
Sara Migliorini1,†
Mauro Gambini1,†
Marcello La Rosa2

Arthur H.M. ter Hofstede2,3

Pattern-Based Evaluation of
Scientific Workflow
Management Systems

1 University of Verona, Italy
2 Queensland University of Technology, Australia
3 Eindhoven University of Technology, The Netherlands
† part of this work was conducted while visiting Queensland University of
Technology, Australia

February 2011

Contents

1 Introduction . 1

2 Overview of Scientific WfMSs . 3
2.1 Scientific vs. Business WfMSs . 3
2.2 Advantages and Disadvantages . 5

3 Introduction to Kepler, Taverna and Triana 7
3.1 Kepler . 7

3.1.1 Modeling Paradigm . 8
3.1.2 Kepler Routing Constructs . 12

3.2 Taverna . 19
3.2.1 Modeling Paradigm . 20
3.2.2 Taverna Routing Constructs . 21

3.3 Triana . 21
3.3.1 Modeling Paradigm . 22
3.3.2 Triana Routing Constructs . 22

4 Pattern-Based Evaluation of Scientific WfMSs 27
4.1 Workflow Control-Flow Patterns . 27

4.1.1 Basic Control-Flow Patterns . 27
4.1.2 Advanced Branching and Synchronization Patterns . . . 34
4.1.3 Multiple Instance Patterns . 47
4.1.4 State-based Patterns . 50
4.1.5 Cancellation and Force Completion Patterns 54
4.1.6 Iteration Patterns . 54
4.1.7 Termination Patterns . 57
4.1.8 Trigger Patterns . 58
4.1.9 Results . 59

4.2 Workflow Data Patterns . 62
4.2.1 Data Visibility Patterns . 62
4.2.2 Data Interaction Patterns . 64

v

vi Contents

4.2.3 Data Transfer Patterns . 67
4.2.4 Data-based Routing . 69
4.2.5 Results . 71

4.3 Workflow Resource Patterns . 73
4.3.1 Creation Patterns . 73
4.3.2 Push Patterns . 74
4.3.3 Pull Patterns . 74
4.3.4 Detour Patterns . 74
4.3.5 Auto-Start Patterns . 75
4.3.6 Visibility Patterns . 75
4.3.7 Multiple Resource Patterns . 75

5 Scientific Workflow Patterns . 77

6 WfMS Design Recommendations . 85

7 Related Work . 87

8 Conclusion . 91

References . 92
References . 92

Chapter 1

Introduction

Scientific Workflow Management Systems (WfMSs) are software systems de-
veloped for automating scientific experiments that need to deal with huge
amounts of data. The main goal of these systems is to facilitate the reuse
and integration of domain specific functions and tools through a graphical
environment. Scientific WfMSs can be used to automate repetitive error-
prone activities, such as data access, integration, transformation, analysis
and visualization, allowing scientists to focus on the domain specific aspects
of their work. At the same time, they optimize workflow execution and re-
source consumption in a transparent way, scheduling the work on distributed
architectures, such as a cluster of computers or a Grid environment.

The effectiveness of a scientific WfMS mainly depends on the available
functions for a particular scientific domain and the integration with domain-
specific tools. The diverse nature of tasks being performed across different
scientific domains (e.g. biology, physics) has led each scientific community to
develop and adopt a new workflow solution best suited for their requirements,
rather than extending an existing solution [1]. As a result, to date there is a
variety of offerings and still no accepted standard scientific WfMS.

In light of this, in this paper we aim to provide a comparative analy-
sis of different scientific WfMSs. The purpose is to evaluate their suitability
independently from the available domain-specific functions. In the Business
Process Management (BPM) community, the Workflow Patterns Initiative [2]
provides a framework to compare the suitability of WfMSs for business pro-
cess design based on a set of recurring features (so-called patterns), as they
are provided by various WfMSs. Inspired by this initiative, we present a
pattern-based evaluation of three well-known open-source scientific WfMSs:
Kepler [3], Taverna [4] and Triana [5]. In doing so, we also compare them with
traditional WfMSs. In particular, we discuss why some groups of patterns are
directly supported by business WfMSs but not by scientific WfMSs. For ex-
ample, we observed that in some cases a pattern is not directly supported
because it is deemed not to be relevant for that application domain; in other
cases this is a reflection of the immaturity of the system. In order to conduct

1

2 1 Introduction

this pattern-based evaluation of scientific WfMSs, we first unambiguously
defined the behavior of the routing constructs offered by the three systems
in question in terms of Colored Petri Nets (CPNs). Moreover, we identified
a set of new workflow patterns emerging from the analysis of the function-
ality offered by the systems investigated. These patterns are not available in
business WfMSs and mainly relate to various ways in which input data can
be prepared and combined before being passed to a particular task. We also
discussed the possibility to support these new patterns in a business WfMS,
taking the YAWL environment [6] as a representative system.

The remainder of this paper is organized as follows. Chapter 2 discusses
the main characteristics of scientific WfMSs and their differences with re-
spect to business WfMSs. Chapter 3 introduces the three considered scientific
WfMSs: Kepler, Taverna and Triana and formalizes their routing constructs.
Chapter 4 presents the pattern-based evaluation of these systems. Chapter 5
formalizes four new workflow patterns that emerged from the analysis of these
systems, while Chapter 6 presents some design recommendations for WfMSs
derived from the strengths of both business and scientific WfMSs. Finally,
Chapter 7 summarizes related work and Chapter 8 draws conclusions.

Chapter 2

Overview of Scientific Workflow
Management Systems

At a glance business WfMSs and scientific WfMSs seem very similar. They
both rely on a graphical representation of a workflow in order to enhance
comprehensibility and ease the modeling activity. This is justified by the fact
that both classes of systems deal with concurrent entities and a graphical
representation can be helpful [7]. In particular, business WfMSs tend to cap-
ture the interaction among different concurrently operating human resources,
while scientific WfMSs are often intended as an integrated problem solving
environment to chain specialized applications. Despite this, business and sci-
entific WfMSs are built upon two substantially distinct execution paradigms
which yields fundamental differences between them. Section 2.1 presents the
main differences between scientific and business WfMSs, whereas Section 2.2
discusses the advantages and disadvantages of scientific over business WfMSs.

2.1 Scientific vs. Business WfMSs

The major difference between scientific and business WfMSs is in their exe-
cution paradigm. Scientific WfMSs are typically data-flow oriented, i.e. the
enablement of workflow tasks is determined by data availability. Business
WfMSs are control-flow oriented, this means that task enablement is deter-
mined by the relative temporal ordering imposed on tasks.

More precisely, scientific WfMSs rely on the Process Networks computa-
tional model [8], in which tasks can run in parallel exchanging data through
ideally unbounded channels1. A data-flow dependency A 99K B between two
tasks A and B means that B may need some data produced by A to execute.
However, A and B can potentially execute in parallel, because A can produce
its output even before its completion, or the data produced by A may not

1 Kepler represents an exception, since it also provides other computational models,
see Chapter 3.

3

4 2 Overview of Scientific WfMSs

be needed for a particular execution instance of B. In this kind of system
data are exchanged among tasks through ideally unbounded channels inside
tokens, capturing both the data and the fact that data are available. In the
following we refer to this kind of token as data token.

Business WfMSs on the other hand are control-flow oriented, i.e. they focus
on the definition of the temporal and logical relationships among tasks [9],
which determine a partial order for task enablement. The semantics of a
business workflow can be described in terms of Petri Nets [10] and classic
control-flow structures based on task termination relationships. A control-
flow dependency A → B between two tasks A and B means that an instance
of B shall only run after the completion of an instance of A. In business
WfMSs the concept of token coincides with the concept of thread of control.

The execution paradigm adopted by business WfMSs makes it simpler to
understand workflow execution, because the control-flow is made explicit and
does not need to be derived from data dependencies. In scientific workflows
the control-flow can be hard to deduce, as it is defined in terms of fine-
grained data exchanges. Modeling control-flow intensive tasks by only using
data-flow constructs often leads to overcomplicated models [11, 12]. For this
reason the majority of scientific WfMSs provide some specialized modeling
constructs, here called routing constructs, to explicitly describe control-flow
dependencies such as loops or conditional branches. The adoption of a data-
flow computational model in place of a control-flow one, determines three
fundamental differences between scientific and business WfMSs:

1. Data tokens vs. shared variables.
In business WfMSs data are usually stored inside variables which are
shared among tasks inside a predefined scope. In scientific WfMSs on
the other hand, there are no shared variables and tokens represent both
the availability of data and the data values themselves. In this way each
task receives its own copy of the data and its execution generally does
not produce side effects for the other tasks. To clarify this aspect, let us
consider a task A which needs an input value that may be produced by
both a task B and a task C. Suppose that this input value is stored into
a shared variable x and B writes a value b into x. If C writes another
value c before A has read the value b, this value will be lost. Conversely,
in scientific WfMSs the data produced by B and C are queued into a
channel and retained until A consumes both of them.

2. Self-concurrent vs. self-sequential behavior.
In scientific workflows each task can safely execute concurrently with
itself. If a data-flow dependency is defined between two tasks A and B,
as soon as an instance of A produces the necessary data, a new instance
of B can start executing concurrently with other instances of B. This
characteristic of scientific WfMSs reflects the need in a scientific domain
to run the same process multiple times with different data sets. In business
WfMSs the concurrent execution of the same task needs to be modeled
explicitly, e.g. through a multiple instance task. Such constructs also

2.2 Advantages and Disadvantages 5

require to take into account synchronization issues that may arise from
the execution of multiple instances of a given task. For instance, specific
rules need be defined to merge the values produced by all instances of a
task in a single shared output variable (e.g. an array).

3. Individual semantics vs. collective semantics.
In scientific workflows tokens contain data and are consumed in the order
of their arrival: they are not mutually interchangeable, unless explicitly
stated by some special constructs. Conversely, in business workflows to-
kens represent threads of control that do not carry data information and
usually are not distinguished from each other.

Finally, the purpose of scientific and business WfMSs is different. Business
WfMSs are usually human-centric, their main goal being the coordination of
work performed by various human resources within or across organizations.
In contrast, scientific WfMSs focus on the automation and optimization of
computations performed by one or just a few users, in which human inter-
vention is considered marginal [13, 12]. Moreover, the nature of these inter-
ventions is usually different: no work is assigned to users (i.e. all tasks are
automated), and users may only be involved in taking routing decisions. This
latter paradigm bears close resemblance to system WfMSs used for enterprise
application integration, as opposed to human-centric WfMSs [14].

2.2 Advantages and Disadvantages

The main advantage of scientific WfMSs is the ability to naturally support
parallel computations. Data are contained inside tokens and there are no
shared variables, thus multiple instances of the same activity can safely ex-
ecute in parallel with other instances of the same task or of different tasks.
Parallel computations in business WfMSs on the other hand have to be care-
fully designed, because data aspects are mostly implicit and synchronization
operations must be explicitly managed, as data are usually contained inside
shared variables.

Scientific WfMSs have been developed for supporting long-running inten-
sive computations on huge amounts of data. For this reason, most offerings
support the efficient execution of workflows exploiting Grid technologies.

Scientific WfMSs are more scalable than business ones, because in the
former systems composite tasks can accept the necessary input also when
the computation is started, and they can produce the computed output even
before their completion. Two composite tasks A and B, between which a
mutual relation A 99K B and B 99K A is defined, can start running in parallel
and when the data needed from one task becomes strictly necessary, that
task can suspend itself waiting for this input from the other task. Business
WfMSs can only overcome this limitation by implementing these tasks as
communicating processes, not as simple functions.

6 2 Overview of Scientific WfMSs

A potential problem determined by the adoption of a data-flow paradigm
in scientific WfMSs is the difficulty to follow the workflow execution steps,
because control-flow relations are implicit and based on fine-grained data
exchanges. As a result, it is difficult to keep track of all concurrent task
instances at a time, given that these instances may belong to different parts
of a model which are apparently unrelated to each other.

Another drawback comes from the assumption that scientific workflows are
executed only by one person at a time and human interactions are limited to
perform a choice or provide a missing input. Therefore, little or no support
is provided for human activities inside a process. One may argue that human
interaction is not needed in scientific workflows, due to the nature of the
performed experiments. However, this undoubtedly limits the applicability
of these systems to experiments that largely depend on human interaction
and in which domain expert knowledge plays a major role.

Finally, some systems provide very poor support for the representation
of control-flow relations. Thus, capturing simple routing constructs such as
loops or conditional executions may thus not be possible unless by hard-
coding these constructs in a programming language [12].

Chapter 3

Introduction to Kepler,
Taverna and Triana

This chapter introduces the three open-source scientific WfMSs considered
in this work: Kepler, Taverna and Triana. We chose these systems because
they are among the most mature and used open-source scientific WfMSs [1].

For each system we present the core features and the adopted terminology,
and we formally describe its main routing constructs. A routing construct is
a construct used for capturing workflow logic, such as the routing of tokens,
and not a specific domain function provided by the system. The behavior of
such constructs is formalized in terms of Colored Petri Nets (CPNs) [15]. The
CPN representations presented in this chapter make use of advanced arc ex-
pressions whenever possible for reducing the complexity of the construction.

3.1 Kepler

Kepler [16] is an open-source scientific WfMS developed by the members
of the Science Environment for Ecological Knowledge (SEEK) project and
the Scientific Data Management (SDM) project. It extends Ptolemy II [17], a
software system for modeling, simulating, and designing concurrent, real-time
systems, developed at UC Berkeley.

Kepler inherits from Ptolemy II the support for multiple heterogeneous
models of computations (MoCs), captured by the notion of directors, that al-
low the representation of different kinds of systems. The distinctive character-
istic of Kepler is the separation between the adopted MoC from the structure
of the workflow, which is built combining a set of polymorphic components,
called actors. An actor implements a functionality of interest for a particu-
lar domain, and its behavior can change on the basis of the adopted MoC.
The main idea is that a complex model can be built hierarchically combining
different heterogenous models with different MoCs.

7

8 3 Introduction to Kepler, Taverna and Triana

Table 3.1 Summary of Kepler characteristics.

Developers NSF-funded Kepler/CORE

UC Davis, UC Santa Barbara,

and UC San Diego.

Parent project Ptolemy II

Evaluated Release 1.0.0

Platforms Windows, Linux, Mac OS X

Development Language Java

Workflow Language MoML (XML-based)

License BSD License

Website http://kepler-project.org/

Domain of application Physics, Ecosystems, Bioinformatics

3.1.1 Modeling Paradigm

Kepler relies on an actor-oriented modeling paradigm: a workflow model is
a composition of independent components called actors that represent oper-
ations or data sources. Actors communicate through interfaces called ports.
Ports can be of input, output or mixed type and they are connected through
channels that are directed from the output port of an actor to the input
port of another actor. Each channel can transport a single stream of data. In
addition to ports, actors can have a set of parameters, which configure and
customize their behavior. Parameters can be statically specified during the
workflow design, or dynamically determined through parameter ports.

Given the same actors configuration, different execution semantics can be
specified through the choice of a particular director. A director defines how
actors are executed and how they communicate with each other. The com-
munication between actors is mediated by an object called receiver, which is
provided by the director and determines if the communication is buffered or
synchronous. The behavior of an actor adapts to the execution and commu-
nication semantics provided by the director: this feature is called behavioral
polymorphism.

3.1.1.1 Director Responsibilities

The main activities performed by a director are:

1. It invokes the pre-initialize methods of all actors just before starting the
workflow execution. This method is invoked only once per each execution
(even if there are multiple runs), and prior to all other activities.

2. It type-checks all connections and ports.

3.1 Kepler 9

3. It passes all the necessary information to the next actor by invoking its
initialize method. This method is invoked at each actor run.

4. An actor run usually includes multiple iterations, each of which involves a
call to pre-fire, fire and post-fire methods. The main actor functionalities
are implemented in the fire method.

The sequence of activities performed by a director can be summarized as [16]:

pre-initialize → type-check → (initialize, (pre-fire,fire∗, post-fire)∗)∗

where the asterisk denotes activities that may be executed zero or more times
during each workflow execution.

3.1.1.2 Default execution semantics

The actor execution is centered on the notion of data token that represents a
chunk of data. When an actor receives the necessary input tokens, it can be
executed by the director the required number of times and it produces new
tokens on its output port(s). As long as an actor receives tokens, it usually
continues to be fired and to start executing.

3.1.1.3 Synchronous Data-Flow (SDF) Director

The Synchronous Data Flow (SDF) director is designed for sequential and
simple workflows in which the order of invocation of the actors can be stat-
ically determined from the model before its execution. Components cannot
change the routing of tokens during the execution. In order to use the SDF
director some conditions have to be met:

1. The data consumption and production rate of each actor have to be
constant and declared. If an actor reads one piece of data and computes
a single result in output, it shall always read and output a single data
token. This data rate cannot change during workflow execution.

a. Workflows that require a dynamic control structure, such as the Boo-
leanSwitch actor that sends an output on only one of its two output
ports depending on a control value, cannot be used with an SDF
director because the number of tokens produced in each output port
changes at each execution.

b. The SDF director assumes that each actor consumes and produces
exactly one token per channel on each firing. Actors that do not follow
this convention have to declare the number of tokens they produce
or consume via appropriate parameters.

