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Abstract. Compliance checking is gaining importance as today’s organizations
need to show that operational processes are executed in a controlled manner
while satisfying predefined (legal) requirements. Deviations may be costly and
expose the organization to severe risks. Compliance checking is of growing im-
portance for the business process management and auditing communities. This
paper presents an approach for checking compliance of observed process execu-
tions recorded in an event log to control-flow and temporal compliance require-
ments. We show a collection of 54 control flow and 15 temporal compliance
rules, distributed respectively over 10 and 7 categories. In addition we present
how temporal compliance requirements discussed in literature can be unified and
formalized using a generic temporal compliance rule.
To check compliance with respect to a compliance rule, the event log describing
the observed behavior is aligned with the corresponding rule. The alignment then
shows which events occurred out of specified order and which events deviated by
which amount of time from the prescribed behavior. The approach is flexible (easy
to express new rules), and allowing for multi-perspective diagnostic information
in case of compliance violations. The technique and corresponding tool support
have been experimentally validated using a case study.

Keywords: compliance checking, process mining, conformance checking, data-
aware conformance checking, Petri-nets

1 Introduction

Business processes need to comply with regulations and laws, set by both internal and
external stakeholders. Failing to comply may be costly, therefore, organizations need to
continuously check whether business processes are executed within the boundaries set
by managers, governments, and other stakeholders. Deviations of the observed behavior
from the specified behavior may point to fraud, malpractice, risks, and inefficiencies.
Five types of compliance-related activities can be identified [25, 42, 21, 39]:

– compliance elicitation: determine the constraints that need to be satisfied (i.e., rules
defining the boundaries of compliant behavior),

– compliance formalization: formulate precisely the compliance requirements de-
rived from laws and regulations in compliance elicitation,

– compliance implementation: implement and configure information systems such
that they fulfil compliance requirements,
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– compliance checking: investigate whether the constraints will be met (forward com-
pliance checking) or have been met (backward compliance checking), and

– compliance improvement: modify the processes and systems based on the diagnos-
tic information in order to improve compliance.

There are two basic types of compliance checking: (1) forward compliance checking
aims to design and implement processes where conformant behavior is enforced and (2)
backward compliance checking aims to detect and localize non-conformant behavior.
This paper focuses on backward compliance checking based on event data.

Compliance checking is gaining importance because of the availability of event
data and new legislations. Major corporate and accounting scandals including those
affecting Enron, Tyco, Adelphia, Peregrine and WorldCom have fueled the interest in
more rigorous auditing practices. Legislation, such as the Sarbanes-Oxley (SOX) Act
of 2002 and the Basel II Accord of 2004, was enacted as a reaction to such scandals. At
the same time, new technologies are providing opportunities to systematically observe
processes at a detailed level. Today, event data is everywhere – in every system and in
every organization – and will continue to grow exponentially.

Process mining techniques [1] offer a means to more rigorously check compliance
and ascertain the validity and reliability of information about an organization’s core
processes. The core challenge is to compare the prescribed behavior (e.g., a process
model or set of rules) to observed behavior (e.g., audit trails, workflow logs, transaction
logs, message logs, and databases).

Compliance requirements primarily restrict sequencing of activities in the process,
that is, the control flow; various techniques for checking control-flow compliance based
on event data have been proposed including LTL-based checking.

For example, in [3] it is shown how constraints expressed in terms of Linear Tempo-
ral Logic (LTL) can be checked with respect to an event log. In [34] both LTL-based and
SCIFF-based (i.e., abductive logic programming) approaches are used to check compli-
ance with respect to a declarative process model and an event log. Dozens of approaches
have been proposed to check conformance given a Petri-net and an event log [2, 9, 7, 8,
12, 14, 22, 36, 37, 43, 49]. Approaches such as in [43] replay the event log on the model
while counting “missing” and “remaining” tokens. The former indicates observed, but
disallowed behavior, and the latter indicate non-observed, but required behavior.

Existing approaches to backwards compliance checking have two main problems.
First of all, the elicitation of compliance rules is not supported well. End users need
to map compliance rules onto expressions in temporal logic or encode the rules into a
Petri-net-like process model. Second, existing checking techniques can discover viola-
tions but do not provide useful diagnostics. While forward compliance checking tech-
niques [11, 20] employ pattern matching to highlight compliance violations in a model,
such techniques are not applicable in backwards checking where not a model, but a
log is given. Here, LTL-based checkers will classify a trace as non-compliant without
providing detailed diagnostics and discard the remainder of the trace when the first
deviation is detected.

State-of-the-art techniques in conformance checking retrieve this information by
computing optimal alignments [2, 9] between traces in the event log and “best fitting”
paths in the model. It provides detailed diagnostic information for all deviations from
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compliant behavior [41]. However, compliance requirements may also cover other as-
pects of a process; in particular they may restrict process time. Compliance violations
regarding time cannot be detected using existing control-flow checking techniques.

This report addresses the problem of backward compliance checking for tempo-
ral compliance requirements (i.e., compliance requirements restricting process time).
We propose a technique for temporal compliance checking that seamlessly integrates
with control-flow compliance checking. Most importantly, the technique provides de-
tailed diagnostic information in case of non-compliant behavior: it shows for each case
which events violated temporal requirements and when the event should have occurred
to be compliant. Our temporal compliance checking techniques leverages a recent data-
aware conformance checking technique [29] that allows to check conformance of a log
with respect to a data-aware Petri net. We show that every temporal compliance re-
quirement discussed in literature (and many more) can be formalized in a simple data-
aware Petri net, by making time a data attribute of the specification. The conformance
checker [29] then compares the observed temporal behavior in the event data to the
compliant temporal behavior specified in the Petri net. In case of deviations, the confor-
mance checker highlights which events occurred out of order, and by how much time
an event deviated from the compliant behavior. Moreover, we show how this tempo-
ral compliance checking can be combined with control-flow compliance checking to
check complex compliance requirements involving control-flow and temporal aspects.
The technique has been implemented as a ProM plug-in and has been validated in vari-
ous real-life event data.

Moreover to address the problem of elicitation of compliance rules we provide a
comprehensive collection of control flow and temporal related compliance rules. We
identify 54 control-flow compliance rules distributed over 10 categories and 15 tempo-
ral compliance rules distributed over 7 categories. These compliance rules are formal-
ized in terms of Petri-net patterns. The approach is extendible, i.e., to add a new type of
rule, one just needs to find the relevant compliance rule and its formalization from our
repository and prune it for his/her specific compliance purpose.

The remainder of this paper is organized as follows. We discuss related work in
Sect. 2. We recall conformance checking techniques for control-flow and data-flow
in Sect. 3. In Sec. 4 and 5 we introduce our compliance rule framework and give an
overview on different categories of control-flow and temporal-compliance rules.

Sect. 6 covers control-flow compliance checking. The complete collection of control-
flow compliance rules and their formalization are presented in Sect. 7.

Sect. 8 and Sect. 9 introduce the temporal compliance problem and our proposed
solution. The complete collection of temporal compliance rules and their formalization
are presented in Sect. 10. In Sect. 11 the implementation of the approach in ProM is
showcased. Sect. 12 concludes the report.

2 Related Work

The importance of compliance management has been pointed out by various authors [5].
In [42] a life cycle is introduced to structure the process of compliance management.
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A comparative analysis over different compliance management solution frameworks is
provided in [25].

Compliance management has gained wide interest from the Business Process Man-
agement (BPM) community. Compliance checking approaches can be mapped onto two
main categories [24]:

– Forward compliance checking aims at ensuring compliant process executions. Pro-
cesses can be constructed to be compliant [44] or verified whether they are com-
pliant [32]. Alternatively, compliance requirements can be transformed into mon-
itoring rules [13] or model annotations which then are used to enforce compliant
process executions [18, 51].

– Backward compliance checking evaluates in hindsight whether process executions
did comply to all compliance rules or when and where a particular rule was violated.
A variety of conformance checking techniques have been proposed to quantify con-
formance and detect deviations based on an event log and process model (e.g., a
Petri-net) [2, 9, 7, 8, 12, 14, 22, 36, 37, 43, 49]. Also approaches based on temporal
logic [3, 34] have been proposed to check compliance.

Existing work in temporal compliance checking primarily focuses on verification at
design time or at run time.

It is possible to derive temporal properties of acyclic process models by annotating
tasks with intervals of execution and waiting times; execution times and waiting times
of the entire process can then be derived by interval computations and compared against
predefined constraints of total execution times [16]. In addition, the time-critical paths
of a process model can be computed [40]. In a similar fashion, the approach in [31] for-
mulates temporal constraints in terms of deadlines for completing an activity (relative
to another activity). Reasoning on time intervals is used to verify whether a constraint
is violated.

For verifying that a process with loops satisfies a general time-related constraint,
typically temporal model checking techniques are applied. The properties of interest
are metric temporal constraints, e.g., deadline on execution of activities in a business
process. Metric temporal logic (MTL), a temporal logic with metric temporal con-
straints, can express typical compliance requirements as presented in this paper. Unfor-
tunately, the model checking problem for MTL is undecidable over models with infi-
nite traces [26]. By introducing so called observers on atomic propositions, the problem
whether a process model, given as a timed transition system (TTS), satisfies an MTL
formula becomes decidable by a reduction to LTL modelchecking [6]. This approach
allows to check temporal compliance of a real-time extension of Dwyer’s specification
patterns [15]. A similar approach is followed in [19] for checking whether an extended
CCSL (Clock Constraint Specification Language) specification holds in a timed Petri
net; CCSL is less expressive than the constraints that can be expressed and checked
with our technique.

An alternative approach to describe temporal constraints is timed Declare [50] in
which LTL-like constraints are extended with the notion of time. By a translation to
timed automata, such constraints can be monitored at runtime to evaluate whether a
process instance might or will violate a temporal constraint. A similar approach is pro-
posed in [35].
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In comparison, the technique presented in this report focuses on backwards check-
ing of temporal constraints in execution logs. The generic Petri net pattern proposed in
Sect. 9is capable to express all temporal constraints that we encountered in the works
discussed above, and other temporal constraints such as cyclic temporal constraints not
discussed elsewhere. Our technique detects all temporal violations in a trace, not just
the first temporal violation encountered as it happens in model checking approaches.
In case of violations also the compliant behavior (when a non-compliant event should
have happened) is returned as diagnostic information.

In this report, we focus on backward compliance checking and assume an event log
to be present. Compared to existing approaches we provide a comprehensive collection
of compliance rules. Moreover, we focus on providing diagnostic information.

3 Preliminaries

This section recalls basic conformance checking notions [2, 9, 29] on which we build
for temporal compliance checking.

3.1 Control-Flow Alignment

Conformance checking relates behavior that has happened and was recorded in an event
log L to a formal specification S that describes which behavior should have happened.
In this context, an event log is a multiset of traces. Each trace describes a particular case
(i.e., a process instance) as a sequence of events. An event often refers to an activity
executed.

Let E be the finite set of all events and L be an event log (a multiset of all traces).
σL ∈ L is a trace in the event log L.

Let A be the finite set of all activities and A∗ be the set of all sequences of activities
over elements in A. We define S ⊆ A∗ as the set of all sequences in A∗ which are
compliant with a certain compliance rule. σS ∈ S is a sequence; σS = 〈a1, ...., an〉
where ai ∈ A. Labeling function ` relates every activity a ∈ A to a set of events. i.e.,
`(a) ⊆ E.

The set S can be described by a Petri net N such that S is the set of all terminating
runs of N . A trace σL ∈ L may deviate from S, i.e., σL 6∈ S. To understand where
and how σL deviates from S, we use the control-flow alignment approach in [2, 9]. An
optimal alignment of σL to specification S is a compliant trace σS ∈ S that is as similar
to σL as possible.

A given trace σL will be related to trace σS ∈ S by pairing events in σL to events in
σS . Formally a move of (σL and S) is a pair (x, y) ∈ (E∪{�})×(A∪{�})\{(�,�
)}. For x ∈ E and y ∈ A, we call (x,�) a move on log, (�, y) a move on specification
S and if x ∈ `(y), then (x, y) is a synchronous move.

An alignment of a trace σL ∈ L to S is a sequence γ = 〈(x1, y1), . . . , (xn, yn)〉 of
moves (of σL and S) such that the projection x1, . . . , xn to E is the original trace σL;
〈x1, . . . , xn〉|E = σL, and the projection y1 . . . yn to A is the specified trace σS ; 〈y1,
. . . yn, 〉|A = σS ∈ S.
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For example, for specification S = {〈a, b, c, d〉, 〈a, c, b, d〉} with `(y) = {y} trace
σL = 〈a, c, c, d〉 has (among others), the following two alignments with events of σL
shown at the top and activities of S shown at the bottom: γ1 = a c c � d

a c� b d
and γ2 =

a�� c c d
a c b �� d

.

Both alignments yield the same specified trace σS = 〈a, c, b, d〉 ∈ S. However, γ1 is
preferable over γ2 as it minimized the number of non-synchronous moves. The confor-
mance checking problem in this setting is to find for a given trace σL and specification
S an optimal alignment γ of σL to S s.t. no other alignment has fewer non-synchronous
moves (move on log only or move on specification only). The technique of [9] finds
such an optimal alignment using a cost-based approach: a cost-function κ assigns each
move (x, y) a cost κ(x, y) s.t. a synchronous move has cost 0 and all other types of
moves have cost > 0. The A?-based search on the space of (all prefixes of) all align-
ments of σL to S described in [9] can be used to find an optimal alignment for σL and
S.

In such an optimal alignment, a move on log (x,�) indicates that trace σL had an
event x that was not supposed to happen according to specification S whereas a move
on specification S (�, y) indicates that σL was missing an event in set `(y) that was
expected according to S. As the alignment preserves the position relative to trace σL,
we can locate the exact position where σL had an event too much or missed an event
compared to S.

3.2 Data-Aware Petri-nets

In a process model each process instance is characterized by its case attributes. Different
paths of a model may be taken during the execution of a process. These may be governed
by guards and conditions defined over such attributes. Process models also define, for
each attribute, its domain, i.e., the values that can be given. Moreover process models
also describe which attributes every activity can read or write. Such activity attributes
can prescribe a resource or group of resources allowed to execute a certain activity, an
information object or a collection of information objects the activity has access to or
time stamp of the activity execution.

Execution of a process can be fully conforming to its model if (1) the sequence
of the activities executed can be replayed on a process path in the model and (2) the
respective process instance attributes and activities’ attributes also match the specified
attributes in the model.

Suppose a Petri-net model N shown in Fig. 1. Petri-net N specifies that firing tran-
sition a writes a value for attribute X and both transitions b and c read the value of
attribute X and write the value of attribute Y . Petri-net N restricts transition b to fire
only if the written value of Y is greater than read value of X by assigning the guard
[Y ′ > X] to transition b. Likewise it restricts transition c to fire only if the written value
of Y is equal or smaller than read value of X by assigning the guard [Y ′ ≤ X] to
transition c.

a

b

c

W:{X’ = #X(e)}

W:{Y’ = #Y(e)}
[X>Y’]

W:{Y’ = #Y(e)}
[X≤Y’]

Fig. 1. Data-Aware Petri-net N

As explained in Sect. 3.1 an event log is a multiset of
traces. An event has a name and refers to a case. A log
may also store additional properties of an event such as
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a time stamp (e.g., the time a certain medicine adminis-
tered for a patient), a resource (e.g., the nurse or doctor
executing or initiating the activity), and various data el-
ements recorded with the event (e.g., the dosage of the
medicine administered).

Consider two traces σL1 and σL2 having events with
additional attributes: σL1 = 〈(a,X = 3), (b, Y = 2)〉
and σL2

= 〈(a,X = 3), (b, Y = 5)〉. The sequence of events in both traces σL1
and

σL2
conforms with the control flow specified in Petri-net N . However, trace σL1

does
not fully conform because the guard governing the occurrence of event b evaluates to
false for trace σL2 . In the following section we describe formally how we apply data-
aware Petri-nets for temporal compliance checking.

