks it
conditionally into smaller parts.

split pipe

send
last

[splitCriterion x]

[not splitCriterion x]

x

remainsOf x

partOf x

x

pipe
x x

Fig. 22: Iterative Splitter for messages

The static splitter just breaks a piece of data into smaller
parts.

datasplitdata
x part2 x

data

data

part1 x

part3 x

Fig. 23: Static Splitter for messages

Pattern Aggregator (268)

Pictogram (HW)
Description An aggregator combines single, but related messages to a

complex one in order to allow better processing. Alterna-
tively a result message is updated by incoming message
(e. g. for getting the highest return value and discarding all
other values).

23

Realization In order to realize this pattern, a first message has to
be taken as basis for the result and each further message
triggers an update of the result, either by cumulation of
all data or updating a certain value in the result.

var x : Type;
var y : AggregatedType;
fun seq x = …;
fun isComplete y = …;
fun update y x = …;
fun f x = …;

pipe first data

[first x]

x f x

aggr.
x update y x

y

[isComplete y]

pipe
y y

[aggregate x]

Fig. 24: Dynamic Aggregator

The first arriving x is translated into the aggregated type
and every subsequent message is processed by the update
function, until aggregation is complete.
We can also consider static aggregation, where always a
fixed number of messages is aggregated.

var x : Type1;
var y : Type2;
var z : Type3;
fun aggregate x y z = …;

pipe

pipe

pipe

aggr. pipe

x

y

z

aggregate x y z

Fig. 25: Static Aggregator for messages

Depending on the aggregation strategy, aggregation can be
changed (cf. [1, page 272]).

Pattern Resequencer (283)

Pictogram (HW)
Description Due to the asynchronous nature of messaging, messages

might arrive out of order. A Resequencer then is used to
bring messages back into the right order.

24

Realization In contrast to an aggregator a Resequencer does not wait
for all messages of a sequence, but a Resequencer directly
forwards messages being in order. The realization depends
mainly on the buffer size and the question, if a buffer over-
run should be avoided and how. Otherwise sequence num-
bers are needed in order to decide, whether messages are in
order.
Let us assume, that data is divided into message chunks.

co l s e t seqNo = INT ;
co l s e t chunkPos = INT ;
co l s e t chunk =

record seq : seqNo * pos : chunkPos *
data : Type ;

For each sequence number we must keep track, which was
the last message forwarded in order. We assume a place
holding this information. A message is only forwarded, if
according to this place it is the next message.

colset Sequencer = product seqNo * chunkPos;
var x : chunk;

pipe buffer
x x

chunk

send
in

order
pipe

x x

chunk

(#seq x, #pos x) (#seq x, #pos+1)

1'(no, 0)

chunk

Sequencer

Fig. 26: Resequencer

The Petri Net pattern receives the single chunks and stores
them on a buffer place. Additionally we have the tracking
place keeping tuples of sequence number and chunk posi-
tion.
Each sequence of corresponding messages shares the same
sequence number no. Initially we assume for each sequence
number no a token 1 (̀no, 0) to be available describing that
from a sequence of number no, initially only the package
with number 0 will be forwarded while other messages are
held back in the buffer.
The transition send in order is only able to fire, if one of
the chunks x has a corresponding sequence number #seq
x, and it is the next wanted chunk #pos x. The chunk is
then forwarded and the tracking place holds a token with
an increased sequence number.
When we abstract from data for analysis, then this pattern
can forward token in any order.

25

Pattern Composed Message Processor (294)

Pictogram (HW)
Description A Composed Message Processor splits a complex message

into its components, such that each component can be pro-
cessed independently (and differently), and puts the result
back into a complex message.

Realization This pattern can be realized be using a Splitter for produc-
ing the single components, Message Router for routing the
components to the processor, and an Aggregator to produce
the resulting complex message.

Pattern Scatter-Gather (297)
Pictogram (HW)
Description The Scatter-Gather pattern is intended for distributing a

message to multiple recipients and waiting for a reply of
each of them. The distribution might be a broadcast using
a publish-subscribe channel, or via a recipient list allowing
better control.

Realization The realization is usage of the before-mentioned patterns;
in this example of a recipient list and an aggregator.

Aggregator
Recipient List

...

Fig. 27: Scatter-Gather using Recipient List and
Aggregator

Pattern Routing Slip (301)

Pictogram (HW)

26

Description A Routing Slip determines a chain of processes a message
has to be routed through. Efficiency is in the focus of this
pattern. The slip may be attached to the message or deter-
mined dynamically. Several options for routing are possible,
where all options share the direct routing to the next pro-
cessor. How many routers are used depends on the actual
realization.

Realization This complex pattern can be realized by using content-
based or dynamic routers. The router decides, to which pro-
cessor a message is routed to next, or if a processor should
be bypassed.