10 3 Introduction to Kepler, Taverna and Triana

2. By default the SDF director requires that all actors inside the workflow
are connected, otherwise it cannot determine the concurrency relations
between disconnected parts.

Before starting workflow execution, the SDF director pre-calculates the order
in which actors execute and how many times each actor needs to be fired to
complete a single workflow iteration. The SDF director controls the number
of times a workflow is iterated through the iterations parameter. By default,
this parameter is set to 0, which means that the workflow will iterate forever.
Values greater than zero specify the actual number of times the director
should execute the workflow.

3.1.1.4 Dynamic Data-Flow (DDF) Director

The Dynamic Data-Flow (DDF) director, as the SDF director, executes a
workflow in a single execution thread, meaning that tasks cannot be performed
in parallel. However, unlike the SDF director, the DDF director does not
pre-schedule workflow execution: it determines how to fire actors at run-
time, and data production and consumption rates can change during workflow
execution. The iterations parameter of the DDF director is used to specify
the number of times the workflow is iterated. As for the SDF director, the
default value is 0, which means that the workflow will iterate forever.

3.1.1.5 Process Network (PN)

The Process Network (PN) director is designed for managing workflows that
require parallel processing on distributed computer systems. In a PN work-
flow each actor has an independent Java thread and the workflow is driven by
data availability: actors can execute as soon as the necessary input tokens are
available in their input ports. Produced tokens are passed to the connected
actors through channels of unbounded capacity. These channels are persis-
tent: they retain the received tokens until the actor is able to consume them.
A PN workflow terminates when no other components can execute due to the
lack of input data, unlike the previous two directors for which the number of
desired workflow iterations has to be specified. If tokens are always generated
and available to downstream actors, a workflow may not terminate. For in-
stance, the workflow in Fig. 3.1 may not terminate, because the Constant
actors input 01, input 02 and input 03 by default always produce an
output when “asked” by the director. In order to obtain a finite execution of
the workflow, the firingCountLimit parameter of each Constant actor
need to be set to the number of values to be produced.

3.1 Kepler 11

Fig. 3.1 Example of use of the PN director.

3.1.1.6 Continuous Time (CT)

The Continuous Time (CT) director introduces a notion of time for modeling
workflows able to predict how a system evolves over time. Data tokens passed
through the system have a timestamp that the director uses to determine the
step and the stop condition. For instance a CT director can be used to define a
system that predict the population growth over time. The prediction function
is calculated within an interval which is determined by the step condition
(e.g. every hour), until the stop condition is reached (e.g. for a duration of
10 years). The system is usually described in terms of start conditions and
several equations, which are used to predict the state of the system at some
specified time in the future.

3.1.1.7 Discrete Event (DE)

The Discrete Event (DE) director works with timestamps as the CT does.
However, timestamps are not used to approximate functions and schedule
executions, but to measure average wait times and occurrence rates. Actors
send event tokens, which consist of tokens containing data and a timestamp;
the director reads these tokens and places them on a global workflow timeline.

3.1.1.8 Choosing a Director

The choice of a particular director depends on the characteristics of the pro-
cess to be modelled. Table 3.2 summarizes the criteria useful to perform such

12 3 Introduction to Kepler, Taverna and Triana

a choice. The first parameter is the dependence on time, the SDF, DDF and
PN directors do not need to schedule the actors actions at specific times.
The CT director in the other hand is designed to describe dynamic systems
that depend upon a continuously varying time parameter, or workflows that
are used to perform numerical integration; while the DE director is designed
to describe workflows in which events are executed at specified times or for
scheduling simulations (i.e. a queuing system). The second criterion regards
the ability to perform distributed executions: only the PN director provides
this possibility. The final parameter is the need for a constant data rate of the
consumed and produced tokens: only the SDF director has this characteristic.

Table 3.2 Criteria for choosing a particular director.

Director Dependence on time Distributed execution Constant data rate

SDF No No Yes

DDF No No No

PN No Yes No

CT Yes - -

DF Yes - -

Kepler supports hierarchical embedding of a workflow into another work-
flow, depending on the compatibility of their directors. The allowed combi-
nations are determined by two factors: i) the requirements of the director
relative to the actors under its control, e.g. the SDF director requires a con-
stant and declared data consumption and production rate); ii) the seman-
tics exported by the director to the actor within which it is placed, e.g. a
Nondeterministic Merge actor cannot be used in the presence of an
SDF director, as this director does not allow non-determinism during work-
flow execution.

3.1.2 Kepler Routing Constructs

In this section we describe the behavior of some Kepler routing actors in terms
of CPN models. In these models, places are managed as queues, because in
scientific WfMSs tokens are consumed in the order of their arrival. One way
to obtain this behavior with standard CPNs is to use a single control token
for each place that contains a list of data tokens: when a transition fires it
consumes the data token at the head of the list in each place of the preset,
and adds a data token to the tail of the list in each place of the postset. In
graphical representations the head of the list is shown on the left side, while
the tail of the list is shown on the the right side.

3.1 Kepler 13

The Relation Operator

The Relation operator with one incoming channel and several outgoing
channels, duplicates the data token received from the incoming channel to all
the connected outgoing channels. The CPN in Fig. 3.2 shows the behaviour
of this operator with two outgoing channels: all the values contained in input
are duplicated in both out1 and out2. For instance, if input initially contains
the list [a, b, c], then at the end both out1 and out2 will contain the same list.

����� ������������������ ���	
	��

���	
	��

�������� �������� ���	
	��

 �� ��������

Fig. 3.2 A CPN representation of the Kepler Relation operator with one incoming
channel containing the list [a, b, c] and two empty outgoing channels.

The Relation operator with several incoming channels and one outgoing
channel routes the tokens received by any of the incoming channels to the
unique outgoing channel. This type of Relation operator can be used only
with the SDF and DDF directors (i.e. the sequential ones). In this case, the
operator first analyzes the content of the first connected channel and outputs
all the values contained in it, then it proceeds with the second channel and so
on. The behavior of the operator with two incoming channels is represented by
the CPN in Fig. 3.3. At the beginning only transition t1 is enabled, it transfers
the values contained in in1 to out. When no other tokens are available in in1,
a control token is placed in second, enabling transition t2 which transfers the
values contained in in2 to out. For instance, if in1 initially contains the list
[a, b], and out2 contains the list [x, y], at the end out will contain the list
[a, b, x, y]. If at the beginning no tokens are available in in1, transition t1 will
immediately put a control token in second enabling transition t2.

The Nondeterministic Merge Actor

The Relation operator with several incoming channels and one outgoing
channel cannot be used with the PN Director. The merge of multiple channels
with this director can be obtained using the Nondeterministic Merge
actor which reads the tokens contained in the incoming channels and con-
catenates them in an arbitrary order. Given the same content of the incoming
channels, each execution of this actor potentially produces a different output.

14 3 Introduction to Kepler, Taverna and Triana

�������
������

��
���	
	��

������� ���	
	��

����������	
	��

 ���������� �� � ������ ���� ��� ����� � �� �!!����
� �!!������

��
�� �� "# ������ ���� ��� ����� $%��� �� ����

���
Fig. 3.3 A CPN representation of the Kepler Relation operator two incoming
channels and one outgoing channel.

The behavior of a Nondeterministic Merge with two incoming channels
is represented by the CPN in Fig. 3.4. Initially both transitions t1 and t2 are
enabled. Supposing that in1 contains the list [a] and in2 contains the list [b],
depending on which transition is executed first, the final output in place out
can be [a, b] or [b, a].

��
�� ��������������������

������
��
�� ��	
�
�
����������	
�
�
��

��������	
�
�
�� �����
Fig. 3.4 A CPN representation of the Kepler Nondeterministic Merge actor.

The Repeat Actor

The Repeat actor reads a sequence of data tokens and outputs it a spe-
cific number of times. The size of the block can be specified through the
blockSize parameter, while the number of copies is determined by the
numberOfTimes parameter. These two parameters can be fixed at design-
time or determined at run-time using a parameter port. The CPN in Fig. 3.5
shows the behavior of the actor with blockSize equals to one (the repeat
transition reads one value at a time from in) and the number of repetitions
is fixed at design-time to 3 (the value read by repeat is concatenated three

3.1 Kepler 15

times in output). If in initially contains the list [a, b], place out will ultimately
contain the list [a, a, a, b, b, b] and in will then be empty.���������� �������������� ��	
�
�
�����������	
�
�
�� ������ �����
Fig. 3.5 A CPN representation of the Repeat actor with parameters blockSize =
1 and numberOfCopies = 3 fixed at design-time.

The CPN in Fig. 3.6 shows the behavior of the actor when blockSize
equals one and the number of repetitions is determined at run-time. Place
in2 contains the number of repetitions to be performed and is intended as a
place of capacity one, not as a queue: a transition can change the contained
value only by first consuming the existing token and then inserting another
token with the new value. Place in1 contains the data values to be duplicated,
while places p3 and p4 contain control tokens that determine the enablement
of transitions t1 and t2, respectively. Transition t1 reads the next data value
to be duplicated from in1 and puts that value in p1. Similarly transition t2
reads the number of copies to be performed from in2 and puts that value
in p2. Transition t4 executes n times, at each execution it places the data
value held in p1 into the out place and decrements the value n contained in
p2. After n executions of t4, the value in p2 equals zero and transition t3 is
enabled. Transition t3 removes the data value from p1 and enables again t1
and t2 by placing a control token in p3 and p4, respectively. If in1 initially
contains the lists [a, b] and in2 the value 3, at the end out will contain the
list [a, a, a, b, b, b].

���
� � ��� ���������

��
��

�� ��������
	
 ����� 	
�����

	�
	�
�
�
 ��	 ������������������
���

�������������������������� ��� ��� ����
Fig. 3.6 A CPN representation of the Repeat actor with the parameter
numberOfTimes determined at run-time by the value in place in2.

16 3 Introduction to Kepler, Taverna and Triana

The Switch Actor

The Switch actor has two input ports, called input and control, and
one output multiport, called output. This actor routes the data received
through the input port to one of the several channels connected to the
output multiport, on the basis of the value received on the control port.
The control port is used to select the desired output channel. One or more
channels can be connected to the output multiport, if the value received on
the control port is greater than the number of connected channels, the
data value received in input will be lost.

The behavior of the Switch actor with two output ports is represented by
the CPN in Fig. 3.7: the data value read from place input will be transferred
to place out1 if the control value is 1, to place out2 if the control value is 2, or
lost if the control value is different from 1 or 2 (i.e. inserted into place lost).
If place control initially contains the list [1, 2, 1, 3] and place input contains
the list [a, b, c, d], at the end out1 will contain the list [a, c], out2 will contain
the list [b], while the value d will be lost. The generalization of this structure
to the case of a generic number n of output channels is trivial.

���� � �� � ��	� �
� ��� �
��� �����	�� �
� ��
 ����
 �
����������� ��������������������
����������������

����������� ���	�������������
	 ��
	
	
�� �� �!�
��� �����	 �� �
� �� �� � ! �
��� �����	 �� �
� ���� �
��
�

��

 ���
 "� �
Fig. 3.7 A CPN representation of a Switch actor with two output channels.

The Boolean Switch actor has a very similar behavior, except that it
consumes a boolean control value and has exactly two output ports, called
trueOutput and falseOutput. The CPN implementation of this actor
can be obtained from the one in Fig. 3.7 by replacing the arc conditions i = 1
and i = 2 with i = true and i = false, respectively, and dropping the lost
place.

3.1 Kepler 17

The Select Actor

The Select actor has an input multiport called input, an input port called
control, and an output port called output. It selects a piece of data from
one of the incoming channels connected to the input port, on the basis of
the value received on the control port. The control port is used to select
the desired input channel.

The behavior of a Select actor with two input channels can be captured
by the CPN in Fig. 3.8. If the value read from place control is 1, transition
t1 puts a control token in p1, enabling transition t2 that transfers the value
in input1 to place out. If on the other hand the control value is 2, transition
t1 puts a control token in p2 and transition t3 is enabled, determining the
transfer of the value in input2 to out. Place start constraints the execution
of transition t1 to the completion of t2 or t3: initially start contains a token
and t1 can fire consuming that token, then it can execute again only when
t2 or t3 produces another token in the same place. For instance, if control
contains the list [1, 1, 2, 3], input1 contains the list [a, b] and input2 contains
the list [x, y], at the end out will contain the list [a, b, x] and the control value
3 has no effect. The generalization of this structure to a generic number n of
input channels is straightforward.

��� � ��� ��������� ���� ������
���		���
�		�

��
 �
����
�
� ��� �������
 � �����
�
� ��� �����

�

 		�

���
 �
���������� ��� ����������

�� �!��������������"�!�#�����������
!
!�!$��%����� ����

�$
�����
 ��������" &�

��� &� �

Fig. 3.8 A CPN representation of the Select actor with two input channels.

The DDF Boolean Select actor has a very similar behavior, except
that it has exactly two input ports for data and a boolean control value. Its
CPN implementation can be obtained from the one in Fig. 3.8 by substituting
the condition c = 1 and c = 2, with c = true and c = false, respectively.

18 3 Introduction to Kepler, Taverna and Triana

The SyncOnTerminator Actor

The SyncOnTerminator actor receives as input a stream of data. As soon
as a new piece of data is received, it is passed to the output port except
for a particular piece of data which is called terminator, that is produced as
output only when it has been received a certain number of times. Once the
terminator has been produced as output, no other data will be outputted.

The CPN in Fig. 3.9 shows the behavior of a SyncOnTerminator actor
with a terminator value equal to “term” and the number of required termi-
nators equal to 2. If the data value consumed by t1 contains a value different
from “term”, this value is directly copied in out, otherwise the counter con-
tained in p1 is incremented. The value in p1 maintains the number of times
the terminator value has been encountered. When this number equals the
predefined limit, the value “term” is produced in the output. Once the value
“term” has been outputted, no other data will be consumed. If source ini-
tially contains the list [a, b, term, c, term, f], at the end out will contain the
list [a, b, c, term].

���� �������
�

�� �� � 	
� �
	
��� ������ ��� �
�����	
� �
	�
�

���� �� ������
��
 ������ �!�

����"� �	#	$	%	$	
� �
	$	" 	$	
� �
	$	� 	����� �!���
�� �� �& 	
� �
	
��� ��������� ��� ��

Fig. 3.9 CPN representation of the SyncOnTerminator actor.

The Ramp Actor

The Ramp actor works like a for loop: it allows one to execute a task a
specified number of times. The number of iterations is controlled through
the parameters firingCountLimit, the number of times the actor should
iterate, init, the initial value of the counter, and step, the increment to
apply to the counter at each iteration.

The behavior of the Ramp actor is exemplified by the CPN in Fig. 3.10:
places limit, index and step contain the values of the parameters firingCo-
untLimit, index and step, respectively. If the counter value read from

3.2 Taverna 19

index is smaller than the limit value, transition t1 puts the counter value in p1

and another iteration of the transition fun is performed, then t2 increments
the counter value with the value of step and places this updated value in index.
Otherwise, if the counter is greater than or equal to the limit, a control token
is produced in out.

��� �
����� � �� ��	
� ���

�

������ � � ��	
� ���

�

����

�� ��
���

��
��

�� ���
��
� �������
� � ���
���� ����

������� ���
Fig. 3.10 A CPN representation of the Ramp actor.

3.2 Taverna

Taverna [18] is a free software tool for designing and executing scientific
workflows, created by the myGrid project. It was originally developed in the
biological domain and its primary aim was allowing the construction of a
scientific workflow from numerous remote web services. Therefore, a signif-
icant effort was put towards collecting and organizing these web services
into a reusable set of components. Nowadays, Taverna is used in many do-
mains, such as bioinformatics, chemioinformatics, astronomy, social sciences
and music. Moreover, it is directly integrated with the myExperiment initia-
tive1 whose aim is to collect, find, use and share scientific workflows.

A workflow in Taverna is specified through the Scufl (Simplified Concep-
tual Unified Flow Language) language. Scufl is essentially a data-flow lan-
guage that allows the definition of graphs of data interactions among different
local and remote services provided by external applications.

1 http://myexperiment.org

20 3 Introduction to Kepler, Taverna and Triana

Table 3.3 Summary of Taverna characteristics

Developers myGrid Team

University of Manchester, UK

Parent project myGrid

Evaluated Release 2.1

Platforms Windows, Linux, Mac OS X

Development Language Java

Workflow Language Scufl

License LGPL

Website http://www.taverna.org.uk

Application domains Biology, Bioinformatics, Chemioinformatics

Astronomy, Social Sciences and Music

3.2.1 Modeling Paradigm

A workflow in Taverna contains a set of individual steps called processors.
Each processor receives data on its input ports, performs some operations on
these data and produces data on its output ports. Processors are connected
with each other through data links that join the output port of one processor
to the input port of another.

Beside data links, some additional ordering constraints among processors
that do not require a flow of data can be defined. These links are called
coordination links: they specify precedence conditions among processors, such
as a processor can execute only when another one has completed.

A workflow can have zero or more formal inputs that are represented as
sources. Similarly, the global outputs of a workflow are represented as sinks.
The execution of a workflow starts from the sources and finishes when all
sinks have either produced their output or failed.