3.3 Data-Aware Alignment

Let us now assume that each event has a time stamp and can be described by a pair (e, t)
where e is the event name and t is the time stamp. A trace σL = 〈(e1, t1), . . . , (en, tn)〉
is a non-descending sequence of timed events, i.e., ti ≥ ti+1 for 1 ≤ i < n. Similarly,
every activity a in the specified trace σS is described as a pair (a, T ) where T is the set
of all times at which activity a is allowed to be executed according to specification S.

A trace σL ∈ L and σL = 〈(e1, t1), , . . . , (en, tn)〉 complies with specification S if
there exists a trace σS ∈ S s.t. σS = 〈(a1, T1), ..., (an, Tn)〉 where for each ei ∈ E,
there exists an activity ai ∈ A where ei ∈ `(ai) and ti ∈ Ti.

For example, assume that specification S includes two admissible traces σS1
and

σS2
; S = {σS1

, σS2
} with σS1

= 〈(a1, [3, 3]), (a2, [4, 4]), (a3, [13, 14])〉 and σS2
=

〈(a1, [7, 7]), (a2, [9, 9]), (a3, [17, 19])〉. Trace σL1
= 〈(a1, 3), (a2, 4), (a3, 13.06)〉 com-

plies with specification S (assuming `(y) = {y}) because there is a trace σS1 ∈ S
where the time stamps recorded for the events in σL1 fall in the admissible time stamps
of the same events in σS1

. Contrary, trace σL2
= 〈(a1, 3), (a2, 4), (a3, 14.06)〉 does not

comply with specification S. Although the sequence of events in σL2
complies with S,

the third time stamp recorded in σL2
is not admissible based on specification S.

As is mentioned in Sect. 3.1, set S can be described by a Petri net N such that S is
the set of all terminating runs of N . As we extend specification S with admissible time
stamps of its activities,N is also extended by the respective temporal constraints. Hence
extension of the optimal control-flow alignment with recorded temporal information
will give an extended alignment in which moves also consider the temporal dimension
as follows:

– ((x, t),�), move on log
– (�, (y, T )), move on specification S
– ((x, t), (y, T )) with t 6∈ T and x ∈ `(y), synchronous move with a time-related

deviation
– ((x, t), (y, T )) with t ∈ T and x ∈ `(y), synchronous move with correct time stamp

The data flow alignment technique in [29] assigns a ‘cost> 0’ not only for move
on log and move on specification but also for synchronous moves with a time-related
deviation.
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As is explained earlier, the approach we are using for temporal compliance checking
is based on the principle of finding an alignment between an event log and a process
model. The events in the trace are mapped to the activities in the process model. In the
first step the events in the log are replayed over the activities in the model to get control-
flow alignment(s) which are closest to the actual trace and have the least control-flow
deviation. In the second step we use the control-flow alignment(s) to get the data flow
alignment considering time as a data attribute.

To this end the time stamps of events in the control-flow alignment are compared
with admissible time stamps in the model to get a data flow alignment which is closest
to the time stamps of events in the actual trace and has the smallest temporal deviation.

The A?-based search on the space of (all prefixes of) all alignments of σL to S
described in [2, 9] can be used to find alignment(s) for σL and S which have the least
cost of deviation (when attributes of activities are ignored). This approach is extended in
[29] to find data-aware alignments; an ILP solver finds among all synchronous moves,
values for the specified attribute in S such that the data deviations are minimized. In
the following, we apply alignments for temporal compliance checking. This two stage
approach helps us to create an optimal alignment considering both the control-flow
perspective and the time perspective.

4 Compliance Rule Framework

A compliance requirement prescribes how an internal or cross-organizational business
process has to be designed or executed. It originates in explicitly stated regulations and
can refer to the individual perspectives of a business process (control flow, data flow,
organizational aspects) or a combination of several perspectives. We reviewed existing
literature on compliance [4, 17, 10, 15, 23, 47, 21, 45, 46, 28, 27, 38, 6, 50, 30], collected
the requirements described in these papers, and categorized them. We found that a single
requirement usually is not concerned with only one perspective of a process, but with
several perspectives. Based on this observation, we identified six orthogonal dimensions
of compliance rules, into which each of the rules could be categorized. For example,
the requirement “After a claim of more than 3000 EUR has been filed, two different
employees need to check the validity of the claim independently.” is composed of 3
basic rules that refer to (1) control flow (“After a claim has been filed, validity must be
checked.”), (2) data flow (“A claim over 3000 EUR requires two validity checks.”), and
(3) the organization (“Multiple validity checks are carried out by different employees.”).

Furthermore, a compliance requirement can (4) impose time-related constraints
(e.g., “Within 6 months the claim must be decided.”) or can be untimed,(5) prescribe
properties of a single case or of multiple cases (e.g., “20% of all claims require a de-
tailed check.”), and (6) prescribe properties of the process design (e.g., “The claim
process must have a time-out event handler.”) or properties of the process executions,
which can be observed (i.e., recorded in an event log).

These six basic dimensions of compliance rules are orthogonal and give rise to the
framework shown in Fig. 2. In this report, we present compliance rules for control
flow and process time, where we focus on untimed, observation-based properties of
individual cases.
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Fig. 2. Compliance Rule Framework

Typically every compliance requirement restricting the process time implies a con-
trol flow rule as well. Even if the sequence of execution of activities are not restricted
in the compliance requirement, the existence of specified activities must be checked.
Only then we can check the temporal constraint governing the execution of these ac-
tivities. For example assume the compliance requirement “Activity A must be executed
at time t”; this requirement is decomposed to two compliance rules; (1) (control flow)
ActivityAmust be executed (2) (process time) ActivityAmay only be executed at time
t. To check the temporal constraint of this compliance requirement we can apply con-
trol flow alignment to check if the specified activity is executed or not and then using
data-aware alignment, we check if it was executed at the admissible time stamp.

Sect. 5, presents an overview of control flow and temporal compliance rule cate-
gories and Sect. 7 and Sect. 10 present all compliance rules and their formalization in
form of Petri-net patterns.

5 Collection of Control-Flow and Temporal Compliance Rules

Eliciting and formalizing compliance rules for a business process comprise determining
the laws and regulations that are relevant for this process and formulating these compli-
ance rules in an unambiguous, yet understandable manner [42]. Typically, this involves
expressing a given informal requirement in a formal notation: a task an end user may not
be capable of. To support elicitation, we provide end users with an extensive library of
comprehensive compliance rules. Each rule has an informal, precise description and is
accompanied by a mathematical formalization. The end user just has to pick the rule(s)
that describe the given compliance requirement best; the accompanying formalization
is then used for compliance checking.

We collected from literature [4, 17, 10, 15, 23, 47, 21, 45, 46, 28, 27, 38, 6, 50, 30], 54
control-flow and 15 temporal compliance rules and classified them further respectively
into 10 and 7 categories; see Tab. 1 for control-flow compliance rules and Tab. 2 for
temporal compliance rules. Each category includes several compliance rules. For ex-
ample, the Existence category from Tab. 1 defines two rules in total: “In each process
execution, activity A should be executed” and “In each process execution, activity A
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Table 1. Categorization of the 54 Control Flow Compliance Rules

Category (Rules) Description
Existence (2) Limits occurrence or absence of an activity. [4],[17],[10],

[15],[23],[47],[45]
Bounded Existence (6) Limits the number of times an activity must or must not occur.

[17],[15]
Dependent Existence (6) Limits the presence or absence of an activity with respect to

existence or absence of another activity.[17]
Bounded Sequence (3) Limits the number of times a sequence of activities must or

must not occur. [17],[15]
Parallel (2) Limits occurrence of a specific set of activities in parallel. [45]
Precedence (10) Limits occurrence of an activity in precedence over another

activity. [17],[45],[15],[47],[10],[21],[23],[4],[45]
Chain Precedence (4) Limits occurrence of a sequence of activities in precedence

over another sequence of activities. [17],[15],[23]
Response (10) Limits occurrence of an activity in response to another activity.

[45],[15],[23],[17],[48],[10],[21]
Chain Response (4) Limits occurrence of a sequence of activities in response to

another sequence of activities. [17]
Between (7) Limits occurrence of an activity within (between) a sequence

of activities. [15]

Table 2. Categorization of the 15 Temporal Compliance Rules

Category (Rules) Description
Instance Duration (2) Limits the time length in which a control-flow rule in-

stance must hold. [50]
Delay Between Instances (1) Limits the delay between two subsequent instances of

a control-flow rule [28, 27, 38, 6]
Validity (3) Limits the time length in which an activity can be exe-

cuted.[28, 27, 38, 50]
Time Restricted Existence (2) Limits the execution time of an activity in calendar.[28,

27, 38]
Repetition (2) Limits the delay between execution of two subsequent

activities.[28, 27, 38, 50, 30, 6]
Time Dependent variability(1) Limits choice of a process path among several ones

with respect to temporal aspects.[28, 27, 38, 50]
Overlap (4) Limits start and completion of an activity to start and

completion of another activity.[28, 27, 38, 50]

should not be executed.” Each rule is parameterized over activities (e.g., Activity A) or
numeric parameters (e.g., governing bounds for repetitions etc.).

In Sect. 7 we will present the complete collection of control-flow compliance rules
and their formalization. The complete collection of temporal compliance rules and their
formalization are described in Sect. 10.
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6 Control-Flow Compliance Checking

As briefly mentioned in the previous section every compliance rule from our collection
of control-flow compliance rules is formalized in terms of parameterized Petri-net pat-
tern. Suppose a compliance requirement stating: “The treatment with antibiotics must
be administered with one dose per day for 3 days in a row. After each cycle of treatment,
in case of necessity, the treatment can be extended for other cycles; but there should be
delay of at least one week between two subsequent cycles of treatment”. This require-
ment constraints both process time and control-flow perspective of process and it can
be divided into three different compliance rules: (1) (control flow)“antibiotics must be
administered in cycles of 3 occurrences”, (2) (process time) “between two subsequent
administration of antibiotics in a cycle, there should be one day delay”, and (3) (process
time) “between two subsequent cycles, there should be at least one week delay”.

The Petri-net pattern formalizing the control-flow compliance rule in this example
(for k = 3) is illustrated in Fig. 3.

Icmp

Ω 

A

3

Initial

Final

Ω Start

p1
done

3

Ist
todo

End

Fig. 3. Petri net formalizing a control-flow rule.

The core of the rule is formalized in
the grey-shaded part between transitions
Ist and Icmp. The rule becomes active
when Ist occurs. Then activity A has to
occur 3 times before the rule can com-
plete (each time A occurs, one token is
taken from todo and put on done). In be-
tween, arbitrary other activities can occur,
expressed by transition Ω. The compliance rule may hold multiple times in a trace; this
behavior is captured by the cycle involving Ist and Icmp. Whenever Ist occurs, it puts
3 tokens in the place todo which activates a new instance of the rule “activity A occurs
in groups of 3”; the instance completes with transition Icmp which removes all tokens
from done and puts a token on p1 .

We need to distinguish different instances of a rule from each other. Hence, every
compliance pattern has a Pattern Instance starts by the occurrence of an activity which
activates the compliance rule and ends as soon as the compliance rule is satisfied. In our
running example “3 occurrences of A in a cycle”.

The entire Petri net of Fig. 3 thus allows for multiple instances of the compliance
rule, each instance is framed by the Ist and Icmp transitions; between two instances
arbitrary other activities are allowed as expressed by the Ω-transition attached to place
p1. Each activity A of the compliance rule is represented in the Petri-net pattern as
a transition with label A. In general there could be multiple transitions with label A.
In case of our example, activity A = antibiotic administration. Occurrences of other
activities than the activity(s) specified in the compliance rule are described by the Ω-
labeled transitions. This way, the pattern abstracts from all other trace activities that are
not described in the compliance rule.

The net has a dedicated place Initial and a place Final, a Start and an End transition.
A compliant behavior takes the net from the initial marking to the final marking (just
one token in Final ) showing arbitrary many instances of the compliance rule.

The alignments of Sect. 3.1 can be used to check compliance of a trace to the com-
pliance rule “activityAmust be executed in groups of k occurrences”. Assume the trace
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σ = 〈(B, 1)(A, 2)(A, 30)(A, 54)(A, 100)(C, 123)(A, 162)(D, 173)〉 to be given. The
first element of each pair in the sequence σ represents the activity, the occurred event
is refereing to and the second element records the value for the time attribute of corre-
sponding activity. That is the time value every activity was executed. (Please note that,
the time value recorded for occurrence of each activity has no explicit notion of time;
the time values simply recorded numerical values of the event attribute time.)

For control-flow compliance checking, we ignore attributes of the events and thus
align the trace σ = 〈BAAAACAD〉 to the net of Fig. 3. When aligning σ, A maps to
A and Ω maps to all other events B,C,D which are not relevant for the rule. Addition-
ally, we assume transitions Start , End , Ist and Icmp to be silent so that moves on the
specification (without corresponding event in σ) have cost 0. The approach of Sect. 3
yields a best alignment γ1 = � B � A A A � � A C � A � D �

Start Ω Ist A A A Icmp Ist A Ω A A Icmp Ω End
showing 1 instance

of the rule with 3 occurrences of A and 1 instance of the rule with 2 occurrences of
A. The alignment also shows a missing event A in the second instance by the move on
specification (�, A). Note that σ has 6 more best alignments to the net of Fig. 3 varying
in where the move (�, A) is placed. The subsequent steps (shown for γ1) would have
to be executed for each of these alignments.

7 Collection of Control Flow Compliance Rules and Their
Formalization

All the Petri-net patterns discussed in this section follow some systematics that will be
explained throughout the section. Moreover there are some basic principles, we would
like to present it at the beginning of this section:

– Each pattern has a dedicated place Initial and a place Final.
– A token in the final place defines the final marking of the pattern. When a pattern

reaches its final marking, the pattern is properly completed (i.e., all other places of
the net is empty).

– Every compliance pattern has a Pattern Instance corresponding to an instance of
its compliance rule. The Pattern Instance starts as soon as an event occurs which
triggers the Compliance Rule Instance. The Pattern Instance completes as soon as
the condition of the Compliance Rule Instance is satisfied.

– The Ist-labeled transition in every Petri-net pattern indicates the start of an instance
of a control flow pattern (Pattern Instance) and the Icmp-labeled transition in every
pattern indicates the completion of an instance of the same control flow pattern.

– ΣL denotes the set of activity names for compliance rules. Depending on the choice
of compliance rules, it may include elements describing start and completion of
activities.

– Occurrences of event(s) specified in the compliance rule are mimicked by transi-
tions in the pattern having the same label as the events’ name. Suppose a compli-
ance rule restricts the occurrences of three specific activitiesA,B, andC; hence the
events A, B, and C in trace are expressed as A-labeled, B-labeled, and C-labeled
transitions in the pattern.
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– Occurrences of any other events than the event(s) specified in the compliance rule
are mimicked by the Ω-labeled transition. This way, the patterns abstract from all
other trace events that are not described in the compliance rule. Suppose a com-
pliance rule restricts the occurrences of three specific events A, B, and C; hence
ΣL = Ω ∪ {A,B,C} and Ω ∩ {A,B,C} = ∅.

– In some patterns we need to exclude the occurrence of one specific event from the
events may occur in a marking, therefore we subtract that specific element from
ΣL. Suppose we need to exclude occurrence of an event A at a marking; this is
shown as ΣL \ {A}, specifying that any event but A may occur at that marking.

– Typically occurrence of activities, e.g., an activity A is represented as an atomic
event A in the log. In some patterns, the respective compliance rules require to
model the start and completion of activities in the Petri-net patterns. Any activ-
ity, e.g., an activity A can also be represented by two events A start (Ast) and
A complete (Acmp) indicating the start and completion of an ongoing activity.
Therefore all Petri-net patterns of our collection rules come in these two flavors
and can be picked based on the setting.

– A trace σ complies to a (rule of a) pattern if after executing σ, final transition End
is enabled, and its occurrence leads to the final marking.

– Start-labeled, End-labeled, Ist-labeled, Icmp-labeled, and τ -labeled transitions
are silent transitions. In finding an optimal alignment between a trace and a Petri-
net pattern, the ‘alignment based technique’ of Section 3.1, assigns the cost of zero
for deviation of these transitions.

