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Abstract. In the area of process mining, the ILP Miner is known for
the fact that it always returns a Petri net that perfectly fits a given
event log. However, the downside of the ILP Miner is that its complexity
is exponential in the number of event classes in that event log. As a
result, the ILP Miner may take a very long time to return a Petri net.
Partitioning the traces in the event log over multiple event logs does not
really alleviate this problem. Like for most process discovery algorithms,
the complexity is linear in the size of the event log and exponential in
the number of event classes (i.e., distinct activities). Hence, the potential
gain by partitioning the event classes is much higher. This paper proposes
to use the so-called passages to split up the event classes over multiple
event logs, and shows what the results are for seven large event logs. The
results show that indeed the use of passages alleviates the complexity,
but that much hinges on the size of the largest passage detected: The
smaller this passage, the better the run time.
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1 Introduction

In the process mining playground, the area of process discovery is concerned with
discovering process models from event logs [1]. The most well-known process
discovery algorithm is the a-algorithm [2], which discovers a Petri net from an
event log. Under some assumptions, the resulting Petri net is known to fit the
original event log, that is, the Petri net is able to replay all traces in the event
log successfully. However, if these assumptions do not hold, the resulting Petri
net may not even be free of deadlocks.

A process discovery algorithm that always discovers a perfectly fitting Petri
net is the so-called ILP Miner [3]. Basically, this algorithm uses Integer Linear
Programming (ILP) techniques to check whether or not adding a place with
given inputs and given outputs would harm the perfect fitness, i.e., the ability
to replay the entire event log. If it would not harm fitness, the place can be added;
if it would harm fitness, the place cannot be added. However, the downside of
this algorithm is that lots and lots of places need to be checked, as we basically
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have to check all combinations of possible inputs and outputs. As a result, the
ILP Miner works fine for event logs that contain only a few event classes, but it
will take forever in case the number of event classes is even moderate (say, 20 or
more).

Recently, the notion of passages was introduced to decompose process mining
problems [4]. Passages are pairs of sets of event classes. The idea is that process
discovery and conformance checking can be done per passage. Instead of having
to mine the entire log for a perfectly fitting Petri net, we can mine every passage
log for such a Petri net. At the end, we can simply combine the resulting passage
Petri nets into a single Petri net for which we know that it perfectly fits the log
we started with. As a result this passages technique allows for a possible solution
to the complexity problem of the ILP Miner: First we split the log into smaller
passage logs, second, we mine every passage log for a passage Petri net using
the ILP Miner, third, we combine all passage Petri nets into a single Petri net.
Clearly, this could outperform the standard ILP Miner.

This paper aims at evaluating the passage technique introduced in [4] using
a number of logs with many event classes, among which the log used for this
year’s BPI Challenge [5]. First, Section 2 presents related work. Second, Section 3
introduces the concept of passages. Next, Section 4 describes the experimental
setup and Section 5 presents the experimental evaluation The latter shows that
although the passages alleviate the problem to a large extent, there may still be
large passages that are to big for the ILP Miner to handle. Section 6 presents
a possible solution to the problem of big passages, which allows the user of the
ILP Miner to focus on the most obvious places and to simply ignore the less
obvious ones. Finally, Section 7 concludes the paper by wrapping up the results
and offering hints for future work.

2 Related Work

For an introduction to process mining we refer to [1]. For an overview of best
practices and challenges, we refer to the Process Mining Manifesto [6].

Process discovery, i.e., discovering a process model from a multiset of exam-
ple traces, is a very challenging problem and various discovery techniques have
been proposed [7, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 3]. Many of these techniques
use Petri nets during the discovery process and/or to represent the discovered
model. It is impossible to provide an complete overview of all techniques here.
Very different approaches are used, e.g., heuristics [12, 16], inductive logic pro-
gramming [13], state-based regions [7, 11, 15], language-based regions [9, 3|, and
genetic algorithms [14]. Classical synthesis techniques based on regions [17] can-
not be applied directly because the event log contains only example behavior.
For state-based regions one first needs to create an automaton as described in [7].
Moreover, when constructing the regions, one should avoid overfitting. Language-
based regions seem good candidates for discovering transition-bordered Petri
nets for passages [9, 3]. In fact, in this paper uses the ILP Miner described in
[3].
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Fig. 1. An example passage in the example log

In [18] various approaches to decompose process mining problems (including
passages) are discussed. Passages were introduced in [4] to decompose challenging
process discovery and conformance checking problems into smaller problems.
Most related to passages are the divide-and-conquer techniques presented in
[19]. In [19] it is shown that region-based synthesis can be done at the level
of synchronized State Machine Components (SMCs). Also a heuristic is given
to partition the causal dependency graph into overlapping sets of events that
are used to construct sets of SMCs. Passages provide a different (more local)
partitioning of the problem and, unlike [19] which focuses on state-based region
mining, we decouple the decomposition approach from the actual conformance
checking and process discovery approaches.

