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Abstract. This paper proposes a novel approach for identifying risks in exe-
cutable business processes and detecting them at run-time. The approach con-
siders risks in all phases of the business process management lifecycle, and is
realized via a distributed, sensor-based architecture. At design-time, sensors are
defined to specify risk conditions which when fulfilled, are a likely indicator of
faults to occur. Both historical and current process execution data can be used to
compose such conditions. At run-time, each sensor independently notifies a sen-
sor manager when a risk is detected. In turn, the sensor manager interacts with the
monitoring component of a process automation suite to prompt the results to the
user who may take remedial actions. The proposed architecture has been imple-
mented in the YAWL system and its performance has been evaluated in practice.

1 Introduction

According to the AS/NZS ISO 31000 standard, a business process risk is the chance of
something happening that will have an impact on the process objectives, and is mea-
sured in terms of likelihood and consequence [26]. Incidents such as scandals in the
finance sector (the 4.9B Euros fraud at Société Générale), in the health sector (Patel
Inquiry) and in the aviation industry (failed terrorist attacks) have shown that business
processes are constantly exposed to a wide range of risks.

Failures of process-driven risk management can result in substantial financial and
reputational consequences, potentially threatening an organization’s existence. Legisla-
tive initiatives such as the Sarbanes-Oxley Act4 and Basel II [2] in the finance sector
have highlighted the pressing need to better manage business process risks. As a conse-
quence of these mandates, organizations are now seeking new ways to control process-
related risk and are attempting to incorporate it as a distinct view in their operational
management. However, whilst conceptually appealing, to date there is little guidance as
to how this can best be done. Currently the disciplines of process management and risk
management are largely disjoint and operate independently of one another. In industry
they are usually handled by different organizational units. Within academia, recent re-
search has centered on the identification of process-related risks. However the incidents
described above demonstrate that a focus on risk analysis alone is no longer adequate,
and an active, real-time risk detection and controlling is required.

4 www.gpo.gov/fdsys/pkg/PLAW-107publ204
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We propose a novel approach for operationalizing risk management in Business Pro-
cess Management automation Suites (BPMSs). The aim of this approach is to provide
a concrete mechanism for identifying risks in executable business process models and
detecting them during process execution. This is achieved by considering risks through-
out the BPM lifecycle, from process model design where risk conditions are defined,
through to process diagnosis, where risks are monitored. By automating risk detection,
the interested users (e.g. a process administrator) can be notified as early as a risk is
detected, such that remedial actions can be taken to rectify the current process instance,
and prevent an undesired state of the process (fault for short), from occurring. Based on
historical data, we can also compute the probability of a risk at run-time, and compare
it to a threshold, so as to notify the user only when the risk’s criticality is no longer
tolerable. To the best of our knowledge, this is the first attempt to incorporate risks into
executable business processes and enable their automatic detection at run-time.

The proposed approach is realized via a distributed, sensor-based architecture. Each
sensor is coupled with a risk condition capturing the situation upon which the risk of a
given fault may occur. Sensors are defined at design-time on the process model. Condi-
tions can be determined via a query language that can fetch both historical and current
execution data from the logs of the BPMS. At run-time sensors are registered with a cen-
tral sensor manager. At a given sampling rate, or based on the occurrence of a specific
event, the sensor manager retrieves and filters all data relevant for the various sensors (as
it is logged by the BPMS engine), and distributes it to the relevant sensors. If a sensor
condition holds, i.e. if the probability of the associated risk is above a given threshold,
the sensor alerts the sensor manager which in turn notifies the monitoring component of
the BPMS. The distributed nature of the architecture guarantees that there is no perfor-
mance overhead on the BPMS engine, and thus on the execution of the various process
instances. We implemented this architecture on top of the YAWL system. We extended
the YAWL Editor to cater for the design of risk sensors, and equipped the run-time envi-
ronment with a sensor manager service that interacts with YAWL’s monitoring service
and execution engine.

To prove the feasibility of the proposed approach, we used fault tree analysis [4] (a
well-established risk analysis method) to identify risk conditions in a reference process
model for logistics, in collaboration with an Australian risk consultant. These risks em-
brace different process aspects such as tasks’ order dependencies, involved resources
and business data, and relate to historical data where needed, to compute risk probabil-
ities. We expressed these conditions via sensors in the YAWL environment, and mea-
sured the time needed to compute these conditions at run-time. The tests showed that
the sensor conditions can be computed in a matter of milliseconds without impacting
on the performance of the running process instances.

This paper is organized as follows. Section 2 illustrates the running example in
the logistics domain. Section 3 describes our risk-aware BPM approach while Sect. 4
presents the sensor-based architecture to implement this approach. The architecture is
evaluated in Sect. 5. Section 6 covers related work while Sect. 7 concludes the paper.

2 Running Example

In this section we use an example to illustrate how the risk of possible faults to occur
during a business process execution can be identified as early as possible. In particular,
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we show how risks can be expressed in terms of process-specific aspects such as tasks
occurrence, data or available resources. Figure 1 describes the payment subprocess of
an order fulfillment business process which is inspired by the VICS industry standard
for logistics [30]. The notation used to represent this example is that of YAWL [13],
although a deep knowledge of this language is not required.

