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Abstract

Variants of the same process can be encountered within one organization or
across different organizations. For example, different municipalities, courts, and
rental agencies all need to support highly similar processes. In fact, procurement
and sales processes can be found in almost any organization. However, despite
these similarities, there is also the need to allow for local variations in a controlled
manner. Therefore, many academics and practitioners have advocated the use
of configurable process models (sometimes referred to as reference models). A
configurable process model describes a family of similar process models in a
given domain. Such a model can be configured to obtain a specific process model
that is subsequently used to handle individual cases, for instance, to process
customer orders. Process configuration is notoriously difficult as there may be all
kinds of interdependencies between configuration decisions. In fact, an incorrect
configuration may lead to behavioral issues such as deadlocks and livelocks. To
address this problem, we present a novel verification approach inspired by the
“operating guidelines” used for partner synthesis. We view the configuration
process as an external service, and compute a characterization of all such services
which meet particular requirements via the notion of configuration guideline.
As a result, we can characterize all feasible configurations (i. e., configurations
without behavioral problems) at design time, instead of repeatedly checking each
individual configuration while configuring a process model.

Keywords: Configurable process model, operating guideline, Petri net,
C-YAWL

1. Introduction

Although large organizations support their processes using a wide variety
of process-aware information systems, the majority of business processes are
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still not directly driven by process models [§]. Despite the success of Business
Process Management (BPM) thinking in organizations, Workflow Management
(WIM) systems — today often referred to as BPM systems — are not widely used.
One of the main problems of BPM technology is the “lack of content”; that is,
providing just a generic infrastructure to build process-aware information systems
is insufficient as organizations need to support specific processes. Organizations
want to have “out-of-the-box” support for standard processes and are only
willing to design and develop system support for organization-specific processes.
Yet most BPM systems expect users to model basic processes from scratch.
Enterprise Resource Planning (ERP) systems such as SAP and Oracle, on the
other hand, focus on the support of these common processes. Although all
ERP systems have workflow engines comparable to the engines of BPM systems,
lion’s share of processes supported by these systems are not driven by models.
For example, most of SAP’s functionality is not grounded in their workflow
component, but hard-coded in application software. ERP vendors try to capture
“best practices” in dedicated applications designed for a particular purpose. Such
systems can be configured by setting parameters. System configuration can be a
time consuming and complex process. Moreover, configuration parameters are
exposed as “switches in the application software”, thus making it difficult to see
the intricate dependencies among certain settings.

A model-driven process-oriented approach toward supporting business pro-
cesses has all kinds of benefits ranging from improved analysis possibilities
(verification, simulation, etc.) and better insights, to maintainability and ability
to rapidly develop organization-specific solutions [8] 23]. Although obvious, this
approach has not been adopted thus far, because BPM vendors have failed to
provide content and ERP vendors suffer from the “Law of the handicap of a
head start”. ERP vendors manage to effectively build data-centric solutions
to support particular tasks. However, the complexity and large installed base
of their products makes it impossible to refactor their software and make it
process-centric.

Based on the limitations of existing BPM and ERP systems, we propose
to use configurable process models. A configurable process model represents a
family of process models; that is, a model that through configuration can be
customized for a particular setting. Configuration is achieved by hiding (i.e.,
bypassing) or blocking (i.e., inhibiting) certain fragments of the configurable
process model [I8]. In this way, the desired behavior is selected. From the
viewpoint of generic BPM software, configurable process models can be seen as
a mechanism to add content to these systems. By developing comprehensive
collections of configurable models, particular domains can be supported. From
the viewpoint of ERP software, configurable process models can be seen as a
means to make these systems more process-centric, although in the latter case,
quite some refactoring is needed as processes are hidden in table structures and
application code.

Various configurable languages have been proposed as extensions of existing
languages (e.g., C-EPCs [32], C-iEPCs [26], C-WF-nets [4], C-SAP, C-BPEL)
but few are actually supported by enactment software (e.g., C-YAWL [20]).



In this paper, we are interested in models in the latter class of languages,
which, unlike traditional reference models [T, 12}, [T6], are executable after they
have been configured. Specifically, we focus on the verification of configurable
exzecutable process models. In fact, because of hiding and/or blocking selected
fragments, the instances of a configured model may suffer from behavioral
anomalies such as deadlocks and livelocks. This problem is exacerbated by the
total number of possible configurations a model may have, and by the complex
domain and data dependencies which may exist between various configuration
options. For example, the configurable process model we constructed from the
VICS documentationﬂ— an industry standard for logistics and supply chain
management — comprises 50 activities. Each of these activities may be “blocked”,
“hidden”, or “allowed”, depending on the configuration requirements. This results
in 3°0 & 7.18e+23 possible configurations. Clearly, checking the feasibility of
each single configuration can be time consuming as this would typically require
performing state-space analysis. Moreover, characterizing the “family of correct
models” for a particular configurable process model is even more difficult and
time-consuming as a naive approach would require solving an exponential number
of state-space problems. Obvious this is infeasible for real-life models such as
the VICS reference model.