Contrary to Kepler, Taverna provides only one model of computation.
Each processor in Taverna is considered as a function and two processors
connected with a data link represent a function composition, if processor A
corresponds to function fA and processor B to function fB , then the result
of B will be fB(fA(x)) where x is the input provided to A.

Taverna provides a configurable mechanism for fault management: if a
service fails, for instance because the underlying machine is down, it will be
initially invoked again a certain number of times, after which an alterna-
tive service will be invoked. Users can explicitly specify a list of alternatives
for each processor. A Scufl processor definition includes: the implementing
services, the number of retries, the time between retries, and optionally an
alternative service to be used if the service of first choice fails.

3.3 Triana 21

3.2.2 Taverna Routing Constructs

Taverna offers several computational processors in many scientific fields, how-
ever it does not provide routing constructs, except for a merge operator. This
choice perhaps comes from the simplicity with which routing constructs (e.g.
if-then-else, or switch-case statements) can be defined directly in the work-
flow editor using custom Beanshell scripts. In this section we describe the
behavior of the merge construct using CPNs. The same assumptions made
in Sec. 3.1.2 about the management of places as queues are also used here.

The Merge Operator

The Merge operator routes into a unique channel the data values received
from its connected incoming channels. Its CPN representation is the same
as that of the Kepler Relation operator with multiple incoming channels
and one outgoing channel. An example of this operator with two incoming
channels is depicted in Fig. 3.3.

3.3 Triana

Triana [19] was originally developed as a visual workflow-based problem-
solving environment for the gravitation wave detection project GEO600 and
used as a rapid analysis tool for wave data. Triana workflows were initially
built from Java tools and executed on local machines or remote ones us-
ing Java RMI. More recently, Triana components have evolved into flexible
proxies that can represent a number of local and distributed primitives. For
instance, they can represent a Java object, a legacy system, a web-service, a
web-service resource framework, a Grid job, a local file or a remote file.

Table 3.4 Summary of Triana characteristics

Developers Cardiff University

Parent project –

Evaluated Release 4.0

Platforms Windows, Linux, Mac OS X

Development Language Java

License Apache open source license version 2

Website http://www.trianacode.org/

Application domains Bioinformatics

22 3 Introduction to Kepler, Taverna and Triana

3.3.1 Modeling Paradigm

Triana workflows are composed of components, which accept, process and
output data. A component is a unit of execution with a defined port interface.
It has several properties, such as an identifier, input and output ports, a
number of optional parameters, and a proxy/reference to the part of the
component that will actually do the work. The component specification is
encoded in XML with a format similar to WSDL, while the source code of
each component can be viewed, modified and recompiled directly within the
environment. A component may be implemented as a Java method call on a
local object or as an interface to a distributed component which can be:

• a grid-oriented component : an application that is executed on the Grid
via a Grid resource manager (e.g. GRAM, GRMS, Condor/G).

• a service-oriented component : an application that can be invoked via a
network interface, such as a web service or a JXTA service.

Grid-oriented and service-oriented components can be used together inside
the same workflow.

As in the other scientific WfMSs, in Triana dependencies among tasks are
mainly data dependencies. However, Triana also supports the representation
of control-flow dependencies through special trigger messages.

3.3.2 Triana Routing Constructs

As done for the other two systems, in this section we describe the behavior
of the Triana routing constructs using CPNs. The same assumptions made
in Sec. 3.1.2 about the management of places are also valid here.

The Loop Component

The Loop component allows one to iterate the execution of a task or a
sequence of tasks. It initially waits for data in its first input port (pre-loop
state). As a piece of data is received on this port the defined exit condition
of the loop is evaluated. If this condition is met, the received data value
is redirected to the first output port. Otherwise, the received data value is
redirected to the second output port and the loop enters an in-loop state. An
in-loop state is the same as the pre-loop state, except that data are awaited
for on the second input port. During an in-loop state, when a data value is
received in the second input port, the exit condition is evaluated and if it is
met, the received data value is redirected to the first output port, otherwise
it is redirected to the second input port. On the basis of the defined exit
condition, two kinds of loops can be defined:

3.3 Triana 23

1. Count Loop: which iterates a specified number of times (similar to a for
statement in an imperative programming language).

2. While Loop: which iterates as long as a particular condition is met.

The behavior of the Loop component with a while loop condition is ex-
emplified by the CPN in Fig. 3.11. The in place contains the data values,
while the par place contains the parameter for the loop test. If the current
data value is smaller than the value in par, a loop iteration is performed and
the new computed value will replace the old one in in. Otherwise, if the data
value is equal to or greater than the par value, it is redirected to place out.
If place in initially contains the list [8, 3, 5] and par is equal to 20, at the
end place out will contain the list [64, 81, 25], as transition fun computes the
double of the received value, which is stored back in in.

� ���� � ��� �������
��

	
 � ��
���
 ���� ��� �����
�
����

����������
�� ����� ��������

������ !"!#�

$%�

	

	
 � &
���
 ���� ��� �����

�������' 	�
���

��
����

(�)�*�+��(�
�, -��������

Fig. 3.11 The CPN representation of the Loop component of Triana.

The If Component

The If component has two input ports: the integer value received from the
first port is used for evaluating a condition, based on which the data value
received from the second port is redirected to one of the two output ports.
In particular, if the value received from the first input port is less than the
specified If parameter, the data value received from the second input port
is produced on the first output port, otherwise the data value is produced on

24 3 Introduction to Kepler, Taverna and Triana

the second output port. The If condition can only be a comparison between
integer values.

The behavior of the If component is captured in the CPN of Fig. 3.12:
place in contains the integer values used to evaluate the condition, while par
contains the component parameter used in the condition, and data contains
the data values. Transition t1 compares the current in value with the par
one. If the in value is less than the parameter, the data value is outputted
in out1, otherwise it is outputted in out2. If in contains the list [9, 3, 7], data
contains the list [a, b, c] and par contains the value 7, at the end place out1
will contain the list [b], while out2 will contain the list [a, c].

���� ���� ��� � �	
���
 ������ �� ��� ���� � �
���
 ������ �� ��� ��

��

����
����������� ����������
� � �� ��! �"���� ����� � �

#$��������� ��������#$��
�
 ����� ����

Fig. 3.12 The CPN representation of the If component of Triana.

The Duplicator Component

The Duplicator component duplicates the value received from its input
port to each of its output ports. The CPN representation of this component
is the same as that of the Kepler Relation operator with one incoming
channel and multiple outgoing channels depicted in Fig. 3.2.

The Merge Component

The Merge component waits to receive a data value from at least one of its
input ports; the received value is immediately redirected to its output port.
A parameter can be specified to determine the order in which the received
values are produced for the output when an input is available in more than
one input port at the same time. The CPN representation of this component
when the order parameter is not specified, is the same as that of the Kepler
Nondeterministic Merge actor depicted in Fig. 4.13. The CPN repre-

3.3 Triana 25

sentation of this component when an order parameter is specified, is the same
as that of the Kepler Relation operator with multiple incoming channels
and one outgoing channel in Fig. 3.3.

Chapter 4

Pattern-Based Evaluation of Scientific
Workflow Management Systems

In this chapter we analyze the three scientific WfMSs introduced in Sec. 3 in
terms of workflow patterns support. For the evaluation we consider only the
standard constructs provided by the default distribution and we do not refer
to any ad-hoc extension or third-party additional library. In the following the
term task is used to uniformly denote a Kepler actor, a Taverna processor or
a Triana component.

4.1 Workflow Control-Flow Patterns

Workflow Control-Flow Patterns (WCPs) [20] describe a set of recurring fea-
tures that are commonly offered by WfMSs for defining the flow of control
among various tasks.

In scientific WfMSs dependencies among tasks are data dependencies: a
relation A 99K B between A and B means that B may need some data
produced by A to complete its execution. A control-flow dependency A → B
on the other hand is concerned with the execution termination of tasks: a
relation between A and B means that B can start to execute only when A
terminates. A control-flow dependency can always be represented in terms of
a data dependency by assuming that A produces an output only just before
completing; while the opposite does not hold. During the following analysis,
we always assume that the output is produced only at task completion.

4.1.1 Basic Control-Flow Patterns

Basic Control-Flow patterns capture elementary aspects of process control.

27

28 4 Pattern-Based Evaluation of Scientific WfMSs

Wcp-01 Sequence

Description – A task in a process is enabled after the completion of a pre-
ceding task in the same process [20].

Realization – Given the assumption stated above about the possibility to
mimic a control-flow dependency through a data-flow dependency, a sequence
relation between two tasks A and B can be obtained in all the three systems
by defining a data-flow dependency between A and B.

Fig. 4.1 depicts an example of the Sequence pattern in Kepler: the ac-
tor monitor can execute only when the previous actor add completes and
produces an output value.

Fig. 4.1 Example of Wcp-01 Sequence in Kepler.

Taverna allows one to define two kinds of dependencies between tasks: data
links, which represents data dependencies, and coordination links, which rep-
resents control-flow dependencies of kind run-after. The example in Fig. 4.2
depicts a set of tasks among which data links (black arrows) and coordination
links (gray lines) are defined: even if, the various Create Lots Of Strings
processors can be executed in parallel, the coordination links defined among
them ensure that they are sequentially executed.

Finally, Fig. 4.3 depicts an example of the Sequence pattern in Triana:
the Sqrt component can execute only when Random has completed; in a
similar way DoubleView can start only when Sqrt completes and outputs
the computed value.

Wcp-02 Parallel Split

Description – The divergence of a branch into two or more parallel branches
each of which execute concurrently [20].

Realization – The Kepler Relation operator can be used to broadcast the
incoming data to different channels and thus to activate different subsequent

4.1 Workflow Control-Flow Patterns 29

Fig. 4.2 Example of Wcp-01 Sequence in Taverna with some data and control-flow
dependencies defined among tasks.

Fig. 4.3 Example of WCP-01 Sequence in Triana.

actors. In the example of Fig. 4.4 the value contained in input is passed to
all the subsequent tasks task 01, task 02 and task 03, and these may
execute in parallel. In this case data tokens are used also as a control token.

Fig. 4.4 Example of Wcp-02 Parallel Split implemented in Kepler with the Relation
operator. The constant value contained in input is passed to all the subsequent tasks.

In Taverna the output port of a processor A can be connected with
the input port of more than one processor B1, . . . , Bn, in this way af-
ter the completion of A, all the other processors B1, . . . , Bn can start to
execute in parallel. In the example of Fig. 4.5 the output produced by

30 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.5 Example of Wcp-02 Parallel Split implemented in Taverna by connecting
the same output port of a processor to the input ports of several other processors.

Create Lots Of Strings is redirected to all the subsequent activities that
can start executing in parallel.

In Triana a Parallel Split can be obtained by simply increasing the number
of output ports of a component. In this way a copy of the produced data
is generated in each output port of the task. Fig. 4.6 depicts an example
of a Parallel Split realized by augmenting the number of output ports of
ConstGen: the produced data value is redirected to all connected components
that are enabled in parallel. Moreover, in Triana a Parallel Split can also

Fig. 4.6 Example of Wcp-02 Parallel Split implemented in Triana augmenting the
number of output ports of a component.

be obtained through the Duplicator component which redirects the data
value received in input to each of its output ports. In Fig. 4.7 the data value
received in the input port of Duplicator is redirected to all its output
ports (there can be more than two) enabling all the subsequent ConstView
components in parallel.

Fig. 4.7 Example of WCP-02 Parallel Split implemented in Triana using the
Duplicator component.

4.1 Workflow Control-Flow Patterns 31

Wcp-03 Synchronization

Description – The convergence of two or more branches into a single subse-
quent branch such that the thread of control is passed to the subsequent branch
when all input branches have been enabled [20].

Realization – In the three considered systems, a task can have one or more
input ports and can execute only when a data token is available in each
channel connected to its input ports. Therefore, any task having more than
one input port can be used for synchronizing the execution of the previous
tasks.

Wcp-04 Exclusive Choice

Description – The divergence of a branch into two or more branches such
that when the incoming branch is enabled, the thread of control is immediately
passed to precisely one of the outgoing branches based on a mechanism that
can select one of the outgoing branches [20].

Realization – The Kepler Switch actor introduced in Sec. 3.1.2, routes the
data received on its input port to only one of the connected output channels,
on the basis of the control value received in the control input port. The
channel number contained in the control value can be determined on the basis
of a logical expression. Fig. 4.8 depicts an example of an Exclusive Choice
implemented with the Switch actor. The only drawback is the possibility to

Fig. 4.8 Example of Wcp-04 Exclusive Choice implemented in Kepler with the
Switch actor.

lose a data token when the control value is out of range, but we can assume
that the conditions are properly implemented to produce a valid output for
the selection. An Exclusive Choice with only two options can also be modeled
in Kepler through the Boolean Switch actor. As explained in Sec. 3.1.2,
this actor outputs the received data value on one of its two output ports on

32 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.9 Example of Wcp-04 Exclusive Choice implemented in Kepler using the
Boolean Switch actor.

the basis of a boolean control value. Fig. 4.9 depicts an example of Exclusive
Choice implemented with the Boolean Switch actor, the data received
from Input is redirected to Monitor 1 or Monitor 2 on the basis of the
control value produced by Comparator.

As regards to Taverna, none of the processors available in the default
catalogue is able to redirect the thread of control to only one of the sub-
sequent branches on the basis of the evaluation of a particular condition.
However, Taverna allows one to directly define and execute custom Bean-
shell scripts inside the design environment. In the example of Fig. 4.10 the

Fig. 4.10 Example of Wcp-04 Exclusive Choice implemented in Taverna creating
an ad-hoc processor bool choice.

4.1 Workflow Control-Flow Patterns 33

bool choice processor is a custom defined Beanshell script: it reads a value
through its input port and based on that value produces an output either in
the true output or the false output port. Moreover, an additional input
port (control) has been added to the subsequent processor for accepting
the control value. This value is used only for synchronization purposes and
is not considered during the computation. Notice that this additional port is
necessary, as we cannot create a control-flow dependency between an output
port (i.e. the true output or false output port of bool choice) and
a processor, but only between two processors. Anyway, the pattern cannot
be considered supported in Taverna, because we have to create from scratch
an additional ad-hoc processor.

In Triana an Exclusive Choice can be implemented using the If compo-
nent which has been explained in detail in Sec. 3.3.2. Fig. 4.11 depicts an
example of an Exclusive Choice: the data value provided by ConstGen is
redirected by the If component to only one of the subsequent Multiply
components on the basis of a condition evaluated on the ConstGen1 value.
An Exclusive Choice with more than two alternatives can be obtained by
concatenating several If components (i.e. the false output port of the If
component representing the first alternative is connected with another If
component representing the second alternative, and so on).

Fig. 4.11 Example of Wcp-04 Exclusive Choice implemented in Triana using the
If component.

Wcp-05 Simple Merge

Description – The convergence of two or more branches into a single sub-
sequent branch such that each enablement of an incoming branch results in
the thread of control being passed to the subsequent branch [20].

Realization – The Kepler Relation operator can be used with the SDF
and DDF director to combine the output produced by several previous actors
into a unique channel, as illustrated in the example of Fig. 4.12. Similarly,
the Nondeterministic Merge actor can be used with the PN director

34 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.12 Example of Wcp-05 Simple Merge implemented in Kepler using the
Relation operator.

to non-deterministically merge the output produced by various actors, as
illustrated in the example of Fig. 4.13.

In Taverna the Merge operator puts into a unique channel the outputs
produced by all the incoming processors. In the example of Fig. 4.14 the
output produced by the two processors Merge String List to a String
and Remove String Duplicates are combined into a unique channel.
Whenever a data value is produced by any of the two processors, a new
instance of the subsequent output processor is generated.

In Triana this pattern can be implemented using the Merge component
explained in Sec. 3.3.2. In the example of Fig. 4.15 the data values produced
by the If and StringGen1 components are redirected into a unique channel
by the Merge component, so that whenever a new data value is produced by
one of these two components, the Merge passes this value to StringView.

4.1.2 Advanced Branching and Synchronization
Patterns

Advanced Branching and Synchronization patterns characterize more com-
plex branching and merging concepts which arise in process modeling.

4.1 Workflow Control-Flow Patterns 35

Fig. 4.13 Example of Wcp-05 Simple Merge implemented in Kepler using the
Nondeterministic Merge actor: different executions of the same workflow can pro-
duce different final outputs.

Fig. 4.14 Example of Wcp-05 Simple Merge implemented in Taverna using the
Merge operator which is depicted as a blue circle.

36 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.15 Example of Wcp-05 Simple Merge implemented in Triana using the Merge
component.

WCP-06 Multi Choice

Description – The divergence of a branch into two or more branches such
that when the incoming branch is enabled, the thread of control is immediately
passed to one or more of the outgoing branches based on a mechanism that
selects one or more outgoing branches [20].