This process starts after the freight has been picked up by a carrier and deals with
the shipment payment. The first task is the production of a Shipment Invoice containing
the shipment costs related to a specific order for a specific customer. If shipments have
been paid in advance, all that is required is for a Finance Officer to issue a Shipment
Remittance Advice specifying the amount being debited to the customer. Otherwise,
the Finance Officer issues a Shipment Payment Order that needs to be approved by a
Senior Finance Officer (who is the superior of this Finance Officer). At this point, a
number of updates may be made to the Shipment Payment Order by the Finance Officer
that issued it, but each of these needs to be approved by the Senior Finance Officer.
After the document is finalized and the customer has paid, an Account Manager can
process the shipment payment by specifying the balance. If the customer underpaid, the
Account Manager needs to issue a Debit Adjustment, the customer needs to pay the
balance and the payment needs to be reprocessed. A customer may also overpay. In this
case the Account Manager needs to issue a Credit Adjustment. In the latter case and in
case of a correct payment, the shipment payment process is completed.
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Fig. 1. Order-Fulfillment: Payment subprocess.

In collaboration with a risk analyst of an Australian consulting company, we identi-
fied four faults that can occur during the execution of this payment subprocess. In order
to prevent the occurrence of these faults, for each of them we also defined an associated
risk condition by using fault tree analysis [4]. Accordingly, each risk condition is ex-
pressed as a set of lower-level boolean events which are organized in a tree via logical
connectives such as ORs, ANDs and XORs.

The first fault is an overtime process fault. A Service Level Agreement (SLA) for a
process or for a given task within a process, may establish that the process (or task) may
not last longer than a Maximum Cycle Time MCT , otherwise the organization running
the process may incur a pecuniary penalty. In our case, an overtime fault occurs if an
instance of the payment subprocess is not completed within an MCT of five days.

To detect the risk of overtime fault at run-time, we should check the likelihood that
the running instance does not exceed the MCT based on the amount of time Tc expired
at the current stage of the execution. Let us consider Te as the remaining cycle time,
i.e. the amount of time estimated to complete the current instance given Tc. Then the
probability of exceeding MCT can be computed as 1−MCT/(Te + Tc) if Te + Tc >
MCT and is equal to 0 if Te+Tc ≤ MCT . If this probability is greater than a tolerance
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value (e.g. 60%), we notify the risk to the user. The estimation of the remaining cycle
time is based on past executions of the same process and can be computed using the
approach in [29] (see Section 5 for more details).

The second fault is related to the resources participating in the process. The Senior
Finance Officer who has approved a Shipment Payment Order for a given customer,
must have not approved another order by the same customer in the last d days, otherwise
there is an approval fraud. This fault is thus generated by the violation of a four-eye
principle across different instances of the Payment subprocess.

To detect the risk of this fault we first have to check that there is an order, say order
o of customer c, to be approved. This means checking that an instance of task Approve
Shipment Payment Order is being executed. Moreover, we need to check that either of
the following conditions holds: i) o has been allocated to a Senior Finance Officer who
has already approved another order for the same customer in the last d days; or ii) at
least one Senior Finance Officer is available who approved an order for customer c in
the last d days and all other Senior Finance Officers who never approved an order for c
during the last d days are available. The corresponding fault tree is shown in Fig. 2.
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Fig. 2. The fault trees for Approval Fraud and Underpayment Fraud.

The third fault relates to a situation where a process instance executes a given task
too many times. This situation typically occurs in the context of loops. Not only could
this lead to a process slowdown but also to a “livelock” if the task is in a loop whose
exit condition is purposefully never met. In general, given a task t a maximum number
of allowable executions of t per process instance MAE i(t) can be fixed as part of the
SLA for t. With reference to the Payment subprocess, this can occur for example if
task Update Shipment Payment Order is re-executed five times within the same process
instance. We call this an order unfulfillment fault.

To detect the risk of this fault at run-time, we need to check if: i) an order o is been
updated (i.e. task Update Shipment Payment Order is currently being performed for or-
der o); and ii) it is likely that this order will be updated again (i.e. task Update Shipment
Payment Order will be repeated within the same process instance). The probability that
the number of times a task will be repeated within the same instance of the Payment
subprocess is computed by dividing the number of instances where the MAE i for task
Update Shipment Payment Order has been reached, over the number of instances that
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have executed this task at least as many times as it has been executed by the current
instance, and have completed. The tolerance value indicates a threshold above which
the risk should be notified to the user. For example, if this threshold is 60% for task t, a
risk should be raised if the probability of MAE i(t) is greater than 0.6.

The fourth fault is an underpayment fraud. It relates to a situation in which a given
task is executed too many times across multiple process instances. Similar to the previ-
ous fault, given a task t we can define a maximum number of allowable executions of t
per process MAEp(t) as part of the SLA for p. In our example, this type of fault occurs
when a customer underpays more than three times within the last five days.

To detect the risk of underpayment fraud, we need to check if: i) a debit adjustment
is currently being issued to a customer c (i.e. task Issue Debit Adjustment is currently
being performed for customer c); and ii) it is likely that the maximum number of debit
adjustments will be issued to the same customer in a d-day time frame. The probability
that MAEp is reached for task Issue Debit Adjustment of customer c in d days is com-
puted by dividing the number of customers for which the MAEp for task Issue Debit
Adjustment has been reached within d days, over the number of customers for which
this task has been executed at least as many times as it has been executed for c within d
days. If this probability is above a tolerance value, the risk should be raised and the user
notified. Similar to the previous risk, the tolerance value indicates a threshold above
which this risk should be notified to the user. The corresponding fault-tree is shown in
Fig. 2.