As far as we know, our earlier approach [4] is the only one focusing on the
verification of configurable process models which takes into account behavioral
correctness and avoids the state-space explosion problem. Other approaches
either only discuss syntactical correctness related to configuration [I1, 13l B2],
or deal with behavioral correctness but run into the state-space problem [22].
In this paper, we propose a completely novel verification approach where we
consider the configuration process as an “external service” and then synthesize
a “most permissive partner” using the approach described by Wolf [35] and
implemented in the tool Wendy [30]. This most permissive partner is closely
linked to the notion of operating guidelines for service behavior [29]. In this
paper, we define for any configurable model a so-called configuration guideline
to characterize all correct process configurations. This approach provides the
following advantages over our previous approach [4]:

e We provide a complete characterization of all possible (correct) configura-
tions at design time; that is, the configuration guideline.

e Computation time is moved from configuration time to design time and
results can be reused more easily.

e No restrictions are put on the class of models which can be analyzed. The
previous approach [4] was limited to sound free-choice WF-nets. Our new
approach can be applied to models which do not need to be sound, which
can have complex (non-free choice) dependencies, and which can have
multiple end states.

1See fwww.vics.com (Voluntary Interindustry Commerce Solutions Association).
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To prove the practical feasibility of this new approach, we have implemented
it as a component of the toolset supporting C-YAWL.

The remainder of this paper is organized as follows. In Section [2] we elaborate
on the need for process configuration and define the problem in a language
independent manner. Section [3] introduces basic concepts such as open nets
and weak termination. These concepts are used in Section [f] to formalize the
notion of process configuration. Section [5| presents the solution approach for
correctness ensuring configuration. Often configurable process models cannot
be freely configured and domain constraints and data dependencies need to be
taken into account. For example, one cannot skip an activity that produces data
to be used in a later phase of the process. Therefore, Section [6] shows how to
incorporate such constraints. Section [7] discusses tool support. Related work is
discussed in Section [§] Section [9] concludes the paper.

2. Motivation

To motivate the need for configurable processes, we first sketch some example
domains where many variants of the same process co-exist.

There are about 430 municipalities in The Netherlands. In principle, they
all execute variants of the same set of processes. For example, they all support
processes related to building permits, such as the process handling applications
for permits and the process for handling objections against such permits.

Suncorp is the largest Australian insurance group. The Suncorp Group offers
various types of insurance using brands such as Suncorp, AAMI, APIA, GIO,
Just Car, Bingle, Vero, etc. There are insurance processes related to different
types of risks (home, motor, commercial, liability, etc.) and these processes exist
for the different Suncorp brands. Hence, there are up to 30 different variants of
the process of handling an insurance claim at Suncorp.

Hertz is the largest car rental company in the world with more than 8,000
locations in 146 countries. All offices of Hertz need to support the same set of
processes, e.g., how to process a reservation. However, there are subtle differences
among the processes at different locations due to regional or national variations.
For example, the law in one country or the culture in a particular region forces
Hertz to customize the standard process for different locations.

Organizations such as Suncorp and Hertz need to support many variants
of the same process (intra-organizational variation). Different municipalities in
a country need to offer the same set of services to their citizens, and, hence,
need to manage similar collections of processes. However, due to demographics
and political choices, municipalities are handling things differently. Sometimes
these differences are unintentional; however, often these differences can be easily
justified by the desired “Couleur Locale” (inter-organizational variation). Clearly,
it is undesirable to support these intra-organizational and inter-organizational
variations by making copies of the same process (and related systems!) that
are subsequently adapted. Hence, it is important to support variability using
configurable process models.



Michelangelo Buonarroti (1475-1564), the famous Italian sculptor, painter,
architect and engineer, made the following well-known statements which illustrate
the idea of configuration:

o “Every block of stone has a statue inside it and it is the task of the sculptor
to discover it.”

e “I saw the angel in the marble and carved until I set him free.”
e “Carving is easy, you just go down to the skin and stop.”

Configuration using operations such as hiding (i.e., bypassing) and blocking (i.e.,
inhibiting) corresponds to sculpting. Hiding and blocking remove behavior by
limiting choices, this can be seen as removing stone to create a sculpture.

short
(seconds)
long
(years) scope
large small
(processes in (single case in
different one
organizations) organization)

Figure 1: Configuration is like carving stone to create a sculpture. Making choices removes
potential behavior, just like a sculptor removes stone. Decisions need to be made at different
levels until at run-time all decisions have been made.