– Arcs in patterns may have weight, the arc weight specifies how many tokens are
consumed or produced as a result of firing a transition. If the arc weight is greater
than one, the respective arc is annotated with the weight (i.e., a natural number);
otherwise, it is assumed to be one.

– In some patterns a reset arc connects a place with a transition . This arc ensures that
when the corresponding transition fires all tokens are consumed from the respective
place (even if it contains no token). We usually use reset arcs to consume all tokens
from the net, thereby guaranteeing that after firing End , no transition is enabled
anymore and the net is empty.

– In some patterns we connect a place to a transition with an inhibitor arc. An in-
hibitor arc ensures that corresponding transition can only fire if the place at the
other end of the inhibitor arc is empty.

7.1 Existence Category

This category contains compliance rules which limit the occurrence or absence of an
activity within a chosen scope1.

Existence. Activity universality .
Description: Activity A must occur within a chosen scope. The compliance rule is vio-
lated if event A does not occur within the specified scope (e.g., a process instance). An

1 The scope can refer to a process instance (one specific case), a group of process instances or a
time line.
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instance of this compliance rule includes one time occurrence of A i.e., if A occurs once
this compliance rule is satisfied. Figure 4 shows the Petri-net pattern that formalizes this
rule.

After the pattern started, any event may occur. The pattern instance is trigged as
soon as A is executed. With the execution of A, the corresponding compliance rule of
this pattern is satisfied and the pattern instance is completed. After completion of the
pattern instance, any event may occur. In this situation the pattern may terminate. The
transition End models that the end of the trace has been reached i.e., it occurs after all
events of the trace occurred.

A

Ω 

Final

Ƭ 

Ω 

Parameters of the pattern intance: {A}

Ist Icmp

Initial

Start End

Fig. 4. ‘Existence. Activity universality’ Compliance rule

Existence. Activity absence .
Description: Activity A must not occur within a chosen scope. The rule is violated
if activity A occurs within the specified scope. An instance of this compliance rule
includes occurrence of any activity except A. That is, as long as A does not occur, this
compliance rule is satisfied but if A occurs this rule is violated. Figure 5 shows the
Petri-net pattern that formalizes this rule.

The pattern specifies that any event but A may occur. Therefore by construction in
every instance of this pattern only the Ω-labeled transition is enabled. If an A occurs
a deviation is captured. The transition End models that the end of the trace has been
reached i.e., it occurs after all events of the trace occurred.

Ω 

Initial

Ƭ 

Parameters of the pattern instance: {Ω}

Ist Icmp
Start End

Final

Fig. 5. ‘Existence. Activity absence’ Compliance rule

7.2 Dependent Existence Category

This category of compliance rules limits the presence or absence of an activity with
respect to existence or absence of another activity.
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Dependent Existence. Exclusive .
Description: Presence of activity A mandates the absence of activity B within a chosen
scope. This rule is violated if within the specified scope, both activities A and B would
be present. An instance of this compliance rule includes all occurrences of activity A
or all occurrences of activity B. The Petri-net pattern illustrated in Figure 6 formalizes
this rule.

After the pattern started, any activity may occur. The pattern instance is activated
as soon as the first A or B occurs. If A occurs, the place P1 is marked. At this marking
B is not enabled anymore, thereby ensuring that A and B cannot be present together.
Symmetrically when the first B occurs, the place P2 is marked. At this marking A is
not enabled anymore, thereby ensuring that A and B cannot be present together.

The pattern may terminate at any point in time by firing one of the transitions End.

Ist

Ist

Final

Initial

End1

Ω 

Icmp

Icmp

A Ω 

Ω B

Pattern instance parameters: {A,B}

End2

Start

P1

P2

Fig. 6. ‘Dependent Existence. Exclusive’ Compliance rule

Dependent Existence. Mutual exclusive Description: Within a chosen scope, either
activity A or activity B must exist but not none of them or both. This rule is violated if
both eventsA andB occur together or be absent together within the specified scope. An
instance of this compliance rule includes all occurrences of activityA or all occurrences
of activity B. The Petri-net pattern illustrated in Figure 7 formalizes this rule.

The behavior of this pattern is similar to the pattern described in Figure 6; with the
difference that in the pattern illustrated in Figure 7 absence of both events A and B is
a violation. Therefore the pattern enforces that one of the events A or B must occur.
The pattern cannot terminate unless the pattern instance is completed i.e., only after the
occurrence of one of the events A or B. After the condition of the rule is satisfied, the
pattern may terminate by firing transition End.

A

B

Final

Ω 

Icmp

Icmp

A Ω 

Ω B

Pattern instance parameters: {A,B}

EndIst

Initial

Start

Fig. 7. ‘Dependent Existence. Mutual exclusive’ Compliance rule
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Dependent Existence. Prerequisite Description: Absence of activity A mandates that
activity B is also absent within a chosen scope. This rule is violated if within the spec-
ified scope, activity B occurs without any occurrence of activity A. This compliance
category consists of one compliance rule. An instance of this compliance rule includes
occurrences of both activities A and B. The Petri-net pattern illustrated in Figure 8
formalizes this rule.

Occurrence of any activity triggers the pattern instance. If A occurs, it may be
followed by B or not. In both cases, the behavior is compliant i.e., presence of A does
not oblige anything. The pattern instance can complete and the pattern may terminate
in this situation if no event is to be executed. However as soon as B occurs the structure
of the pattern must ensure that A also occurs at least once. Therefore occurrence of B
requires occurrence of B. Please note that sequence of occurrences of A and B does
not matter but if B occurs, A must have occurred at least once before it or it must
eventually occurs after it. The next occurrences of B (even if they are not followed by
A) are still compliant as A has already occurred once and the rule is satisfied. Please
note that absence of both activities is allowed based on the rule. When the condition of
the rule is satisfied, the pattern instance is completed and the pattern may terminate by
firing the transition End.

IstIst

B

A

Icmp

Initial
Ist

Ω 

A 

EndB

Pattern instance parameters: {A,B}

Ω 

Ω 

A

Icmp

Start

Final

Fig. 8. ‘Dependent Existence. Prerequisite’ Compliance rule

Dependent Existence. Inclusive Description: Presence of activity A mandates that
activity B is also present within a chosen scope. This rule is violated if within the spec-
ified scope, activity A occurs without any occurrence of activity B. This compliance
category consists of one compliance rule. An instance of this compliance rule includes
all occurrences of activities A and B. The Petri-net pattern illustrated in Figure 9 for-
malizes this rule.

The pattern described in Figure 9 is similar to the pattern described in Figure 8; with
the difference in adjacent transitions to the place P in Figure 9.

Occurrence of any activity triggers the pattern instance. If B occurs, it may be
followed by B or not. In both cases, the behavior is compliant i.e., presence of B does
not oblige anything.

As soon as the first A occurs, the structure of the pattern must ensure that B also
occurs at least once. Next occurrences of A (even without a following B) will be still
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compliant as B has already occurred once. When the condition of the rule is satisfied,
the pattern instance completes. This is the situation that the pattern can terminate by
firing the transition End, if no activity is to be executed. Please note that it is possible
that B occurs without occurrence of A or none of A or B occurs.

IstIst

B

A

IcmpIst

Ω 

A 

EndB

Pattern instance parameters: {A,B}

Ω 

Ω 

B

Icmp

Initial

Start

Final

Fig. 9. ‘Dependent Existence. Inclusive’ Compliance rule

Dependent Existence. Substitute Description: Activity B substitutes the absence of
activity A within a chosen scope. This rule is basically the logical OR between occur-
rences of two activities A and B. This rule is violated if within the specified scope, non
of the activities A or B occurs (i.e., both be absent). This compliance category consists
of one compliance rule. An instance of this compliance rule includes all occurrences of
activities A and B. The Petri-net pattern illustrated in Figure 10 formalizes this rule.

Occurrence of any activity triggers the pattern instance. The pattern instance cannot
complete unless at least one of the activities A or B occur. The occurrence of A does
not oblige the occurrence or non-occurrence of B, however its absence obliges the
occurrence of B. When the condition of the rule is satisfied, the pattern may terminate
by firing the transition End.

A

Final

Ω 

B

End

A

Ω 
B

Pattern instance parameters: {A,B}

Ist Icmp

Initial

Start

Fig. 10. ‘Dependent Existence. Substitute’ Compliance rule

Dependent Existence. Co-requisite Description: Within a chosen scope, either activ-
ities A and B should exist together or be absent together. This rule is violated if within
the specified scope, only one of the activities A or B occurs. This compliance category
consists of one compliance rule. An instance of this compliance rule includes all occur-
rences ofA andB if they occur. The Petri-net pattern illustrated in Figure 11 formalizes
this rule.
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The pattern described in Figure 11 is similar to the pattern described in Figure 8;
with the difference in adjacent transitions to the place P .

Occurrence of any activity triggers the pattern instance. As soon as activity A oc-
curs, the structure of the pattern must ensure that B also occurs. The next occurrences
ofA (even if they are not followed byB) are still compliant asB has occurred once and
the rule is satisfied. Symmetrically if activityB occurs, the structure of the pattern must
ensure that A also occurs. The next occurrences of B (even if they are not followed by
A) are still compliant as A has occurred once and the rule is satisfied. Please note that
absence of both activities A and B is also compliant. When the condition of the rule
is satisfied, the pattern instance completes and the pattern may terminate by firing the
transition End.

IstIst

B

A

IcmpIst

Ω 

A 

EndB

Pattern instance parameters: {A,B}

Ω 

Ω 

Icmp

Initial

Start

Initial

P

Fig. 11. ‘Dependent Existence. Co-requisite’ Compliance rule

7.3 Bounded Existence Category

This category includes compliance rules that limit the number of times an activity must
or must not occur.

Bounded Existence of an Activity. Exactly k times .
Description: Activity A must occur exactly k times within a chosen scope. The rule
is violated if A occurs less than or more than k times within the specified scope. An
instance of this compliance rule includes k occurrences of activity A. That is, as soon
as A occurs k times, this rule is satisfied. Figure 12 shows the Petri-net pattern that
formalizes this rule for the case k = 2.

After the pattern started any event may occur. The first occurrence of A triggers
the pattern instance. The pre-place Pk of A is initially marked with k tokens. The k
tokens in place Pk assure that activity A can occur at most k times, as each occurrence
of A decrements the number of tokens in Pk and increments the number of tokens in
place Count . Place Count counts the occurrences of A. After k times occurrences of
A, Pk is empty and Count contains k tokens. In this situation transition A is not en-
abled anymore. The compliance rule is satisfied and the pattern instance is completed.
The pattern can terminate only if the pattern instance is completed implying that the
condition of the rule is satisfied. The transition End models that the end of the trace



Diagnostic Information in Temporal Compliance Checking 19

has been reached. Please note thatΩ-labeled transition is enabled throughout the whole
pattern and may occur at any point in time.

A

Initial FinalCount

Pk (k=2)

(k=2)

End

Pattern instance parameter: {A}

IstIst

Ω 

StartStart Icmp

Fig. 12. ‘Bounded Existence of an Activity. Exactly k times’ Compliance rule

Bounded Existence of an Activity. At least k times .
Description: Activity A must occur at least k times within a chosen scope. If A occurs
less than k times within the specified scope, the rule is violated. An instance of this
compliance rule includes k occurrences of activity A. That is, as soon as A occurs k
times, this rule is satisfied. In addition, the rule also allows for more occurrences of A.
Figure 13 shows the Petri-net pattern that formalizes this rule for the case k = 2.

The basic structure of the pattern in Figure 13 is similar to the pattern described
in Figure 12. Occurrence of the first A activates the pattern instance. The k tokens in
place Pk limits the occurrence of the very left A-labeled transition to k times. After
k occurrences of A the condition of the rule is satisfied, hence the pattern instance
is completed. The rule specifies that A must occur at least k times; therefore after k
occurrences of A, further occurrences of A are possible. The Ω-labeled transition is
always enabled. The transition End models that the end of the trace has been reached.

A

Initial FinalCount

Pk (k=2)

(k=2)

End

Pattern instance parameter: {A}

IstIst

Ω 

StartStart Icmp

A

Fig. 13. ‘Bounded Existence of an Activity. At least k times’ Compliance rule

Bounded Existence of an Activity. At most k times .
Description: Activity A must occur at most k times within a chosen scope. If A oc-
curs more than k times within the specified scope, the rule is violated. An instance of
this compliance rule includes at most k occurrences of activity A. That is, if A occurs
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less than k + 1 times, this rule is satisfied. Figure 14 shows the Petri-net pattern that
formalizes this rule for the case k = 2.

The basic structure of this pattern is similar to the pattern showed in Figure 12.
However in contrast with the pattern described in Figure 12, this rule allows for less
than k + 1 occurrences of A. Occurrence of any activity activates the pattern instance
of this rule even if it is not an A; because the condition of this rule is satisfied even if
A does not occur at all. The pre-place Pk of A is initially marked with k tokens which
limits the occurrences of A to at most k times. After k occurrences of A, the A-labeled
transition is not enabled anymore. The pattern instance is completed when there is no
activity to happen even if there are tokens left in place Pk (k, less than k or zero tokens).
When the pattern instance completes, it removes all tokens left in place Pk by the reset
arc connecting place Pk to Icmp (represented as a two arrow headed line). The transition
End models that the end of the trace has been reached.

A

Initial Final

Pk (k=2)

End

Pattern instance parameter: {A}

IstIst IcmpIcmpStartStart

Ω 

Fig. 14. ‘Bounded Existence of an Activity. At most k times’ Compliance rule

Bounded Existence of an Activity. Exactly k times in a row .
Description: ActivityAmust occur exactly k times in a row (directly one after the other)
within a chosen scope. The rule is violated if the sequence 〈A, . . . , A︸ ︷︷ ︸

k

〉 does not occur

within the specified scope. An instance of this compliance rule includes k occurrences
of activity A in a row. That is, if A occurs exactly k times without any other activities
occurring between occurrences of A, this rule is satisfied. Figure 15 shows the Petri-net
pattern that formalizes this rule for the case k = 2.

After the pattern started, any event may occur. Occurrence of the first A activates
the pattern instance. After the start of the pattern instance, no Ω-labeled transition is
enabled anymore until A occurs k times in a row. The k tokens in pre-place Pk of
A limits the occurrences of A to k times (similar to the structure described in Figure
12). The place Count counts the number of occurrences of A. The pattern instance
completes only if there are k tokens in place Count , implying that the condition of the
rule is satisfied. In this situation the pattern instance completes and any non-A event
may occur (captured by the Ω-labeled transition) or the pattern may terminate by firing
the transition End.

Bounded Existence of an Activity. At least k times in a row .
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Count

Final

IcmpIcmp

Ω Ω 

Initial

Ist

A

Pk (k=2)

(k=2)

End

Pattern instance parameter: {A}

Start

Fig. 15. ‘Bounded Existence of an Activity. Exactly k times in a row’ Compliance rule

Description: ActivityAmust occur at least k times in a row (directly one after the other)
within a chosen scope. This rule is violated if 〈A, . . . , A︸ ︷︷ ︸

k

〉 does not occur within the

chosen scope. An instance of this compliance rule includes k occurrences of activity
A in a row. That is, as soon as A occurs exactly k times without any other activities
occurring between occurrences of A, this rule is satisfied. Figure 16 shows the Petri-net
pattern that formalizes this rule for the case k = 2.

After the pattern started, any activity may occur including A. As soon as the first
activity A occurs, we distinguish two scenarios: Scenario1 is that (k)A’s occur in a
row; Scenario2 is that an Ω occurs after less than (k)A’s in a row.