Realization – In Kepler a Multi-Choice can be implemented using the
Relation operator that broadcasts the incoming data to all the connected
output channels and a Boolean Switch actor for each of these channels.
The behavior of both components has been described in depth in Sec. 3.1.2. In

Fig. 4.16 An Example of Wcp-06 Multi Choice implemented in Kepler using the
Relation operator and several Boolean Switch actors.

the example of Fig. 4.16, one or more of the three tasks task 01, task 02
and task 03 can be enabled in parallel on the basis of the evaluation of
the conditions condition 01, condition 02 and condition 03, respec-
tively. If a condition evaluates to true, the corresponding task is executed;
otherwise a skip is performed (the incoming data is directly passed to the

4.1 Workflow Control-Flow Patterns 37

subsequent activity through the false port). In the example of Fig. 4.16
the conditions are simply constant values, but they can be the result of any
complex expression. In order to ensure the presence of a default branch, these
expressions have to be defined so that one of them is valid when all the other
expressions are false. Even if the model represented in Fig. 4.16 can be con-
sidered a solution for obtaining a Multi Choice in Kepler, in [20] the authors
explicitly stated that this work-around is not considered to constitute direct
support for the pattern.

In Taverna the implementation of this pattern requires the availability of
the bool choice Beanshell script described for the Exclusive Choice pat-
tern (Wcp-04). As a consequence, Multi Choice is not supported in Taverna.

In Triana a Multi Choice can be implemented by broadcasting a particu-
lar value (Wcp-02 Parallel Split) to many If components. Fig. 4.17 depicts
an example of a Multi Choice: one or more Multiply components can be
enabled on the basis of the evaluation of the corresponding If condition.
However, this solution is not considered as direct support for the pattern.
Moreover, as for Kepler, the presence of a default branch has to be guaran-
teed by a proper definition of the conditions associated with the various If
components.

Fig. 4.17 An example of Wcp-06 Multi Choice implemented in Triana augmenting
the output ports of the ConstGen1 component and using several If components.

38 4 Pattern-Based Evaluation of Scientific WfMSs

Wcp-07 Structured Synchronizing Merge

Description – The convergence of two or more branches (which diverged
earlier in the process at a uniquely identifiable point) into a single subsequent
branch such that the thread of control is passed to the subsequent branch when
each active incoming branch has been enabled. The Structured Synchronizing
Merge occurs in a structured context, i.e. there must be a single Multi-Choice
construct earlier in the process model with which the Structured Synchroniz-
ing Merge is associated and it must merge all of the branches emanating from
the Multi-Choice. These branches must either flow from the Structured Syn-
chronizing Merge without any splits or joins or they must be structured in
form (i.e. balanced splits and joins) [20].

Realization – A Structured Synchronizing Merge requires that the involved
branches have diverged earlier in the process at a uniquely identifiable point.
In particular, this point can be a Multi Choice (Wcp-06). According to the
Multi Choice implementation previously given, in Kepler a Structured Syn-
chronizing Merge can be obtained by combining each pair of branches gen-
erated by the same Boolean Switch actor through a Relation operator
(or Nondeterministic Merge actor), or a DDF Boolean Select with
the same condition of the corresponding Boolean Switch. Then the out-
put channels of these Relation operators, or DDF Boolean Selector
actors, are synchronized through another actor with multiple input ports.
Fig. 4.18 illustrates a possible implementation of this pattern: one, two or
all three branches outgoing from the initial Relation operator can be ac-
tive, depending on the evaluation of the condition associated with the various
Boolean Switch actors. Each DDF Boolean Select actor is connected
with the same condition as its corresponding Boolean Switch actor, in
this way it awaits the completion of the branch if this is active, or executes
immediately in the other case. The same behavior can be obtained by sub-
stituting the DDF Boolean Select actors with Relation operators or
Nondeterministic Merge actors which do not require a connection with
the enablement conditions.

The same implementation can be also obtained in Triana using a Merge
component in place of each Relation operator. Fig. 4.19 depicts an example
of the implementation of this pattern: the Add component is enabled only
when the active Multiply components have completed.

Taverna does not support this pattern, because it has no processors able
to selectively redirect a value to one channel.

Wcp-08 Multi Merge

Description – The convergence of two or more branches into a single sub-
sequent branch such that each enablement of an incoming branch results in

4.1 Workflow Control-Flow Patterns 39

Fig. 4.18 An Example of Wcp-07 Structured Synchronizing Merge in Kepler that
synchronizes one, two or all three branches depending on which of them are active.

the thread of control being passed to the subsequent branch [20].

Realization – The difference between this pattern and its safe version Wcp-
05 simple Merge is that in the former it is possible for more than one incoming
branch to be active simultaneously, while for the latter only one incoming
branch can be active, i.e. considering its CPN implementation, the place p
in which the merge is performed must be safe and cannot contain more than
one token at a time. Therefore, the distinction between these two patterns
concerns the context in which they are used. For all the three considered
systems, the implementations given for Wcp-05 can be also used in an unsafe
context, producing the required behavior. Therefore, Wcp-08 is supported
by all of them.

40 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.19 A Example of Wcp-07 Structured Synchronizing Merge in Triana that
synchronizes one, two or all three branches depending on which of them are active.

Wcp-09 Structured Discriminator

Description – The convergence of two or more branches into a single subse-
quent branch following a corresponding divergence earlier in the process model
such that the thread of control is passed to the subsequent branch when the
first incoming branch has been enabled. Subsequent enablements of incoming
branches do not result in the thread of control being passed on. The Structured
Discriminator construct resets when all incoming branches have been enabled.
The Structured Discriminator occurs in a structured context, i.e. there must
be a single Parallel Split construct earlier in the process model with which the
Structured Discriminator is associated and it must merge all of the branches
emanating from the Structured Discriminator. These branches must either
flow from the Parallel Split to the Structured Discriminator without any splits
or joins or they must be structured in form (i.e. balanced splits and joins) [20].

Realization – The example in Fig. 4.20 illustrates a possible implemen-
tation of this pattern in Kepler where task 03 represents the discrimina-
tor. This actor needs two inputs, the first from a Relation operator (or a
Nondeterministic Merge) that merges into a unique channel the data
produced by the branches to be synchronized, and the second from another
distinct branch. The second branch (containing the actor dummy) produces
only one value, therefore task 03 is enabled only one time consuming the
first data value produced by one of the branches to be synchronized and
blocking all the other data tokens that subsequently arrive. Even if this solu-
tion is able to simulate the behavior of a blocking discriminator in an acyclic
context, it is not able to reset the construct when exactly one piece of data is

4.1 Workflow Control-Flow Patterns 41

received from each channel connected with the Relation operator, remov-
ing the unnecessary ones from the workflow. Moreover, a dummy constant
value or a trigger port has to be used for ensuring a single enablement of the
subsequent actor, this input acts as a control value and does not influence
the computation. Therefore, the pattern cannot be considered supported.

Fig. 4.20 An Example of Wcp-09 Structured Discriminator implemented in Kepler.

This solution can be implemented also in Triana with the same consider-
ations about the impossibility to reset the construction in a cyclic context,
thus the pattern cannot be considered supported. Fig. 4.21 depicts an exam-

Fig. 4.21 An example of Wcp-09 Structured Discriminator implemented in Triana.
The red arrows denote trigger connections.

ple of an implementation of this pattern in Triana where the discriminator is
represented by the Add2 component. As for the actor task 03 in Fig. 4.20,
Add2 needs two inputs, one from the Merge component that merges into a
unique channel the output produced by the branches to be synchronized, and

42 4 Pattern-Based Evaluation of Scientific WfMSs

the other one from the ConstGen4 component. Since the latter component
produces one data token only, Add2 is enabled only once, exactly after the
completion of one of the branches to be synchronized.

The implementation provided for Kepler and Triana cannot be adopted
in Taverna, because the Constant processor used for generating the syn-
chronization token, always provides a value any time it is invoked and there
is no way to limit the number of firings, as in Kepler. Let us consider the
example in Fig. 4.22, it depicts an attempt to implement a discriminator
in Taverna: the outputs of the two processors String constant 2 and
String constant 3 are put into a unique channel by the Merge opera-
tor. The processor String constant should produce a unique value, so
that Concatenate two strings will be enabled only one time as soon as
one between String constant 2 or String constant 3 has completed,
while the output of the other processor will be discarded. Unfortunately,
String constant produces a data value any time one of the other two
processors terminates, thus the remaining activity is not blocked. In Taverna
when a processor receives inputs from more than one processor, if one of them
produces a constant value, as String constant, a balancing of its tokens
is applied by default. In this way, any time the other processors produce a
value, a constant is also produced, regardless of how many times the constant
processor has been executed so far. This happens also in Kepler, but it pro-
vides the possibility to limit the number of firings for a constant actor, while
Taverna does not. Therefore, the pattern cannot be considered supported.

Fig. 4.22 An attempt to implement Wcp-09 Structured Discriminator in Taverna.

4.1 Workflow Control-Flow Patterns 43

Wcp-28 Blocking Discriminator

Description – The convergence of two or more branches into a single subse-
quent branch following one or more corresponding divergences earlier in the
process model. The thread of control is passed to the subsequent branch when
the first active incoming branch has been enabled. The Blocking Discrimina-
tor construct resets when all active incoming branches have been enabled once
for the same process instance. Subsequent enablements of incoming branches
are blocked until the Blocking Discriminator has reset [20].

Realization – The same considerations presented for Wcp-09 Structured
Discriminator are valid for the three systems also when the branches to be
synchronized come from different points of divergence. Fig. 4.23 depicts an
example of Blocking Discriminator in Kepler which is similar to the structured
one in Fig. 4.20; while Fig. 4.24 depicts an example of Blocking Discriminator
in Triana which is similar to the one in Fig. 4.21. However, as for Wcp-09
none of the three systems directly support the pattern.

Fig. 4.23 An example of Wcp-28 Blocking Discriminator implemented in Kepler.

Wcp-29 Cancelling Discriminator

Description – The convergence of two or more branches into a single subse-
quent branch following one or more corresponding divergences earlier in the
process model. The thread of control is passed to the subsequent branch when
the first active incoming branch has been enabled. Triggering the Cancelling
Discriminator also cancels the execution of all of the other incoming branches
and resets the construct [20].

44 4 Pattern-Based Evaluation of Scientific WfMSs

Fig. 4.24 An example of Wcp-28 Blocking Discriminator implemented in Triana.

Realization – The Canceling Discriminator pattern cannot be implemented
in any of the analyzed systems, because they are not able to withdraw an
activity or eliminate data tokens previously produced.

Wcp-30 Structured Partial Join

Description – The convergence of two or more branches (say m) into a single
subsequent branch following a corresponding divergence earlier in the process
model such that the thread of control is passed to the subsequent branch when
n of the incoming branches have been enabled where n is less than m. Subse-
quent enablements of incoming branches do not result in the thread of control
being passed on. The join construct resets when all active incoming branches
have been enabled. The join occurs in a structured context, i.e. there must be
a single Parallel Split construct earlier in the process model with which the
join is associated and it must merge all of the branches emanating from the
Parallel Split. These branches must either flow from the Parallel Split to the
join without any splits or joins or be structured in form (i.e. balanced splits
and joins) [20].

Realization – A Structured Partial Join can be implemented in Kepler sim-
ilarly to the Structured Discriminator using a certain number of dummy to-
kens. In particular, as regards to the example in Fig. 4.20, the input dummy
has to be a sequence of length k, where k is the number of tasks to be syn-
chronized, or it can be a single constant value with firingCountLimit
equals to k. In either case, there is no guarantee that exactly k different
branches will be synchronized. Moreover, as for the Blocking Discriminator
this construction cannot be reset. Therefore, the pattern is not supported in
Kepler nor in Triana.

4.1 Workflow Control-Flow Patterns 45

For Taverna the considerations stated for the Structured Discriminator
hold also for this pattern, thus Wcp-30 is not supported in this system
either.

Wcp-31 Blocking Partial Join

Description – The convergence of two or more branches (say m) into a sin-
gle subsequent branch following one or more corresponding divergences earlier
in the process model. The thread of control is passed to the subsequent branch
when n of the incoming branches has been enabled (where 2 = n < m). The
join construct resets when all active incoming branches have been enabled once
for the same process instance. Subsequent enablements of incoming branches
are blocked until the join has reset [20].

Realization – The same considerations stated for Structured Partial Join
(Wcp-30) are also valid for the three systems in an unstructured context,
thus this pattern is not supported either.

Wcp-32 Cancelling Partial Join

Description – The convergence of two or more branches (say m) into a sin-
gle subsequent branch following one or more corresponding divergences earlier
in the process model. The thread of control is passed to the subsequent branch
when n of the incoming branches have been enabled where n is less than m.
Triggering the join also cancels the execution of all of the other incoming
branches and resets the construct [20].

Realization – The Canceling Partial Join pattern cannot be implemented
in any of the analyzed systems, because they are not able to withdraw an
activity or eliminate data tokens previously produced.

Wcp-33 Generalised And-Join

Description – The convergence of two or more branches into a single subse-
quent branch such that the thread of control is passed to the subsequent branch
when all input branches have been enabled. Additional triggers received on one
or more branches between firings of the join persist and are retained for fu-
ture firings. Over time, each of the incoming branches should deliver the same
number of triggers to the AND-join construct (although obviously, the timing
of these triggers may vary) [20].

46 4 Pattern-Based Evaluation of Scientific WfMSs

Realization – The same considerations presented for the synchronization
pattern (Wcp-03) also hold in an unstructured context. Therefore, a gener-
alized And-Join can be obtained by connecting the output ports of the tasks
to be synchronized with the input ports of a synchronizing task.

Wcp-37 Local Synchronizing Merge

Description – The convergence of two or more branches which diverged ear-
lier in the process into a single subsequent branch such that the thread of con-
trol is passed to the subsequent branch when each active incoming branch has
been enabled. Determination of how many branches require synchronization
is made on the basis on information locally available to the merge construct.
This may be communicated directly to the merge by the preceding diverging
construct or alternatively it can be determined on the basis of local data such
as the threads of control arriving at the merge [20].

Realization – This pattern is not supported by any of the three analyzed
systems, because there is no way to determine the number of active branches.

Wcp-38 General Synchronizing Merge

Description – The convergence of two or more branches which diverged ear-
lier in the process into a single subsequent branch such that the thread of
control is passed to the subsequent branch when either (1) each active incom-
ing branch has been enabled or (2) it is not possible that any branch that has
not yet been enabled will be enabled at any future time [20].

Realization – This pattern is not supported by any of the three analyzed
systems, because there is no way to determine the number of active branches,
nor to determine if a branch that has not yet been enabled will be enabled
at any future time.

Wcp-41 Thread Merge

Description – At a given point in a process, a nominated number of execu-
tion threads in a single branch of the same process instance should be merged
together into a single thread of execution [20].

Realization – This pattern can be implemented only in Kepler using the
SyncOnTerminator actor described in Sec. 3.1.2. In particular, we can
obtain the pattern by ensuring that each incoming token contains the “ter-

4.1 Workflow Control-Flow Patterns 47

minator” value: after a predefined number of termination tokens have been
received, a single termination token is produced as output.

Wcp-42 Thread Split

Description – At a given point in a process, a nominated number of ex-
ecution threads can be initiated in a single branch of the same process in-
stance [20].

Realization – This pattern can be implemented in Kepler only using the
Repeat actor introduced in Sec. 3.1.2, as illustrated in Fig. 4.25.

Fig. 4.25 An example of WCP-42 Thread Split in Kepler implemented with the
Repeat actor.

4.1.3 Multiple Instance Patterns

Multiple Instance patterns describe situations where there are multiple
threads of execution active in a process model related to the same activity.

Wcp-12 Multiple Instances without Synchronization

Description – Within a given process instance, multiple instances of a task
can be created. These instances are independent of each other and run concur-
rently. There is no requirement to synchronize them upon completion. Each
of the instances of the multiple instance task that are created must execute
within the context of the process instance from which they were started (i.e.
they must share the same case identifier and have access to the same data

48 4 Pattern-Based Evaluation of Scientific WfMSs

elements) and each of them must execute independently from and without ref-
erence to the task that started them [20].

Realization – In scientific WfMSs the creation of multiple instances is nat-
urally supported by the data-flow paradigm: any time a task receives the
necessary input data, a new instance of that task is created. By supplying
a sequence of data tokens to a task, a new instance of the task is created
for each element of the sequence. In particular, if a sequence of length n is
provided to A, the system potentially creates n instances of A, which start
its execution independently from each other until the end of the workflow is
reached, so no synchronization of these instances is performed.

Wcp-13 Multiple Instances with a Priori Design-Time Knowledge

Description – Within a given process instance, multiple instances of a task
can be created. The required number of instances is known at design time.
These instances are independent of each other and run concurrently. It is
necessary to synchronize the task instances at completion before any subse-
quent tasks can be triggered [20].

Realization – None of the analyzed systems support this pattern. Even if
scientific WfMSs support the generation of multiple instances of the same
activity, these instances are not synchronized at completion, but run inde-
pendently from each other until workflow termination.

Wcp-14 Multiple Instances with a Priori Run-Time Knowledge

Description – Within a given process instance, multiple instances of a task
can be created. The required number of instances may depend on a number of
runtime factors, including state data, resource availability and inter-process
communications, but is known before the task instances must be created. Once
initiated, these instances are independent of each other and run concurrently.
It is necessary to synchronize the instances at completion before any subse-
quent tasks can be triggered. [20].

Realization – None of the analyzed systems support this pattern. Even if
scientific WfMSs allow one to generate n instances of the same activity, where
n is known at run-time, the considerations about synchronization issues made
for Wcp-13 also hold in this case.