Pattern Process Manger (312)

Pictogram (HW)
Description A Process Manager is an extension to the Routing Slip

pattern as it also processes a message in multiple proces-
sors, but determines more dynamically, which process to
use next. This decision may also depend on the result of
the previous processor.

Realization Basically this pattern can be implemented with the patterns
already introduced above. However the process manager
has to keep track of the state of a message; that is, of the
processing steps already applied to a message. Normally a
process manager should be able to process many messages
concurrently or provide multiple instances for processing.

Pattern Message Broker (322)

Pictogram (HW)

27

Description Using a direct point-to-point channel for each communica-
tion between two components might lead to an integration
spaghetti and thus in an unmanageable system concerning
communication. A Message Broker acts as central hub for
all message, thus allowing an easier manageable messag-
ing infrastructure. There can also be a hierarchical order of
Message Brokers.

Realization The Message Broker is a complex system using mainly the
different Message Router patterns shown above depending
on the actual layout of the message channels. The channels
themselves are more likely Messages Buses, thus the use of
Point-to-Point Channels is avoided.

Message Translator A message translator or transformer converts a message
into a data format expected by the corresponding receiver of this message.

Pattern Message Translator (85)

Pictogram (HW)
Description As different applications should be connected, coherence of

data types is not very likely. Different data types or at least
different representation of data types are likely to occur in
independently developed applications. Since changing ap-
plications is cumbersome and error-prone (and might in-
troduce new difference for other applications), a message
translator shall translate output of one application into in-
put of a second, when this is needed. This is a simple form
of an adapter (one transformation rule for complex data
types).
Transformation might be needed on the level of data struc-
tures, data types, data representation, or transport (mes-
sage encapsulation).

28

Realization As the Message Translator pattern works on the represen-
tation of data (on the four levels mentioned above), it cor-
responds to a transition taking one input format and pro-
viding a second, output format. The transition may be re-
fined to allow a more detailed descriptions of the message
translation. Depending on the input and output format, the
function providing the translation can be bijective, thus we
can reverse the translation. It should be at least injective,
however we cannot always circumvent an information loss
during translation.

pipe pipe
x f x

colset Type1 = …;
colset Type2 = …;
var x : Type1;
fun f x = …;

Type1 Type2

Fig. 28: Message Translator

Message Transformation

Pattern Envelope Wrapper (330)

Pictogram (HW)
Description An Envelope Wrapper connects an application to a mes-

saging system by wrapping data into a message complying
to the requirements of the messaging System.

Realization The Envelope Wrapper pattern is similar to a Messaging
Endpoint. The Envelope Wrapper however focuses on just
wrapping existing data into a system conforming message,
where as an messaging endpoint may also handle further
aspects as data layout and protocol.

pipe pipe
x wrap x

colset Type = …;
colset WrappedType = …;
var x : Type;
fun wrap x = …;

Type WrappedType

Fig. 29: Message Wrapper

Pattern Content Enricher (336)

29

Pictogram (HW)
Description It might be, that a sender of a message cannot provide

all information needed by the recipient. Then a Content
Enricher can be used to enrich a message with additional
information using extra resources.

Realization When realizing a Content Enricher, we have to take into
account the source for additional information. For an in-
coming message we send a request to this external source
and use the result to actually enrich the original message.

var x : Type1;
var z : Type2;
fun enrich x z = …;

pipe pipe
x enrich x z

chan

req x

chan

x x

z

Type1

Fig. 30: Content Richer using additional information
source

Pattern Content Filter (342)

Pictogram (HW)
Description The Content Filter removes parts of the message not re-

quired by the recipient, or it simplifies the data structure.
Realization The Content Filter is a special variant of a Message

Translator by not translating the whole message, but only
the parts needed. If we consider a structured datatype,
the Content Filter acts as projection on the parts we are
actually interested in.

pipe pipe
x project x

colset Type = …;
colset FilteredType = …;
var x : Type;
fun project x = …;

Type FilteredType

Fig. 31: Content Filter

Pattern Claim Check (346)

30

Pictogram (HW)
Description The Claim Check pattern partially works like a content fil-

ter. Only relevant data should be provided for a certain
claim check (e. g., for privacy reasons). However, later we
need to correlate the reply to the original request again.
Therefore we have to create an unique identifier being
passed with the filtered claim and being stored with the
original request.