In case of Scenario1 , as soon as the first A occurs the pattern instance is activated
(please see the shadowed subnet labeled (b)) and no Ω-labeled transition is enabled any
more until the pattern instance completes. The k tokens in the place Pk limits the num-
ber of occurrences of A to k in the pattern instance. The pattern instance completes
only if the sequence 〈A, . . . , A︸ ︷︷ ︸

k

〉 occurs; implying that the condition of the rule is satis-

fied. The inhibitor arcs connecting the place Pk to the transition Icmp assures that the
Icmp can fire only if the place Pk is empty. The compliance rule specifies that more than
k occurrences of A in a row is allowed; hence after the compliance rule is satisfied any
arbitrary occurrences of A or Ω is possible. In this situation the pattern may terminate
by firing the transition End.

The left part of the pattern (please see the shadowed subnet labeled (a)) models the
Scenario2 . That is, A may occur k − 1 times in a row. The k − 1 tokens in the place
Pk−1 limits the occurrences of A directly one after the other to k − 1 in the subnet (a).
Please note that A may occur arbitrary number of times in the subnet (a) as long as, the
sequence of A’s is interrupted by an Ω-labeled activity before the sequence 〈A, . . . , A︸ ︷︷ ︸

k

〉

occurs. The pattern may only terminate if the condition of the rule is satisfied implying
that the pattern instance must be executed.

Bounded Existence of an Activity. At most k times in a row .
Description: Activity A must not occur more than k times in a row (directly one after
the other) within a chosen scope. This rule is violated if 〈A, . . . , A︸ ︷︷ ︸

>k

〉 occurs within the

specified scope. An instance of this compliance rule includes all occurrences of activity
A. Figure 17 shows the Petri-net pattern that formalizes this rule for the case k = 2.
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Initial
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Pk 

(k=2)

Pk-1

A

Pattern instance parameter: {A}

A

Ist Icmp

End

Ƭ 

Final

(k=2)

K-1

A

Start

(a)

(b)

Ω 

Fig. 16. ‘Bounded Existence of an Activity. At least k times in a row’ Compliance rule

After the pattern started, the place P is marked. At this marking any activity may
occur. Based on this rule, less than k occurrences of A or exactly k occurrences of A in
a row are considered as compliant behavior. Therefore at the marking where the place
P is marked (no A has occurred yet), the pattern may terminate by firing the transition
End1.

The pattern instance is triggered as soon as the first A occurs. Firing the transition
Ist produces k tokens in the place Pk; implying that A may occur at most k times in a
row in every instance of the pattern. Please note that the compliance rule allows for less
than k occurrences of A in a row, hence the pattern instance can complete even if there
are tokens left in the place Pk (less than k or zero tokens). The reset arc connecting
the place Pk to the transition Icmp removes all the remaining tokens in the place Pk.
After the pattern instance completes, the pattern may terminate (by firing the transition
End2) because the condition of the rule is satisfied so far. However if an Ω-labeled
activity occurs, the pattern returns to the marking where the place P is marked. At
this marking an Ω-labeled activity may occur, another instance of the pattern may be
triggered or the pattern may terminate.

Bounded Existence of an Activity. Bursts of k Occurrences .
Description: Activity A must occur in bursts of k occurrences within a chosen scope.
This rule is violated if A does not occur in bursts of k occurrences within the specified
scope. An instance of this compliance rule includes k occurrences of A. Figure 18
shows the Petri-net pattern that formalizes this rule.

After the pattern started, any activity may occur. The pattern instance is triggered
as soon as the first A occurs. Start of the pattern instance produces k tokens in place
Pk, which restricts the number of occurrences of A in every pattern instance to at most
k times. Occurrence of each A decrements the number of tokens in Pk and increases
the number of tokens in Count . The pattern instance may complete only if there are k
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Initial Ω 

Pk 

k
A

Pattern instance parameter: {A}

Ist Icmp

End1

Final

(k=2)
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Start

End2

P

Fig. 17. ‘Bounded Existence of an Activity. At most k times in a row’ Compliance rule

Icmp

Ω 

Pk 

A

End

Initial

IstFinal

Ω 

Pattern instance parameter: {A}

k

Count

(k=2) 

k

Start

P

Fig. 18. ‘Bounded Existence of an Activity. Bursts of k Occurrences’ Compliance rule

tokens in place Count . When the pattern instance is completed, the pattern returns to
the marking where there is a token in place P .

The pattern structure in Figure 18 is modeled s.t. it models a cyclic behavior of
occurrences of A. That is, A may occur any arbitrary number as long as it occurs in
bursts of k times. Therefore after completion of every instance of the pattern, the next
pattern instance may start, anΩ-labeled activity may occur or the pattern may terminate
(by firing the transition End) because the condition of the rule is satisfied. Please note
that every occurrence ofA is captured in a pattern instance i.e.,Amay not occur outside
of the pattern instance.

Bounded Existence of an Activity. n Bursts of k Occurrences .
Description: Activity A must occur in n bursts of k occurrences within a chosen scope.
This rule is violated ifA does not occur in n bursts of k occurrences within the specified
scope. An instance of this compliance rule includes all occurrences of A. Figure 19
shows the Petri-net pattern that formalizes this rule for the case k = 2 and n = 3.

After the pattern started any activity may occur. The pattern instance is triggered as
soon as first A occurs. The k tokens in the place Pk assures that in each burst, A occurs
exactly k times. Every occurrence of A decrements a token from Pk and increments the
number of tokens in place Count. Firing the transition τ represents the completion of
one burst. Completion of each burst empties the placeCount; implying thatA occurred
exactly k times and returns the pattern to the marking where the next burst can be
executed by producing k tokens in place Pk. In addition, completion of each burst
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Fig. 19. ‘Bounded Existence of an Activity. n Bursts of k Occurrences’ Compliance rule

decrements a token from place Pn. The n number of tokens in place Pn limits the
execution of bursts to n number.

The pattern instance may complete only if the place Pn is empty; implying that
n bursts were executed. Please note that Ω-labeled transition is always enabled and it
may occur between occurrences ofA’s. After the completion of the pattern instance the
pattern may terminate by firing the transition End.

7.4 Bounded Sequence Category

This category includes compliance rules that limit the number of times a sequence of
activities must or must not occur within a chosen scope.

Bounded Sequence of Activities. One to one coexistence .
Description: For every activityA, there should exist one activityB and for every activity
B there should exist one activityA. IfA andB do not occur in form of a pair, the rule is
violated. An instance of this compliance rule includes one occurrence of the pair (A,B)
in any order. Figure 20 shows the Petri-net pattern that formalizes this rule.

After the pattern started, any activity may occur. Occurrence of first A or B triggers
the pattern instance. If the pattern starts with an A, B must follow it eventually. Sym-
metrically occurrence of the first B requires that A follows it eventually, otherwise the
pattern instance cannot complete. At this situation the pattern may terminate by firing
the transition End.

Bounded Sequence of Activities. Coexistence .
Description: For any given number of activities A, there should exist the same number
of activities B within a chosen scope. This rule is violated if the number of occurrences
of A is not equal to the number of occurrences of B. An instance of this compliance
rule includes all occurrences of activitiesA andB. Figure 21 shows the Petri-net pattern
that formalizes this rule.

After the pattern started, any activity may occur. Occurrence of the first A or B
triggers the pattern instance. In the upper subnet illustrated in the pattern instance,
place P1 counts occurrences ofA. Each occurrence of activityA increments the number
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Fig. 20. ‘Bounded Sequence of Activities. One to one coexistence’ Compliance rule

of tokens in P1, and each occurrence of activity B decrements the number of tokens
in P1. This construction ensures that for each occurrence of activity B, A must have
occurred earlier. Therefore place P1 becomes empty only if B occurs as many times as
A has occurred.

Symmetrically in the lower subnet of the pattern instance, place P2 counts occur-
rences of B. Each occurrence of B increments the number of tokens in P2, and each
occurrence of A decrements the number of tokens in P2. This construction ensures that
for each occurrence of activity A, B must have occurred earlier. Therefore place P2

becomes empty only if A occurs as many times as B has occurred.
The pattern instance can complete only if the places P1 and P2 are empty, implying

that A and B occurred the same number. The inhibitor arcs connecting P1 and P2 to
the transition Icmp ensure that the pattern instance can complete only if P1 and P2 are
both empty. After the completion of the pattern instance, the pattern may terminate by
firing the transition End.

Ω 

B A

A B

FinalInitial

End

Pattern instance parameters: {A, B}

Ist IcmpStart

Ω 

P1

P2

Ω 

Fig. 21. ‘Bounded Sequence of Activities. Coexistence’ Compliance rule

Bounded Sequence of Activities. Exactly k times .
Description: The sequence of activities 〈A1, ..., An〉 must occur exactly k times within
a chosen scope. The compliance rule is violated if 〈A1, ..., An〉 does not occur in the
specified sequence or not k times. An instance of this compliance rule includes k oc-
currences of the sequence 〈A1, ..., An〉. Figure 20 shows the Petri-net pattern that for-
malizes this rule for the case k = 2.
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After the pattern started, any event may occur. The pattern instance starts as soon
as the first activity in the sequence 〈A1, ..., An〉 occurs. Occurrence of A1 decrements
a token from the pre-place Pk of A1. After Occurrence of the first A1, any event may
occur but eventuallyA2 must occur.A1 may be executed only after the first sequence of
〈A1, ..., An〉 completes. The pattern instance can complete only if the places named Pk
are empty, implying that every element of the sequence 〈A1, ..., An〉 occurred exactly k
times. The inhibitor arcs connecting the places named Pk to the transition Icmp assure
that Icmp may only fire if the places named Pk are empty. After the pattern instance
completed any activity may occur or the pattern may terminate by firing the transition
End.

A1
P1

Initial

Ω 

Ω 

A2
P2
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An
Pn

Ω 

Ist Icmp End

. . .
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(k=2)

Ƭ 

Start

Final

Fig. 22. ‘Bounded Sequence of Activities. Exactly k times’ Compliance rule

7.5 Parallel Category

This category includes compliance rules that limit the occurrence of an activity in par-
allel with or during another activity.

Parallel. Simultaneous .
Description: Activity A must always occur in parallel with activity B within a chosen
scope. The compliance rule is violated if A and B does not occur simultaneously. The
instance of this compliance rule includes start and completion of both activities A and
B. Figure 23 shows the Petri-net pattern that formalizes this rule.

As it was mentioned earlier, some compliance rules require to model the start and
completion of activities in the Petri-net pattern. This compliance rule requires the ac-
tivity A to be represented by two events A − start (Ast) and A − complete (Acmp)
indicating the start and completion of A. Likewise activity B is represented by two
events B − start (Bst) and B − complete (Bcmp). After the pattern started, any event
may occur. The pattern instance is triggered as soon as activity A or B starts.

IfA starts,B should also start, i.e., activityA cannot complete unlessB has already
started. Similarly if start of the activity B activates the pattern instance, it is required
that activity A also starts. The pattern enforces by construction that the activities A and
B must complete together otherwise the pattern instance cannot complete, hence the
pattern may not terminate. Please note that Ω-labeled activity may occur independently
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from occurrences of A and B throughout the pattern. The transition End models that
the end of the trace has been reached.

Ast

Ω 

Acmp

Bst
Bcmp

IstIst Ƭ Ƭ IcmpIcmp

Initial

End

Final

Ω 

Pattern instance parameters: {Ast, Acmp, Bst, Bcmp}

Start

Fig. 23. ‘Parallel. Simultaneous’ Compliance rule

Parallel. During .
Description: Activity B must be executed during activity A within a chosen scope. The
compliance rule is violated if B does not occur within execution of A. The instance of
this compliance rule includes start and completion of both activities A and B. Figure
24 shows the Petri-net pattern that formalizes this rule.

After the pattern started, any activity may occur. The pattern instance is triggered
as soon as activity A starts. Activity B may start only after A has started and B must
complete before A completes. The pattern enforces by construction that if B occur,
it must be executed during the execution of A. Please note that Ω-labeled activity may
occur independently from occurrences ofA andB throughout the pattern. The transition
End models that the end of the trace has been reached.
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Initial
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Ω 

Acmp

Bst

Icmp
Ist

Start

Pattern instance parameters: {Ast, Acmp, Bst, Bcmp}

Bcmp

Final

End

Ƭ Ƭ 
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Fig. 24. ‘Parallel. During’ Compliance rule

7.6 Precedence Category

This category includes compliance rules that limit the occurrence of a one activity in
precedence over other activities.
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Precedence. Simultaneous or before .
Description: Activity A must always occur before or simultaneously with activity B
within a chosen scope. This rule is violated if activity A occurs after activity B within
the specified scope. An instance of this compliance rule includes start and completion
of both activities A and B. The Petri-net pattern illustrated in Figure 25 formalizes this
rule.

Start of activity B or start of activity A which will be followed by B triggers the
pattern instance. This pattern models two options (specified in the rule) for occurrences
of A and B.

The case where activities A and B are executed simultaneously, requires that as
soon as A starts activity B must be executed as well, i.e., B cannot complete unless A
has already started. This is specified by the pre-place P of Bcmp. The pattern instance
may only terminate if both activities A and B complete.

The case where A completes directly before B starts, is also described in the main
cycle of the pattern instance. After the pattern instance started, A starts and completes
and directly after that B starts and completes. In this case also completion of both
activitiesA andB is required such that pattern instance can complete, hence the pattern
may terminate by firing the transition End.

There is no part of the pattern that permits the execution of activity B without a
preceding or simultaneous A. If there is no B or if A just occurred, the pattern instance
is not activated and any event but Bst and Bcmp may occur. This is also the situation
when the pattern may terminate by firing the transition End.

Ist Icmp

Ast

Ast Acmp

Bst Bcmp

Start

Initial

Pattern instance parameters: {Ast, Acmp, Bst, Bcmp}

Ω 

Acmp

Final

End

Fig. 25. ‘Precedence. Simultaneous or before’ Compliance rule

Precedence. Direct .
Description: Every activity B must be preceded by activity A within a chosen scope. If
B occurs without a directly preceding A within the specified scope, the rule is violated.
An instance of this compliance rule includes execution of activity B and its preceding
A. The Petri-net pattern illustrated in Figure 26 formalizes this rule.

The pattern instance is triggered as soon as an A occurs which is followed by B.
The pattern instance describes a cycle of A and B, such that B can only occur if A has
directly preceded it. In this situation the pattern instance can complete and the pattern
may terminate. If there is no B or A just occurred, any activity may occur. This is also
the situation when the pattern may terminate by firing the transition End.



Diagnostic Information in Temporal Compliance Checking 29

A

A

B

Initial

Icmp

Ist

Pattern instance parameters: {A,B}

Ω 

Final

Start

End

Fig. 26. ‘Precedence. Direct’ Compliance rule

Precedence. Direct or indirect .
Description: Every activity B must be preceded (directly or indirectly) by activity A
within a chosen scope. If A does not occur before B within the specified scope, the rule
is violated. An instance of this compliance rule includes execution of activity B and its
preceding A. The Petri-net pattern illustrated in Figure 27 formalizes this rule.

The pattern described in Figure 27 is similar to the pattern described in Figure 26;
with the difference that the adjacentΩ-labeled transition to place P in Figure 27, allows
the indirect precedence of B with A.

A

A

B

Initial

Icmp

Ist

Pattern instance parameters: {A,B}

Ω 

Final

Start

End

Ω P

Fig. 27. ‘Precedence. Direct or indirect’ Compliance rule

Precedence. At least once .
Description: Every activity B must be preceded by activity A at least once within a
chosen scope. If A does not precede B at least for one time within the specified scope,
the rule is violated. An instance of this compliance rule includes execution of all B
activities and a preceding A. The Petri-net pattern illustrated in Figure 28 formalizes
this rule.

After the pattern started any activity including A may occur. As soon as an activity
A occurs which is followed by first B, the pattern instance starts. The pattern instance
structure describes that B can only occur if before it at least one time A has occurred.
As soon as A occurs, place P is marked. In this marking B may occur arbitrary number
of times; because the condition of the rule is satisfied. After the pattern instance is
completed, the pattern may terminate by firing the transition End.

The pattern described in Figure 28 is similar to the pattern described in Figure 27;
with the difference that the adjacent B transition to place P in Figure 28, allows arbi-
trary number of occurrences of B.