When developing product software that will be used in many organizations,
one needs to make choices that will impact all of these organizations, the processes
in these organizations, and the instances of these processes. Therefore, the scope
of such design decisions is large and the timeframe associated with such decisions
is long. Organizations using SAP R/3 benefit/suffer from choices made in the
early 1990s when the ERP system was developed. When organizations choose
to install such a system like SAP R/3, it needs to be configured to meet the
specific needs of the organization. This implies that again various choices are
made. The scope of such decisions is considerable, but smaller than the scope
of initial design decisions made by the software vendor of a successful product.
When configuring the system, one is operating within the bounds imposed by



the product software. Subsequently, the installed system is used to support
processes. This triggers another set of choices. Once the process is up and
running, instances (often referred to as “cases”) are handled by the system.
However, there may be still choices left (cf. XOR-splits in a process model).
These choices are resolved at run-time. When the instance has been handled,
no choices remain. Sometimes, we refer to this as “audit time” as history can
not be changed and it is undesirable to try and change any records describing
the completed execution of a process instance. Figure [1]illustrates this process
of decision making. At different levels, choices need to be made. Some choices
have a small scope and a short timeframe whereas other choices have a large
scope and a long timeframe. As shown in Fig. [I] there is a continuum of decision
making. For example, one can have a process that is reconfigured when things
get very busy. Imagine for example how Suncorp changed its processes when
it got overloaded with thousands of claims due to the flooding of Queensland
in January 2011. Such reconfiguration decisions impact many cases. One can
also have a process that is different in weekends or during holidays. A process
may depend on the region (e.g., location of a Hertz office), on the weather (e.g.,
when it rains a location is closed), on the type of customer (e.g., gold customers
do not need to register), etc. All of these variations correspond to decisions that
were made at some point in time. Decisions made at one level, remove options
at a lower level.

In this paper, we will focus on the two basic operators to remove behav-
ior — hiding and blocking — mentioned earlier. As shown in [Ig], these are the
foundation operators for removing behavior. All other mechanisms removing
behavior can be expressed in terms of these basic operations (see [I7} 20} 24] [32]
for examples). Moreover, these correspond to the basic operators when describing
inheritance of dynamic behavior [3} [10]. While configuration corresponds to
removing behavior, inheritance corresponds to adding behavior while preserving
certain properties.

configurable model configuration configured model

Figure 2: Given a configurable model and a configuration, a configured model is derived. The
configured model has less behavior because of hiding and blocking operations applied during
configuration.

Later, we will formalize hiding and blocking in terms of Petri nets. However,
it is important to see that these notions are language independent. Figure
illustrates that the basic mechanisms apply to different languages. Different
configurable languages have been defined in the literature, e.g., C-YAWL, C-
EPC, and C-SAP [I7, 20, 24] 32]. A so-called configuration can be applied



to a configurable model created using such a language. After applying the
configuration, one obtains the configured model. The latter is a conventional
executable model, e.g., a model that can be enacted using a BPM system. As
shown in Fig. 2] a configuration corresponds to hiding or blocking variation
points in the model.

The configured model that results from configuration can be analyzed using
traditional approaches. In this paper, we focus on correctness issues. A configu-
ration is called feasible if the configured model is considered to be correct. Here,
we use weak termination as a correctness criterion, i.e., a process instance can
always terminate correctly. Hence, anomalies such as deadlocks and livelocks are
not possible. Other variants of soundness can be used [I], 5], but this requires
adaptations with respect to the analysis technique used.

configurable 3" confi n
:> gured :> 3" correctness
process model process models checks

Figure 3: Classical, brute force, approach to verify the correctness of configurations.

If a model has n variation points that can all be configured as hidden or
blocked, there are 3" possible configurations. Even if there are few variation
points, this results in many potential configurations (e.g., 320 = 3, 486, 784, 401).
Using existing techniques, it is already challenging to verify a concrete model.
Therefore, as discussed in Section[T} it is unrealistic to assume that the brute-force
approach depicted in Fig. [3] will work in practice. One could use a trail-and-error
approach when configuring the configurable process model. However, ideally
the information system should support the configuration process by proactively
removing configuration possibilities that result in incorrect process models. In
fact, one would like to have a characterization of all feasible configurations and
an “auto-complete” option that automatically completes a partial configuration
while ensuring the correctness of the final model.

:> configuration

guideline

process model

77N\
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Figure 4: The approach presented in this paper. We reason about controllers that ensure
feasible configurations. Using partner synthesis, we create one configuration guideline capturing
all feasible configurations.