Realization In the Claim Check pattern we receive a claim to be
checked. The filtering happens similar to the Content Filter
pattern. Additionally the Claim type has to store a gener-
ated Key value. We also store the same value together with
the original request in a data store, such that we can corre-
late the result of the claim check with the original request.

pipe pipe
x (key x, project x)

store

(key x, x)

colset Key = INT;
colset Type = …;
colset FilteredType = …;
colset Claim = product Key * FilteredType;
colset Store = product Key * Type;
var x : Type;
fun key x = …;
fun project x = …;

Type Claim

Store

Fig. 32: Claim Check

Pattern Normalizer (352)

Pictogram (HW)
Description A Normalizer is able to process messages with different for-

mats and convert each message into a common format.
Realization The Normalizer pattern is high-level concept. We can real-

ize it as combination of a message router and different mes-
sage translators. The router selects an appropriate transla-
tor to translate a message into the common format.

Pattern Canonical Data Model (355)
Pictogram (HW)
Description Using a Canonical Data Model simplifies the central mes-

saging infrastructure as only one data model has to be con-
sidered. However each application has to use the Canonical
Data Model or a message translator is needed.

31

Realization Given the concept of a Normalizer as above, it is technically
manageable to use a Canonical Data Model.

Message Endpoint Message Endpoints form the interface to the messaging
system. Often they are part of an additional layer for an application not aware
of messaging.

Pattern Message Endpoint (95)

Pictogram (HW)
Description In order to allow an application to use a messaging sys-

tem, we need an API for connecting the application to the
messaging system. A Message Endpoint therefore allows an
application to create a valid message carrying data to be
transmitted and actually to send the message (or receive
it). It is the actual interface between an application and one
message channel. It is a special form of a channel adapter
and should act as a messaging gateway.

Realization The realization is very specific to the application and to
the channel used for messaging. For both sides the imple-
mentation is individual. In the simplest case, it looks like a
message translator.

chan
assign
/send

x

encode x
chan

assign
/recv

x

decode x

colset MessageType = …;
colset InternalType = …;
var x : MessageType;
fun decode x = …;

colset MessageType = …;
colset InternalType = …;
var x : InternalType;
fun encode x = …;

MessageType MessageType

Fig. 33: Inbound and outbound Message Endpoint

Figure 33 above shows an incoming and an outgoing Mes-
sage Endpoint. The idea is that every reading access to
global variable x actually means receiving message x from
an inbound endpoint, and every assignment to global vari-
able x triggers the sending of the newly assigned content as
message via an outbound endpoint.

32

Messaging Endpoints The following patterns are special forms of a Messaging
Endpoint, because they specify they purpose as an endpoint, especially regarding
behavior.

Pattern Messaging Gateway (468)

Pictogram (HW)
Description This pattern shall stronger encapsulate the messaging func-

tionality. Since most messaging API provide similar func-
tionality, a Messaging Gateway shall hide the actual mes-
sage calls, especially the asynchronous exchange, and pro-
vide a generic interface for messaging.

Realization The Messaging Gateway is a special form of a Messaging
Endpoint. Its actual realization highly depends on the con-
text, but it should resemble the above pattern.

Pattern Messaging Mapper (477)
Pictogram (HW)
Description A Messaging Mapper shall translate domain object into

message and vice-versa, while keeping both separated. Nei-
ther type knows about the other. In contrast to a Message
Translator, the mapper has not only to handle the struc-
tural translation, but it also has to provide a translation
for object references or data types.

Realization The realization is the actual translation of a domain object
and back. The Messaging Mapper exploits domain knowl-
edge to make this efficient.

Pattern Transactional Client (484)

Pictogram (HW)
Description Although a messaging systems has transactional aspects by

itself (e. g., delivery of messages), a messaging client may
be allowed to control the level of transactions.

33

Realization As useful as this concept is, we cannot give a generic re-
alization here, as the pattern highly depends on which ac-
tions in messaging system should actually be combined in
a transaction.

Pattern Polling Consumer (494)

Pictogram (HW)
Description A Polling Consumer decides, when to actually receive a

message by making an explicit poll on the channel. When
the call is made and no message present, then the consumer
blocks until the message can be received.

Realization The behavior of a blocking receive is for free in Petri Nets,
as a transition can only fire, if all needed tokens are present.
A missing message hinders a receiving transition from firing
and thus blocks the application.

poll

chan
assign
/recv

x

decode x

colset MessageType = …;
colset InternalType = …;
var x : MessageType;
fun decode x = …;

MessageType

re-
move

Fig. 34: Polling Consumer

If the application does not want to wait forever for a mes-
sage, it can remove the token from the poll place again,
maybe based on some timeout.

Pattern Event-Driven Consumer (498)

Pictogram (HW)
Description Since the Polling Consumer blocks, when it cannot receive a

message, as an alternative a receiver can register an Event-
Driven Consumer with the messaging system, which makes
a callback to the receiver, when a message arrives.

34

Realization The Event-Driven Consumer reacts on message arrival and
triggers a callback in the actual application. Accordingly
the Petri Net fires a transition on arrival of a message and
forwards a token with a callback value to the corresponding
callback point of the actual application.