Precedence. Direct multiple activities .
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Fig. 28. ‘Precedence. At least once’ Compliance rule

Description: Every activityB must be preceded directly by another execution of activity
B or execution of activity A within a chosen scope. If directly before B one of the
activities B or A does not occur within the specified scope, the rule is violated. An
instance of this compliance rule includes all occurrences of B and a preceding A. The
Petri-net pattern illustrated in Figure 29 formalizes this rule.

After the pattern started any activity including A but B may occur; because before
the first B at least once A must have occurred. As soon as an activity A occurs which is
followed by the firstB, the pattern instance starts. After the first occurrence ofA, place
P is marked. In this marking B can occur an arbitrary number of times and still the
condition of the rule is satisfied. That is, the pattern structure describes that B can only
occur if directly before it any of the activities A or B was executed. After the pattern
instance is completed, the pattern may terminate by firing the transition End.
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Icmp
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Final

Start
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Fig. 29. ‘Precedence. Direct multiple events’ Compliance rule

Precedence. Direct or indirect multiple activities .
Description: Every activity B must be preceded by another execution of activity B or
execution of activity A within a chosen scope. If before B one of the activities B or
A does not occur within the specified scope, the rule is violated. An instance of this
compliance rule includes all occurrences of B and a preceding A. The Petri-net pattern
illustrated in Figure 30 formalizes this rule.

The pattern in Figure 30 is similar to the pattern described in Figure 29; with the
difference that as long as B is preceded (even indirectly) by any of the activities A or
B, the condition of the rule is satisfied. The adjacent Ω-labeled transition to place P ,
allows for indirect precedence of B by A or B. The transition End models that the end
of the trace has been reached, if no event is to be executed.

Precedence. Direct multiple different activities .
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Fig. 30. ‘Precedence. Direct or indirect multiple events’ Compliance rule

Description: Every activity B must be directly preceded by activity C or A within a
chosen scope. If within the specified scope, directly before B one of the activities A
or C does not occur, the rule is violated. An instance of this compliance rule includes
activity B and its preceding A or C. The Petri-net pattern illustrated in Figure 31 for-
malizes this rule.

Being in the initial marking, any activity but B may occur. The pattern instance
starts as soon as an activity A or C occurs which is followed by B. The structure of the
pattern is such that B may occur only if A or C has already occurred before it. After
the condition of the rule is satisfied, the pattern instance may terminate. The transition
End models that the end of the trace has been reached, if no event is to be executed.
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Fig. 31. ‘Precedence. Direct multiple different activities’ Compliance rule

Precedence. Direct or indirect multiple different activities .
Description: Every activity B must be preceded at least once by activity C or A within
a chosen scope. If within the specified scope, beforeB one of the activitiesA or C does
not occur, the rule is violated. An instance of this compliance rule includes activity B
and its preceding A or C. The Petri-net pattern illustrated in Figure 32 formalizes this
rule.

The pattern in Figure 32 is similar to the pattern described in Figure 31; with the
difference that as long as B is preceded (even indirectly) by any of the activities A or
C, the condition of the rule is satisfied. The adjacent Ω-labeled transition to place P
allows for indirect precedence of B by A or C. The transition End models that the end
of the trace has been reached, if no event is to be executed.

Precedence. Never direct .
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Fig. 32. ‘Precedence. Direct or indirect multiple different events’ Compliance rule

Description: No activity B must be preceded directly by A within a chosen scope. If
A occurs directly before B within the specified scope, the rule is violated. An instance
of this compliance rule includes occurrence of all activities A and B and those Ω-
labeled activities which occur between occurrences of pair (A,B). The Petri-net pattern
illustrated in Figure 33 formalizes this rule.

After the pattern started, any activity may occur. The pattern instance triggers as
soon as soon as activity A or B occurs. The structure of the pattern should ensure that
B cannot occur directly after A. Therefore as soon as first A occurs, place P is marked
and B is not enabled anymore. B may occur only after occurrence of an Ω. When the
condition of the rule is satisfied, the pattern instance completes and the pattern may
terminate by firing any of the transitions End, if no event is to be executed.
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Fig. 33. ‘Precedence. Never direct’ Compliance rule

Precedence. Never .
Description: Every activity B must never be preceded by A within a chosen scope. If
A occurs before B within the specified scope, the rule is violated. An instance of this
compliance rule includes occurrence of all activities A and B. The Petri-net pattern
illustrated in Figure 34 formalizes this rule.

After the pattern started, any activity may be executed. The pattern instance triggers
as soon as is triggered as soon as first A or B occurs. After occurrence of the first A,
the structure of the pattern should ensure that B cannot occur anymore. Therefore after
A occurred, place P is marked and B is not enabled anymore. When the condition of
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the rule is satisfied, the pattern instance completes and the pattern may terminate firing
the transition End, if no event is to be executed.
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Fig. 34. ‘Precedence. Never’ Compliance rule

7.7 Chain Precedence Category

This category of compliance rules limits occurrence of a sequence of activities in prece-
dence over another sequence of activities.

Chain Precedence. Direct .
Description: Every sequence of activities 〈B1, B2, . . . , Bm〉 must be preceded directly
by sequence of activities 〈A1, A2, . . . , An〉 within a chosen scope. This rule is violated
if within the specified scope, directly before sequence 〈B1, B2, . . . , Bm〉, sequence
〈A1, A2, . . . , An〉 does not occur. The Petri-net pattern illustrated in Figure 35 formal-
izes this rule.

This pattern describes the allowed behaviors specified in the rule in two cycles. The
pattern instance is triggered as soon as first A1 occurs which later leads to occurrence
of the sequence 〈A1, A2, . . . , An〉 and is followed directly by the sequence 〈B1, B2,
. . . , Bm〉.

The main cycle of the pattern (please see the shadowed subnet labeled (a)), includes
the pattern instance (please see the shadowed subnet labeled (b)). When the pattern
instance is trigged, it is specified that the sequence 〈B1, B2, . . . , Bm〉 can only occur if
the sequence 〈A1, A2, . . . , An〉 has occurred directly before it. If the condition of the
rule is satisfied, the pattern instance completes and the pattern return to the marking
where place P is marked. In this marking, other events may be executed occur, another
instance of the pattern may start or the pattern may terminate by firing transition End.

However in the main cycle (subnet labeled (a)) if the pattern instance is not trig-
gered, from any place where any of the sequences 〈A1, A2, . . . , An〉 or 〈B1, B2, . . . ,
Bm〉 does not complete, it is possible to return to the marking where place P is marked
or terminate the pattern if no activity is to be executed. The return paths are indicated
by the smaller cycles inside the main cycle of the pattern.
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Being in the marking where P is marked, occurrence of any sequence over the set
of eventsΣL\{A1, B1} is possible and the pattern can also terminate in this situation if
it reaches its end. However as soon as A1 occurs, its occurrence is captured in the main
cycle of the pattern in order to provide the possibility to detect the behavior if 〈A1, A2,
. . . , An〉 completes.

Likewise as soon asB1 occurs the left cycle (please see the shadowed subnet labeled
(c)) in the pattern is followed, in order to avoid the completion of the sequence 〈B1, B2,
. . . , Bm〉. In this cycle, at most the occurrence of the sequence 〈B1, B2, . . . , Bm−1〉 is
possible. From any place in this cycle where the sequence 〈B1, B2, . . . , Bm−1〉 does
not complete, it is possible to return to the marking where there is a token in place P or
terminate the pattern if no event is to be executed.

Chain Precedence. Direct or indirect .
Description: Every sequence of activities 〈B1, . . . , B2, . . . , Bm〉 must be preceded by
the sequence of activities 〈A1, . . . , A2, . . . , An〉 within a chosen scope. The rule is vi-
olated if within the specified scope, before the sequence 〈B1, . . . , B2, . . . , Bm〉, the
sequence 〈A1, . . . , A2, . . . , An〉 does not occur. The Petri-net pattern illustrated in Fig-
ure 36 formalizes this rule.

The behavior of this pattern is similar to the pattern described in Figure 35, with
the difference that both direct or indirect precedence of the sequence 〈B1, . . . , B2, . . . ,
Bm〉 by the sequence 〈A1, . . . , A2, . . . , An〉 considered to be compliant (based on the
compliance rule).

Chain Precedence. Never direct .
Description: Sequence of activities 〈B1, B2, . . . , Bm〉 must not be preceded directly
by sequence of activities 〈A1, A2, . . . , An〉. The rule is violated if within the specified
scope and directly before the sequence 〈B1, B2, . . . , Bm〉, the sequence 〈A1, A2, . . . ,
An〉 occurs. An instance of this compliance rule includes occurrence of all activities.
The Petri-net pattern illustrated in Figure 37 formalizes this rule.

Occurrence of any activity triggers the pattern instance. In the main cycle of the
pattern (pattern instance), it is specified that the sequence 〈B1, B2, . . . , Bm〉 cannot
occur if the sequence 〈A1, A2, . . . , An〉 has occurred directly before it. This is ensured
by the last transition in the main cycle, being any transition but Bm; implying that the
sequence 〈B1, B2, . . . , Bm〉 can never complete directly after the sequence 〈A1, A2,
. . . , An〉. From any place in the main cycle, where any of the sequences 〈A1, A2, . . . ,
An〉 or 〈B1, B2, . . . , Bm−1〉 does not complete, it is possible to return to the marking
with a token in the place P or terminate the pattern, if no event is to be executed. The
return paths are indicated with smaller cycles inside the main cycle of the pattern.
Being in the marking with a token in P , occurrence of any sequence over the set of
events ΣL \ {A1} is possible. However as soon as A1 occurs, its occurrence is cap-
tured in the main cycle of the pattern in order to provide the possibility to detect if
〈A1, A2, . . . , An〉 completes. The pattern instance can complete at any point in time if
no activity is to be executed and consequently the pattern may terminate.
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Fig. 35. ‘Chain Precedence. Direct’ Compliance rule
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Fig. 36. ‘Chain Precedence. Direct or indirect’ Compliance rule
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Fig. 37. ‘Chain Precedence. Never direct’ Compliance rule

Chain Precedence. Never .
Description: Sequence of activities 〈B1, . . . , B2, . . . , Bm〉must never be preceded by a
sequence of activities 〈A1, . . . , A2, . . . , An〉 within a chosen scope. The rule is violated
if within the specified scope and before occurrence of the sequence 〈B1, . . . , B2, . . . , Bm〉,
the sequence 〈A1, . . . , A2, . . . , An〉 occurs. An instance of this compliance rule in-
cludes occurrence of all activities. The Petri-net pattern illustrated in Figure 38 formal-
izes this rule.
The behavior of this pattern is similar to the pattern described in Figure 37, with the
difference that the sequence 〈B1, . . . , B2, . . . , Bm〉 can never (neither directly nor in-
directly) be preceded by the sequence 〈A1, . . . , A2, . . . , An〉. This is ensured in the
pattern by the last transition in the main cycle, being any transition but Bm or Ω; im-
plying that the sequence 〈B1, . . . , B2, . . . , Bm〉 can never complete after the sequence
〈A1, . . . , A2, . . . , An〉 occurred. In the main cycle, as soon as 〈A1, . . . , A2, . . . , An〉
completes, the place Pn is marked. At this marking any event may occur as long as
the sequence 〈B1, . . . , B2, . . . , Bm〉 does not complete. Moreover after this marking,
the cycle cannot return to the marking where P is marked to ensure that the sequence
〈B1, . . . , B2, . . . , Bm〉 can never occur (even indirectly) after the sequence 〈A1, . . . ,
A2, . . . , An〉. The pattern instance can terminate at any point in time if no activity is to
be executed and consequently the pattern may terminate.

Please note that Ω-labeled event may occur any time throughout the entire pattern,
even within the specified sequences in the compliance rule: 〈A1, . . . , A2, . . . , An〉 and
〈B1, . . . , B2, . . . , Bm〉.

7.8 Response Category

This category includes compliance rules that limit the occurrence of one activity in
response to another activity.

Response. Simultaneous or after .
Description: Every activity A must be followed directly by activity B or it must occur
simultaneously with activity B within a chosen scope. If within the specified scope,
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Fig. 38. ‘Chain Precedence. Never’ Compliance rule

B does not occur directly after A or simultaneously with A, the rule is violated. An
instance of this compliance rule includes start and completion of both activities A and
B. The Petri-net pattern illustrated in Figure 39 formalizes this rule.

The pattern illustrated in Figure 39 is similar to the pattern described in Figure 25;
with the difference in adjacent transitions to the place P . Such that similar to the pattern
described in Figure 25, the pattern illustrated in Figure 39 models two options (specified
in the rule) for occurrences of A and B. The pattern instance starts as soon as A starts.
The case where activities A and B occur simultaneously and the case where B starts
directly after A is completed. Both cases are described in the main cycle of the pattern.
When both A and B completes, the condition of the rule is satisfied and the pattern
instance completes. In this situation, any event may occur, another pattern instance
may start or the pattern may terminate if no event is to be executed.

In the current compliance rule execution of A, restricts the behavior of the pattern.
Therefore B and (Ω)-labeled transitions are adjacent to the place P implying; being
in the marking with a token in P , if there is no A, B or any (Ω)-labeled transitions
may occur. This is also the situation when the pattern may terminate by firing transition
End.
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Fig. 39. ‘Response. Simultaneous or after’ Compliance rule

Response. Direct .
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Description: Every activity A must be followed directly by activity B within a chosen
scope. If within the specified scope, B does not occur directly after A, the rule is vio-
lated. An instance of this compliance rule includes activity A and an activity B which
is preceded by A. The Petri-net pattern illustrated in Figure 40 formalizes this rule.

The pattern described in Figure 40 is similar to the pattern described in Figure 26;
with the difference in adjacent transitions to the place P . In current pattern, occurrence
of event A restricts the behavior of the pattern. Therefore B and (Ω)-labeled transitions
are adjacent to the place P implying; being in the marking with a token in place P , if
there is no A, B or any (Ω)-labeled transitions may occur.
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End

P

Fig. 40. ‘Response. Direct’ Compliance rule

Response. Direct or indirect .
Description: Every activityAmust be followed eventually by activityB within a chosen
scope. If B does not occur after A within the specified scope, the rule is violated. An
instance of this compliance rule includes activityA and an activityB which is preceded
by A. The Petri-net pattern illustrated in Figure 41 formalizes this rule.

The pattern illustrated in Figure 41 is similar to the pattern described in Figure 40;
with the difference that the adjacent Ω-labeled transition to the place P in Figure 41,
allows that B indirectly follows any A.
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Fig. 41. ‘Response. Direct or indirect’ Compliance rule

Response. At least once .
Description: Every activity A must always be followed eventually by activity B within
a chosen scope. If within the specified scope,B does not occur at least once afterA, the
rule is violated. An instance of this compliance rule includes all activities A and their
following activity B. The Petri-net pattern illustrated in Figure 42 formalizes this rule.

The pattern structure describes that A can only occur if after it, at least one time B
occurs. The pattern illustrated in Figure 42 is similar to the pattern described in Figure
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41; with the difference that the adjacent A-labeled transition to place P in Figure 42,
allows for arbitrary numbers of occurrences of A. However, eventually B must occur to
satisfy the condition of the rule.
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Fig. 42. ‘Response. At least once’ Compliance rule

Response. Direct multiple activities .
Description: Every activity A must be followed directly by activity B or activity A
within a chosen scope. If within the specified scope, directly afterA one of the activities
B orA does not occur, the rule is violated. An instance of this compliance rule includes
an activity B and all activities A preceding it. The Petri-net pattern illustrated in Figure
43 formalizes this rule.

The pattern structure describes that A can only occur if directly after it any of the
activities A or B occurs. After the pattern started any event may occur. The pattern
instance starts as soon as A occurs. A may occur an arbitrary number of times, but
the only possibility to complete the pattern instance is the occurrence of B. When the
condition of the rule is satisfied, the pattern can terminate by firing transition End.
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Fig. 43. ‘Response. Direct multiple activities’ Compliance rule

Response. Indirect multiple activities .
Description: Every activity A must be followed eventually by one of the activities A or
B within a chosen scope. If within the specified scope, afterA one of the activitiesB or
A does not occur, the rule is violated. An instance of this compliance rule includes an
activityB and all occurrences of activityA preceding it. The Petri-net pattern illustrated
in Figure 44 formalizes this rule.