Given the above requirements, we propose a completely different approach
which is shown in Fig. ] Rather than exhaustively trying all 3" possible
configurations, we construct a “controller” that configures the process model
correctly. Using controller synthesis [30] 35], we synthesize a so-called “most



permissive partner”. This is the controller that does not remove any feasible
configurations. This most permissive partner will serve as a configuration
guideline steering the designer toward a good configuration. This provides us
with a complete characterization of all feasible configurations at design time.
Unlike existing approaches, we do not need to impose all kinds of syntactical
restrictions on the class of models to be considered. Moreover, computation is
moved from configuration time to design time and advanced functionality such
as “auto-completion” comes into reach.

The ideas presented in this section are generic and do not depend on a
particular representation. However, in order to explain the approach and to
formalize the concepts, in this paper we use Petri nets. Therefore, the next
section introduces some preliminary concepts.

3. Business Process Models

For the formalization of the problem we use Petri nets, which offer a formal
model of concurrent systems. However, the same ideas can be applied to other
languages (e.g. C-YAWL, C-BPEL), as it is easy to map the core structures of
these languages onto Petri nets. Moreover, our analysis approach is quite generic
and does not rely on specific Petri net properties.

Definition 1 (Petri net). A marked Petri net is a tuple N = (P, T, F,mg)
such that: P and T (P NT = () are finite sets of places and transitions,
respectively, FF C (P x T) U (T x P) is a flow relation, and mq : P — N is an
initial marking.

A Petri net is a directed graph with two types of nodes: places and transitions,
which are be connected by arcs as specified in the flow relation. If pe P, t € T,
and (p,t) € F, then place p is an input place of ¢. Similarly, (¢,p) € F means
that p is an output place of t.

The marking of a Petri net describes the distribution of tokens over places and
is represented by a multiset of places. For example, the marking m = [a?, b, ¢*]
indicates that there are two tokens in place a, one token in b, and four tokens in c.
Formally m is a function such that m(a) = 2, m(b) = 1, and m(c) = 4. We use @
to compose multisets; for instance, [a?,b,c*] @ [a?,b,d?, e] = [a*, b2, c*, d?, €].

A transition is enabled and can fire if all its input places contain at least one
token. Firing is atomic and consumes one token from each of the input places
and produces one token on each of the output places. mg — m means that ¢ is
enabled in marking mg and the firing of ¢ in mg results in marking m. We use
mo — m to denote that m is reachable from myg; that is, there exists a (possibly
empty) sequence of enabled transitions leading from mg to m.

For our configuration approach, we use open nets. Open nets extend classical
Petri nets with the identification of final markings €2 and a labeling function ¢.

Definition 2 (Open net). A tuple N = (P, T, F,mq,, L,£) is an open net if
e (P, T, F,mg) is a marked Petri net (called the inner net of N),
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Figure 5: The open net for travel request approval (Q = {[ps]})-

Q) C P — N is a finite set of final markings,

L is a finite set of labels,

e 7 ¢ L is a label representing invisible (also called silent) steps, and

0:T — LU{r} is a labeling function.

We use transition labels to represent the activity corresponding to the ex-
ecution of a particular transition. Moreover, if an activity appears multiple
times in a model, we use the same label to identify all the occurrences of that
activity. The special label 7 refers to an invisible step, sometimes referred to as
“silent”. Invisible transitions are typically use to represent internal actions which
do not mean anything at the business level, cf. the “inheritance of dynamic
behavior” framework [3] [I0]. We use visible labels to denote activities that may
be configured while in Section [5| we use these labels to synchronize two open
nets.

Figure [5] shows an example open net which models a typical travel request
approval. The process starts with the preparation of the travel form. This can
either be done by an employee or be delegated to a secretary. In both cases, the
employee personally needs to arrange the travel insurance. If the travel form has
been prepared by the secretary, the employee needs to check it before submitting
it for approval. An administrator can then approve or reject the request, or
make a request for change. Now, the employee can update the form according
to the administrator’s suggestions and resubmit it. In Fig. [5] all transitions bear
a visible label, except for t; which bears a 7-label as it has only been added for
routing purposes.

Unlike our previous approach [4] based on WF-nets [I] and hence limited
to a single final place, here we allow multiple final markings. Good runs of an



open net end in a marking in set {2. Therefore, an open net is considered to be
erroneous if it can reach a marking from which no final marking can be reached
any more. An open net weakly terminates if a final marking is reachable from
every reachable marking.

Definition 3 (Weak termination). An open net N = (P, T, F,mo,Q, L,{)
weakly terminates if and only if (iff) for any marking m with mg = m there
exists a final marking m; € €2 such that m 5 my.