ApplicationApplication

chan recv
x callback x call-

back

Fig. 35: Event-Driven Consumer

Pattern Competing Consumers (502)

Pictogram (HW)
Description The consumption of messages from a channel by one ap-

plication may prove as bottleneck in messaging system. We
may want to receive the messages concurrently by several
consumers.

Realization The realization is similar to a Point-to-Point Channel with
multiple receivers. These receivers also concurrently try to
consume messages from the channel, thus speeding up over-
all consumption of messages.

x

cons1

cons2

cons3

x

x

x

x

Fig. 36: Competing Consumers

In which order the competing consumers receive a mes-
sage is a matter of implementation. Any scheduling may
be appropriate here, or the consumers may receive non-
deterministically messages.

Pattern Message Dispatcher (508)

Pictogram (HW)

35

Description A Message Dispatcher acts as mediator for incoming mes-
sages and distributes these message to one of a given set of
consumers.

Realization A Message Dispatcher is similar to a Message Router.
However, the Message Dispatcher acts on a different layer,
namely right on the channel. In the realization as CPN
they are also similar. Additional schedules like round-robin
for dispatching messages are also possible.

dis-
patch

pipe

pipe

pipe
dis-

patch

dis-
patch

pipe

[cond1 x]

[cond2 x]

[cond3 x]

x

x

x

x

x

x

Fig. 37: Message Dispatcher

Pattern Selective Consumer (515)

Pictogram (HW)
?

Description A Selective Consumer does not consume every message on
a channel, but selects the messages it wants to consume.
Every message not being consumed remains on the channel.

Realization The realization is similar to a Message Filter. Whereas a
Message Filter drops a message not meeting the filter, a
Selective Consumer simply does not consume the message,
thus only forwarding messages meeting the filter criterion.

chan

[cond x]

x x

Fig. 38: Selective Consumer

Pattern Durable Subscriber (522)

Pictogram (HW)

36

Description From a Publish-Subscribe Channel an application normally
only receives messages as long as it is connected to chan-
nel. When disconnecting because of maintenance or similar
reasons, the application may miss important messages. A
Durable Subscriber still receives these message although the
actual application is momentarily disconnected. When the
application comes back online, the Durable Subscriber can
forward the messages to the application.

Realization This pattern is interesting in a system with changing partic-
ipants and thus a changing infrastructure. We cannot cope
with such changes in Petri Nets.

Pattern Idempotent Receiver (528)
Pictogram (HW)
Description In a system with unreliable channels, a sender may have

to send a messages multiple times before receiving an ac-
knowledgment. Thus it might happen, that the receiver gets
a message twice, and it has to handle the duplicates. An
Idempotent Receiver shall show the same effect, whether
receiving a message once or multiple times; either by ex-
plicitly removing duplicates or by defining corresponding
message semantics.

Realization The more practical solution of both alternatives is to store
received messages.

colset Fifo = list Type;
var x : Type;
var l : Fifo;
fun inList l x = …;

Fifo

chan
his-
tory

drop

l

[inList l x]

x

recv l

ins l x

pipe

x

x

[not inList l x]

Type

Type

Fig. 39: Storing messages for an Idempotent Receiver

37

We keep each message—or alternatively an unique identifier
of this message —in a list on place history. When a new mes-
sage arrives, which has already been seen, transition drop
can fire, as indicated by the guard, and effectively discards
the message. If the message has not been received before,
then transition recv can fire, because message x is not yet
in the list. By firing recv the list is update by inserting the
received message.
The practical limitation of this approach is the length of the
list; thus the number of messages to remember. We would
restrict the length of the list in order to allow a better
performance and risking the unlikely event, that a duplicate
message arrives with a huge delay.

Pattern Service Activator (532)

Pictogram (HW)
Description A service application is fixed to the communication tech-

nique provided by the implementation language. As a com-
munication partner might use a different technique, we may
not want to change the service application, but we provide
a Service Activator connecting the messaging channel to
the application. This way we decouple the reception of a
message and the decoding for the application.

Realization The realization is a Polling Consumer or an Event-Driven
Consumer, analyzing an incoming message and invoking
the appropriate service application.

38

3 Examples

We now show two examples for the application of CPN patterns. We first show
how to use Enterprise Integration Patterns to model a system, and then we
substitute the corresponding CPN patterns. The connection points between two
patterns are either pipes or channels—in the Enterprise Integration Patterns as
well as in CPN patters.

3.1 Loan Broker

Following we consider an example of a loan broker (cf. [1, page 361]). As Fig. 40
shows on the left. A customer wants to get a good loan quote. The customer
asks several banks for choosing the best. In order to present an appropriate loan
quote, each bank checks with a credit bureau for the customer’s past.