In [4] only the theoretical notion of passages (i.e., definition and logical prop-
erties) was introduced without providing any experimental results or implemen-
tation. This paper describes the implementation of a passage-based discovery
techniques and provides experimental results.

3 Passages

The concept of passages has been introduced in [4]. Basically, a passage corre-
sponds to a pair of sets of event classes X and Y such that every event of X is
immediately followed by some event of Y (denoted Xe =Y') and every event of
Y is immediately preceded by some event of X (denoted oY = X). As such, the
set of passages corresponds to a set of equivalence classes on the direct-follows
relation in an event log. Fig. 1 shows an example passage where X = {b,c,d}
and Y = {d, e, f}, projected on the directly-follows relation as found in an exam-
ple log. Note that Xe =Y and X = &Y, so (X,Y) is indeed a passage. Edges
carry numbers to refer to the passage they belong to.

In [4] it has been shown that, provided that the log contains a unique start
event and a unique end event, splitting up an event log and a Petri net using
passages maintains a perfect fit between the event log and the Petri net. Hence,
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Fig. 2. The five passages found in the example log

if the Petri net perfectly fits the event log, then every passage Petri net perfectly
fits the corresponding passage event log, and vice versa. As a result, discovery
and conformance checking problems can be decomposed based on the notion of
passages. Instead of solving a process mining problem for the whole event logs
and model, five smaller problems can be solved (one for each passage), which is
shown in Fig. 2.

This paper uses the vice-versa part for discovery:

If we split up the event log into passage event logs and discover for ev-
ery passage event log a perfectly fitting passage Petri net, then we can
combine these discovered passage Petri nets into one big Petri net that
perfectly fits the original event log.

Note, however, that to do so we need to extend the event log with two new event
classes: one for the unique start event and another for the unique end event. So,
initially we make the problem a little bigger, but we hope to be able to handle
this little-bigger problem better than the original problem.

As mentioned in [4], the passage-based technique uses two abstract algo-
rithms 7. and ~y,. The ~, algorithm is used to discover a Petri net from a pas-
sage event log, i.e., the ILP Miner introduced in [3] and implemented in ProM.
The . algorithm is used to extract the causal relations from the the event log,
that is, a directly-follows relation. Based on these causal relations, the log will
be split into passage event logs. To obtain as many small passages as possible
(which would alleviate our problem with the ILP Miner the most), we should
aim for a causal relations structure that is as sparse as possible while still being
connected. For this reason, we will use the Heuristics Miner in such a way that it
yields such a structure. Hence, we will accept the default settings for this miner,
except for the Relative-to-best (which we will set to 0 instead of 5) and the
Dependency (which we will set to 100 instead of 90) settings.

4 Experimental Setup

The experimental setup contains 7 event logs (A to G), which vary in size.
Event log A contains test events for the deployment of high-tech equipment,
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Table 1. Characteristics for the different event logs

|Key |Value |
Computer Dell Precision T5400

Processor Intel® Xeon® CPU, E5430 @ 2.66Ghz (2 processors)
Installed memory (RAM)|16.0 GB

System type 64-bit Windows 7 Enterprise SP 1

JRE 64-bit jdk1.6.0_24

VM arguments -ea -Xmx4G

Table 2. Basic information on the system used

which contains both in-factory tests and on-site test events. Event log B is the
BPI Challenge 2012 event log. Event log C' contains diagnostic and treatment
events from a hospital department. Event logs D and E contain events from a
municipality, where D contains events that correspond to citizens objecting to
the valuation of their houses, and E contains events that correspond to citizens
that request for building permits. Event log F' contains events from a web server.
Finally, event log G contains event related to invoices at a provincial office of
the Dutch national public works. Table 1 shows the characteristics of these logs.

Each of these logs will be mined using both the standard ILP Miner and the
passage-enhanced ILP Miner, where the latter miner uses the Heuristics Miner
as described earlier for determining the direct-follows relations. Table 2 shows
the characteristics of the system we used to run both miners on.

5 Experimental Evaluation

Table 3 shows the run times we obtained from the standard ILP Miner. For sake
of completeness, we mention that the run times have been rounded to the nearest
number containing only two relevant digits. For example, the run time in case
of log B is rounded from 4620.97 to 4600. Using the standard ILP Miner we did
not obtain any results on the A and F' logs, as the miner ran out of memory.