The pattern illustrated in Figure 44 is similar to the pattern described in Figure 43;
with the difference that as long asA is followed (even indirectly) by any of the activities
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A or B, the condition of the rule is satisfied. The adjacent Ω-labeled transition to the
place P in Figure 44, allows that A is followed indirectly by A or B.
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Fig. 44. ‘Response. Indirect multiple events’ Compliance rule

Response. Direct multiple different activities .
Description: Every activity A must be followed directly by activity B or activity C
within a chosen scope. If directly after A one of the activities B or C does not occur,
the rule is violated. An instance of this compliance rule includes activity A and its
following activity B or C. The Petri-net pattern illustrated in Figure 45 formalizes this
rule.

After the pattern started, any activity may occur. The pattern instance is triggered
as soon as A occurs. This pattern describes two options (specified in the rule) for oc-
currence of A. The case where B directly follows A is formalized by the upper cycle
of the net and the case where C directly follows A is formalized by the lower cycle of
the net. There is no cycle that permits an occurrence of activity A without a following
B or C. When the condition of the rule is satisfied the pattern instance completes and
the pattern may terminate. The transition End models that the end of the trace has been
reached, if no event is to be executed.
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Fig. 45. ‘Response. Direct multiple different activities

Response. Indirect multiple different activities .
Description: Every activityAmust be followed at least once eventually by activityB or
activityC within a chosen scope. If within the specified scope,B orC does not occur at
least one time after A, the rule is violated. An instance of this compliance rule includes
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activity A and its following activity B or C. The Petri-net pattern illustrated in Figure
46 formalizes this rule.

The pattern illustrated in Figure 46 is similar to the pattern described in Figure 45;
with the difference that as long asA is followed (even indirectly) by any of the activities
B or C, the condition of the rule is satisfied. The adjacent Ω-labeled transition to the
place P in Figure 46, allows that A is followed indirectly by B or C.
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Fig. 46. ‘Response. Indirect multiple different activities’ Compliance rule

Response. Never direct .
Description: No activity A must be followed directly by Activity B within a chosen
scope. If within the specified scope, B occurs directly after A, the rule is violated. An
instance of this compliance rule includes occurrence of all activities A and B and the
Ω-labeled activities occur between the pair (A,B). The Petri-net pattern illustrated in
Figure 47 formalizes this rule.

The pattern instance starts with occurrence of any activity. As soon as A occurs,
structure of the pattern ensures that B cannot occur directly after A. Therefore after
A occurs, place P is marked and B is not enabled anymore. B may occur only after
occurrence of an Ω. The pattern instance can complete at any point and consequently
the pattern may terminate by firing the transition End.
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Fig. 47. ‘Response. Never direct’ Compliance rule

Response. Never .
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Description: No activity A must be followed by B within a chosen scope. If within the
specified scope, B occurs after A, the rule is violated. An instance of this compliance
rule includes occurrence of all activities A and B and the Ω-labeled activities occur
between the pair (A,B). The Petri-net pattern illustrated in Figure 48 formalizes this
rule.

The pattern instance starts with occurrence of any activity. As soon as A occurs,
structure of the pattern ensures that B cannot occur after A. Therefore after A occurs,
place P is marked and B is not enabled anymore. The pattern instance can complete at
any point and consequently the pattern may terminate by firing the transition End.
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Fig. 48. ‘Response. Never’ Compliance rule

7.9 Chain Response Category

This category of compliance rules, limits occurrences of a sequence of activities in
precedence over another sequence of activities within a chosen scope.

The compliance patterns in this category are similar to the compliance patterns de-
scribed in the category Chain Precedence Category in Section 7.7, with slight differ-
ences in termination of the patterns and the transitions enabled after the pattern starts.
In the patterns described in Section 7.7, the occurrence of the sequence of activities
〈B1, B2, . . . , Bm〉 puts limitation on the behavior of the patterns; while in the patterns
described in the current category Chain Response Category, the occurrence of sequence
of activities 〈A1, A2 . . . , An〉 limits the behavior of the patterns.

Chain Response. Direct .
Description: Every sequence of activities 〈A1, A2, . . . , An〉 must be followed directly
by a sequence of activities 〈B1, B2, . . . , Bm〉 within a chosen scope. The rule is vi-
olated if within the specified scope, directly after the sequence 〈A1, A2, . . . , An〉, the
sequence 〈B1, B2, . . . , Bm〉 does not occur. An instance of this compliance rule in-
cludes sequence of 〈A1, A2, . . . , An〉 and its following activities which is specified to
be directly the sequence 〈B1, B2, . . . , Bm〉. The Petri-net pattern illustrated in Figure
49 formalizes this rule.

This pattern describes the allowed behavior specified in the rule in one main cycle.
The main cycle of the pattern (subnet labeled (a)) includes the activities of the pattern
instance(shadowed subnet labeled (b)) as well as occurrences of other activities. The
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pattern instance is triggered as soon as first A1 occurs which later leads to sequence
〈A1, A2, . . . , An〉. The pattern instance structure is such that the sequence 〈A1, A2,
. . . , An〉 can only occur if it is followed directly by the sequence 〈B1, B2, . . . , Bm〉.

From any place in the main cycle (subnet labeled (a)), between place P and place
Pn−1 where the sequence 〈A1, A2, . . . , An〉 does not complete, it is possible to return
to the marking where there is a token in P or terminate the pattern by firing one of the
transitionsEnd if no event is to be executed. The return paths are indicated with smaller
cycles inside the main cycle of the pattern. As soon as the pattern instance starts i.e., as
soon as sequence 〈A1, A2, . . . , An〉 is complete, the sequence 〈B1, B2, . . . , Bm〉 must
occur directly after that. After the completion of the pattern instance, any event may
occur, another pattern instance may start or the pattern may terminate.

In the marking where there is a token in place P , occurrence of any sequence over
the set of eventsΣL\{A1} is possible and the pattern can also terminate in this situation
if it reaches its end. As soon as A1 occurs its occurrence is captured in the main cycle
of the pattern in order to provide the possibility to detect the behavior if 〈A1, A2, . . . ,
An〉 completes.

Final

A1 A2 An B1
Initial

ΣL\{A2}

An-1

ΣL\{An}

... ...

Bm

End End End

B2

ΣL\{A1}

Ƭ 

Pattern instance parameters: {A1,A2, …, An, B1,B2, …, Bn}

Ist

Icmp

Start

(a)

(b)

P

Pn-1

Fig. 49. ‘Chain Response. Direct’ Compliance rule

Chain Response. Direct or indirect .
Description: Every sequence of activities 〈A1, . . . , A2, . . . , An〉must be followed even-
tually by sequence of activities 〈B1, . . . , B2, . . . , Bm〉 within a chosen scope. The rule
is violated if within the specified scope and after the sequence 〈A1, . . . , A2, . . . , An〉,
the sequence 〈B1, . . . , B2, . . . , Bm〉 does not occur. An instance of this compliance
rule includes sequence of 〈A1, A2, . . . , An〉 and its following activities which is speci-
fied to be the sequence 〈B1, B2, . . . , Bm〉. The Petri-net pattern illustrated in Figure 50
formalizes this rule.

The behavior of this pattern is similar to the pattern described in Figure 49, with the
difference that both indirect or direct occurrence of sequence 〈B1, . . . , B2, . . . , Bm〉
after sequence 〈A1, . . . , A2, . . . , An〉 considered to be compliant based on the compli-
ance rule.
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This pattern describes the allowed behavior specified in the rule in one main cycle.
The main cycle of the pattern (subnet labeled (a)) includes the activities of the pattern
instance (shadowed subnet labeled (b)) as well as occurrences of other activities. The
pattern instance is triggered as soon as first A1 occurs which later leads to sequence
〈A1, A2, . . . , An〉. The pattern instance structure is such that the sequence 〈A1, A2,
. . . , An〉 can only occur if it is followed eventually by the sequence 〈B1, B2, . . . , Bm〉.

From any place in the main cycle between place P to Pn−1 where the 〈A1, . . . ,
A2, . . . , An〉 does not complete, it is possible to return to the marking where there
is a token in P or terminate the pattern by firing transition End if no event is to be
executed. The return paths are indicated with smaller cycles inside the main cycle of the
pattern. After the pattern instance starts i.e., sequence 〈A1, A2, . . . , An〉 is complete,
any activity may occur; implying the possibility that the sequence 〈A1, . . . , A2, . . . ,
An〉 can be followed indirectly by the sequence 〈B1, . . . , B2, . . . , Bm〉. The pattern
cannot terminate anymore after Pn is marked unless the sequence 〈B1, . . . , B2, . . . ,
Bm〉 eventually completes, however it is possible to return to the marking where Pn is
marked.

Please note thatΩ-labeled activity may occur any time throughout the entire pattern,
even within the specified sequences of the rule: 〈A1, . . . , A2, . . . , An〉 and 〈B1, . . . , B2,
. . . , Bm〉.

After the pattern starts, occurrence of any sequence over the set of eventsΣL\{A1}
is possible and the pattern can also terminate in this situation if it reaches its end. As
soon as A1 occurs its occurrence is captured in the main cycle of the pattern in order to
provide the possibility to detect the behavior when 〈A1, . . . , A2, . . . , An〉 completes.
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Fig. 50. ‘Chain Response. Direct or indirect’ Compliance rule

Chain Response. Never direct .



46 Elham Ramezani et al.

Description: Sequence of activities 〈A1, A2, . . . , An〉 must never be followed directly
by sequence of activities 〈B1, B2, . . . , Bm〉 within a chosen scope . The rule is vio-
lated if within the specified scope and directly after the sequence 〈A1, A2, . . . , An〉, the
sequence 〈B1, B2, . . . , Bm〉 occurs. An instance of this compliance rule includes oc-
currences of all activities. The Petri-net pattern illustrated in Figure 51 formalizes this
rule.

Occurrence of any activity in the main cycle of the pattern triggers the pattern in-
stance start. The pattern instance structure is such that sequence 〈B1, B2, . . . , Bm〉
cannot occur directly after the sequence 〈A1, A2, . . . , An〉 has occurred. This is ensured
by the last transition in the main cycle, being any transition but Bm; implying that the
sequence 〈B1, B2, . . . , Bm〉 can never complete directly after the sequence 〈A1, A2,
. . . , An〉. From any place in the pattern instance, where sequences 〈A1, A2, . . . , An〉
or 〈B1, B2, . . . , Bm−1〉 does not complete, it is possible to return to the marking where
the place P is marked. The pattern may terminate at any point in time if it reaches its
end and no event is to be executed.

The remaining structure of this pattern is already explained in the pattern described
in Figure 49.
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Pattern Instance parameters: {A1,A2,…,An,B1,B2,…,Bm}
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Fig. 51. ‘Chain Response. Never direct’ Compliance rule

Chain Response. Never .

Description: Sequence of activities 〈A1, . . . , A2, . . . , An〉 must never be followed by
sequence of activities 〈B1, . . . , B2, . . . , Bm〉within a chosen scope. The rule is violated
if within the specified scope and after the occurrence of the sequence 〈A1, . . . , A2,
. . . , An〉, the sequence 〈B1, . . . , B2, . . . , Bm〉 occurs. An instance of this rule includes
occurrences of all activities. The Petri-net pattern illustrated in Figure 38 formalizes
the current compliance rule and the Chain Precedence. Never compliance rule. The
behavior of the pattern is already described in Section 7.7.
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7.10 Between Category

This category of compliance rules, limits occurrence of an activity within (between) a
sequence od activities within a chosen scope.

Between. After-Before .
Description: Every activity B must always occur after an occurrence of activity A and
before an occurrence of activity C within a chosen scope. The rule is violated if within
the specified scope, B does not occur between A and C (after A and before C). An
instance of this compliance rule includes activity B and its preceding activity A and
following activity C. The Petri-net pattern illustrated in Figure 52 formalizes this rule.

After the pattern started any activity but B may occur. As soon as an activity A
occurs which is followed by B, the pattern instance starts. B can only occur if A has
already occurred before it. Moreover B must be followed eventually by C, otherwise
there is no possibility that pattern instance completes. When the condition of the rule
is satisfied, the pattern may terminate by firing transition End.
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Fig. 52. ‘Between. After-Before’ Compliance rule

Between. Simultaneously or after-Before .
Description: Every activity B must always occur directly after or simultaneously with
an occurrence of activity A and directly before an occurrence of activity C within a
chosen scope. The rule is violated if within the specified scope, B does not occur after
or simultaneous with A and directly before C. An instance of this compliance rule
includes activity B and its preceding or simultaneous activity A and following activity
C. The Petri-net pattern illustrated in Figure 53 formalizes this rule.

After the pattern started, any activity may occur. As soon as B starts or an activity
A occurs which is followed by B, the pattern instance starts. The compliance rule
specifies two possibilities for occurrence of B: i) simultaneously with A and directly
before C, ii) directly after A and directly before C.

The occurrence of B with respect to A (simultaneous with A or directly after A) is
described in the shadowed subnet in Figure 53, which is similar to the structure already
described in the pattern in Figure 25.

When activities A and B both complete, the place P is marked. At this marking C
must occur, otherwise there is no possibility to complete the pattern instance. When the
condition of the rule is satisfied, the pattern may terminate by firing transition End.
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Fig. 53. ‘Between. Simultaneously or after-Before’ Compliance rule

Between. After-Simultaneously or before .
Description: Every activity B must always occur directly after an occurrence of ac-

tivity A and directly before or simultaneously with an occurrence of activity C within
a chosen scope. The rule is violated if within the specified scope, B does not occur di-
rectly after A and directly before or simultaneously with C. An instance of this compli-
ance rule includes activityB and its preceding activityA and following or simultaneous
activity C. The Petri net pattern illustrated in Figure 54 formalizes this rule.

After the pattern started any activity but B may occur. As soon as an activity A
occurs which is followed by B, the pattern instance starts. After A has occurred, the
compliance rule specifies two possibilities for occurrence of B: i) directly after A and
simultaneous with C, ii) directly after A and directly before C.

The occurrence of B with respect to C, (simultaneous with C or directly before
C) is described in the shadowed subnet in Figure 54, which is similar to the structure
already described in the pattern in Figure 25.

The pattern instance may complete only if both B and C are completed. When the
condition of the rule is satisfied, the pattern may terminate by firing transition End.
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Fig. 54. ‘Between. After-Simultaneously or before’ Compliance rule

Between. Directly after-Directly before .
Description: Every activity B must always occur directly after activity A and directly
before activity C within a chosen scope. The rule is violated if within the specified
scope, B does not occur between the sequence of activities 〈A,C〉. An instance of this
compliance rule includes activity B and its directly preceding activity A and directly
following activity C. The Petri-net pattern illustrated in Figure 55 formalizes this rule.

This rule specifies the occurrence of the exact sequence of activities 〈A,B,C〉.
After the pattern instance starts, occurrence of any activity but B is possible. As soon
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as an activity A occurs which is followed directly by B, the pattern instance starts. The
pattern instance may complete only if the exact sequence 〈A,B,C〉 completes. When
the condition of the rule is satisfied, the pattern may terminate by firing transition End.
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Fig. 55. ‘Between. Directly after-Directly before’ Compliance rule

Between. Simultaneously-Simultaneously .
Description: Every activity B must always occur simultaneously with activities A and
C within a chosen scope. If within the specified scope, activity B does not occur at the
same time with occurrence of activities B and C, this compliance rule is violated. An
instance of this compliance rule includes activity B and an activity A and an activity C
which are executed simultaneously with B. The Petri-net pattern illustrated in Figure
56 formalizes this rule.