4.1 Workflow Control-Flow Patterns 49

Wcp-15 Multiple Instances without a Priori Run-Time Knowledge

Description – Within a given process instance, multiple instances of a task
can be created. The required number of instances may depend on a number of
runtime factors, including state data, resource availability and inter-process
communications and is not known until the final instance has completed. Once
initiated, these instances are independent of each other and run concurrently.
At any time, whilst instances are running, it is possible for additional in-
stances to be initiated. It is necessary to synchronize the instances at com-
pletion before any subsequent tasks can be triggered [20].

Realization – None of the analyzed systems support this pattern. Even if
scientific WfMSs allow one to create n instances of the same activity, where n
is dynamically determined at run-time before completion, the considerations
about synchronization issues made for Wcp-13 also hold here.

Wcp-34 Static Partial Join for Multiple Instances

Description – Within a given process instance, multiple concurrent instances
of a task (say m) can be created. The required number of instances is known
when the first task instance commences. Once n of the task instances have
completed (where n is less than m), the next task in the process is triggered.
Subsequent completions of the remaining m−n instances are inconsequential,
however all instances must have completed in order for the join construct to
reset and be subsequently re-enabled [20].

Realization – None of the analyzed systems support this pattern. Two main
problems can be identified: i) how to verify that k of the n instances have been
completed; ii) how to synchronized these k instances. The second problem is
the same as highlighted for the partial join of instances of different tasks
(Wcp-30, Wcp-31). In [21] the authors assume the existence of a Bundle
actor that is able to perform this synchronization. Unfortunately, this ac-
tor is not part of the standard Kepler distribution and cannot be obtained
combining the available actors.

Wcp-35 Cancelling Partial Join for Multiple Instances

Description – Within a given process instance, multiple concurrent instances
of a task (say m) can be created. The required number of instances is known
when the first task instance commences. Once n of the task instances have
completed (where n is less than m), the next task in the process is triggered
and the remaining m− n instances are cancelled [20].

50 4 Pattern-Based Evaluation of Scientific WfMSs

Realization – None of the analyzed systems support this pattern both for the
impossibility to withdraw the remaining activities and for the synchronization
issues described in the previous pattern (Wcp-34).

Wcp-36 Dynamic Partial Join for Multiple Instances

Description – Within a given process instance, multiple concurrent instances
of a task can be created. The required number of instances may depend on
a number of runtime factors, including state data, resource availability and
inter-process communications and is not known until the final instance has
completed. At any time, whilst instances are running, it is possible for ad-
ditional instances to be initiated providing the ability to do so had not been
disabled. A completion condition is specified which is evaluated each time an
instance of the task completes. Once the completion condition evaluates to
true, the next task in the process is triggered. Subsequent completions of the
remaining task instances are inconsequential and no new instances can be
created [20].

Realization – None of the analyzed systems support this pattern for the
same reasons stated for Static Partial Join for Multiple Instances (Wcp-34).

4.1.4 State-based Patterns

State-based patterns describe situations in which the execution depends on
the state of a process instance.

Wcp-16 Deferred Choice

Description – A point in a process where one of several branches is chosen
based on interaction with the operating environment. Prior to the decision, all
branches represent possible future courses of execution. The decision is made
by initiating the first task in one of the branches i.e. there is no explicit choice
but rather a race between different branches. After the decision is made, exe-
cution alternatives in branches other than the one selected are withdrawn [20].

Realization – In Kepler the BrowseUI actor allows one to display a web
page containing an HTML form and retrieve the inserted values as XML
name/value pairs. This actor allows users to chose among different alterna-
tives the next task to perform discarding the other ones. However, interactions
with the external environment are not limited to user choices. Other kinds of

4.1 Workflow Control-Flow Patterns 51

interaction can be the arrival of a message or the expiry of a timer. Therefore,
the pattern cannot be considered directly supported.

In Taverna the Choose processor shows a window with several choices
for the user, once the user has performed a selection, the processor returns
the selected option. However, as for Wcp-04 Exclusive Choice, there are no
available processors able to produce a (control) value only on one of its output
ports based on a data value received as input. Let us consider the example in
Fig. 4.26, the output of the Choose processor (i.e. the user choice) is passed
to the process choice processor, which is a custom Beanshell script that
produces an output on only one of its output ports based on the user choice.
Moreover as for the Exclusive Choice, the additional input ports input1 and
input2 are added to the subsequent processors constant1, respectively,
constant2. In this way only one of them is enabled based on the user choice.
However, even with this custom processor the pattern cannot be considered
directly supported, because as explained for Kepler the interaction with the
external environment cannot be limited to user choices.

Fig. 4.26 An example of WCP-16 Deferred Choice implemented in Taverna using
the Choose processor.

52 4 Pattern-Based Evaluation of Scientific WfMSs

Triana does not support this pattern because there are no components
able to collect inputs from users.

Wcp-17 Interleaved Parallel Routing

Description – A set of tasks has a partial ordering defining the requirements
with respect to the order in which they must be executed. Each task in the set
must be executed once and they can by completed in any order that accords
with the partial order. However, as an additional requirement, no two tasks
can be executed at the same time (i.e. no two tasks can be active for the same
process instance at the same time) [20].

Realization – The three analyzed systems do not impose the existence of a
complete order among tasks. In Taverna and Triana if no data-flow depen-
dencies are defined between two tasks, they are always potentially executed
in parallel, so Wcp-17 is not supported. In Kepler on the other hand the SDF
and DDF directors can execute only one task at a time and the scheduling is
determined on the basis of the declared dependencies. Actors, among which
no data dependencies are defined, can be executed in any order but only one
at a time. Therefore, Wcp-17 can be implemented in Kepler choosing one of
these two directors.

Fig. 4.27 An example of Interleaved Parallel Routing (Wcp-17) in Kepler.

In the example of Fig. 4.27 a data-flow dependency is defined between tasks
add 01 and add 03, and between add 02 and add 03. Between add 01 and
add 02 on the other hand no dependencies are defined. However, the SDF
director ensures that only one of them is executing at a time.

4.1 Workflow Control-Flow Patterns 53

Wcp-18 Milestone

Description – A task is only enabled when the process instance (of which
it is part) is in a specific state (typically a parallel branch). The state is as-
sumed to be a specific execution point (also known as a milestone) in the
process model. When this execution point is reached the nominated task can
be enabled. If the process instance has progressed beyond this state, then the
task cannot be enabled now or at any future time (i.e. the deadline has ex-
pired). Note that the execution does not influence the state itself, i.e. unlike
normal control-flow dependencies it is a test rather than a trigger [20].

Realization – None of the three analyzed systems support this pattern. The
reaching of a milestone can be simulated by a message sent to the task when
the process instance reaches a particular state. However, in the three systems
channels are persistent and there is no way to delete a produced token held
in a channel.

Wcp-39 Critical Section

Description – Two or more connected subgraphs of a process model are
identified as “critical sections”. At runtime for a given process instance, only
tasks in one of these “critical sections” can be active at any given time. Once
execution of the tasks in one “critical section” commences, it must complete
before another “critical section” can commence [20].

Realization – This pattern is not supported in any of the analyzed systems.

Wcp-40 Interleaved Routing

Description – Each member of a set of tasks must be executed once. They
can be executed in any order but no two tasks can be executed at the same
time (i.e. no two tasks can be active for the same process instance at the same
time). Once all of the tasks have completed, the next task in the process can
be initiated [20].

Realization – Interleaved Routing can be considered a specialization of In-
terleaved Parallel Routing (Wcp-17), where tasks are unordered and any
interleaving among them is valid. As regards to the implementation of this
pattern in the three systems, the same considerations made for Wcp-17 still
hold, thus only Kepler directly supports this pattern.

54 4 Pattern-Based Evaluation of Scientific WfMSs

4.1.5 Cancellation and Force Completion Patterns

Description – Cancellation patterns involve the ability to withdrawn an
activity (Wcp-19 Cancel Activity), or a set of task instances in the same
case (Wcp-25 Cancel Region) or an entire process instance (Wcp-20 Cancel
Case). Alternatively, they can involve the cancellation (Wcp-26 Cancel Mul-
tiple Instance Activity) or the forced completion (Wcp-27 Complete Multiple
Instance Activity) of a multiple instance activity.

Realization – None of the analyzed systems supports any cancellation pat-
tern: there is no way to cancel or force the completion of an activity that is
executing or has to be executed in the future.

4.1.6 Iteration Patterns

Iteration patterns capture repetitive behaviour in a workflow.

Wcp-10 Arbitrary Cycles

Description – The ability to represent cycles in a process model that have
more than one entry or exit point. It must be possible for individual entry
and exit points to be associated with distinct branches [20].

Realization – Arbitrary Cycles (Wcp-10) can be implemented in Kepler by
using the Relation operator or the Nondeterministic Merge actor for
representing the various entry points, and the Boolean Switch or Switch
actor for representing the various exit points. Fig. 4.28 depicts an example of
an arbitrary cycle with two entry and two exit points. The same construction
can also be obtained in Triana by substituting the Relation operators with
Merge components and the Boolean Switch actors with If components.

This pattern cannot be represented in Taverna due to the lack of an pro-
cessor for exclusively activating a single branch out of an number of possible
branches on the basis of a particular condition (Exclusive Choice).

Wcp-21 Structured Loop

Description – The ability to execute a task or sub-process repeatedly. The
loop has either a pre-test or post-test condition associated with it that is either
evaluated at the beginning or end of the loop to determine whether it should
continue. The looping structure has a single entry and exit point [20].

4.1 Workflow Control-Flow Patterns 55

Fig. 4.28 An example of Arbitrary Cycles (Wcp-10) in Kepler implemented with
some Relationoperators and Boolean Switch actors.

Realization – In Kepler a Structured Loop can be obtained using the Ramp
actor described in Sec. 3.1.2, which works like a for-loop allowing the execu-
tion of one or more tasks a specified number of times. Fig. 4.29 depicts an ex-
ample implementation of a Structured Loop using this actor: the Ramp actor
represents the unique entry point of the loop, while the Boolean Switch
actor represents the unique exit point. The Ramp is initially enabled after

Fig. 4.29 An example of Structured Loop (Wcp-21) in Kepler implemented with
the Ramp actor.

the completion of the Start actor. It increments the value of the loop index
on the basis of the step parameter and produces in output the incremented

56 4 Pattern-Based Evaluation of Scientific WfMSs

value. This incremented value is used as a trigger message by the Task actor
and is used by the Boolean Switchfor evaluating the exit condition. If the
incremented value is less than the predefined limit, a new instance of Ramp
is executed, otherwise the loop terminates and the Monitor Value actor
is executed. Alternatively, in order to obtain a loop based on a more generic
condition than an index increment (i.e. a generic while-loop instead of a for-
loop), the Ramp can be directly substituted with the involved tasks and the
Boolean Switch can receive the control value from a task implementing
the desired condition. as in Fig. 4.30. In this example the Multiply actor

Fig. 4.30 An example of Structured Loop (Wcp-21) in Kepler implemented with a
Relationoperator and a Boolean Switchactor.

repeatedly doubles the value received in input, until the produced value is
less than 100. In particular, the value produced by this actor is used by the
Comparator actor for evaluating the loop condition and by the Boolean
Switch actor for providing the new input value to Multiply.

In Triana a Structured Loop can be obtained using the Loop component
described in Sec. 3.3.2. Fig. 4.31 depicts an example of use of the Loop
component: initially a data value is provided to Loop by ConstGen, the
loop condition is evaluated, if this condition is false the received data value
is provided to the Incrementer component (it can be any component to
be iterated) and after its execution the loop condition is evaluated again;
otherwise, the loop terminates and the data value is passed to ConstView.
Besides the use of a Loop, Triana allows one to iterate the execution of sev-
eral tasks by grouping them into a unique composite task and by defining a
hidden control task over them. This control task, automatically added when
a group of tasks is created, handles the execution of the group. In the exam-
ple of Fig. 4.32 Group is a group of tasks to which a hidden control task has
been attached. In other words, a condition is defined which determines the
number of times the group is executed before passing control to the subse-

4.1 Workflow Control-Flow Patterns 57

Fig. 4.31 An example of Structured Loop (Wcp-21) implemented in Triana using
the Loop component.

quent task. This is achieved by producing a value which the subsequent task
can consume. Finally, a Structured Loop as the one in Fig. 4.30 can also be

Fig. 4.32 An example of Structured Loop (Wcp-21) implemented in Triana using a
hidden control task attached to Group.

obtained in Triana by substituting the Kepler Relation operator with the
Triana Merge component, and the Kepler Boolean Switch actor with the
Triana If component.

Taverna does not support this pattern because it does not provide any
processor for performing loops or for conditionally activating a branch on the
basis of the evaluation of a particular condition.

Wcp-22 Recursion

Description – The ability of a task to invoke itself during its execution or
an ancestor in terms of the overall decomposition structure with which it is
associated [20].

Realization – None of the analyzed systems supports this pattern.

4.1.7 Termination Patterns

Termination patterns deal with the various ways a workflow can complete.

58 4 Pattern-Based Evaluation of Scientific WfMSs

Wcp-11 Implicit Termination

Description – A given process (or sub-process) instance should terminate
when there are no remaining work items that are able to be done either now
or at any time in the future and the process instance is not in deadlock. There
is an objective means of determining that the process instance has successfully
completed [20].

Realization – Implicit Termination is the default behavior in scientific
WfMSs: a workflow execution terminates when there are not sufficient data
tokens left to execute any task.

Wcp-43 Explicit Termination

Description – A given process (or sub-process) instance should terminate
when it reaches a nominated state. Typically this is denoted by a specific
end node. When this end node is reached, any remaining work in the process
instance is cancelled and the overall process instance is recorded as having
completed successfully, regardless of whether there are any tasks in progress
or remaining to be executed [20].

Realization – This pattern is supported in Kepler only through the Stop
actor, which can be used to terminate a running workflow.

4.1.8 Trigger Patterns

Trigger patterns deal with external signals that may be required to start
certain tasks.

Wcp-23 Transient Trigger

Description – The ability for a task instance to be triggered by a signal from
another part of the process or from the external environment. These triggers
are transient in nature and are lost if not acted on immediately by the receiv-
ing task. A trigger can only be utilized if there is a task instance waiting for
it at the time it is received [20].

Realization – Transient Trigger (Wcp-23) is not supported in any of the
three systems. A trigger can be obtained in scientific WfMSs by adding an
additional input port to a task. The input value received through this port
is not used during the computation, but is useful only for synchronization

4.1 Workflow Control-Flow Patterns 59

purposes. However, channels are persistent, tokens that flow through them
are retained until the connected tasks become able to consume them.

Wcp-24 Persistent Trigger

Description – The ability for a task to be triggered by a signal from another
part of the process or from the external environment. These triggers are per-
sistent in form and are retained by the process until they can be acted on by
the receiving task [20].

Realization – As explained for Wcp-23, a Persistent Trigger (Wcp-24) can
be obtained by adding an additional port whose values are not used during
the computation, but are useful only for synchronization purposes. In Kepler
some actors already have a trigger port that has no declared type (i.e. it
can accept any data type). Connecting a trigger input port is optional, but
if a trigger port is connected to a channel, the actor will also wait for an
input on that port before firing.

4.1.9 Results

Table 4.1 summarizes the WCPs support of the three scientific WfMSs un-
der consideration. Following the evaluation criteria established in [20], a +
rating (direct support) or a ± rating (partial support) is assigned when the
system provides a construct that completely, respectively, partially satisfies
the description of the pattern when used in a context satisfying the context
assumption. A − rating (no support) is assigned otherwise. Although work-
arounds are possible which achieve the desired behavior through the use of
various constructs, such as task replications or loops, they are not considered
as direct realizations for a pattern.

Kepler provides more control-flow constructs than the other two systems,
and thus it supports more WCPs. Taverna is the system with the least num-
ber of control-flow constructs and it thus supports a limited number of WCPs.
The choice of Taverna to provide only a limited number of routing constructs
is compensated by the ease with which one can define a new processor through
the use of Beanshell scripts, as it was e.g. done for the bool choice pro-
cessor in the Exclusive Choice (Wcp-04) pattern. On the other hand, the
definition of a new component in Kepler is not so trivial because it requires
sophisticated programming skills, as actors are processes with their own state
and they have to provide polymorphic behavior in order to be able to adapt
to the chosen director.

Basic control-flow patterns are supported by all three systems, except for
Wcp-04 Exclusive Choice which is not supported in Taverna, as this system

60 4 Pattern-Based Evaluation of Scientific WfMSs

Table 4.1 WCP support in the three scientific WfMSs.