3 Risk-aware Business Process Management

As we have seen in the context of the payment example, a fault in a business process
is an undesired state of a process instance which may lead to a process failure (e.g. the
violation of a policy may lead to a process instance being interrupted). Identifying a
fault in a process requires determining the condition upon which the fault occurs. For
example, in the payment subprocess, we have an underpayment fraud if a customer
underpays more than three times within a five-day time frame.

However, a fault condition holds only when the associated fault has occurred, which
is typically too late to avoid a process failure. Indeed, we need to be able to estimate
the risk of a process fault, i.e. if, and possibly with what likelihood, the fault will occur
in the future. Early risk detection allows process users to promptly react with counter-
measures, if any, to prevent the related fault from occurring at all.

We use the notion of risk condition, as opposed to fault condition, to describe the
set of events that lead to the possibility of a fault to occur in the future. In order to eval-
uate risk conditions “on-line”, i.e. while a process instance is being executed, we need
to consider the current state of the BPMS. This means knowing the state of all running
instances of any process (and not only the state of the instance for which we are comput-
ing the risk condition), the resources that are busy and those that are available, and the
values of the data variables being created and consumed. Moreover, we need to know
the historical data, i.e. the execution data of all instances that have been completed. In
particular, we can use historical data to estimate the probability of a given fault to occur,
i.e. the risk probability. For example, for the underpayment fraud, we can estimate the
likelihood that another debit adjustment is being issued for a given combination of cus-
tomer/order (historical data), given that one such debit adjustment has just been issued
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(current data). To obtain a boolean risk condition, we compare the risk probability that
we obtain with a tolerance value, such that the condition holds if the risk probability
exceeds the given threshold. For example, we raise the risk of underpayment fraud if
the risk probability is greater then 60%.

In other cases, we may avoid to embed a risk probability in the risk condition, if we
are able to determine the occurrence of a set of events which directly leads to a high
risk. This is the case of the approval fraud, where both the events “Allocation to same
resource” and “Other resources are busy” already signal a high risk of approval fraud.

Based on these considerations, we present a novel approach for on-line risk detec-
tion in business processes. The focal idea of this approach, shown in Fig. 3, is to embed
elements of risk into all four phases of the traditional BPM lifecycle [7].
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Fig. 3. Risk-aware Business Process Management lifecycle.

Input to this “risk-aware” BPM lifecycle is a Risk Identification phase, where risk
analysis is carried out to identify risks in the process model to be designed. Traditional
risk analysis methods such as FTA (as seen in the previous section), Root Cause Anal-
ysis [17] or CORAS [25], can be employed in this phase. The output of this phase is a
set of risks, each expressed as a risk condition.

Next, in the Process Design phase, these high-level risk conditions are mapped
down to process model-specific aspects. For example, the condition “debit adjustment
being issued to customer c for order o” is mapped to the occurrence of a specific task,
namely “Issue Debit Adjustment” in the Payment process model. The result of this sec-
ond phase is a risk-annotated process model. In the next phase, Process Implementation,
these conditions are linked to workflow-specific aspects, such as content of variables,
and resource allocation states. For example, “customer c” is linked to the Customer
element of the XML representation of the Debit Adjustment document. Process
Implementation may be integrated with Process Design if the language used at design-
time is executable (e.g. BPMN 2.0 or YAWL).

The risk-annotated workflow model resulting from Process Implementation is then
executed by a risk-aware process engine during Process Enactment. Historical data
stored in process logs, and current execution data coming from process enactment, are
filtered, aggregated and analyzed in the Process diagnosis phase, in order to evaluate
the various risk conditions. When a risk condition evaluates to true, the interested users
(e.g. a process administrator) are notified and reports can also be produced during this
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phase for auditing purposes. Finally, this phase can trigger changes in the current pro-
cess instance, to mitigate the likelihood of a fault to occur, or in the underlying process
model, to prevent a given risk from occurring ever again.

In the next section we describe a sensor-based architecture to operationalize this
enhanced BPM lifecycle.

4 Sensor-based realization

In order to realize our risk-aware BPM lifecycle, we devised an approach based on
sensors. In a nutshell, the idea is to capture risk and fault conditions via sensors, and
then monitor these sensors during process execution. An overview of this approach is
shown in Fig. 4 using the BPMN 2.0 notation [21].

Sensors are defined during the Process Design and Process Implementation phases
of our risk-aware BPM lifecycle (see Fig. 3), for each process model for which the
presence of risks and/or faults need to be monitored. If the process model is specified
via an executable language, then these two phases coincide.

Sensor-based Architecture

Enact Process
Model

Monitor sensor

Update sensor
data

Check sensor
condit ion

Send
notif icat ion

Trigger
occurred

Trigger
occurred

Process
model

Register sensorDefine sensor
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Process
case

Process
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Process instance
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data

Sensor
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fulf illed

Insuff icient
data Sensor condit ion

not fulf illed

Dr La Rosa Marcello 1 of 1 28.06.2011

Fig. 4. Realization of risk-aware BPM lifecycle via sensors.