Customer Bank 2

Bank 1

Bank 3

Credit
Bureau

(a) Loan Quote

Loan
Broker

Customer Bank 2

Bank 1

Bank 3Credit
Bureau

(b) Loan Quote via Broker

Fig. 40: Getting a loan quote without and with loan broker

On the right side of Fig. 40, we introduce a loan broker as central component
in the system. The loan broker centrally manages the customer’s request, receives
the customer’s credit history from the Credit Bureau only once and then asks
three banks for a loan quote. The best offer is sent to the customer.

Loan Broker

Get Credit Score Get Banks

Credit Bureau Rule Base

Recipient List

Aggregator

Bank 2

Bank 1

Bank 3

Loan Request

Best Quote

Fig. 41: Design of loan broker

39

Figure 41 shows a simple design for the loan broker using the patterns. Re-
ceiving a loan request, the request is enriched with the credit score of the Credit
Bureau. A Rule Base further enriches the request with potential banks (some
banks might be already excluded for known conditions), and the recipient banks
receive the enriched loan request. For all banks, there is only a single return
channel. An Aggregator receives all the replies and chooses the best offer, which
is forward to the customer as Best Quote.

data

Loan Request Get Credit Score Get Banks

Best Quote

Recipient List

Aggegator

cond1 pipe1

pipe2cond2

cond3 pipe3

["pipe1" Î l]

x

x

x

x

x

x

x

X

X

X

condi

x ["pipei" Ï l]x x x

req x

x z x z

z

enrich
x z

x x x

req x

z

enrich
x z

pipefirstdata

[seq x = 0]

x

aggr.update
mess x

mess
[isComplete x]

data

[seq x > 0]

x

xxx

x

x

x

y

Banks

["pipe2" Î l]

["pipe3" Î l]

Fig. 42: Loan broker as Petri net

Figure 42 shows a Petri net implementation of the design proposed in Fig. 41
using the CPN patterns defined in Sect. 2. Loan Request and Best Quote are data
types, thus we have corresponding places. The Content Enricher Get Credit Score
and Get Banks make an RPC call to the Credit Bureau and the Rule Base (resp.)
and enrich the Loan Request with the results. The recipient list shall distribute
the request to the banks based on results of the rule base. The banks send back
the result, and the Aggregator choose one of the incoming answers (the best one).

Figure 43 shows the realization of the loan broker example in CPN Tools
allowing simulation and analysis.

Although the data flow dictates the control flow, the order of execution of
each pattern is not determined to the very end. Depending on the number of
messages send via the recipient list, the aggregator has to wait for the same
number of messages. Somehow, this information has to be transported from
the recipient list to the aggregator. Possible solutions might either be explicitly
modeling additional data flow, but also controller synthesis for the actions of the
Loan Broker may help to overcome this problem.

40

Fig. 43: Loan broker example in CPN Tools

3.2 Adapter Synthesis based on Patterns

In this example we exploit Enterprise Integration Patterns to adapt two web
services. A web service is a special kind of application encapsulated behind a
well-defined interface and intended for loose coupling. When we want to connect
two such web services being developed independently, it is likely that the message
flow between both cannot be matched exactly.

We shortly sketch now the basic idea for synthesizing an adapter to overcome
this mismatch. We then explain on an example how use patterns to describe the
message flow between two services and how the CPN realization allows us to
synthesize an adapter.

We consider Google’s Checkout [6] payment service and a proprietary pay-
ment back-end of a web shop to be adapted. As Fig. 44 indicates, we want to use
patterns to model a mediator directing messages between both services. How-
ever, to ensure correct behavior for the service, we have to synthesize a controller
taking care of the correct application of patterns. The combination of controller
and mediator we call adapter.

Adapter Synthesis in a Nutshell An adapter A between two services S1 and
S2, in the context of Enterprise Integration Patterns, is a messaging system that
connects the two services S1 and S2. Usually, A is designed so that the composed
system of S1, A, and S2 satisfies particular functional properties. For instance,
the composed system never deadlocks.

41

??

Google Checkout Mediator Webshop

Controller

Fig. 44: A pattern based describes the message flow between two services. A
automatically synthesized controller ensure proper application of EIP.

We follow the idea of [7] to obtain an adapter that yields a functionally
correct system by separating message flow from message contents. In [7], the
adapter A consists of two parts: a mediator M and a controller C. The mediator
M defines message transformation rules and message routing rules; M can be
completely designed using the Enterprise Integration Patterns introduced above.
However, M alone is not sufficient to guarantee functional correctness: M might
provide several transformation rules to transform a message by S1 into different
messages for S2. Which message is required by S2 may depend on the particular
state of S1 and S2 at run-time. If the message is transformed wrongly by M , S2

might received a message it is not expecting while waiting for a message it needs
to continue. To prevent M from applying the wrong message transformation
rule, the application of rules in M has to be controlled by the controller C that
is local M . The composition of M and C is the adapter A.