The net in Fig. [o|is weakly terminating. Weak termination is a weaker notion
than soundness, as it does not require transitions to be quasi-live [I]. This
correctness notion is more suitable as parts of a correctly configured net may be
left dead intentionally.

4. Process Model Configuration

We use open nets to model configurable process models. An open net can be
configured by blocking or hiding transitions which bear a visible label. Blocking
a transition means that the corresponding activity is no longer available and
none of the paths with that transition cannot be taken any more. Hiding a
transition means that the corresponding activity is bypassed, but paths with
that transition can still be taken. If a transition is neither blocked nor hidden,
we say it is allowed, meaning it remains in the model. Configuration is achieved
by setting visible labels to allow, hide or block.

Definition 4 (Open net configuration). Let N be an open net with label
set L. A mapping Cy : L — {allow, hide, block} is a configuration for N. We
define:

e AG={teT|Lt)#T N Cy(L(t) = allow},
e H{={teT|(t)=1 VvV Cn(L(t)) = hide}, and
e BG={teT|lt)#T N Cn(£(t)) = block}.

An open net configuration implicitly defines an open net, called configured
net, where the blocked transitions are removed and the hidden transitions are
given a 7-label.

Definition 5 (Configured net). Let N = (P, T, F, mg, 2, L, {) be an open net
and Cy a configuration of N. The resulting configured net 35 = (P, T, F€,my,
Q, L, (%) is defined as follows:

o TC =T\ (BS),
o FC = FN((PUTC) x (PUTC)), and

o (C(t) = L(t) for t € A and (€ (t) =T for t € H.
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Figure 6: Two possible configured nets based on the model in Fig. @

As an example, Fig. @(a) shows the configured net derived from the open net
in Fig. p| and the configuration Cy (Prepare Travel Form (Secretary)) = block
(to allow only employees to prepare travel forms), Cn(Arrange Travel Insurance
(Employee)) = hide (to skip arranging the travel insurance), and Cy(z) = allow
for all other labels x.

A configured net may have disconnected nodes and some parts may be dead
(i.e., can never become active). Such parts can easily be removed. However,
as we impose no requirements on the structure of configurable models, these
disconnected or dead parts are irrelevant with respect to weak termination. For
example, if we block the label of ¢5 in Fig. o transition t5 becomes dead as it
cannot be enabled any more, and hence can also be removed without causing any
behavioral issues. Nonetheless, not every configuration of an open net results in
a weakly terminating configured net. For example, by blocking the label of ¢4 in
the configured net of Fig. [6|(a), we obtain the configured net in Fig. [6(b). This
net is not weakly terminating because after firing ¢t tokens will get stuck in ps3
(as this place does not have any successor) and in ps (as t5 can no longer fire).

Blocking can cause behavioral anomalies such as the deadlock in Fig. @(b)
However, hiding cannot cause such issues, because it merely changes the labels
of an open net. In this paper we are interested in all configurations which yield
weakly terminating configured nets. We use the term feasibility to refer to such
configured nets.

Definition 6 (Feasible configuration). Let N be an open net and Cx a
configuration of N. Cly is feasible iff the configured net 3§ weakly terminates.

More precisely, given a configurable process model N, we are interested in
the following two questions: i) Is a particular configuration C feasible? ii) How
to characterize the set of all feasible configurations?

11



The remainder of this paper is devoted to a new verification approach an-
swering these questions. This approach extends the work in [4] in two directions:
(i) it imposes no unnecessary requirements on the configurable process model (al-
lowing for non-free-choice nets [I4] and nets with multiple end places/markings),
and (ii) it checks a weaker correctness notion (i.e. weak termination instead
of soundness). For instance, the net in Fig. [5|is not free-choice because ¢4 and
ts share an input place, but their sets of input places are not identical. The
non-free-choice construct is needed to model that after firing ¢ or ¢7, t5 cannot
be fired, and similarly, after firing t5, 4 cannot be fired.

5. Correctness Ensuring Configuration

To address the two main questions posed in the previous section, we could
use a direct approach by enumerating all possible configurations and simply
checking whether each of the configured nets 3§ weakly terminates or not (see
Fig. . As indicated before, the number of possible configurations is exponential
in the number of configurable activities. Moreover, most techniques for checking
weak termination typically require the construction of the state space. Hence,
traditional approaches are computationally expensive and do not yield a useful
characterization of the set of all feasible configuration. Consequently, we propose
a completely different approach using the synthesis technique described in [35].
As shown in Fig.[4] the core idea is to see the configuration as an “external service”
and then synthesize a “most permissive partner”. This most permissive partner
represents all possible “external configuration services” which yield a feasible
configuration. The idea is closely linked to the notion of operating guidelines
for service behavior [29]. An operating guideline is a finite representation of all
possible partners. Similarly, our configuration guideline characterizes all feasible
process configurations. This configuration guideline can also be used to efficiently
check the feasibility of a particular configuration without exploring the state space
of the configured net. Our approach consists of three steps:

1. Transform the configurable process model N into a configuration interface
N,

2. Synthesize the “most permissive partner” (our configuration guideline)
QC~ for the configuration interface NI,

3. Study the composition of N¢! with Q°~.

In the remainder of this section we explain these three steps. We will
use two types of configuration interfaces: one where everything is allowed by
default and the external configuration service can block or hide labels and one
where everything is blocked by default and the external configuration service
can “unblock” (i.e., allow or hide) labels. Section provides some more
preliminaries needed to reason about configuration interfaces. The configuration
interface in which everything is allowed by default is presented in Section [5.2
The configuration interface in which everything is blocked by default is presented
in Section Section [5.4] shows another example to illustrate the concepts.

12



5.1. Composition and Controllability

For our solution approach, we compose the configurable process model with a
“configuration service” ). To do so, we first introduce the notion of composition.
Open nets can be composed by synchronizing transitions according to their
visible labels. In the resulting net, all transitions bear a 7-label and labeled
transitions without counterpart in the other net disappear.

Definition 7 (Composition). Fori € {1,2},let N; = (P;, T;, F;, mo,, 4, Li, £;)
be open nets. N; and Ny are composable iff the inner nets of Ny and N, are
pairwise disjoint. The composition of two composable open nets is the open net

Nl@NQ = (P,T,F,mo,Q,L,E) with:
o P:P1UP2,
[ ] T:{tGTl UT2|£(t) :T}U{(tl,tQ) ETl XTQ|£(t1) :é(tg) %T},

o F=((UR)N{(PxT)U(T xP)))U{(p(t1,t2)) € P xT | (p,t1) €
Fi1V (p,t2) € Fo} U{((t1,t2),p) €T x P | (t1,p) € F1 V (t2,p) € I},

® My = Mo, © Mmo,,
. Q:{ml@mg\ml 691/\m2€92}7

e L=0,and £(t) =T forallt € T.

Via composition, the behavior of each original net can be limited; for instance,
transitions may no longer be available or may be blocked by one of the two
original nets. Furthermore, final markings have an impact on weak termination:
final markings of the compositions consist of the final markings of each composed
net. Hence, it is possible that N7 and N, are weakly terminating, but Ny & Ns
is not. Similarly, N1 & N> may be weakly terminating, but N7 and N3 are not.
The labels of the two open nets in Def. [7] serve now a different purpose: they are
not used for configuration, but for synchronous communication as described in
[35].

With the notions of composition and weak termination, we define the con-
cept of controllability, which we need to reason about the existence of feasible
configurations.

Definition 8 (Controllability). An open net N is controllable iff there exists
an open net N’ such that N @ N’ is weakly terminating.

Open net N’ is called a partner of N if N @ N’ is weakly terminating. Hence,
N is controllable if there exists a partner. Wolf [35] presents an algorithm to
check controllability: if an open net is controllable, this algorithm can synthesize
a partner.

13



5.2. Configuration Interface: Allow by Default

After these preliminaries, we define the notion of a configuration interface.
One of the objectives of this paper was to characterize the set of all feasible
configurations by synthesizing a “most permissive partner”. To do this, we
transform a configurable process model (i.e., an open net N) into an open net
NI called the configuration interface, which can communicate with services
which configure the original model. In fact, we shall provide two configuration
interfaces: one where everything is allowed by default and the external config-
uration service can block and hide labels, and the other where everything is
blocked by default and the external configuration service can allow and hide
labels. Similarly, one can construct a hide by default variant, which we do not
illustrate in this paper. In either case, the resulting open net N is controllable
iff there exists a feasible configuration Cy of N. Without loss of generality, we
assume a 1-safe initial marking; that is, mo(p) > 0 implies mg(p) = 1. This
assumption helps to simplify the configuration interface and any net whose initial
marking is not 1-safe can easily be converted into an equivalent net having a
1-safe initial marking.