A sensor is defined through a boolean sensor condition, constructed on a set of
process variables, and a sensor activation trigger. Process variables are used to retrieve
information from the specific instance in which the sensor condition will be evaluated as
well as from other instances, either completed or still running. For example, we can use
variables to retrieve the resource allocated to a given task, the value of a task variable,
or the status of a task. Process instances can either be identified based on the current
instance (e.g. the last five instances that have been completed before the current one), or
based on the fulfillment of a case condition (e.g. “all instances where a given resource
has executed a given task”). The sensor condition can represent either a risk condition
associated with a fault, or a fault condition, or both. If both conditions are specified,
the fault condition is evaluated only if the risk condition evaluates to true. For example,
the sensor will check if an overtime process fault has occurred in a process instance
only if first the risk of such fault has first been detected, based on the estimation of
the remaining cycle time for this instance. Finally, the sensor activation trigger can be
either a timer periodically fired according to a sampling rate (e.g. every 5 minutes), or
an event emitted by the process engine (e.g. the completion of a task). Figure 5 shows
a simplified version of the sensor definition language by using an abstract syntax [19];
the complete definition of this language is provided in the technical report [5].
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Sensor , v : Variables; c : Condition;
t : Trigger

Variables , Assignment+

Condition , riskCond, faultCond : boolExpr

Trigger , timer | event

Assignment , CaseExpr | CaseElemExpr |
VarFunc | Definition

CaseExpr , result : varName;
e : CaseIDStat; a : Action

CaseElemExpr , ce : CaseExpr ; x : TaskOrNet

VarFunc , result, input : varName;
va : varAction

Definition , result : varName; c : constant

CaseIDStat , absoluteExpr | relExpr |
CaseCondSet

CaseCondSet , CaseCondExpr | CaseCond |
CaseParam

CaseCondExpr , pes1 , pes2 : CaseCondSet;
bo : booleanOp

CaseCond , x : TaskOrNet; a : Action;
c : compOp; r : rightHandExpr

CaseParam , i : idFunc; c : compOp;
r : rightHandExpr

TaskOrNet , taskLabel | netName

Action , predFunc | taskOrNetVar |
SubVarExpr | inputPredFunc

(a)

Abstract element Description

Sensor
is composed by Variables ,
Condition , Trigger

Variables identifies a set of Assignment

Condition
identifies the sensor condition
composed by a risk condition and
by a fault condition

Trigger specifies the type of trigger desired

Assignment
defines a mapping between
a variable and a piece of information

CaseExpr
identifies information belonging
to the process instance

CaseElemExpr
identifies information belonging to
an element of the process instance

VarFunc
returns the result of a function
executed on a variable

Definition
sets the value of a variable to
a predefined value

CaseIDStat
identifies a process instance
or a set of process instances

CaseCondSet
describes how a process instance
can be identified

CaseCondExpr
is a boolean conjunction
of CaseCondSet

CaseCond
specifies the condition that
the process instance must satisfy

CaseParam
specifies the parameter related to
the process instance id

TaskOrNet
identifies an element of the process
model using taskLabel or netName

Action
identifies the type of information
desired

(b)

Fig. 5. Abstract syntax of sensor definition language (a); Description of its elements (b).

During Process Enactment, the defined sensors are registered with a sensor man-
ager, which activates them. In the Process Diagnosis phase, which starts as soon as
the process is enacted, the activated sensors receive updates on the variables of their
sensor conditions according to their trigger (timer or event). When a sensor receives an
update, it checks its sensor condition. If the condition holds, a notification is sent from
the sensor to the monitor service of the BPMS.

The sensor manager relies on three interfaces to interact with the BPMS (see
Fig. 6(a)):

– Engine interface, used to register a sensor with a particular event raised by the
BPMS engine. When the event occurs the sensor is notified by the sensor manager.

– Database interface, used to query the BPMS database in order to collect current
and historical information.

– Monitor interface, used to notify the detection of risks and faults to the monitor
service of the BPMS.

These interfaces can be implemented by the vendor or user of the BPMS where the
sensor manager needs to be installed. In this way, our sensor manager can virtually be
interfaced with any BPMS. As an example, the conceptual model of the database inter-
face is showed in Fig. 6(b), where methods have been omitted for space reasons. This
conceptual model is inspired by the reference process meta-model of the WfMC [14],
in order to cover as many aspects as possible of a workflow model, and meantime, to
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Fig. 6. Sensor-based architecture (a); Database Interface schema model (b).

remain as generic as possible. For example, class WorkFlowDefinition allows one to re-
trieve information about the process model where the sensor is defined, such as process
identifier and name, while class SubProcess allows one to retrieve information about a
specific subprocess, and so on. This interface should be implemented according to the
characteristics of the specific database used in the BPMS at hand. For an efficient use of
the interface, one should also define indexes on the attributes of the BPMS database that
map the underlined attributes in Fig. 6(b). These indexes have been determined based
on the types of queries that can be defined in our sensor condition language.

An alternative approach to achieve the portability of the sensor manager, would be
to read the BPMS logs from a standard serialization format such as OpenXES. However,
as we will show in Sect. 5, this solution is rather inefficient.

The advantages of using sensors are twofold. First, their conditions can be moni-
tored while the process model is being executed, i.e. in real-time. Second, according
to a distributed architecture, each sensor takes care of checking its own condition af-
ter being activated by the sensor manager. In this way, potential execution slowdowns
are avoided (e.g., the process engine and the sensor manager could be deployed to two
different machines).

We now have all ingredients to show how the risks that we identified for the Payment
subprocess can be captured via sensor conditions, using the language defined in Fig. 5.
For space reasons we only focus on the approval fraud and underpayment fraud risks.
A description of the other sensor conditions is provided in the technical report [5].