For the property that the system consisting of S1, A, and S2 is deadlock free
or weakly terminating (final state can always be reached), the controller C can
be synthesized automatically, given M and abstract models of S1 and S2 [7, 8].

Real-Life Example: Synthesizing Adapters for Google Checkout In the
following, we show how the adapter synthesis technique of [7, 8] can be used to
construct an adapter between a proprietary web shop and Google’s Checkout
service [6]. We first show how to design a mediator between shop and Checkout
service using the Enterprise Integration Patterns and then how to complete the
mediator to an adapter by adapter synthesis.

The Google Checkout service and the web shop are stateful services; the
behavior of each service is shown in Fig. 45. We assume that both components
were developed independently and cannot be changed.

Google offers a service for sellers that can handle payment details as back-end
of a web shop. We show it as automaton in Fig. 45a, where a gray box represent
a state (black for a final state), an arc represents a transition, while an arc label
means communication (! sending and ? receiving a message).

42

charged

?request

reviewing

chargeable

!chargeable

charging

?charge

!charged

?
c
h

a
rg

e

cancelled
?cancel

declined
!declined

?cancel

!chargeable

!charged

?
re

a
u

th
o

ri
z
e

(a) Google

processing

!payment info

charging?
n

o
t
c
h

a
rg

e
d

!execute

finished

cancelling
!change

?changed

?done

(b) Web Shop

Fig. 45: Google Checkout [6] and Web Shop protocols

First Google Checkout needs a request to start. After the reviewing state
the answer is chargeable. We left out the case, where this is not the case for
facilitating the example. Then, the payment may be reauthorized, e. g., when
payment details were changed, the whole payment may be cancelled, or it may
receive a message to actually charge. Charging may be declined first, and then
either fail as indicated by the message chargeable, or it may ultimately succeed,
as indicated by a charged message. In the final state, a further charge message
may trigger additional payment rates.

Let us assume, that we have developed our own web shop and implemented a
payment back-end that we now want to connect to Google Checkout. As we can
see in Fig. 45b, we first want to send the payment information. Then we either
want to change some of the information, which is quit by a changed message,
or we execute the payment. If the payment was not charged, we can change and
execute again. If the payment is done, we are finished.

Please note: The depiction of the service does not indicate, whether commu-
nication is synchronous or asynchronous. Google’s protocol expects synchronous
invocation, whereas for the web shop we assume asynchronous communication.

If we look closely at both service, we can see that the messages sent and
received by both services differ, as well as any behavioral relation of messages.
It looks reasonable to relate the shop’s payment info with Google’s request. The
execute should be related to Google’s charge message, as well as the reply charged
to the shop’s done. However, Google’s chargeable message is used in different
contexts and needs more careful consideration.

For that reason we want to introduce a message mediator where we model
the message flow as we expect it to be.

Mediator. We first describe the mediator on a higher level using Enterprise
Integration Patterns and thus describing the intended message flow between
services as shown in Fig. 46. Afterward we discuss the CPN realization in Fig. 47.
Last we discuss control-flow issues and how they can be solved by controller
synthesis.

43

payment inforequest

chargeable change

changedreauthorize

executecharge

not charged

charged

Request-Reply

Request-Reply

Message Translator

Aggregator

declined

done

Aggregator

Message Router

Message Router

Message Translator

Message Translator

Message Translator

Message Translator

Message Translator

Fig. 46: Patterns-based mediator

Considering the different message types as well as the context each message
type is used in, we decide to use the following patterns to describe the message
flow.

The web shop’s initial payment info triggers a Request-Reply pattern. Google
Checkout receives a request and replies chargeable. The answer is not used by
the web shop, but it is part of the protocol, so the mediator drops the reply.

Next, we have a Request-Reply pattern again. The change request is forwarded
to Google Checkout as reauthorize message. The reply is a chargeable message
again, which is forwarded as changed message to the web shop.

The execute message of the web shop is processed by a Message Translator
and triggers the charge in Google Checkout. Each of the other message types
also needs a message translator for connecting Google Checkout and the web
shop. We decided to do this on the side of the web shop interface.

If an Aggregator receives a declined as well as a chargeable message, it sends
a not charged message to the web shop, such that it can repeat the payment.

If a second Aggregator receives a declined and a charged message, or a charged
message alone, it forwards a done to the webshop.

Since the messages chargeable and declined may be used by several different
patterns, we introduce for each message type a Message Router determining
where to a message should be forwarded.

Google’s Checkout service uses synchronous message transfer. For each mes-
sage type we add a Channel Adapter to translate the communication to asyn-
chronous calls.