After the pattern started, any activity may occur. The pattern instance starts as soon
as B starts or any of the activities A or C start which are simultaneous with B. After B
started,B can only proceed for completion if the activitiesA andC have already started.
When all the activitiesA,B andC are completed, the pattern instance completes. When
the condition of the rule is satisfied, the pattern may terminate by firing transition End.
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Fig. 56. ‘Between. Simultaneously-Simultaneously’ Compliance rule

Between. Simultaneously or after-Simultaneously or before .
Description: Every activity B must always occur directly after or simultaneously with
activity A and directly before or simultaneously with activity C within a chosen scope.
This rule is violated if within the specified scope,B occurs beforeA or after C or not in
the exact sequence of 〈A,B,C〉. An instance of this compliance rule includes activityB
and its directly preceding or simultaneous A and its directly following or simultaneous
activity C. The Petri-net pattern illustrated in Figure 57 formalizes this rule.
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The pattern described in the Figure 57 is the combination of two simpler patterns
described already in the Figure 25 and the Figure 39; withB being the common element
in them.

The pattern instance starts as soon as B starts or an activity A starts which is fol-
lowed directly by occurrence of B. The compliance rule specifies two possibilities for
occurrence of B with respect to A : i) directly after A, ii) simultaneous with A.

The occurrence of activity B with respect to A (simultaneous with A or directly
after A) is described in the shadowed subnet labeled (a) in Figure 57, which is similar
to the structure described in the pattern in Figure 25.

Symmetrically the compliance rule specifies two possibilities for occurrence of B
with respect to C : i) directly before C, ii) simultaneous with C.

The occurrence of B with respect to C (simultaneous with C or directly before C)
is described in the shadowed subnet labeled (b) in Figure 57, which is similar to the
structure described in the pattern in Figure 39.

After the patterns started, any activity may occur. This is also the situation where
the condition of the rule is satisfied and the pattern may terminate by firing transition
End.
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Fig. 57. ‘Between. Simultaneously or after-Simultaneously or before’ Compliance rule

Between. At least one other activity .
Description: This compliance rule specifies that between every sequence of activities
〈A,B〉 or 〈B,A〉 (A before B or B before A) there should be at least one other activ-
ity within a chosen scope. This rule is violated if within the specified scope, B occurs
directly after A or if A occurs directly after B. An instance of this compliance rule in-
cludes activityA, activityB and in case the appear in a sequence, theΩ-labeled activity
occur between the sequence 〈A . . . B〉. The Petri-net pattern illustrated in Figure 58 for-
malizes this rule.

After the pattern started any activity may occur. The pattern instance is triggered
as soon as one of the activities A or B occurs. The right cycle in the pattern ensures
that as soon as activity A occurs, it cannot be followed directly by B, i.e., B can only
occur if after A at least one other activity (Ω) is executed. Symmetrically, the left cycle
in the pattern ensures that as soon as B occurs, it cannot be followed directly by A and
A can only occur if after B at least one other activity (Ω) is executed. The pattern can
terminate at any point of time if no event is to be executed by firing transition End.
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Fig. 58. ‘Between. At least one other activity’ Compliance rule

8 Separating Temporal Compliance Checking and Control-Flow
Compliance Checking

We conducted an extensive literature survey and identified numerous works [28, 38, 27,
38, 50, 30, 6] discussing temporal compliance rules and their formalization. Typically
every compliance requirement restricting the process time implies a control flow com-
pliance rule in addition to a temporal compliance rule. Even if the ordering of activities
is not restricted in the compliance requirement, at least the existence of some activi-
ties is specified. In the general case, the control-flow rule constrains more than just the
existence of activities, for instance that “antibiotics must be administered in cycles of
3 occurrences”. This leads to a simple assumption for temporal compliance require-
ments: a temporal compliance rule constrains the occurrences of events specified in a
given control-flow rule (e.g., “between two subsequent administration of antibiotics in a
cycle, there should be one day delay”); a “larger” temporal rule simply implies a larger
control-flow rule.

A control-flow rule may have to hold multiple times in a trace [33], based on re-
peated occurrences of events. For instance, if antibiotics are administered 6 times in
total, the control-flow rule given above has to hold twice; the associated temporal rule
has to hold whenever the control-flow rule occurs. The dependency between control-
flow rules and temporal rules raises a challenge for temporal compliance checking: we
first have to identify the different occurrences of a control-flow rule, for which then the
temporal rule can be checked. This gives rise to our approach shown in Fig. 59.

A complex compliance requirement is decomposed into a control-flow rule and a
temporal rule. The event log is then first aligned to the control-flow rule using the tech-
nique of Sect. 3 to identify control-flow violations in terms of missing or inserted activ-
ities; this alignment will also distinguish multiple occurrences of the same control-flow
rule within one trace. For each alignment, we then enrich the log with information about
multiple occurrences of rules and control-flow violations. Each enriched log is then used
to check temporal compliance of the trace using the data-aware alignments of Sect. 3.

However, there is a small challenge in decomposing control-flow and temporal com-
pliance checking. In case a control-flow violation can be attributed to different occur-
rences of a control-flow rule, there exists more than one alignment of a trace to the
control-flow rule. Picking a wrong distribution of control-flow violations to rule oc-
currences may introduce invalid temporal violations, i.e., false positives. We eliminate
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Fig. 59. Temporal Compliance Checking Overview

false positives by computing all best alignments of a trace to the given control-flow rule.
The enriched log then contains one trace variant for each best alignment of the origi-
nal trace. After temporal compliance checking, we pick from all variants of an original
trace, the variant with the best temporal compliance and eliminate all other variants
from the result. The remaining trace variant contains only temporal compliance viola-
tions that are real, i.e., cannot be removed by rearranging control-flow violations.

Aligning control-flow and temporal checking has an advantage regarding diagnostic
information. A severe control-flow violation implies a violation of the temporal compli-
ance rule. Checking temporal compliance alone might obscure insights into the nature
of the violation. By aligning control-flow and temporal compliance checking, we can
present more meaningful diagnostic information to a user.

9 Temporal Compliance Checking

Please recall our example from Sect.6. To align temporal compliance checking with
control-flow compliance checking, we enrich the original trace σ with information
about rule instances and control-flow deviations, as follows. (1) Translate each move
of the alignment γ into a log event, where each event originating in a non-synchronous
move is marked by a special “move” attribute. (2) Enrich each event of a synchronous
move with all attributes of the original event in trace σ. (3) Provide each event of a move
on specification with missing attributes, in particular an event without a time attribute
gets the time value of the directly preceding event (with the exception of Start and Ist
which get the time value of the succeeding event).

For example, using alignment γ1 we enrich trace σ given above to the traces σγ,1 =
〈(Start , 1)(B, 1)(Ist, 2)(A, 2)(A, 30)(A, 54)(Icmp, 54)(Ist, 100)(A, 100)(C, 123)(A, 123,missing)
(A, 162)(Icmp, 162)(D, 173)(End , 173). This traces now contains enough information
to check temporal compliance.

The extended control-flow compliance checking technique produces an enriched
log. Each trace of the enriched log distinguishes all different instances of the control-
flow rule that underlies the temporal rule to be checked. In addition, log events that
violate the control-flow rule are marked in the log. In this section, we present a generic
temporal compliance checking technique for logs that are enriched in this way. We
first show how to formalize a temporal compliance rule in terms of a data-aware Petri
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Fig. 60. Temporal Petri-net Pattern, generic (left) and instantiated (right)

net [29] and then how to use data-aware alignments to produce detailed diagnostic in-
formation about compliance violations.

9.1 Formalizing Temporal Compliance Rules

We explain the formalization of temporal compliance rules by the first temporal rule
of our running example. The concrete temporal rule reads “Between two subsequent
administration of antibiotics in a cycle, there should be one day delay,” which we ab-
stract to “the delay between two subsequent executions of activity A in an instance
of a control-flow rule, must be within [α, β] time units.” The data-aware Petri net of
Fig. 60(right) formalizes this rule.

The Petri net has a very simple control-flow structure that just distinguishes begin
and end of a trace (places Initial and Final ), and whether the trace is within an instance
of a control-flow rule (after Ist occurred) or outside a control-flow rule (after Icmp
occurred). Transitions labeledΩ allow occurrences of all other activities not constrained
by the temporal rule. The actual temporal aspect is described by the variable tA and
the data annotations at transition A and Ist. Annotation {t′A = e.time} at A ensures
that tA holds the timestamp of the most recent occurrence of activity A. The most
important annotation is the guard [delay(A, t, α, β)] defined by delay(A,α, β) ≡ t′A ∈
[tA+α, tA+β]∨tA = undef . The guard states that the time t′A of the current occurrence
of A has to be in the interval [tA + α, tA + β], where tA is the timestamp of the most
recent occurrence of A. As the rule only ranges over occurrences of A within the same
instance of the control-flow rule, we have to take special care for the first occurrence
of A in an instance. The annotation at Ist initializes tA = undef so that the guard of
A also holds for the first A. By setting parameters A = antibiotic administration and
α = β = 24 hours, the pattern of Fig. 60 formalizes the given temporal rule.

9.2 Checking Temporal Compliance

We check compliance of a trace to the formalized rule on the enriched log trace obtained
at the beginning of Sect. 9, for instance trace σγ,1. The data-aware alignment technique
explained in Sect. 3 compares the time stamp of events in σγ,1 with admissible time
stamps defined in the guards of the data-aware Petri net and will give a data-aware
alignment γt1, with the least cost, as follows: γt1 = (Start , 1) (B, 1) (Ist, 2) (A, 2) ...

(Start , 1) (Ω, 1) (Ist, 2) (A, 2) ...
... (A,30) (A, 54) (Icmp, 54) (Ist, 100) (A, 100) (C, 123) (A,123,missing) (A,162) (Icmp, 162) (D, 173) (End, 173)
... (A,26) (A, 54) (Icmp, 54) (Ist, 100) (A, 100) (Ω, 123) (A,124,missing) (A,148) (Icmp, 162) (Ω, 173) (End, 173)

.

As is shown in the alignment γt1 the second A in the first instance occurred 28 time
units after the preceding A, which violates the temporal rule. The data-aware alignment
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in addition returns the time at which the event should have occurred at the bottom row of
the alignment. In the same way, two deviations in the second iteration are highlighted.
However, the “correct” timestamps 124 and 148 suggested by the alignment have to be
inspected carefully as in the second instance the second A was missing in the original
log (a control-flow violation indicated by the attribute value missing). Recall from
Sect. 8 that we may have to check several enriched variants of the same original trace
(differing in control-flow violations); after checking all variants, the one with the least
temporal violations is returned and all other are discarded.

9.3 A Generic Temporal Pattern

We identified 15 generic temporal compliance rules Sect. 10. Each rule can be formal-
ized in a data-aware Petri net similar to Figure 60(right). The generic pattern is shown in
Figure 60(left). It permits to constrain occurrences of n generic activities X1, . . . , Xn,
as well as the Start and End of a trace and start and end of each instance (by Ist and
Icmp). Each formalization of a compliance rule assigns a guard to one or more transi-
tions of the pattern, depending on the particular temporal property. We show some more
formalizations next.

The rule “The delay between execution of two subsequent instances of a control-
flow rule, must be within [α, β] time units.” (which expresses the second temporal
rule of our running example of Sect. 4.) The formalization of this rule instantiates
Figure 60(left) with n = 0 (no activity Xi), variables tIst and tIcmp

and the guard
delay2 (Icmp, Ist, α, β) ≡ t′Ist ∈ [tIcmp + α, tIcmp + β] ∨ tIcmp = undef assigned to
transition tIst . This way, Ist is only allowed to occur between tIcmp + α and tIcmp + β
where tIcmp

is the last time Icmp occurred (if there was a last occurrence). Checking
temporal compliance of σγ,1 of Sect. 6 to this rule for α = 7 days and β = ∞ (and
mapping all activities to Ω), we obtain the following data-aware alignment:
γt3 = (Start , 1) (B, 1) (Ist, 2) (A, 2) (A, 30) (A, 54) (Icmp, 54) (Ist,100) (A, 100) (C, 123) ...

(Start , 1) (Ω, 1) (Ist, 2) (Ω, 2) (Ω, 30) (Ω, 54) (Icmp, 54) (Ist,242) (Ω, 100) (Ω, 123) ...
.

The alignment γt3 highlights a deviation for the start of the second instance of “3
administrations of antibiotics.” According to the log, the second administration started
just 46 hours after the preceding treatment where the rule requires a delay of at least 1
week (= 168 hours); the correct time is shown in the bottom row of the alignment.

Also compliance rules requiring the absence of an activity in a particular interval
can be formalized: “No activity A within all instances of a control flow pattern may
be executed within [α, β] time units since time t.” For this temporal rule, the generic
temporal pattern of Fig. 60, has n = 1 transition. The guard for this temporal rule is:
negation activity execution(X1, t, α, β) ≡ t′X1

6∈ [t+ α, t+ β]. Here, the time t can
be a fixed time, or the time of some other activity (e.g., include X2 in the pattern and
define t = tX2

).
Many temporal compliance requirements found in literature combine several con-

straints on the relation between the start and completion of two different activities;
for instance, “within all instances of a control flow rule, activity B must start within
[αst, βst] time units after activityA starts, and activityB must complete within [αcmp, βcmp]
time units before activity A completes.” For this temporal rule, the generic temporal
pattern of Figure 60, has n = 4 transitions labeled Ast, Acmp, Bst and Bcmp express-
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ing the start and completion of A and B, respectively. The pattern uses the generic
guard after(X,Y, α, β) ≡ t′Y ∈ [tX + α, tX + β] ∨ tX = undef twice: once as
after(Ast, Bst, αst, βst) at transition Bst and once as after(Bcmp, Acmp, αcmp, βcmp)
at transition Acmp. Other combinations of this temporal constraint can be expressed in
the same way varying the parameters of the guards.

Similarly, all other identified temporal compliance constraints identified in litera-
ture can be formalized by instantiating the generic temporal pattern of Figure 60(left);
see next section, Sect.10, for details. Each formalization is then eligible for temporal
compliance checking using data-aware alignments. Our temporal compliance check-
ing technique is not limited to predefined control-flow rules and temporal rules, but is
extendible.

10 Collection of Temporal Compliance Rules and Their
Formalization

As explained earlier, the Generic Temporal Pattern in Figure 60(left) together with
guards formalizes our collection of temporal compliance rules. We collected 15 generic
compliance rules from literature [28, 38, 27, 38, 50, 30, 6], and classified them into 7
categories (Please see Table 2).

The Generic Temporal Pattern in Figure 60 (left) together with guards specifying
temporal rules, follow same principles explained for Control-flow compliance patterns
in Sect.7. In addition there are some specific systematics about the temporal Petri-net
pattern and temporal compliance rules, we would like to present it at the beginning of
this section:

– Occurrences of activity(s) specified in the temporal compliance rule are mimicked
respectively by the X1, ..., Xn-labeled transitions. ‘n’ equals to the number of ac-
tivity parameters specified in the respective temporal compliance rule.

– Occurrences of any other activities than the activity(s) specified in the temporal
compliance rules are mimicked by the Ω-labeled transition. This way, the temporal
Petri-net pattern abstract from all other trace activities that are not described in the
temporal compliance rule.

– Every transition in the temporal Petri-net pattern (Figure 60(left)) including {Ist,
Icmp, X1, ..., Xn} has a data attribute assigned to it which stores the time stamp
of the events mapped into respective transition. The value of the data attribute (the
time stamp of the mapped event) is updated with the occurrence of the next mapped
event.

– Occurrence of {Ist writes the value ‘Undefined’ over the time stamp of events {X1,
..., Xn}.

– Each temporal compliance rule comes with one or several guards. The guard or
collection of guards describe all the possible compliant behaviors based on its cor-
responding temporal compliance rule.

– Guards are specified in terms of a setM . The setM in the temporal Petri-net pattern
denotes the set of time stamps which is compliant with the respective temporal
compliance rule.
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– A trace σ complies to a (rule of the) temporal Petri-net pattern if after executing
σ, the pattern reaches its final marking and all the time stamps of the events in the
trace are elements of M .

– Every time interval in temporal compliance rules has a lower bound and an upper
bound, indicated by [α, β] or [γ, ζ].