We recall that there is an approval fraud whenever a Senior Finance Officer approves
two orders for the same customer within five days. Accordingly, the corresponding risk
can be detected if given an order o of customer c to be approved, either of the following
conditions holds: i) o has been allocated to a Senior Finance Officer who has already
approved another order for the same customer in the last five days; or ii) at least one
Senior Finance Officer is available who approved an order for customer c in the last five
days and all other Senior Finance Officers who never approved an order for c during the
five days are available.

This risk condition is triggered by an event, i.e. the spawning of a new instance of
task Approve Shipment Payment Order. This is checked by using a variable to retrieve
the status of this task in the current instance. The risk condition itself is given by the
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disjunction of the two conditions described above. The first such condition is checked
by using a variable to retrieve which resources were allocated to task Approve Ship-
ment Payment Order, and another variable to retrieve the number of times this task was
completed for customer c. This latter variable is defined via a case condition over cus-
tomer c, the completion time of this task (that must be greater than the start time of the
current task Approve Shipment Payment Order minus five days in milliseconds), and
the identifier of the instance (that must be different from the identifier of the current
instance).

The second condition is checked by using two variables and invoking two functions.
A variable to retrieve which resources completed task Approve Shipment Payment Or-
der, and another variable to retrieve all resources that can be offered this task (i.e. the
current task). The first variable is defined via a case condition over customer c and the
completion time of this task (that must be greater than the start time of the current task
Approve Shipment Payment Order minus five days). The two invoked functions return
the number of tasks started on the resources that completed task Approve Shipment
Payment Order, and the number of tasks in the execution queue of the resources who
have been offered this task, and did not complete it for customer c in the last five days.

The definition of the above variables in our sensor language is provided below, while
the Action elements used in these definitions are described in Table 1.

sfo1 = case(current).Approve Shipment Payment Order 593(allocateResource)
c = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d = 5

ASPOAllocateTime = case(current).Approve Shipment Payment Order 593(OfferTimeInMillis)
ASPO#App = case(Approve Shipment Payment Order 593(completeResource)=sfo1 ∧

Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(ASPOAllocateTime-(d*24*60*60*1000)) ∧
(ID)!=[IDCurr]).Approve Shipment Payment Order 593(CountElements)

sfo2 = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Approve Shipment Payment Order 593(isCompleted)=“true” ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(ASPOStartTime-(d*24*60*60*1000)) ∧
(ID)!=[IDCurr]).Approve Shipment Payment Order 593(completeResource)

sfo = case(current).Approve Shipment Payment Order 593(offerDistribution)

After the definition of the variables, the risk condition is specified as follows:
(ASPO#App>0)∨((sfo2.startMinNumber=0)∧(sfo.startMinNumberExcept.sfo2>=1)).

We recall that an underpayment fraud occurs whenever a customer underpays more
than three times in a five-day time frame. Accordingly, the respective risk can be de-
tected if i) task Issue Debit Adjustment is being performed for a given customer and
order (this is the trigger for this risk); and ii) the probability that the maximum number
of allowable executions for this task will be reached in a five-day time frame, is above
the fixed tolerance value for this risk, say 60% (this is the risk condition itself). This
condition can be checked by using two variables: one to retrieve the number of times
the task Issue Debit Adjustment has been completed for this customer, the other to re-
trieve the probability that an attempted fraud will take place. For this second variable,
we use the Action “FraudProbabilityFunc” to compute the specific probability
(see Table 1).

The defined variables are implemented through the sensor language as follows:
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IDAStartTime = case(current).Issue Debit Adjustment 605(StartTimeInMillis)
c = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d = 5

IDA#Issue = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Issue Debit Adjustment 605(Count)>0 ∧
Issue Debit Adjustment 605(CompleteTimeInMillis)>(IDAStartTime-d*24*60*60*1000))
.Issue Debit Adjustment 605(CountElements)

GroupingElement = Issue Shipment Invoice 594.ShipmentInvoice.Company
WindowElement = Issue Debit Adjustment 605(CompleteTimeInMillis)

Threshold = 0.6
Probability = case(Issue Debit Adjustment 605(Count)>0 ∧ (ID)!=[IDcurr]).Issue Debit Adjustment 605

(FraudProbabilityFunc, IDA#Issue, 3, GroupingElement, WindowElement, (d*24*60*60*1000))

These variables are used to compose the following risk condition: Probability>0.6.

Action Description
(ID) returns the ID of the generic instance that is being analyzed
[IDCurr] returns the ID of the instance that the sensor is monitoring
Count returns the number of times a task has been completed
allocateResource returns the resources to which the task has been allocated
completeResource returns the resource that completed the task
isStarted returns “true” if the task has been started
isCompleted returns “true” if the task has been completed
OfferTimeInMillis returns the time (in millisecond) when the task has been offered
StartTimeInMillis returns the time (in millisecond) when the task has been started
CompleteTimeInMillis returns the time (in millisecond) when the task has been completed
ShipmentInvoice.Company returns the value of the subvariable Company belonging to the variable ShipmentInvoice
offerDistribution returns list of resources to which the task is offered by default
CountElements returns the number of instances that satisfy the parameters required

FraudProbabilityFunc
returns the probability of a fraud using as parameters: the current number of executions,
the maximum number of executions allowed, the parameter used to group the instances,
the parameter used to identify a temporal window, the dimension of the temporal window

Table 1. Description of the Action elements used in the example sensor conditions.