Pattern Kepler Taverna Triana

Wcp-01 Sequence + + +

Wcp-02 Parallel Split + + +

Wcp-03 Synchronization + + +

Wcp-04 Exclusive Choice + - +

Wcp-05 Simple Merge + + +

Wcp-06 Multi Choice - - -

Wcp-07 Structured Synchronizing Merge - - -

Wcp-08 Multi Merge + + +

Wcp-09 Structured Discriminator - - -

Wcp-10 Arbitrary Cycles + - +

Wcp-11 Implicit Termination + + +

Wcp-12 M.I. without Synchronization + + +

Wcp-13 M.I. with a priori design-time knowledge - - -

Wcp-14 M.I. with a priori run-time knowledge - - -

Wcp-15 M.I. without a priori run-time knowledge - - -

Wcp-16 Deferred Choice - - -

Wcp-17 Interleaved Parallel Routing + - -

Wcp-18 Milestone - - -

Wcp-19 Cancel Activity - - -

Wcp-20 Cancel Case - - -

Wcp-21 Structured Loop + - +

Wcp-22 Recursion - - -

Wcp-23 Transient Trigger - - -

Wcp-24 Persistent Trigger + + +

Wcp-25 Cancel Region - - -

Wcp-26 Cancel Multiple Instance Activity - - -

Wcp-27 Complete Multiple Instance Activity - - -

Wcp-28 Blocking Discriminator - - -

Wcp-29 Canceling Discriminator - - -

Wcp-30 Structured Partial Join - - -

Wcp-31 Blocking Partial Join - - -

Wcp-32 Canceling Partial Join - - -

Wcp-33 Generalised And-Join + + +

Wcp-34 Static Partial Join for M.I. - - -

Wcp-35 Canceling Partial Join for M.I. - - -

Wcp-36 Dynamic Partial Join for M.I. - - -

Wcp-37 Local Synchronizing Merge - - -

Wcp-38 General Synchronizing Merge - - -

Wcp-39 Critical Section - - -

Wcp-40 Interleaved Routing + - -

Wcp-41 Thread Merge + - -

Wcp-42 Thread Split + - -

Wcp-43 Explicit Termination + - -

4.1 Workflow Control-Flow Patterns 61

does not have a construct for redirecting the produced output to only one
specific output port, on the basis of the evaluation of a particular condition.

In terms of the advanced branching and synchronization patterns, the three
systems lack any support for the partial synchronization of different tasks.
Instances of different tasks that execute in parallel can run independently
from each other or can all be synchronized (hence not selectively). Different
tasks can be synchronized by connecting their output ports to the input
ports of the same subsequent task. In this case that task will await values
on all its input ports, which signal completion of all the preceding activities.
This can be considered a real limitation of scientific WfMSs because during
experiments it may be convenient to start a number of activities in parallel
and wait the completion of only one (or a sub-set) of them before proceeding.
For instance, to perform a complex operation, such as DNA matching, it is
reasonable to apply multiple techniques in parallel: the first available result
will be used by the subsequent activities, while the other ones are discarded
when they arrive, or the activities producing them can be canceled altogether.

Similarly, a result common to all three systems is their support for the mul-
tiple instance patterns. The data-flow paradigm underlying scientific WfMSs
provides a natural mechanism for generating multiple instances, but none
of the three systems is able to synchronize them at completion: the created
instances run independently from each other until the workflow completes.
This choice also comes from the assumption that several instances of the
same experiment can be performed in parallel with different inputs and their
executions are mutually independent. When all the experiment instances are
terminated, the scientist collects the obtained results and manually derives
global outcomes. This also originates from the fact that scientific WfMSs
have been developed for automating large-scale experiments, rather than for
coordinating the work of a group of agents.

Another important limitation of scientific WfMSs is the absence of a mech-
anism for canceling running activities. The scientific domain is characterized
by an high degree of uncertainty: if the result provided by an activity does not
satisfy the expectations, the user has to be able to cancel the other running
activities and change those that still have to be performed. This limitation
probably comes from the immaturity of the considered systems and in the
future scientific WfMSs may be expected to integrate several facilities for
exception handling and for managing compensation activities.

As for the state-based patterns and in particular to Interleaved Paral-
lel Routing (Wcp-17) and Interleaved Routing (Wcp-40), we can observe
that these patterns are related to the ability to limit the number of running
threads and thus the number of used resources. In scientific WfMSs available
resources are automatically managed by the underlying environment (e.g. a
Grid environment) in a transparent way for the user.

Arbitrary Cycles (Wcp-10) and Structured Loop (Wcp-21) are supported
by Kepler and Triana, while Taverna has no specific constructs for performing
loops and these cannot be built through the use of other constructs either due

62 4 Pattern-Based Evaluation of Scientific WfMSs

to the lack of a choice construct. As highlighted in [22] Taverna only allows
the representation of acyclic workflows models (i.e. Direct Acyclic Graphs,
DAGs). All three systems support the hierarchical decomposition of tasks,
however a composite task cannot contain itself in its decomposition, thus the
Recursion pattern (Wcp-22) is not supported; recursive definitions can be
obtained only through use of the underlying programming language (Java).

A scientific workflow terminates when there are not sufficient data tokens
for executing another task instance, thus Wcp-11 Implicit Termination is
the commonly supported termination pattern. Only Kepler has a specific
construct to also explicitly terminate a workflow execution that reaches a
specific point.

Finally, support for triggers can be realized by adding an additional in-
put ports to tasks. However, channels are persistent: tokens that flow through
them are retained until the connected tasks are able to consume them. There-
fore, only Persistent Trigger (Wcp-24) is supported.

4.2 Workflow Data Patterns

Workflow Data Patterns (WDPs) collect language features for describing and
managing data resources during process execution. The three considered sci-
entific WfMSs share a common computational model in which data are car-
ried only by tokens and there are no shared variables. As a consequence, the
supported data patterns are substantially the same for all the three systems.

4.2.1 Data Visibility Patterns

Data Visibility patterns regard the potential contexts in which a data con-
struct can be defined and utilized [23]. In scientific WfMSs data are contained
only inside tokens, variables are local to each task instance, there are no global
variables and tasks can communicate only providing a value to their output
port(s) and reading a value from their input port(s).

Wdp-01 Task Data

Description – Data elements can be defined by tasks which are accessible
only within the context of individual execution instances of that task. [23].

Realization – Variables defined inside tasks are accessible only within the
context of their individual execution instances.

4.2 Workflow Data Patterns 63

Wdp-02 Block Data

Description – Block tasks (i.e. tasks which can be described in terms of a
corresponding subprocess) are able to define data elements which are accessi-
ble by each of the components of the corresponding subprocess [23].

Realization – This pattern is not supported in the three systems, because
the tasks inside a sub-workflow can communicate only through channels,
variables are local to each atomic task and there is no way to define variables
shared by all the tasks inside the same sub-workflow.

Wdp-03 Scope Data

Description – Data elements can be defined which are accessible by a subset
of the tasks in a case [23].

Realization – As observed in the previous pattern, in the three systems
there is no way to define shared variables at any level.

Wdp-04 Multiple Instance Data

Description – Tasks which are able to execute multiple times within a single
case can define data elements which are specific to an individual execution
instance. [23].

Realization – Each task of a scientific WfMS can be safely executed con-
currently with itself multiple times, more specifically any time a new input is
provided to a task, the system creates a new instance of that task. Variables
used by that task are specific to each individual execution instance.

Wdp-05 Case Data

Description – Data elements are supported which are specific to a process
instance or case. They can be accessed by all components of the process dur-
ing the execution of the case [23].

Realization – As observed in Wdp-03, in the three systems there is no way
to define shared variables at any level.

64 4 Pattern-Based Evaluation of Scientific WfMSs

Wdp-06 Folder Data

Description – Data elements can be defined which are accessible by multiple
cases on a selective basis. They are accessible to all components of the cases
to which they are bound [23].

Realization – As observed in Wdp-03, in the three systems there is no way
to define shared variables at any level.

Wdp-07 Workflow Data

Description – Data elements are supported which are accessible to all com-
ponents in each and every case of the process and are within the context of
the process itself [23].

Realization – As observed in Wdp-03, in the three systems there is no way
to define shared variables at any level.

Wdp-08 Environment Data

Description – Data elements which exist in the external operating environ-
ment are able to be accessed by components of processes during execution [23].

Realization – External resources, such as a database or a file, can be ac-
cessed by tasks in the workflow in various ways. For instance, in Kepler the
Open Database Connection actor allows one to open a connection with
a local or remote database, while other actors, such as Database Writer
and Database Query, interact with a database in various ways. Moreover,
other actors, such as the Directory Listing, allow one to access files in
a remote file system. The other two scientific WfMSs provide similar compo-
nents for accessing a local or remote database/file system.

4.2.2 Data Interaction Patterns

Data Interaction patterns examine the various ways in which data elements
can be passed between components in a process and how the flow of data
elements is determined by the characteristics of the individual components. In
particular, we distinguish between Internal Data Interaction patterns, which
regard the communication between components within the same process, and
External Data Interaction patterns, which regard the interaction of a process
element with the external environment [23].

4.2 Workflow Data Patterns 65

Wdp-09 Task to Task

Description – The ability to communicate data elements between one task
instance and another within the same case [23].

Realization – In scientific WfMSs tasks can communicate only through
channels that connect the output port of a task with the input port of another
task. Moreover, as regards to the relationship between data perspective and
control-flow perspective, the same channels are used to pass both control-flow
and data tokens (integrated control and data channels [23]), as control-flow
is directly specified in terms of data dependencies.

Wdp-10 Block Task to Sub-Workflow Decomposition

Description – The ability to pass data elements from a block task instance
to the corresponding subprocess that defines its implementation [23].

Realization – The input and output ports of a block task (a composite
actor in Kepler, a nested workflow in Taverna, or a group in Triana) are
connected to the input and output ports of some of its constituent sub-tasks.
Therefore, data elements are passed from a block task to its components
through channels (explicit data passing via data channels [23]).

Wdp-11 Sub-Workflow Decomposition to Block Task

Description – The ability to pass data elements from the underlying subpro-
cess back to the corresponding block task. [23].

Realization – As stated for the previous pattern, the input and output ports
of some internal components are connected to the input and output ports of
the corresponding block task, the final output is passed to the block task
through channels (explicit data passing via data channels [23]).

Wdp-12 to Multiple Instance Task

Description – The ability to pass data elements from a preceding task in-
stance to a subsequent task which is able to support multiple execution in-
stances. This may involve passing the data elements to all instances of the
multiple instance task or distributing them on a selective basis. The data pass-
ing occurs when the multiple instance task is enabled. [23].

66 4 Pattern-Based Evaluation of Scientific WfMSs

Realization – Scientific WfMSs transparently support the generation of mul-
tiple instances. As soon as the necessary input data is provided to a task a
new instance for that task is created. Each task instance receives distinct
input data through tokens and works on its own data without side effects for
the other task instances in the process (instance-specific data passed by value
or by reference [23]).

Wdp-13 from Multiple Instance Task

Description – The ability to pass data elements from a task which supports
multiple execution instances to a subsequent task. The data passing occurs
at the conclusion of the multiple instance task. It involves aggregating data
elements from all instances of the task and passing them to a subsequent
task [23].

Realization – As stated for the previous pattern, in scientific WfMSs each
time the necessary data is provided to a task, a new instance of that task
can be created. The data produced by each task instance is redirected to its
output port(s) inside individual tokens and passed to the sub-sequent activity
as soon as they are produced. Therefore, the pattern cannot be considered
directly supported, because it requires the aggregation of the data elements
produced by the various instances before passing them to the subsequent
task, which is not possible. This problem stems from the impossibility of
synchronizing multiple instances of the same task at completion.

Wdp-14 Case to Case

Description – The passing of data elements from one case of a process dur-
ing its execution to another case that is executing concurrently [23].

Realization – This pattern is not supported in the three systems, as there
is no way to communicate between two different instances of a workflow.

Wdp-15 (Wdp-19, Wdp-23) Task (Case/Workflow) to Environment
– Push Oriented

Description – The ability of a task (case or process environment) to pass
data elements to a resource or service in the operating environment [23].

Realization – In the three analyzed systems each task can pass the com-
puted output to the external environment after its completion, for instance

4.2 Workflow Data Patterns 67

by writing the computed results into an external database, or on a local or
remote file system.

Wdp-16 (Wdp-20, Wdp-24) Environment to Task (Case/Workflow)
– Pull Oriented

Description – The ability of a task (case or process environment) to request
data elements from resources or services in the operational environment. [23].

Realization – In the three systems each task (or process or entire workflow)
can receive the necessary input also from an external process or through
accessing an external resource, for instance by reading the data from an
external database, a local or remote file system.

Wdp-17 (Wdp-21, Wdp-25) Environment to Task (Case/Workflow)
– Push Oriented

Description – The ability of a task (case or process environment) to receive
data elements from resources or services in the operational environment. [23].

Realization – These patterns are not supported as only tasks inside the
workflow can start the connection with the external environment, for instance
by reading data from an external database.

Wdp-18 (Wdp-22, Wdp-26) Task (Case/Workflow) to Environment
– Pull Oriented

Description – The ability for a task (case or process environment) to re-
ceive and utilize data elements passed to it from services and resources in the
operating environment on an unscheduled basis [23].

Realization – These patterns are not supported as only tasks inside the
workflow can start the connection with the external environment, for instance
by writing data to an external database.

4.2.3 Data Transfer Patterns

Data Transfer patterns consider the manner in which the actual transfer of
data elements occurs between one process component and another [23].

68 4 Pattern-Based Evaluation of Scientific WfMSs

Wdp-27, Wdp-28 Data Transfer by Value – Incoming, Outgoing

Description – The ability of a process component to receive incoming data
elements by value [23].

Realization – In scientific WfMSs data are passed to tasks by means of
tokens on channels that connect output and input ports. Each task operates
on a copy of the received values.

Wdp-29 Data Transfer - Copy In/Copy Out

Description – The ability of a process component to copy the values of a set
of data elements from an external source (either within or outside the process
environment) into its address space at the commencement of execution and
to copy their final values back at completion [23].

Realization – This pattern is supported by all three systems, the data value
collected from an external resource (e.g. a remote database) can be copied to
the local address space, similarly the produced output can be copied back to
an external resource.

Wdp-30 Data Transfer by Reference - Unlocked

Description – The ability to communicate data elements between process
components by utilizing a reference to the location of the data element in
some mutually accessible location. No concurrency restrictions apply to the
shared data element [23].

Realization – The data passed from one task to another inside tokens can
also be the name of a file or the address of an external (remote) resource,
and generally no concurrency restrictions are applied to the shared data.

Wdp-31 Data Transfer by Reference - With Lock

Description – The ability to communicate data elements between process
components by passing a reference to the location of the data element in
some mutually accessible location. Concurrency restrictions are implied with
the receiving component receiving the privilege of read-only or dedicated ac-
cess to the data element. The required lock is declaratively specified as part of
the data passing request [23].

4.2 Workflow Data Patterns 69

Realization – This pattern is not supported because there is no way to
declaratively specify a lock on certain data elements transferred by reference.

Wdp-32 Data Transformation - Input

Description – The ability to apply a transformation function to a data el-
ement prior to it being passed to a process component. The transformation
function has access to the same data elements as the receiving process com-
ponent [23].

Realization – This pattern is not supported.

Wdp-33 Data Transformation - Output

Description – The ability to apply a transformation function to a data el-
ement immediately prior to it being passed out of a process component. The
transformation function has access to the same data elements as the process
component that initiates it [23].

Realization – This pattern is not supported.

4.2.4 Data-based Routing

Data-based Routing patterns capture the various ways in which data elements
can interact with other perspectives and influence the overall operation of a
process instance [23].

Wdp-34 Task Precondition - Data Existence

Description – Data-based preconditions can be specified for tasks based on
the presence of data elements at the time of execution. The preconditions can
utilize any data elements available to the task with which they are associated.
A task can only proceed if the associated precondition evaluates positively [23].

Realization – In scientific workflows dependencies among tasks are data de-
pendencies, i.e a task can be activated only if the necessary input is available.

70 4 Pattern-Based Evaluation of Scientific WfMSs

Therefore, this pattern is naturally supported by the adopted computational
model.

Wdp-35 Task Precondition - Data Value

Description – Data-based preconditions can be specified for tasks based on
the value of specific parameters at the time of execution. The preconditions
can utilize any data elements available to the task with which they are asso-
ciated. A task can only proceed if the associated precondition evaluates posi-
tively [23].

Realization – This pattern is not supported because in the three systems
task activation depends on data availability, but it is not possible to impose
any specific condition on their values.

Wdp-36 Task Postcondition - Data Existence

Description – Data-based postconditions can be specified for tasks based on
the existence of specific parameters at the time of task completion. The post-
conditions can utilize any data elements available to the task with which they
are associated. A task can only proceed if the associated postcondition evalu-
ates positively [23].

Realization – This pattern is not supported in the three systems, a data-
dependency specifies only a condition for task activation and not for its com-
pletion.

Wdp-37 Task Postcondition - Data Value

Description – Data-based postconditions can be specified for tasks based on
the value of specific parameters at the time of execution. The postconditions
can utilize any data elements available to the task with which they are as-
sociated. A task can only proceed if the associated postcondition evaluates
positively [23].

Realization – This pattern is not supported in the three systems, a data-
dependency captures data availability only, not specific constraints on data
values, and influence task activation only and not completion.

4.2 Workflow Data Patterns 71

Wdp-38 Event-based Task Trigger

Description – The ability for an external event to initiate a task and to pass
data elements to it [23].

Realization – This pattern is not supported because communication with
the external environment can be initiated only by tasks inside the workflow
and not by the environment.