44

The patterns allow us to adequately model the message flow between both
services. In order to connect them, we have to implement the used patterns and
thus are able to adapt both services instead of changing them.

send
req

recv
req

send
rep

recv
rep

enforce
reply

request

chargeable

payment_info

changereauthorize

charge

declined

charged

changed

execute

not_charged

done

send
req

recv
req

send
rep

recv
rep

enforce
reply

trans-
late

aggr.

aggr.

trans-
late

trans-
late

trans-
late

trans-
late

trans-
late

pitl pireqreqreqreq

ca ca ca ca ca

ca

ca ca ca ca ca tl ca

cgtl cgauthauthauthauth

ca

ca

dcl
dcl dcl

dcl dcl tl dcl

dcl

cgd

exctl exc

aggr.
dcl

cgd cgd cgd cgd
cgd

cgd

cgd tl cgd

req

ca

auth

ch

dcl

dcl

Fig. 47: Mediator

The implementation as Coloured Petri net is depicted in Fig. 47. For each
pattern in Fig. 46 we used the pattern realization presented above.

Given the mediator’s CPN model, we have to consider how to provide the
transition conditions included in some of the patterns. Although in general such
conditions may be provided, there are many cases, where we cannot decide locally
for one transition, when it should fire. Since a condition always only knows its
local context, providing a condition then is impossible and we need a more global
point of view and thus a controlling instance.

For example, let us have a closer look at the message type and state called
chargeable. The Checkout service can reach this state after receiving the initial
request, after the task to reauthorize a payment, or after it declined a payment.
The mediator just receives the chargeable message without any context infor-
mation, and the corresponding Message Router has to pick the right pattern to
forward the message to.

As it is essential, which message has been exchanged between Google Check-
out and Mediator before receiving chargeable, we do not need local conditions for
the message mediator, but we need control-flow relations between the patterns.
When a request has been sent to Google Checkout, then chargeable has to be
forwarded to the first Request-Reply pattern. If it was a reauthorize, then to the

45

second Request-Reply. If a declined preceded the chargeable, then it has to be
forwarded to the first Aggregator pattern.

Something similar happens with the declined message. At the point, when the
message arrives at the mediator, it is not clear, whether a chargeable or a charged
will follow. Thus the corresponding Message Router cannot decide locally, which
message will come next, such that we need control-flow dependencies again.

For the second Aggregator, we cannot decide locally, whether the first or
second case occurs; that is, whether the charged occurs without or with a declined.

In any of these case, the result will be, that the mediator might be sending a
message to the web shop that it does not expect. While the message itself may be
ignored, the message expected by the web shop is actually missing such that it
cannot continue. So if a chargeable message should be routed to the web shop as
changed message, but instead is forwarded to the first Request-Reply pattern and
simply dropped, than the web shop will wait for ever for the changed message
and it will deadlock.

Nevertheless, we suggest to concentrate only on the message flow when de-
signing the mediator as the control flow dependencies can be synthesized auto-
matically.

Adapter Synthesis Following the idea to reduce adapter synthesis to controller
synthesis, we can declare each transition of the mediator as controllable and
observable, thus a controller can influence and monitor the mediator’s behavior.

We have shown the schematics of this idea in Fig. 44. We have three com-
ponents as discussed before: the two services Google Checkout and the web
shop, as well as the mediator that we developed based on EIP. The fourth
component—the controller—shall now be synthesized automatically. The con-
troller is only allowed to communicate with the mediator—as indicated by the
arrows—because a service normally does not allow any further outside control.

In adapter synthesis we consider the behavior of the overall system of both
services and mediator. We therefore have to compose these systems. The remain-
ing interface consists of the transitions of the mediator. Controller synthesis now
looks at the state space of the composed systems and only allows a mediator’s
transition to fire, if this does not lead to a bad state like a deadlock. The re-
sulting controller guarantees correct behavior of the system with the mediator
ensuring correct message flow. For further details on adapter synthesis, we refer
to literature [7].

The resulting controller can be seen in Fig. 48. We have arranged the pieces
of the figure such that the controller’s transitions are located where we have
seen their mediator’s counterparts. Additionally we have grouped transitions
synchronizing with transitions belonging to one particular pattern with a gray
box. Each of the blue transitions synchronizes with one transition in the media-
tor. Please note, that there are split transitions, like in the first message router,
where five cases for forwarding the chargeable message to the first aggregator
are shown. This happens, because the controller wants to distinguish certain
situations; that is, different states of the two given services while firing the cor-

46

p2

p10

p38

p4

p26

p22

p30

p23

send
req

p1

p33

recv
req

send
rep

recv
rep

p6

send
req

p16

p20

recv
req

send
rep

recv
rep

p28

trans-
late

p25 aggr. p9

p41

p12

aggr.

finish p42
route
r decl

route
r decl

p15

p17

route
r

route
r

trans-
late

trans-
late

trans-
late

trans-
late

trans-
late

p43

p13

p14

p39

p3

p29

aggr.