– Every time interval in temporal compliance rules starts since time t, where t can
be:

• start of the pattern instance (tIst)

• completion of the pattern instance (tIcmp
)

• start of the process instance (tcase)

• start of the calendar (tcalendar)
• execution time of a specific event (tXi

) within the pattern instance.

10.1 Pattern Duration

This category of temporal compliance rules limits the time length in which a control-
flow pattern must be executed.

Pattern Duration.Pattern duration Description: Every instance of a control flow pat-
tern must be completed within [α, β] time units since time t.
Guard:

pattern duration(t, α, β) ≡ t′Icmp
∈ M ∧M = [t + α, t + β] where t can be

chosen by the user from t ∈ {tIst , tIcmp
, tcase, tcalendar, tXist

, tXicmp
}

The guard ‘pattern duration’ is assigned to the Icmp transition in Figure 60(left).

Pattern Duration.Negation pattern duration Description: No instance of a control
flow pattern must be completed within [α, β] time units since time t.
Guard:

negation pattern duration(t, α, β) ≡ t′Icmp
∈ M ∧ S = [0,∞) \ [t + α, t + β]

where t can be chosen by the user from t ∈ {tIst , tIcmp
, tcase, tcalendar, tXist

, tXicmp
}

The guard ‘negation pattern duration’ is assigned to the Icmp transition in Figure
60(left).

10.2 Delay Between Instances

This category of temporal compliance rules limits the delay between two instances of a
control-flow rule and it has one temporal compliance rule.
Description: The delay between execution of two instances of a control flow pattern
must be within [α, β] time units since time t.
Guard: delay between instances(t, α, β) ≡ t′Ist ∈ M ∧M = [t + α, t + β] ∧ t ∈
{tIcmp

} ∧ tIcmp
6= Undefined

The guard delay between instances is assigned to the Ist transition in Figure 60(left).
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10.3 Validity

This category of temporal compliance rules limits the time length in which an activity
must be executed or may be executed.

Validity.Activity duration Description: Every activityA within all instances of a con-
trol flow pattern must be completed within [α, β] time units since it starts (time tAst ).

For this temporal rule, the temporal Petri net pattern in Figure 60(left), has n = 2
transitions. Therefore the events Ast and Acmp should be respectively mapped to the
X1 and X2-labeled transitions in the temporal Petri-net pattern.
Guard: activity duration(Ast, Acmp, t, α, β) ≡ t′Acmp

∈M ∧S = [t+α, t+β] ∧X 6=
Ast ∧ t ∈ {tAst

}
The guard ‘activity duration’ is assigned to theX2-labeled transition in Figure 60(left),
to which Acmp is mapped.

Validity.Activity execution Description: Every activity A within all instances of a
control flow pattern must/may be executed within [α, β] time units since time t.

For this temporal rule, the temporal Petri net pattern in Figure 60(left), has n = 1
transition. Therefore the eventA is mapped to theX1-labeled transitions in the temporal
Petri-net pattern.

Please note that this constraint might be associated only to start and completion
events of an activity too; in order to restrict only the start or completion of the respec-
tive activity (e.g., latest or earliest start date, latest or earliest completion date). If the
constraint restricts the start or completion of A, Ast or Acmp should be mapped to
X1-labeled transition in the temporal Petri net pattern.
Guard: activity execution(A, t, α, β) ≡ t′A ∈ M ∧M = [t + α, t + β] where t can
be chosen by the user from t ∈ {tIst , tIcmp , tcase, tcalendar, tXi}.
The guard ‘activity execution’ is assigned to theX1-labeled transition in Figure 60(left)
to which the exact event specified in the guard is mapped. This event can be A or Ast
or Acmp based on the guard. Please note that if t ∈ {tXi

}, then the temporal Petri net
pattern in Figure 60(left) will have n = 2 transitions; Where Xi transition is mapped to
the additional transition.

Validity.Negation activity execution Description: No activity A within all instances
of a control flow pattern may be executed within [α, β] time units since time t.

For this temporal rule, the temporal Petri net pattern in Figure 60(left), has n = 1
transition. Therefore the eventA is mapped to theX1-labeled transitions in the temporal
Petri-net pattern.
Guard: negation activity execution(A, t, α, β) ≡ t′A ∈M ∧M = [0,∞)\ [t+α, t+
β] where t can be chosen by the user from t ∈ {tIst , tIcmp

, tcase, tcalendar, tXi
}.

The guard ‘negation activity execution’ is assigned to the X1-labeled transition in
Figure 60(left) to which A is mapped. Please note that if t ∈ {tXi

}, then the temporal
Petri net pattern in Figure 60(left) will have n = 2 transitions; Where Xi transition is
mapped to the additional transition.
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10.4 Time Restricted Existence

This category of temporal compliance rules limits the execution time of a given activity.

Time Restricted Existence.Calendar support existence Description: Every activity
A within all instances of a control flow pattern may only be executed at times t1, ..., tn
.

For this temporal rule, the temporal Petri net pattern in Figure 60(left) has n = 1
transition. Therefore the event A is mapped to the X1-labeled transition in the temporal
Petri-net pattern.

Please note that this constraint might be associated only to start and completion
events of an activity too; in order to restrict only the start or completion of the respective
activity (e.g., an activity must start only at times t1, ..., tn).

If the constraint restricts the start or completion of A, Ast or Acmp should be
mapped to X1-labeled transition in the temporal Petri net pattern.
Guard: calendar support existence(A, t1, .., tn, α, β) ≡ t′A ∈M ∧M = {t1, ..., tn}
The guard ‘calendar support existence’ is assigned to the X1-labeled transition in
Figure 60(left) to which the exact event specified in the guard is mapped. This event
can be A or Ast or Acmp based on the guard.

Time Restricted Existence.Calendar support absence Description: Every A within
all instances of a control flow pattern must not be executed at times t1, ..., tn .

For this temporal rule, the temporal Petri net pattern in Figure 60(left), has n = 1
transition. Therefore the eventA is mapped to theX1-labeled transitions in the temporal
Petri-net pattern.

Please note that this constraint might be associated only to start and completion
events of an activity too; in order to restrict only the start or completion of the respective
activity (e.g., an activity must not start at times t1, ..., tn).

If the constraint restricts the start or completion of A, Ast or Acmp should be
mapped to X1-labeled transition in the temporal Petri net pattern.
Guard: calendar support absense(A, t1, .., tn, α, β) ≡ t′A ∈ M ∧ M = [0,∞) \
{t1, ..., tn}
The guard ‘calendar support absense’ is assigned to the X1-labeled transition in Fig-
ure 60(left), to which the exact event specified in the guard is mapped. This event can
be A or Ast or Acmp based on the guard.

10.5 Repetition Time Constraint

This category of temporal compliance rules limits the repetition of instances of a control
flow pattern or an activity over time.

Repetition Time Constraint.Delay Between Activities of one kind Description: The
delay between execution of two subsequent activitiesA in all instances of a control flow
pattern, must be within [α, β] time units since time t.
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For this temporal rule, the temporal Petri net pattern in Figure 60(left) has n = 1
transition. Therefore the eventA is mapped to theX1-labeled transitions in the temporal
Petri-net pattern.
Guard: delay between activities(A, t, α, β) ≡ t′A ∈ M ∧M = [t+ α, t+ β] ∧ t ∈
{tA} ∧ tA 6= Undefined
The guard ‘delay between activities’ is assigned to the X1-labeled transition in Fig-
ure 60(left), to which A is mapped.

Repetition Time Constraint.Delay Between Activities of different kinds Descrip-
tion: The delay between execution of two subsequent activities A and B in all instances
of a control flow pattern, must be within [α, β] time units since time t.

For this temporal rule, the temporal Petri net pattern in Figure 60(left) has n = 2
transitions. Therefore the events A and B are respectively mapped to the X1-labeled
and X2-labeled transitions in the temporal Petri-net pattern.
Guard: delay between different activities1 (A,B, t, α, β) ≡ t′A ∈ M ∧M = [t +
α, t+ β] ∧ t ∈ {tB} ∧ tB 6= Undefined
The guard ‘delay between different activities1 ’ is assigned to the X1-labeled transi-
tion in Figure 60(left) to which A is mapped.
Guard: delay between different activities2 (A,B, t, α, β) ≡ t′B ∈ M ∧M = [t +
α, t+ β] ∧ t ∈ {tA} ∧ tA 6= Undefined
The guard ‘delay between different activities2 ’ is assigned to the X2-labeled transi-
tion in Figure 60(left) to which B is mapped.

Please note that we can limit the start of one activity to completion of another ac-
tivity, in this case we can use the same guard explained above with this difference that
the parameters of the guard would be instantiated for start event of one activity and
completion event of another activity.

10.6 Time Dependent Variability

This category of temporal compliance rules includes one temporal compliance rule and
it specifies that the control flow of the process will vary during execution with respect
to time aspects.
Description: Within all instances of a control flow pattern, activity B must be executed
within [α, β] time units since time t′ if A has occurred within [γ, ζ] time units since
time t′′.

For this temporal rule, the temporal Petri net pattern in Figure 60(left) has n = 2
transitions. Therefore the events A and B are respectively mapped to the X1-labeled
and X2-labeled transitions in the temporal Petri-net pattern.

Guard:
time dependent variability(A,B, t′, t′′, α, β, γ, ζ) ≡ t′B ∈M ∧M = [t′+α, t′+

β] ∧ t′A ∈ [t′′ + γ, t′′ + ζ]
where t′ and t′′ can be chosen by the user from t′ ∈ {tIst , tIcmp , tStart, tCalendar, tXi}
and t′′ ∈ {tIst , tIcmp , tStart, tCalendar, tXi}
The guard time dependent variability is assigned to the X2-labeled transition in Fig-
ure 60(left) to whichB is mapped. Please note that if t′ ∈ {tXi}, or t′′ ∈ {tXi} then the
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temporal Petri net pattern in Figure 60(left) will have more than 1 transitions; Where
Xi transition is mapped to the additional transition.

10.7 Overlap

This category of temporal compliance rules, limits the start and completion of one ac-
tivity (A) to start and completion of another activity (B). The rules in this category are
an extension of the ‘Repetition Time Constraint.Delay Between Activities of different
kinds’ temporal rule which is explained in Section 10.5. For this temporal category,
the temporal Petri net pattern in Figure 60(left), has (n = 4) transitions. Therefore
the events Ast, Acmp, Bst and Bcmp are mapped respectively into X1, ..., X4-labeled
transitions in the temporal Petri-net pattern.

Overlap.Start after, complete before Description: Within all instances of a control
flow pattern, activity B must start within [α, β] time units after activity A starts and
activity B must complete within [γ, ζ] time units before activity A completes. This
temporal rule has two guards:

start after complete before1 (Ast, Bst, t, α, β) ≡≡ t′Bst
∈M ∧ M = [t+α, t+

β] ∧ t ∈ {tAst
} ∧ {tAst

} 6= Undefined .
The guard start after complete before1 is assigned toX3 transition in Figure 60(left)

into which Bst is mapped.
start after complete before2 (Acmp, Bcmp, t, γ, ζ) ≡ t′Acmp

∈ M ∧ M = [t +

γ, t+ ζ] ∧ t ∈ {tBcmp
} ∧ {tBcmp

} 6= Undefined
The guard start after complete before2 is assigned to theX2-labeled transition in

Figure 60(left) to which Acmp is mapped.

Overlap.Start before, complete before Description: Within all instances of a control
flow pattern, activity B must start within [α, β] time units before activity A starts and
activity B must complete within [γ, ζ] time units before activity A completes. This
temporal rule has two guards:

start before complete before1 (Ast, Bst, t, α, β) ≡ t′Ast
∈M ∧M = [t+ α, t+

β] ∧ t ∈ {tBst} ∧ {tBst} 6= Undefined
The guard start before complete before1 is assigned to the X1-labeled transition

in Figure 60(left) into which Ast is mapped.
start after complete before2 (Acmp, Bcmp, t, γ, ζ) ≡ t′Acmp

∈ M ∧M = [t +

γ, t+ ζ] ∧ t ∈ {tBcmp
} ∧ {tBcmp

} 6= Undefined
The guard start after complete before2 is assigned to theX2-labeled transition in

Figure 60(left) into which Acmp is mapped.

Overlap.Start after, complete after Description: Within all instances of a control flow
pattern, activity B must start within [α, β] time units after activity A starts and activity
B must complete within [γ, ζ] time units after activity A completes. This temporal rule
has two guards:
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start after complete after1 (Ast, Bst, t, α, β) ≡ t′Bst
∈ M ∧M = [t + α, t +

β] ∧ t ∈ {tAst
} ∧ {tAst

} 6= Undefined
The guard start after complete after1 is assigned to the X3-labeled transition in

Figure 60(left) into which Bst is mapped.
start after complete after2 (Acmp, Bcmp, t, γ, ζ) ≡ t′Bcmp

∈ M ∧ M = [t +

γ, t+ ζ] ∧ t ∈ {tAcmp} ∧ {tAcmp} 6= Undefined
The guard start after complete after2 is assigned to the X4-labeled transition in

Figure 60(left) into which Bcmp is mapped.

Overlap.Start before, complete after Description: Within all instances of a control
flow pattern, activity B must start within [α, β] time units before activity A starts and
activity B must complete within [γ, ζ] time units after activity A completes. This com-
pliance rule is indeed similar to the compliance rule explained in Section 10.7 with the
difference that position of the parameters of the rule is swapped. This temporal rule also
has two guards:

start before complete after1 (Ast, Bst, t, α, β) ≡ t′Ast
∈ M ∧M = [t + α, t +

β] ∧ t ∈ {tBst} ∧ {tBst
} 6= Undefined

The guard start before complete after1 is assigned to theX1-labeled transition in
Figure 60(left) into which Ast is mapped.

start before complete after2 (Acmp, Bcmp, t, γ, ζ) ≡ t′Bcmp
∈ M ∧M = [t +

γ, t+ ζ] ∧ t ∈ {tAcmp} ∧ {tAcmp} 6= Undefined
The guard start before complete after2 should be assigned to theX4-labeled tran-

sition in Figure 60(left) into which Bcmp is mapped.

11 Implementation in ProM

Our temporal compliance checking technique is implemented in Process Mining Toolkit
ProM, available from www.promtools.org, and is validated on several real-life
logs.

The package Compliance provides 2 user-friendly plugins for control-flow and tem-
poral compliance checking. The first plugin provides control-flow compliance checking
as described in Sect. 6: it takes as input a log and returns compliance diagnostics in form
of an alignment, the control-flow rule to check compliance for is picked by the user
from a rule repository (explained in Sect. 7) using a wizard. The second plugin takes
the control-flow alignment, produces an enriched log and then checks temporal com-
pliance of the log to a temporal rule that can be specified by the user through a wizard.
The resulting alignment then provides diagnostic information by showing control-flow
compliance violations and temporal violations projected into the events of the original
log.

12 Conclusion

In this report we presented a generic approach for backwards compliance checking
of control-flow and temporal compliance rules which enables us to provide diagnostic
information in case of violations.
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Today’s organizations need to comply to an increasing set of laws and regulations.
Compliance requirements are often described in natural language which makes check-
ing compliance a difficult task. Therefore we presented a comprehensive collection
of control-flow compliance and temporal compliance rules. We managed to keep the
control-flow perspective and temporal perspective orthogonal. By combining both per-
spectives we can answer a broad range of compliance questions.

We provide a repository of patterns and the Compliance package of ProM imple-
ments the approach presented in this work. The software has been tested on various
real-life logs. Future research aims at making the approach more user friendly. Now it
is not easy to choose from the different compliance rules and instantiate the patterns.
Hence, higher-level compliance languages and more intuitive diagnostics are needed
for end users.

In addition we would like to explore the compliance rule framework (Fig. 2) further
and extending the compliance rule repositories for other dimensions, i.e., with collec-
tions of compliance rules restricting data flow, process resource.
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17. Elgammal, A., Türetken, O., Heuvel, W.J.v.d., Papazoglou, M.P.: Root-cause analysis of
design-time compliance violations on the basis of property patterns. In: ICSOC 2010. LNCS,
vol. 6470, pp. 17–31 (2010)
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