Wdp-39 Data-based Task Trigger

Description – Data-based task triggers provide the ability to trigger a spe-
cific task when an expression based on data elements in the process instance
evaluates to true. Any data element accessible within a process instance can
be used as part of a data-based trigger expression [23].

Realization – This pattern is not supported.

Wdp-40 Data-based Routing

Description – Data-based Routing provides the ability to alter the control-
flow within a case based on the evaluation of data-based expressions. A Data-
based Routing expression is associated with each outgoing arc of an OR-split
or XOR-split. It can be composed of any data-values, expressions and func-
tions available in the process environment providing it can be evaluated at the
time the split construct with which it is associated completes. Depending on
whether the construct is an XOR-split or OR-split, a mechanism is available
to select one or several outgoing arcs to which the thread of control should be
passed based on the evaluation of the expressions associated with the arcs [23].

Realization – This pattern is supported in Kepler and Triana with the same
mechanisms described for the Exclusive Choice (Wcp-04) and the Multi
Choice (Wcp-06). It is not supported in Taverna on the other hand for the
same reasons explained for Wcp-04 and Wcp-06, namely the absence of
constructs for routing the thread of control only to one of the subsequent
branches, based on the evaluation of a particular condition.

4.2.5 Results

Table 4.2 summarizes the WDP support of the three systems. The same
criteria used for rating the control-flow patterns in Sec. 4.1.9, are also applied

72 4 Pattern-Based Evaluation of Scientific WfMSs

Table 4.2 WDP support in the three scientific WfMSs.

Pattern Kepler Taverna Triana

Wdp-01 Task Data + + +

Wdp-02 Block Data - - -

Wdp-03 Scope Data - - -

Wdp-04 Multiple Instance Data + + +

Wdp-05 Case Data - - -

Wdp-06 Folder Data - - -

Wdp-07 Workflow Data - - -

Wdp-08 Environment Data + + +

Wdp-09 Task to Task + + +

Wdp-10 Block Task to Sub-Workflow Decomposition + + +

Wdp-11 Sub-Workflow Decomposition to Block Task + + +

Wdp-12 to Multiple Instance Task + + +

Wdp-13 from Multiple Instance Task - - -

Wdp-14 Case to Case - - -

Wdp-15 Task to Environment – Push-Oriented + + +

Wdp-16 Environment to Task – Pull-Oriented + + +

Wdp-17 Environment to Task – Push-Oriented - - -

Wdp-18 Task to Environment – Pull-Oriented - - -

Wdp-19 Case to Environment – Push-Oriented + + +

Wdp-20 Environment to Case – Pull-Oriented + + +

Wdp-21 Environment to Case – Push-Oriented - - -

Wdp-22 Case to Environment – Pull-Oriented - - -

Wdp-23 Workflow to Environment – Push-Oriented + + +

Wdp-24 Environment to Workflow – Pull-Oriented + + +

Wdp-25 Environment to Workflow – Push-Oriented - - -

Wdp-26 Workflow to Environment – Pull-Oriented - - -

Wdp-27 Data Transfer by Value - Incoming + + +

Wdp-28 Data Transfer by Value - Outgoing + + +

Wdp-29 Data Transfer - Copy In/Copy Out + + +

Wdp-30 Data Transfer by Reference - Unlocked + + +

Wdp-31 Data Transfer by Reference - With Lock - - -

Wdp-32 Data Transformation - Input - - -

Wdp-33 Data Transformation - Output - - -

Wdp-34 Task Precondition - Data Existence + + +

Wdp-35 Task Precondition - Data Value - - -

Wdp-36 Task Postcondition - Data Existence - - -

Wdp-37 Task Postcondition - Data Value - - -

Wdp-38 Event-based Task Trigger - - -

Wdp-39 Data-based Task Trigger - - -

Wdp-40 Data-based Routing + - +

4.3 Workflow Resource Patterns 73

here. The data-flow modeling paradigm adopted by scientific WfMSs makes
the ways in which data are managed and passed by these systems essentially
uniform (the only difference is the inability of Taverna to support Data-based
Routing).

As regards to the Data Visibility patterns, we can observe that variables
are local to each task instance and there is no way to define variables shared
by a subset of tasks or the entire workflow.

As regards the Data Interaction patterns, tasks can communicate only us-
ing data tokens exchanged through channels, and this holds also for block
tasks and their sub-workflow decompositions. The interaction with the ex-
ternal environment, the request for the provision of an external data element
can be initialized only by a task, case or workflow.

For the Data Transfer patterns, we note that the data contained inside a
token can be a value or a reference to an external resource. In the latter case,
a task can work directly on the external resource or make a local copy of it,
writing back the result at completion.

Finally, as concerns the Data-based Routing, data availability drives the
computation, but data dependencies influence only task activation, not their
completion. Moreover, they only capture that certain data need to be present,
not that data need to take on certain values.

4.3 Workflow Resource Patterns

Workflow Resource Patterns capture the various ways in which resources are
represented and utilized in workflows [24]. Scientific WfMSs consider pro-
cesses that are usually enacted by only one user at a time, thus they do not
have to manage different agents or different roles with related authorization
and authentication issues [13]. Moreover, little or no user interaction is needed
to perform an activity, no work is assigned to human agents and the human
intervention is usually limited to perform run-time decisions. As a result, only
few resource patterns are supported, as discussed in the following.

4.3.1 Creation Patterns

Creation patterns correspond to limitations on the manner in which a work
item may be executed. They are specified at design time, usually in relation
to a task, and serve to restrict the range of resources that can undertake work
items that correspond to the task [24].

As stated above, the three considered scientific WfMSs do not provide
a mechanism for identifying and distinguishing resources, in particular hu-
man agents. Work items are automatically executed as soon as they have

74 4 Pattern-Based Evaluation of Scientific WfMSs

the necessary input without the need to be explicitly allocated to a partic-
ular resource. Thus, as far as the creation patterns are concerned, only the
Automatic Execution (Wrp-11) pattern is supported in the three systems.

4.3.2 Push Patterns

Push patterns characterize situations where newly created work items are
proactively offered or allocated to resources by the system. These may occur
indirectly by advertising work items to selected resources via a shared work
list or directly with work items being allocated to specific resources [24].

In the three considered scientific WfMSs, work items are directly allocated
by the system and executed as soon as they are enabled by the availability
of the necessary input. Therefore, the only supported push pattern is the
Distribution on Enablement (Wrp-19) pattern.

4.3.3 Pull Patterns

Pull patterns correspond to the situation where individual resources are made
aware of specific work items, that require execution, either via a direct offer
from the system or indirectly through a shared work list. The commitment
to undertake a specific task is initiated by the resource itself rather than the
system [24].

In the three considered scientific WfMSs it is the system that schedules
the execution of work items and these automatically start to execute when
the necessary inputs are available. In particular, in Kepler it is the director
that orchestrates workflow execution. If follows that none of the pull patterns
is supported by the three systems.

4.3.4 Detour Patterns

Detour patterns refer to situations where work item distributions that have
been made for resources are interrupted either by the system or at the insti-
gation of the resource. As a consequence of this event, the normal sequence
of state transitions for a work item is varied [24].

These patterns are not supported because work items are automatically
executed and they cannot be intentionally suspended, re-routed, re-allocated
or canceled.

4.3 Workflow Resource Patterns 75

4.3.5 Auto-Start Patterns

Auto-start patterns relate to situations where execution of work items is
triggered by specific events in the lifecycle of the work item or the related
process definition. Such events may include the creation or allocation of the
work item, completion of another instance of the same work item or a work
item that immediately precedes the one in question [24].

The Commencement on Creation (Wrp-36) pattern is directly supported
by the analyzed systems. Wrp-36 refers to the ability of a resource to com-
mence execution on a work item as soon as this is created. In the three
systems a work item is executed immediately after its enablement.

:and Chained Execution (Wrp-39).

4.3.6 Visibility Patterns

Visibility patterns classify the various scopes in which work item availability
and commitment are able to be viewed by resources [24].

These patterns are not supported: none of the three systems provides a
facility to visualize the list of available or committed work items.

4.3.7 Multiple Resource Patterns

Multiple Resource patterns relax the one-to-one correspondence between re-
sources and work items that have assumed in previous patterns, allowing that
a resource can work on different work items simultaneously and that multiple
resources can work on the same work item [24].

As far as this group of patterns is concerned, in each of the three systems
the same resource can work on different work items simultaneously, thus the
Simultaneous Execution (Wrp-42) pattern is supported.

Chapter 5

Scientific Workflow Patterns

In this chapter we formalize four new patterns that have emerged from the
analysis of the scientific WfMSs under consideration. These patterns concern
various ways in which the input values provided to a task can be combined
before the task execution and thus they can be classified as routing patterns.
The behavior prescribed by these patterns is formally described in terms
of CPNs. The CPN representations make use of advanced arc expressions
whenever possible for reducing the complexity of the construction.

Swp-01 Dynamic Input Size

Description – The ability to consume n data elements from the same input
channel, where n is determined at run-time on the basis of the value received
from another input channel.

Example – In the geographical domain a segmented property is a property
that changes its value along the path of a road. Examples are the road width,
the speed limits, the number of lanes, etc. Suppose we have a task A that
given a road network r and a particular segmented property p produces a
set of homogeneous segments, i.e. the portion of r characterized by the same
value of p. The number of segments produced by A depends on the char-
acteristics of the road network and the property considered; we can assume
that at completion A also generates another output containing the number of
identified segments. Given two instances of A, denoted as A1 and A2, which
work on the same road network but consider two different properties: e.g. the
number of lanes and the speed limits, a subsequent tasks B that operates on
the segments produced by A1 and A2, in order to compare the two proper-
ties, it has to consume from A1 and A2 a variable number of tokens which
depends on the number of identified segments.

77

78 5 Scientific Workflow Patterns

Motivation – This pattern provides a means for determining, at run-time,
the number of tokens required from a task A in order to execute a task B.
This pattern can be considered as the dynamic version of Wcp-41 Thread
Merge.

Overview – This pattern is exemplified by the CPN in Fig. 5.1. Place size
contains the value of n, while data contains the actual data values to con-
sume. Transition t2 generates a list of size n of data values from data, while
transition t3 adds this list to the output place. Place start ensures that t1
can execute again only when an output for the previous value of n has been
produced.

�
� ��������� �� ���� �� �����	
������	� �
	

�
��	�

��

��
�
 �������

��� �� ����� ��� ��
�� ��������

�
 ����
������� ��
� ��
! ! � �
 �" ����������� #$% �� ���������

������������
Fig. 5.1 CPN representation of the Swp-01 Dynamic Input Size pattern.

Assuming that size initially contains the list [3, 5] and data contains
the list [10, 15, 23, 45, 29, 9, 5, 12, 18, 4], at the end out will contain the list
[[10, 15, 23], [45, 29, 9, 5, 12]], data will contain the list [18, 4] and size will
contain the empty list.

Implementation – This pattern is supported in Kepler through the Sync-
OnTerminator actor where the parameter numberOfOccurences is pro-
vided using a parameter port.

5 Scientific Workflow Patterns 79

Swp-02 Dynamic Token Replication

Description – The ability to generate n copies of a data element d received
in input, where the number n is determined at run-time on the basis of the
value received from another input channel.

Example – Let us consider a task A that determines the correlation between
two pieces of information x and y, for instance the temperature and the pres-
sure, or the temperature and the humidity. Suppose we want to determine the
correlation between the temperature and several other factors, whose values
are not known at design-time, because depend on the availability of different
instruments. Multiple copies of the same temperature information have to be
generated and passed to A, which combines each copy with another piece of
information. The number of data tokens to be created is determined by an-
other task B which tests the availability of the other measuring instruments.

Motivation – This pattern allows one to dynamically determine the number
of copies of a data token to produce. As each produced data token generates
a new instance of the subsequent task that consumes it, this pattern can be
considered the dynamic version of Wcp-42 Thread Split.

Overview – This pattern is exemplified by the CPN in Fig. 5.2. Transition
rep consumes two inputs: the number n of copies to produce from in1, and
the value d to replicate from in2, and produces n tokens with value d in p3.
Place in1 is intended to have capacity one: only one token can be held inside
it at time. Transition t2 is executed n times for adding the produced copies
of d to the output list. If t1 produces another value for n before rep starts
again, the next execution of rep will use this new value, otherwise rep uses
the previous value for n.

Let us assume that p1 initially contains the list [2, 4], in1 contains the
value zero and in2 contains the list [10, 20, 30]. In this situation only tran-
sition t1 is enabled, because the value in in1 is zero. t1 transfers the first
value in p1 to in1, enabling transition rep. Transition t1 can fire without the
constraint that the previous value produced for place p1 is actually used or
has been used exactly one time. For instance, if rep is executed for all data
values in in2 before another execution of t1 is performed, the final output
in out will be [10, 10, 20, 20, 30, 30]. Otherwise, supposing that rep is exe-
cuted only once before t1 is executed again, the final output in out will be
[10, 10, 20, 20, 20, 20, 30, 30, 30, 30], and so on.

Implementation – This pattern is directly supported by Kepler through
the Repeat actor, when the parameter numberOfTimes is passed to the
actor using a parameter port instead of being fixed at design time.

80 5 Scientific Workflow Patterns������� �� � ����� ��	 ��

�	�����	���	 ����

��
��
��������

� ��
�������� ��������

�����
��

������ ���
��
���
�����

�������
��� ���� �� ���

Fig. 5.2 CPN representation of the Swp-02 Dynamic Token Replication pattern.

Swp-03 Dynamic Balancing of Input Tokens

Description – The ability to replicate a data element received from an input
channel in order to balance the number of tokens received from another input
channel.

Example – Let us consider a task A that receives as input the values of the
temperature and pressure produced by two different instruments. Suppose
that the two instruments provide new measurements with a different rate,
for instance the temperature is measured every hour, while a new pressure
value is detected every two hours. Task A can be executed any time a new
temperature is available by reusing the previous pressure value, if a new pres-
sure value is not available at that time.

Motivation – This pattern provides a means for balancing the data pro-
duced by two or more tasks with different production rates.

Overview – The behavior of this pattern is formalized by the CPN in
Fig. 5.3. The last values read from in1 and in2 are stored in mem1 and
mem2, respectively. If a data value is available in in1 but not in in2, the
value stored in mem2 is used. Symmetrically, if a data value is available in
in2 but not in in1, the value stored in mem1 is used. Transition t2 combines
the two data elements and puts the obtained pair in out. Place start en-
sures that a new iteration is performed only when the previous pair has been
outputted.

5 Scientific Workflow Patterns 81

�
�

��� �����������	
�
�	��

�
 �	 �� ������ ����� ��� �	
� ��� �	�
 �� �� ������ ����� ���
 ��� ��� ��
�	�
 �	 �� ������ ����� ��� �	
� ��� �	���
 �� �� ������ ����� ��� ��
� ��� ��

�
 �	 �� ������ ����� �� � �	
� ��� ���
 �� �� ������ ����� �� � ��
� ��� �� �	��

�	
����� ���� � �� ����	 �� ���

��� �� � �	��
��� ��

���	 ����� �
��	 �	�������� �����	��� �

�� � �� �
�� ��!" �� ��!"

�� �#�!$�!"
�� � �� �%&!�

Fig. 5.3 CPN representation of the Swp-03 Dynamic Input Balancing pattern.

Assuming that in1 initially contains the list [10, 12, 14] and in2 contains
the list [23, 31], at the end out will contain the list [(10, 23), (12, 31), (14, 31)].

Implementation – This pattern is directly supported by Kepler and Taverna
when the considered tasks are constant generators; in this case a new constant
is provided any time a value is produced by one of the other involved tasks.
This behavior can be changed in Kepler by fixing the number of firings for a
constant generator actor.

Swp-04 Cartesian Product of Input Tokens

Description – The ability to compute the cartesian product of the data
values contained into two or more channels connected to the same task, so
that this task can be executed on each possible combination of inputs.

Example – Let us consider a task A that receives as input a set of letters
L and a dictionary D, and produces as output the words in D that are only
composed of letters in L. Suppose there are two instances of A, called A1

82 5 Scientific Workflow Patterns

and A2, that work on two different sets of letters L1 and L2 and two dis-
tinct dictionaries D1 and D2. A task B that has to find the common words
produced by A1 and A2, can receive as input the cartesian product of the
outputs produced by A1 and A2, and return those words that are paired with
themselves. For instance, if A1 produces the words {w1, w2, w3, . . .} and A2

produces the words {u1, u2, u3, . . .}, task B will receive as input the pairs
{(w1, u1), (w1, u2), (w1, u3), (w2, u1), . . . }.

Motivation – This pattern provides a means for combining the data pro-
duced by different tasks before passing these data to another task.

Overview – The behavior of this pattern is exemplified in Fig. 5.4. Places
in1 and in2 contain the input values. Transition t1 reads the first value in
in1 and combines it with all the values in in2, adding the produced pair to
p4. When all values in in2 have been combined with the current value of in1,
transition t3 is enabled: it copies back in in2 its original values and consumes
the value in in1 which has been completely combined. If all values in in1 have
been combined, t3 consumes only the value in in1 and does not copy back
the values in in2.