Fig. 3 shows the resulting Petri net for the B event log. Clearly, this Petri
net is beyond comprehension by the human eye: There are way too many edges
to be able to see any structure in this net.
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Event log|Run time
in seconds

4600

45,000
110,000

56
Table 3. Run times obtained for the standard ILP Miner
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Fig. 3. The Petri net mined from the B event log with the standard ILP Miner.

In contrast, Table 4 shows (among other things) the run times for the passage-
enhanced ILP Miner. For example, it shows that the run time in case of the B
log has decreased from 4600 to 290 seconds, that 16 passages were detected,
that the largest passage contains 13 event classes, and that it took the ILP
Miner 92 seconds to mine the Petri net for the largest passage. The run times
for the largest passages show that by one does not gain much by running the
ILP Miner on different computers for different passages, as the overall run time
mainly depends on the run time for the largest passage. Only in case several
other passages are about as large as the largest passage, than using different
computers might help. Finally, note that this miner also cannot handle the F
event log: It simply contains too many event classes to be kept in memory.

These results show that splitting up the event log into many event logs using
passages typically helps in reducing the run times, while still resulting in a Petri
net that perfectly replays the original event log. It also shows, that the better
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Event log|Run time|Passages|Largest passage|/Run time largest passage

in seconds #| in event classes in seconds
A 220,000 382 641 210,000
B 290 16 13 92
C 300,000 113 337 230,000
D 15,000 36 45 14,000
E 16,000 94 83 15,000
F - - - -
G 84 2 16 72

Table 4. Run times (and other characteristics) obtained for the passage-enhanced ILP
Miner
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Fig. 4. The Petri net mined from the B event log with the passage-enhanced ILP
Miner.

the distribution among the passages is, the better the reduction will be: If some
passage is still large in size, the run time will still be large as well. Finally, the
case of the G log shows that the passage-enhanced ILP Miner comes with a little
overhead (the additional start and end event classes), which may result in worse
run times in case the log cannot really be split up into passages.

Fig. 4 shows the resulting Petri net for the B event log. If we compare this
Petri net to the Petri net as obtained from the standard ILP Miner (see Fig. 3),
we see that comprehension of this Petri net is way better, at the cost (so it
seems) of a number of transitions being disconnected. Apparently, trying to
connect these transitions to the remainder of the net causes the ILP Miner to
create so many edges that the result becomes incomprehensible.
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Of course, one could argue that the passage-enhanced ILP Miner takes less
run time because it produces different results, i.e., a different Petri net. For this
sake, we also did a little experiment where we used the standard ILP Miner as
both the 7, algorithm and the ~, algorithm: If we split up the net as obtained
from the standard ILP Miner into passages, run the same miner on every passage,
and glue the resulting net into a single Petri net, then we expect that the end
result is identical to the result of the initial ILP Miner. However, this requires
that the event log at hand contains almost no noise, as the standard ILP Miner
translates however little noise into a causal dependency, which typically results
in a net that contains only a single passage.

Therefore, we created a model for a paper review system and used the model
to create a noise-free event log, called H, which contains 54 event classes, 71,800
events, and 2500 traces. We ran the miner as mentioned above on this event
log, and we compared both the resulting Petri nets (both the end result as the
result of the -, algorithm) and the execution times. For sake of completeness,
we do mention that in this case we did not use the default settings for the
ILP Miner, as these settings do not punish for improper completion. Instead,
we used the default setting with the variant changed to “Petri net (Empty after
Completion)”. This variant prevents the v, ILP Miners from introducing implicit
places that contain tokens after completion of the net.

The v, ILP Miner took 1300 seconds. From the resulting Petri net, 30 pas-
sages were derived of which the largest passage contains 7 event classes. In total,
filtering the log for every passage, running the 7, ILP Miner for every resulting
sublog, and synthesizing all 30 subnets into a single Petri net took 140 seconds,
and resulted in the same Petri net. This clearly shows that the passage-enhanced
ILP Miner can result in the same Petri net as the standard ILP Miner, but using
only a fraction of the time.