5 Evaluation

In this section we discuss the implementation of the sensor-based architecture in the
YAWL system and then evaluate its performance.

5.1 Implementation

In order to prove the feasibility of our approach, we implemented the sensor-based
architecture in the YAWL system.5 We decided to extend the YAWL system for the
following reasons. First, this system is based on a service-oriented architecture, which
facilitates the seamless addition of new services. Second, the system is open-source,
which facilitates its distribution among academics and practitioners, and widely used
in practice (the system has been downloaded over 100,000 times since its first incep-
tion in the open-source community). Finally, the underlying YAWL language is very
expressive as it provides wide support for the workflow patterns [13].

As part of this implementation, we extended the YAWL Editor version 2.2beta with
a new component, namely the Sensor Editor, for the specification of sensors within
YAWL process models. Such graphical component, shown in Fig. 7, fully supports the
specification of sensor conditions as defined in Sect. 4.

5 Available at www.yawlfoundation.org
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Fig. 7. The Sensor Editor within the YAWL Editor.

Moreover, we implemented the Sensor Manager as a generic component which ex-
poses three interfaces (engine, database and monitor) as described in Sect. 4. We then
wrapped this component into a Web service which implements the three interfaces for
the YAWL system, allowing the component to interact with the YAWL Engine, the
Monitor service and the YAWL database. While there is a straightforward mapping be-
tween the YAWL Engine and our engine interface, and between the YAWL Monitor
service and our monitor interface, we had to join several YAWL tables to implement
our database interface. This is because in the YAWL system, event logs are scattered
across different database tables. For example, to retrieve all identifiers of the process
instances for a specific process model, given the model identifier, we need to perform a
join among the following YAWL tables: logspecification, lognetinstance,
lognet and logevent.

The complete mapping is illustrated in Tab. 2. As an example, this table also shows
the mapping between our database interface and the relational schema used by Oracle
BPEL 10g to store BPEL process logs. Also in this case, the database can be fully
mapped by joining several tables.

Finally, we implemented a separate service to estimate the remaining cycle time
Te for a process or task instance. This service uses ProM’s prediction miner [29] to
compute the estimations, and provides the results to the Sensor Manager on demand.
While the estimation of Te could be done on-line, i.e. while evaluating a particular
sensor condition at run-time, parsing the full logset each time would be inefficient.
Rather, we compute this estimation off-line, whenever a new process model is deployed
to the YAWL Engine, by using the logset available at that time. Periodically, we update
the logset with the new instances being executed meantime, and invoke this service to
refresh the estimations for each process model currently deployed.

5.2 Performance Analysis

We used our implementation to evaluate the scalability of the approach. First, we mea-
sured the time needed to evaluate the basic functions (e.g. counting the number of in-
stances of a task or retrieving the resource allocated to a task). Next, we measured the
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Database table Tables that need to be joined
YAWL Oracle BPEL 10g

WorkFlowDefinition logspecification, lognet, lognetinstance, logevent cube instance and cube scope
SubProcess logspecification, lognet, lognetinstance, logevent cube instance and cube scope

Activity lognetinstance, logtask, logtaskinstance, lognet, wftask and work itemlogevent, logspecification, rs eventlog

Variables logtask, lognet, lognetinstance, logtaskinstance, audit trail, audit detail and xml documentlogevent, logdataitem, logspecification
Role rs participant wftask

ActivityRole rs eventlog, logtaskinstance wftask
Table 2. Database interface mapping for YAWL 2.2beta and Oracle BPEL 10g.

time needed to evaluate the sensor conditions for the risks defined in the Payment sub-
process. The tests were run on an Intel Core I5 M560 2.67GHz processor with 4GB
RAM running Linux Ubuntu 11.4. The YAWL logs were stored on the PostGres 9.0
DBMS. These logs contained 318 completed process instances from 36 difference pro-
cess models, accounting for a total of 9,399 process events (e.g. task instance started
and completed, variable’s value change). Specifically, there were 100 instances from the
Payment subprocess yielding a total of 5,904 process events. The results were averaged
over 10 runs.

Basic function Description OpenXES Database Reduction
time [ms] time [ms] rate [%]

net status functions checking if a net status has been reached 6,535 18.9 99.71(isStarted, isCompleted)

net time functions returning the time when a net status has been reached 6,781 18.8 99.72(startTime, completeTime, startTimeInMillis, completeTimeInMillis)
net variable returns the value of a net variable 6,489 432.6 93.33
task count number of times a task has been completed 803 19.8 97.53

task resource functions that return the resources associated with a task 850 20.9 97.54(offerResource, allocateResource, startResource, completeResource)

task status functions checking if a task status has been reached 792 30.5 96.14(isOffered, isAllocated, isStarted, isCompleted)

task time
functions returning the time when a task status has been reached

824 22.3 97.29(offerTime, allocateTime, startTime, completeTime, offerTimeInMillis,
allocateTimeInMillis, startTimeInMillis, completeTimeInMillis)

task variable returns the value of a task variable 787 96.7 87.71

task distribution
functions returning the resources associated with a task by default

243 -(offerDistribution, allocateDistribution, startDistribution,
completeDistribution)

task initiator functions returning the allocation strategy for a resource association 249.6 -(offerInitiator, allocateInitiator, startInitiator, completeInitiator)
Table 3. Performance of basic functions.