���
���� ��

����		��

� ���
�������� ��� ��� �� �� ��������

�
�

� ��������������
��

������		��
��		��

�� ���������

�� �� �� ����������

�� �!
�����"#�$����
�� ��������������

�����
%� %�

%�

�����

Fig. 5.4 CPN representation of the Swp-04 Cartesian Product of Input Tokens
pattern.

Assuming that in1 initially contains the list [1, 2, 3] and in2 the list [9, 8, 7],
at the end out will contain the list [(1, 9), (1, 8), (1, 7), (2, 9), (2, 8), (2, 7), (3, 9),
(3, 8), (3, 7)].

5 Scientific Workflow Patterns 83

Implementation – This pattern is directly supported by Taverna which pro-
vides the possibility to specify for each task when to work on the dot product
or cross product of the received inputs. In the first case the data received in
each input port is combined in tuples as soon as these data tokens arrive and
they are used only once. In the second case the tuples corresponding to the
cross product of all the received data tokens are computed and passed to the
task.

The support for the above patterns is summarized in Table 5.1.

Table 5.1 SWP support in the three scientific WfMSs.

Pattern Kepler Taverna Triana

Swp-01 Dynamic Input Size + - -

Swp-02 Dynamic Token Duplication + - -

Swp-03 Dynamic Input Balancing - ± ±
Swp-04 Cartesian Product of Input Tokens - + -

Chapter 6

Workflow Management Systems
Design Recommendations

In this chapter we would like to discuss the maturity of business WfMSs
with respect to their application to the domain of scientific workflows, and
in particular we try to answer a simple question: what can business WfMSs
learn from scientific WfMSs?

The differences discussed in Section 2.1 mainly depend on the different ex-
ecution paradigms adopted by the two classes of WfMSs. Similarly, the four
new patterns defined in Chapter 5 are made possible by the adoption of an
execution semantics grounded in Process Networks, where data tokens are re-
tained inside unbounded channels until a task can consume them. Therefore,
these new patterns cannot easily be realized in systems based on shared vari-
ables. A variable only retains the most recent obtained data value and earlier
values cannot be accessed any longer. Moreover, not only a produced value has
to be retained until it is used, but it also has to be removed when consumed
by a task. The choice of avoiding shared variables and adopting a model based
on communication channels, allows one to overcome many synchronization
problems and potential errors deriving from concurrent computation. In this
respect, business WfMSs are less suitable to perform sophisticated parallel
computations, as data parallelism is not naturally supported and task syn-
chronizations have to be carefully defined.

Moreover, some patterns require that a task is able to access the value
contained in a channel in advance, in order to determine the input needed
from another channel, and eventually to suspend itself and wait for the nec-
essary data tokens. For instance, this is the case in the dynamic input size
pattern (Swp-01), where a task A dynamically determines the number of
data tokens to consume from the value received in another input channel.
If the number of data tokens currently available is not sufficient, task A is
suspended until new data are available. This pattern can be implemented in
systems such as Kepler, where a task is not a simple function, but a pro-
cess with its own state. The ability of a task to suspend itself in order to
wait for another input dramatically improves the scalability of a system. To
our knowledge, the majority of business WfMSs do not have the ability to

85

86 6 WfMS Design Recommendations

suspend a task instance due to the unavailability of a given mandatory data
item. Exceptions are for example FLOWer and COSA.

Despite the possibility of emulating the patterns described in Chapter 5
with complex structures in business WfMSs, the main limitation of these
systems is that not all data-flow dependencies can be mimicked via control-
flow dependencies, while the reverse is always possible.

Chapter 7

Related Work

In [16] Ludäscher et al. discuss the main characteristics of Kepler and compare
these with business WfMSs. From this comparison, the authors draw a set
of requirements for scientific WfMSs which have to be integrated in the near
future. For instance, they mention the support for user interaction and the
separation between the workflow engine and the designer, which are now
provided as a single application.

Similarly, in [13] the authors present the distinctive characteristics of sci-
entific WfMSs with respect to business WfMSs, discussing the differences
between data-flow and control-flow dependencies, which have been further
analyzed in Chapter 2.

In [25] the authors identify seven basic requirements for scientific workflows
and define a first reference architecture for scientific WfMSs based on four
layers: operational, task management, workflow management and presenta-
tion layer. The operational layer consists of a wide range of heterogeneous
and distributed data sources, software, tools and their operational environ-
ment. The task management layer abstracts from the underlying data sources
into data products, and the various software tools into tasks. It aims to pro-
vide efficient data management and task execution and it deals with data
provenance (i.e. tracking data origins). The workflow management layer is
responsible for workflow execution and monitoring. Finally, the presentation
layer deals with workflow design, as well as with presentation and visualiza-
tion of the workflow execution.

A formal definition of the computational model adopted by Taverna is
given by Sroka et al. in [26, 27, 28]. The aim of their work is to formally
describe the behavior of Taverna workflows in terms of trace semantics and
define a notion of observational equivalence among models based on trace
equivalence. In particular, in [28] the authors argue that trace equivalence is
an acceptable equivalence relation for Taverna, since Taverna workflows are
directed acyclic graphs without choices. Most effort is put on the definition
of a type system and on the verification of the correct composition of the
various modeling components, considering the type (port) interface provided

87

88 7 Related Work

by the involved components. In this paper we adopted a different approach.
We formally described the behavior of the main routing constructs of the
analyzed systems using standard Colored Petri Nets (CPNs).The same ap-
proach is adopted also for defining the new routing patterns. The difference
of approaches comes from the difference of purposes: the aim of the authors
was to define a notion of equivalence among Taverna models and formally
identify the set of valid Taverna models. Our aim is to provide a formal defi-
nition of the behavior of some routing constructs, in a way that they can be
easily compared with the constructs provided by traditional business WfMSs
and the behavior prescribed by the workflow patterns.

Another attempt to formalize the concept of scientific workflows can be
found in [29]. The authors take as starting point the actor-oriented design
model adopted by Kepler and provide a formal definition for it. Then, they
extend the proposed framework to describe the type system associated with
the actors. Based on this formal model, the authors define the primitive
concepts of a scientific workflow: actor, port, data-flow connection, data-type,
actor aggregation and actor refinement. The proposed framework can be used
to validate a workflow in terms of type consistency between connected actors,
and to find type-conformant actors or sub-workflows for replacement.

In [22] the authors evaluate scientific WfMSs in terms of their Grid sup-
port. For this purpose they propose a taxonomy which considers four aspects:
(a) workflow design, (b) workflow scheduling, (c) fault tolerance, and (d) data
movement. The first aspect is concerned with the ability to represent only
DAGs or more general non-DAG models, to define an abstract model that
does not refer to the specific Grid resources, and to automatically compose
a workflow from the specification of high-level requirements. The workflow
scheduling aspect deals with centralized or decentralized scheduling, local or
global decision making, and static or dynamic planning . Fault tolerance can
be at task level or at workflow level. Finally, data movement is concerned
with how remote resources are managed during computation.

In this paper, we provided a comprehensive evaluation of scientific WfMSs
based on the workflow control-flow patterns [20], data patterns [23] and re-
source patterns [24] . The control-flow patterns aim to document fundamental
requirements that arise during business process modeling. They describe a
set of recurring features that are commonly found in WfMSs for defining
the flow of control among various tasks. Similarly, the workflow data pat-
terns describe language features for defining and managing data resources
during business process execution. Finally, the workflow resource patterns,
characterize the way in which work is distributed to the available resources
associated with a process and managed through to completion. In the BPM
field, these patterns have been extensively applied to evaluate the suitabil-
ity of business process modeling languages and their underlying execution
environments [30, 31, 32, 33].

In [21], Ustun et al. performed a pattern-based evaluation of Kepler for
two types of WCPs: multiple instance and repetition patterns. They conclude

7 Related Work 89

that Kepler is more powerful than business WfMSs in the representation
of these patterns, due to the adopted data-flow paradigm. However, they
assume the presence of an actor, called Bundle, that is not part of the
standard Kepler library and cannot be obtained combining existing actors.
As highlighted in our pattern-based evaluation, Kepler, and more generally,
scientific WfMSs, naturally support the generation of multiple instances of
the same task, but do not commonly provide mechanisms to synchronize
these multiple instances. Thus, the majority of multiple instance patterns
(e.g. Wcp-13, Wcp-14, Wcp-15) are not actually supported by the scientific
WfMSs examined here.

A first attempt to define a set of new workflow patterns for scientific
workflows is due to Uston et al. In [34] the authors define a set of scien-
tific workflow patterns based on the distinction between control and data
tokens and the relationships among them. These patterns differ from the
ones identified here, because they rely on the relations between control and
data dependencies, while ours describe different ways to combine and pre-
pare the input data of a task. Actually, in scientific WfMSs there is no clear
distinction between control and data tokens, because they are all treated in
the same way, independently from the fact that the contained values are used
for the computation or only for synchronization purposes. Therefore, we do
not consider this distinction and concentrate on the features offered by the
analyzed systems.

Chapter 8

Conclusion

The contribution of this paper is threefold. First, it provides a precise char-
acterization of the execution semantics of scientific WfMSs through the anal-
ysis of three of the most widely-used offerings: Kepler, Taverna and Triana.
Second, it uses this characterization to conduct a comprehensive evaluation
of the three offerings in question. This is achieved through a pattern-based
analysis of the control-flow, data and resource perspectives of these scientific
WfMSs using the well-known collection of patterns from the Workflow Pat-
terns Initiatives. Third, it provides a comparative analysis of scientific WfMSs
and business WfMSs, and it highlights some difficulties that arise in using
business WfMSs for designing scientific workflows. This analysis resulted in
the identification of four patterns that deal with advanced data dependencies,
which are not part of the Workflow Patterns collection and are not supported
by business WfMSs.

The choice of these offerings was motivated by the fact that they are
among the most mature and used open-source scientific WfMSs [1]. As such,
we believe our findings may also have applicability to other scientific WfMSs.

A possible avenue for future work is to study how the missing control-flow
patterns can be integrated in the three considered systems, particularly sup-
port for some of the multiple instance and advanced synchronization patterns.
A careful consideration though is required as to the extent to which such sup-
port is really required in the application domain. Similarly, extended support
for the resource patterns could be studied so as to enable a more seamless
integration of human agents into scientific workflows. Another opportunity
for future work is to investigate to what degree a single system can cater for
both the needs of business WfMSs and scientific WfMSs.

91

92 8 Conclusion

References

1. Vasa Curcin and Moustafa Ghanem. Scientific workflow systems - can one size
fit all? In Proceedings of the 4th Cairo International Biomedical Engineering
Conference (CIBEC 2008)., pages 1–9, Cairo, 2008. IEEE Computer Society.

2. Workflow Patterns Initiative. http://workflowpatterns.com.
3. The Kepler Project. http://kepler-project.org/.
4. Taverna Workbench. http://www.taverna.org.uk/.
5. Triana Problem Solving Environment. http://www.trianacode.org/.
6. Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, Michel Adams, and Nick Rus-

sell. Modern Business Process Automation: YAWL and its Support Environment.
Springer-Verlag, November 2009.

7. W. M. P. van der Aalst. Three Good Reasons for Using a Petri-net-based Work-
flow Management System. In S. Navathe and T. Wakayama, editors, Proceedings
of the International Working Conference on Information and Process Integration
in Enterprises (IPIC’96),, pages 179–201, Massachusetts, 1996. Cambridge.

8. Edward A. Lee and Thomas M. Parks. Dataflow Process Networks. Proceedings
of the IEEE, 83:773–801, 1995.

9. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management: A Guide
for the Design of Business Processes. Springer, 2003.

10. Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8:21–66, 1998.

11. Shawn Bowers, Bertram Ludäscher, Anne H.H. Ngu, and Terence Critchlow.
Enabling Scientific Workflow Reuse through Structured Composition of Dataflow
and Control-Flow. In Proceedings of the ICDE Workshop on Workflow and
Data Flow for Scientific Applications (SciFlow’06), Atlanta, GA, 2006. IEEE
Computer Society.

12. Ingo Wassink, Han Rauwerda, Paul Vet, Timo Breit, and Anton Nijholt. E-
BioFlow: Different Perspectives on Scientific Workflows. In Mourad Elloumi,
Josef Küng, Michal Linial, Robert F. Murphy, Kristan Schneider, and Cristian
Toma, editors, Proceedings of the 2th International Conference on Bioinformat-
ics Research and Development (BIRD 2008), volume 13 of Communications
in Computer and Information Science, pages 243–257, Vienna, Austria, 2008.
Springer Berlin Heidelberg.

13. Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers.
Scientific Workflows: Business as Usual? In Business Process Management, vol-
ume 5701/2009 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2009.

14. Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer-Verlag, Secaucus, NJ, USA, 1 edition, November 2007.

15. Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and Vali-
dation of Concurrent Systems. Springer Berlin Heidelberg, June 2009.

16. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Workflow
Management and the Kepler System. Concurrency and Computation: Practice
& Experience, 18:1039–1065, 2006.

17. Edward A. Lee, C. Hylands, J. Janneck, J. Davis II, J. Liu, X. Liu, S. Neuendorf-
fer, S. Sachs M. Stewart, K. Vissers, and P. Whitaker. Overview of the Ptolemy
Project. Technical Report UCB/ERL M01/11, EECS Department, University of
California, Berkeley, 2001.

18. Thomas Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew Pocock, Anil Wipat, and
Peter Li. Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20:3045–3054, 2004.

References 93

19. Shalil Majithia, Matthew Shields, Ian Taylor, and Ian Wang. Triana: A Graphical
Web Service Composition and Execution Toolkit. pages 514–521, San Diego,
California, 2004. IEEE Computer Society.

20. Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and Nataliya
Mulyar. Workflow Control-Flow Patterns: A Revised View. Technical Report
BPM-06-22, BPM Center Report, 2006. http://www.bpmcenter.org.

21. Ustun Yildiz, Adnene Guabtni, and Anne H. H. Ngu. Business versus Scientific
Workflows: A Comparative Study. In Proceedings of the 2009 Congress on Ser-
vices - I (SERVICES’09), pages 340–343, Washington, DC, USA, 2009. IEEE
Computer Society.

22. Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems for
Grid Computing. SIGMOD Record, 34:44–49, 2005.

23. Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Workflow Data Patterns: Identification, Representation and Tool Sup-
port. In L. Delcambre, C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, edi-
tors, Proceedings of the 24th International Conference on Conceptual Modeling
(ER 2005), volume 3716 of Lecture Notes in Computer Science, pages 353–368,
Klagenfurt, Austria, 2005. Springer.

24. Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David
Edmond. Workflow Resource Patterns: Identification, Representation and Tool
Support, 2005.

25. Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai,
Farshad Fotouhi, and Jing Hua. A Reference Architecture for Scientific Workflow
Management Systems and the VIEW SOA Solution. IEEE Transactions on
Services Computing, 2:79–92, 2009.

26. Jacek Sroka and Jan Hidders. Towards a Formal Semantics for the Process Model
of the Taverna Workbench. Part I. Fundamenta Informaticae, 92:279–299, 2009.

27. Jacek Sroka and Jan Hidders. Towards a Formal Semantics for the Process Model
of the Taverna Workbench. Part II. Fundamenta Informaticae, 92:373–396, 2009.

28. Jacek Sroka, Jan Hidders, Paolo Missier, and Carole Goble. A formal semantics
for the Taverna 2 workflow model. Journal of Computer and System Sciences,
76(6):490–508, 2010.

29. Shawn Bowers and Bertram Ludäscher. Actor-Oriented Design of Scientific Work-
flows. In Lois Delcambre, Christian Kop, Heinrich Mayr, John Mylopoulos, and
Oscar Pastor, editors, Proceedings of the 24st International Conference on Con-
ceptual Modeling (ER 2005), volume 3716 of Lecture Notes in Computer Science,
pages 369–384, Klagenfurt, Austria, 2005. Springer.

30. Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia
Wohed. On the suitability of UML 2.0 activity diagrams for business process
modelling. In Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, edi-
tors, Proceedings of the 3rd Asia-Pacific Conference on Conceptual modelling
(APCCM’06), volume 53 of CRPIT, pages 95–104, Hobart, Australia, 2006. Aus-
tralian Computer Society, Inc.

31. Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, and Arthur H. M. ter Hof-
stede. Analysis of Web Services Composition Languages: The Case of BPEL4WS.
In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and Peter Scheuermann, ed-
itors, Proceedings of the 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215,
Chicago, IL, USA, 2003. Springer.

32. Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter Hofstede,
and Nick Russell. On the Suitability of BPMN for Business Process Modelling.
In Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors, Proceed-
ings of the 4th International Conference Business Process Management (BPM
2006), volume 4102 of Lecture Notes in Computer Science, pages 161–176, Vi-
enna, Austria, 2006. Springer.

94 8 Conclusion

33. Petia Wohed, Nick Russell, Arthur H. M. ter Hofstede, Birger Andersson, and
Wil M. P. van der Aalst. Patterns-based evaluation of open source Bpm systems:
The cases of jBPM, OpenWFE, and Enhydra Shark. Information & Software
Technology, 51:1187–1216, 2009.

34. Ustun Yildiz, Adnene Guabtni, and Anne H. H. Ngu. Towards Scientific Work-
flow Patterns. In Ewa Deelman and Ian Taylor, editors, Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science (WORKS’09), pages
1–10, Portland, Oregon, 2009. ACM.