!requ
est

?char
geabl
e/2

!reau
thoriz

e

!char
ge

?decli
ned

?char
ged

?pay
ment
_info

?chan
ge

!chan
ged

?exe
cute

!not_
charg

ed

!done

p32p32

p18p18

?char
geabl

e

?char
geabl
e/1

p11 p7

!reau
thoriz

e

p36p36

route
r/1

p37

p8

?decli
ned/1

?decli
ned/2

p21

p40

p27

route
r

route
r/1

route
r/2

route
r/3

route
r/4

p35p35

p0

p31

p34

p19p44

p24

Fig. 48: Synthesized Controller

47

responding transition in the mediator. This also results in complex dependencies
which manifest in the shown places and arcs.

The white transitions on the right-hand side are the result of the adapter
approach. The adapter engine explicitly sends or receives a message, when ex-
changing messages asynchronously. These transitions realize this behavior. As
an effect, the controller is able to react on the reception of a message directly
before applying any pattern.

We can now use the mediator as blueprint for implementation, while the
controller dictates the order of execution of the mediator’s transitions.

4 Concluding Remarks

Enterprise Integration Patterns are a set of widely used patterns allowing a struc-
tured and efficient implementation of a messaging system. For these patterns we
have provided a realization as Petri nets; thus each pattern is a Petri net block
that can be connected to other blocks as indicated by the used patterns.

It is quite unlikely that a real implementation of a messaging system is done
with Petri nets. However, Petri nets provide a wide range of analysis tasks, where
the original patterns are to abstract and the actual implementation is to specific.
Especially for model checking [9] several techniques for Petri nets exist, whereas
model checking of software components is only solved for special cases (and in
general not possible).

References

1. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2003)

2. OMG: Business Process Model and Notation (2011)
http://www.omg.org/spec/BPMN/2.0/PDF/ [retrieved on Oct 19, 2012].

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

4. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

5. CPN Tools: http://cpntools.org/documentation/start [retrieved on Sep 21, 2012].
6. Google: Checkout https://checkout.google.com/ [retrieved on Oct 19, 2012].
7. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.

IEEE Transactions on Services Computing 5 (2012) 72–85
8. Wolf, K.: Does my service have partners? T. Petri Nets and Other Models of

Concurrency 2 (2009) 152–171
9. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)

48

List of all patterns

Aggregator (268), 23

Canonical Data Model (355), 31
Channel Adapter (127), 10
Claim Check (346), 30
Command Message (145), 13
Competing Consumers (502), 35
Composed Message Processor (294), 26
Content Enricher (336), 29
Content Filter (342), 30
Content-Based Router (230), 20
Correlation Identifier (163), 16

Datatype Channel (111), 8
Dead Letter Channel (119), 9
Document Message (147), 13
Durable Subscriber (522), 36
Dynamic Router (243), 21

Envelope Wrapper (330), 29
Event Message (151), 14
Event-Driven Consumer (498), 34

Format Indicator (180), 18

Guaranteed Delivery (122), 9

Idempotent Receiver (528), 37
Invalid Message Channel (115), 9

Message (66), 12
Message Broker (322), 27
Message Bus (137), 11

Message Channel (60), 5
Message Dispatcher (508), 35
Message Endpoint (95), 32
Message Expiration (176), 17
Message Filter (237), 21
Message Router (78), 19
Message Sequence (170), 17
Message Translator (85), 28
Messaging Bridge (133), 11
Messaging Gateway (468), 33
Messaging Mapper (477), 33

Normalizer (352), 31

Pipes and Filters (70), 18
Point-to-Point Channel (103), 5
Polling Consumer (494), 34
Process Manger (312), 27
Publish-Subscribe Channel (106), 7

Recipient List (249), 22
Request-Reply (154), 14
Resequencer (283), 24
Return Address (159), 15
Routing Slip (301), 26

Scatter-Gather (297), 26
Selective Consumer (515), 36
Service Activator (532), 38
Splitter (259), 22

Transactional Client (484), 33

	Using Petri Nets for Modeling Enterprise Integration Patterns
	Introduction
	Enterprise Integration Patterns
	Pattern overview
	Message Channel
	Message
	Pipes and Filters, Message Router
	Message Translator
	Message Endpoint

	Examples
	Loan Broker
	Adapter Synthesis based on Patterns
	Adapter Synthesis in a Nutshell
	Real-Life Example: Synthesizing Adapters for Google Checkout

	Concluding Remarks
	List of all patterns