Table 3 shows the results of the evaluation of the basic functions provided by our
language. In particular, in this table we compare the evaluation times obtained by ac-
cessing the YAWL logs via our database interface, with those obtained by accessing a
serialization of the logs, e.g. in the OpenXES format. While OpenXES provides a sim-
ple and unique representation of a generic set of process logs, accessing an OpenXES
file in real-time, i.e. during the execution of a process instance, is not feasible, due to the
long access times (e.g. 6.5 sec. on average for evaluating a net variable). On the other
hand, accessing the logs via our database interface, despite it requires the creation of
a specific implementation for each BPMS database, provides considerably faster times
than accessing OpenXES files (at least 87% gain w.r.t. OpenXES access). In fact, as
we can see from Tab. 3, the evaluation times for all the basic functions are below 30
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ms, apart from function task variable, which takes 100 ms and function net
variable, which takes 430 ms.

The last two basic functions reported in Tab. 3, namely task distribution
and task initiator, are evaluated in less than 250 milliseconds. These functions
are not computed by accessing the logs, but rather by accessing information that is
contained directly in an executable process model, e.g. the resources that are associated
with a specific task. However, in our implementation we still use the database interface
to access this information, in order to provide the developer with a single access point
to all process-related data.

Table 4 reports the results of the evaluation of the sensor conditions defined for our
running example. While the sensor conditions for the overtime process and order un-
fulfillment faults are very low (below 150 ms), longer times are obtained for evaluating
the conditions for the two faults related to fraud. This is because both these conditions
require to evaluate “complex queries”, i.e. queries over the entire process logs: In the
approval fraud, we need to retrieve all resources that approved an order for a specific
customer, while in the underpayment fraud we need to retrieve all process instances
where a debit adjustment was issued and aggregate these instances per customer. These
queries are different than those needed to evaluate the basic functions, as the latter are
performed on the events in the logs that are relative to a single known process instance,
e.g. the instance for which the sensor condition is being evaluated.

Sensor Min Max Average St.Dev.
[ms] [ms] [ms]

Overtime process 121 137 131.8 4.66
Approval fraud 6,483 7,036 6,766.4 183.06
Order unfulfillment 69 91 77.4 7.18
Underpayment fraud 3,385 3,678 3,523 89.98

Table 4. Performance of sensors.

The worst-case complexity of evalu-
ating one such a complex query is still
linear on the number of parameters that
need be evaluated in the query (corre-
sponding to the language element Cond-
ExprSet in Sect. 4) multiplied by the total
number of instances present in the logs
(corresponding to the size of table Work-
flowDefinition addressed by our database interface).

In conclusion, the performances of evaluating sensor conditions should always be
considered w.r.t. the specific process for which the risks are defined, and the type of
trigger used. For example, let us assume an average duration of 24 hours for the Payment
subprocess, with a new task being executed every 30 minutes. This means we have up
to 30 minutes to detect an overtime process risk before a new task is executed, and we
need to compute this sensor condition again. If we choose a rate of 5 minutes to sample
this condition, we are well below the 6 minute-threshold, so we can check this sensor’s
condition up to 6 times during the execution of a task. Since we do this in less than
150 ms, this time is acceptable. For an event-driven risk we also need to consider the
frequency of the specific event used as trigger. For example, the approval fraud risk is
triggered every time an instance of task Approve Shipment Payment Order is offered
to a Senior Financial Officer for execution. Since we take up to 7 seconds to compute
this sensor condition, we are able to cope with a system where there is a request for
approval every 7 seconds. So also for this sensor, the performance is quite acceptable.
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6 Related Work

Risk measurement and mitigation techniques have been widely explored in various
fields. At the strategic level risk management, standards prescribe generic procedures
for identifying, analyzing, evaluating and treating risks (see e.g. [26]). Although help-
ful, such general guidelines are inevitably vague and fail to provide any specific guid-
ance for operationalizing risk management strategies in business processes. At the other
extreme, there are many techniques for identifying risks in specific areas such as em-
ployee fraud [1], conflict of interest [18] and in the engineering field more generally
[12, 3]. Other approaches, such as fault-tree analysis [4], are general enough to be ap-
plied to multiple domains. However, none of these approaches provides insights on how
to define and operationalize the detection of process-related risks.

Previous process-based research recognizes the importance of explicitly linking el-
ements of risk to business process models. zur Muehlen et al. [23, 32] propose a taxon-
omy of process-related risks and describe its application in the analysis and documen-
tation of business processes. This taxonomy includes five process-related risk types
(goals, structure, information technology, data and organization) which can be captured
by four interrelated model types: i) risk structure model describing the relationships be-
tween risks; ii) risk/goal matrix; iii) risk state model describing the dynamic aspects of a
risk; and iv) an extension to the EPC notation to assign risks to individual process steps.
An extension of the work in [23] is proposed in [20], where the authors describe a four-
step approach to integrate risks in business processes at the operational and strategic
levels via value-focused process engineering.

A different perspective is offered by the ROPE (Risk-Oriented Process Evaluation)
methodology [10, 28]. ROPE is based on the observation that process activities require
resources to be adequately executed. If faults occur (here called “threats”), they im-
pact the functionality of resources until one or more affected resources are no longer
available. In the worst case a resource represents a single point of failure and conse-
quently hinders the execution of the related process activity. If a threat is detected, an
appropriate countermeasure process is invoked to counteract the threat. However, if this
cannot be done, a recovery process can be invoked to re-establish the functionality of
the affected resources until they are available again for the respective business process
activity. The aim of the ROPE methodology is to incorporate all these aspects in a sin-
gle model that can be simulated to determine a company’s critical business processes
and single points of failure. Finally, on the basis of the ROPE methodology, a reference
model for risk-aware BPM is proposed in [15, 16].