Definition 9 (Configuration interface; allow by default). Let N = (P, T,
F,mp,Q, L, £) be an open net. We define the open net with configuration interface
NCI = (PC,TC, FC m§,QC, L€ (C) with

e PY = PU{pstart} U {ps. 0%, 0%, 0" |z € L},
o TC =TU {tstart} U {bz7hz | S L},

FC = FU{(pstart;tstart)}u{(tstarhp) ‘ p € P/\mO(p) = ]-}U{(t»pz)» (pz,t) |
E(t) = {,C} U {(bxapstart)a (pstart7 bm) | T e L} ) {(hxapstart)a (pstart7 h:r) | T e
L} U{(p%,b2), (P2, ba), (be,0%) | # € LY U{(DF, ha), (ha, p) | 2 € L},

m§ = [p' | p € {pstart} U {pe.p% | © € L}
OF = {m@@,c,ms | meQ A Vo m5 € {[p, 03], P2, [pe P21} H

L = {start} U {block,, hide, | z € L}

(€ (tspars) = start, £€(b,) = block, and ¢¢(h,) = hide, for 2 € L, and
Ct)y=rforteT.

Figure [7] illustrates the two configuration interfaces for a simple open net
N. In both interfaces, the original net N consisting of places {p1, p2, p3,ps4} and
transitions {t1,ta,t3,%4} is retained, but all transition labels are set to 7. Let

2[pk | p € X] denotes the multiset where each element of X appears k times. Initially, pstart
contains one token. Since everything is allowed by default, also p, and p$ contain a token in
the initial marking (z € L).

3Recall that m1 @ ma denotes the composition of two multisets. The set of final markings
imposes no restrictions on the newly added places. For label z, any of the three possible
states — allowed [pz,p%], blocked [p%], or hidden [p,,p?]—1is possible.
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Figure 7: An example open net (a) and its two configuration interfaces: (b) shows the allow
by default variant and (c) shows the block by default variant.

us first focus on the configuration interface where all activities are allowed by
default (Fig. . The configuration interface consists of three parts: First,
places p, and p, are added and connected with biflows to each transition of
the original net. These places are used to control, for each label, whether a
transition is blocked (i.e., the place is unmarked) or may fire (i.e., the place
is marked). Second, the status of each label is modeled by the places p% and
py (allowed), p% and pg (blocked), and p? and pZ (hidden). As we consider an
allow-by-default scenario, places p., p}, py, and pj, are initially marked. With
two transitions for each label (b, and h, for blocking and hiding z-labeled
transitions, and b, and h, for blocking and hiding y-labeled transitions), the
status can be changed by the environment by synchronizing via labels block,,
hide,, block,, and hide,, respectively. Finally, transition ¢sta,+ has been added to
ensure configuration actions take place before the original net is activated. This
way, we avoid “configuration on the fly”. Note that currently the only constraint
with respect to the final marking is that the original net must reach its final
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marking — all added places may be marked arbitrarily. In Sect. [} we shall refine
this final marking to encode domain knowledge and data dependencies. We shall
discuss the construction of the configuration interface where all activities are
blocked by default later on.

Consider now a configuration service represented as an open net Q. N7 @ Q
is the composition of the original open net (N) extended with a configuration
interface (NS7), and the configuration service Q. In the initial phase, i.e., before
start fires, only blocking and hiding transitions such as b, by, hs, and h, can
fire (apart from unlabeled transitions in @). Next, transition start fires after
which blocking and hiding transitions such as b, by, hs, and h, can no longer
fire. Hence, only the original transitions in N/ can fire in the composition after
firing start. The configuration service ) may still execute transitions, but these
cannot influence NS any more. Hence, () represents a feasible configuration
iff N¢! can reach one of its final markings from any reachable marking in the
composition. So @ corresponds to a feasible configuration iff N¢T @ @ is weakly
terminating; that is, @ is a partner of NF7.

To illustrate the basic idea, we introduce the notion of a canonical con-
figuration partner; that is, the representation of a configuration Cy : L —
{allow, hide, block} in terms of an open net which synchronizes with the original
model extended with a configuration interface.

Definition 10 (Canonical configuration partner; allow by default). Let
N be an open net and let Cy : L — {allow, hide, block} be a configuration for
N. QS~ = (P, T, F,mq,, L9, {) is the canonical configuration partner with:

o [*={x e L|Cn(x)# allow} is the set of labels other than “allow”,

P={p),py |z e L},

T={t, |z € L*} U {tstart },

F={(p2:ta), (ta; 07), (P tstart) | © € L7},
mo = [(p)! |z € L7]f]

Q={[]}

L? = {block,, hide, | x € L*} U {start},

L(t;) = block,, if Cy(z) = block, £(t;) = hide,, if Cx(z) = hide, and
L(tstars) = start.

The set of labels which need to be blocked or hidden to mimic configuration
C\ is denoted by L*. The canonical configuration partner QS has a transition
for each of these labels. These transitions may fire in any order after which the

4Recall that [p* | p € X] denotes the multiset where each element of X appears k times. [ ]
denotes the empty multiset.
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transition with label start fires. We observe that in the composition N¢7 @ Q'
first all transitions with a label in {block,, hide, | © € L*} fire in a synchronous
manner (i.e., t, in Q™ fires together with b, or h, in N&7), followed by the
transition with label start (in both nets). After this, the net is configured and
Q%™ plays no role in the composition N¢7 @ Q¢~ any more.