6 A Possible Relaxation

Obviously, large passages can pose as much as a problem as a large collection of
event classes in a log can: No guarantee can be given that we can successfully split
the collection of event classes into passages which are small enough. However, we
could use the fact that we know how many event classes there will be before we
start the ILP Miner on a passage. In case we think that the collection of event
classes is still too large (like 641 in case of the A log), we can simply decide
not to use the ILP Miner for such a passage, but just to return a Petri net that
contains a transition for every event class. This means that we overgeneralize
the behavior of large passages, as we allow for any combination of the transitions
present in large passage. Intuitively, one could argue that these large passages
correspond to difficult causal structures that are hard to comprehend in the first
place, so why would the user want to see these complex structures? Instead, it
just might be better for the user to see the more simple structures, which can
be easily obtained by running the ILP Miner only on those passages that small
enough.
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Event log|Run time
in seconds

11,000
320
650
420
650

85
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Table 5. Run times obtained for the passage-enhanced ILP Miner, restricted to 20
event classes

Please note that the standard ILP Miner does not offer this possibility: Either
the collection of event classes in the event log is small enough and we will get
a connected Petri net, or the collection is too big and we will get a Petri net
containing only transitions. The fact that the passage-enhanced ILP Miner can
check the number of event classes per passage is obviously useful here.

For this reason, we have extended the experiment with a third miner: A
passage-enhanced ILP Miner that only uses the ILP Miner in case the passage
at hand contains fewer as 20 event classes (based on the earlier experiments, 20
seems to be still reasonable). Possibly, this miner results in a Petri net that is
disconnected, but it is very likely that it will also contain connected parts, and it
will still fit the original event log perfectly. Table 5 shows the results. Event log
F still contains too many event classes to be handled, while event log A contains
a single trace that result in more than 10,0000 event classes for some passages,
which explains the exceptional long run time for this log. The remainder of the
run times are quite acceptable: in a matter of minutes, the miner is done.

Fig. 5 shows a detail from the resulting Petri net for the A event log, whereas
Fig. 6 shows such a detail for the D event log. In contrast, the standard ILP
Miner fails to produce a Petri net for the A event log, and it produces a Petri
net like shown in Fig. 3 for the D event log. Clearly, the latter does not pro-
vide any information at all, whereas the former does provide some information
(some relations between event classes are present in the Petri nets). As such, the
restricted passage-enhanced ILP Miner can provide useful information within
minutes, whereas the standard ILP Miner would take days and provide some-
thing that is (almost) useless.

7 Conclusions

In this paper, we showed that passages can help the ILP Miner in finding a
Petri net that perfectly fits a given event log. First of all, the run time of the
ILP Miner is typically reduced dramatically when the passages are small. Only
in a single case the run time was increased, which was caused by the fact that
one two passages were detected: a simple one containing only two event classes,
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Fig. 5. A detail from the Petri net mined from the A event log with the restricted
passage-enhanced ILP Miner.

Fig. 6. A detail from the Petri net mined from the D event log with the restricted
passage-enhanced ILP Miner.

and a complex one containing 16 event classes, which include all 15 original
event classes and the artificial end event class. In this case, the use of passages
only made the problem slightly bigger. Nevertheless, four out of seven event logs
show that the use of passages typically reduce the run times by factors. Note that
in the remaining two event logs, nor the standard ILP Miner nor the passage-
enhanced ILP Miner were able to find a Petri net. In one case, the number of
event classes was simply too big to handle, in the size of the largest passage
simply prevented the ILP Miner from finding a Petri net for this passage.
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Moreover, we showed that the quality of the resulting Petri net may also
improve greatly. In one out of seven event logs, the standard ILP Miner returns
an incomprehensible Petri net, while the passage-enhanced returns a compre-
hensible one.

Finally, we showed that by adding a restriction on the size of the passages,
the run times of the passage-enhanced ILP Miner can even be reduced further,
although his typically results in disconnected Petri nets. Where this latter can
be seen as a downside, it also can be regarded as positive, as the disconnected
parts might offer the domain expert the information he needs. As a result, there
seems to be a possible trade-off between run time and precision, while keeping
the fitness at a perfect level: The further we restrict the number of event classes
in passages (which means that passages that exceed this restriction will not be
mined for a Petri net), the more disconnected (and the less precise) the resulting
Petri net will be, but the faster the ILP Miner will finish. We could even think
of extending the passage-enhanced ILP Miner with a certain time limit: It will
only consider the smallest passages, and while the time limit still permits, it will
also consider the smallest of the unconsidered passages as well.

Another option for future research is to remove causal relations while turn-
ing the causal structure into passages. For example, if the removal of a single,
infrequent, causal relation would cause the largest passage to break apart into
multiple passages, then it might be worthwhile to indeed remove this relation.
As such, we need to consider the entire causal structure that results from the
Heuristics Miner, which fortunately comes with such frequencies.
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