With respect to the risk-aware BPM lifecycle shown in Fig. 3, all the above pro-
posals only cover the phases of risk analysis and risk-aware process modeling. None of
them specifies how risk conditions can be concretely linked to run-time aspects of pro-
cess models such as resource allocation, data variables and control-flow conditions, for
the sake of detecting risks during process execution. Thus, none of these approaches op-
erationalizes risk detection into workflow management systems. Moreover, they neglect
historical process data for risk estimation. As such, these approaches are complemen-
tary to our work, i.e. they can be used at a conceptual level for the identification of
process-related risks, which can then be implemented via our sensor-based technology.

Our sensor-based architecture is also related to real-time monitoring of business pro-
cess execution. Similarly to our approach, Oracle Business Activity Monitoring (BAM)
[22] relies on sensors to monitor the execution of BPEL processes. Three types of sen-
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sors can be defined: activity sensors, to grab timings and variable contents of a specific
activity; variable sensors, to grab the content of the variables defined for whole BPEL
process (e.g. the inputs to the process); and fault sensors, to monitor BPEL faults. These
sensors can be triggered by a predefined set of events (e.g. task activation, task comple-
tion). For each sensor, one can specify the endpoints where the sensor will publish its
data at run-time (e.g. a database or a JMSQueue). We allow the specification of more
sophisticated sensor (and fault) conditions, where different process-related aspects can
be incorporated such as data, resource allocation strategies, order dependencies, as well
as historical data and information from other running process instances. Moreover, our
sensors can be triggered by process events or sampled at a given rate. Nonetheless, our
sensor-based architecture is exposed as a service and as such it could be integrated with
other process monitoring systems, such as Oracle BAM.

Real-time monitoring of process models can also be achieved via Complex Event
Processing (CEP) systems. In this context, CEP systems have been integrated into com-
mercial BPMSs, e.g. webMethods Business Events6, ARIS Process Event Monitor [6]
and SAP Sybase [27], as well as explored in academia [9, 11]. A CEP system allows the
analysis of aggregated events from different sources (e.g. databases, email accounts as
well as process engines). Using predefined rules, generally defined with a specific SQL-
like language [31], a CEP system can verify the presence of a specific pattern among a
stream of simple events processed in a given time window. Our approach differs from
CEP systems in the following aspects: i) strong business process orientation vs gen-
eral purpose system; ii) ability to aggregate and analyze complex XML-based events
(e.g. process variables) vs simple events; iii) time-driven and event-driven triggers vs
event-driven trigger only. Moreover, CEP systems typically suffer from performance
overheads [11, 31] which limit their applicability to real-time risk detection [31].

7 Conclusion

The contribution of this paper is twofold. First, it provides a concrete mechanism for
identifying risks in executable business process models and for detecting them during
process execution. This is achieved by embedding elements of risk within each phase
of the BPM lifecycle: from process design, where high-level risks are mapped down to
specific process model elements, to process diagnosis, where risk conditions are mon-
itored in real-time. The second contribution is an operationalization of the proposed
risk-awareness approach in the context of BPMSs. This is achieved via a distributed,
sensor-based architecture that is interfaced with a BPMS via a set of interfaces. Each
risk is associated with a sensor condition. Conditions can relate to any process aspect,
such as control-flow dependencies, resource allocations, the content of data elements,
both from the current process instance and from instances of any process that have al-
ready been completed. At design-time, these conditions are expressed via a Java-like
query language within a process model. At run-time, each sensor independently alerts
a sensor manager when the associated risk condition evaluates to true during the exe-
cution of a specific process instance. When this occurs, the sensor manager notifies a
process administrator about the given risk by interfacing with the monitoring service

6 http://www.softwareag.com/au/products/wm/events/overview/
default.asp
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of the BPMS. This allows early risk detection which in turn enables proper remedial
actions to be taken in order to avoid potentially costly process faults.

The sensor-based architecture was implemented in the YAWL system and its perfor-
mance evaluated in practice. The tests show that the sensor conditions can be computed
efficiently and that no performance overhead is induced to the BPMS engine. To the
best of our knowledge, this is the first attempt to embed risks into executable business
processes and enable their automatic detection at run-time.

This work suffers from several limitations, which provide opportunities for future
work. First, it does not support the actual risk mitigation but only risk detection. We
plan to devise a mechanism for automatically generating remedial actions that can be
applied once a risk has been detected at run-time. The idea is to use genetic algorithms
such as simulated annealing [24] to create perturbations on the current process instance
in order to rectify its execution and thus avoid a fault from eventually occurring. Our
previous application of simulated annealing to the problem of automatically correcting
business process models [8] has shown that such perturbations can be obtained very effi-
ciently. The challenge stands in properly defining the objective functions so as to create
meaningful perturbations. Second, the approach’s usefulness and ease of use have not
been evaluated in practice. In this regard, we plan to interview a pool of risk analysts
drawn from our business contacts in Australia. Finally, we plan to equip the risk mod-
eling component with a set of predefined risks, categorized by type and domain (e.g.
approval fraud), which can be used as templates to generate skeletons of risk conditions.
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