The following lemma formalizes the relation between the composition N&7 @
QY™ and feasibility.

Lemma 1. Let N be an open net and let Cn be a configuration for N. Cy is a
feasible configuration iff NCT @& QSN is weakly terminating.

Proof. (=) Let Cx be a feasible configuration for N and let NI be as defined
in Def. |9l Consider the composition NI @ Q¢~ after the synchronization via
label start has occurred. By construction, (1) NST @ Q¢~ reached the marking
m = mg @ my @ mo such that mg is the initial marking of N, m; marks all
places p%, p, and p! of the labels 2 with Ciy(z) = allow, Cx () = block, and
Cn (z) = hide, respectively. Furthermore, place p, is marked for all unblocked
labels z. Marking my is the empty marking of Q“~. Furthermore, (2) all
transitions which bear a synchronization label (i.e., tsart and all b, and h,
transitions) and all blocked transitions t € B, are dead in m and cannot become
enabled any more. From NE7, construct the net N* by removing these transitions
and their adjacent arcs, as well as the places added in the construction (pstart and
e, pg, and pg for all labels « € L). The marking of these places does not change
any more, i.e., they either always contain a token or remain unmarked, and we
already removed the transitions that are blocked. The resulting net N* coincides
with 51?/ (modulo renaming of labels which has no effect on termination). Hence,
NET @ QPN weakly terminates.

(<) Assume NST @ QY weakly terminates. From Q¢V, we can straight-
forwardly derive a configuration C for N in which all labels are blocked which
occur in N¢! @ QY~. With the same observation as before, we can conclude
that 8§ coincides with the net N* constructed from NE7 after the removal the
described nodes. Hence, 3§ weakly terminates and C is a feasible configuration
for N. O

Lemma [1| states that checking the feasibility of a particular configuration can
be reduced to checking for weak termination of the composition. However, the
reason for modeling configurations as partners is that we can synthesize partners
and test for the existence of feasible configurations.

Theorem 1 (Feasibility coincides with controllability). Let N be an open net.
NaCI is controllable iff there exists a feasible configuration Cn of N.

Proof. (=) If N¢7 is controllable, then there exists a partner N’ of N&! such
that N¢T @ N’ is weakly terminating. Consider a marking m of the composition
reached by a run o from the initial marking of N¢/ @ N’ to the synchronization
via label start. Using the construction from the proof of Lemmall] we can derive
anet N* from NI which coincides with a configured net 5§ for a configuration
Cn. As N¢T @ N’ is weakly terminating, Cly is feasible.
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(b) CG® Block by default

Figure 8: Two configuration guidelines characterizing all possible configurations.

(<) If Cy is a feasible configuration of N, then by Lemma NET @ QOv
weakly terminates and by Def. |8 N¢7 is controllable. O

As shown in [35], it is possible to synthesize a partner which is most-permis-
sive. This partner simulates any other partner and thus characterizes all possible
feasible configurations. In previous papers on partner synthesis in the context
of service oriented computing, the notion of an operating guideline was used to
create a finite representation capturing all possible partners [29]. Consequently,
we use the term Configuration Guideline (CG) to denote the most-permissive
partner of a configuration interface. Figure|8(a)|shows the configuration guideline
CG* for the configurable model in Fig. omputed from the configuration
interface NO7 in Fig.

A configuration guideline is an automaton with one start state and one or
more final states. Any path in the configuration guideline starting in the initial
state and ending in a final state corresponds to a feasible configuration. The
initial state in Fig. is denoted by a small arrow and the final states are
denoted by double circles. The leftmost path in Fig. [8(a)| (i. e., (block,, start)),
corresponds to the configuration which blocks label z. Path (block,, start)
corresponds to the configuration which blocks label y. The rightmost path (i.e.,
(start)) does not block any label. The three paths capture all three feasible
configurations that do not consider hiding steps. As hiding and allowing have
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the same effect on the original net (i.e., the respective labeled transitions may
fire), each configuration that does not block a transition (and hence allows it by
default) may further hide that transition. This yields a large number of further
possible configurations. Figure lists all feasible configurations, and, for
example, shows that blocking both labels is not feasible. Since there are only
two labels and eight feasible configurations, the conclusions based on Fig.
are rather obvious. However, configuration guidelines can be automatically
computed for large and complex configurable process models.

5.8. Configuration Interface: Block by Default

Thus far, we used a configuration interface that allows all configurable
activities by default, that is, blocking and hiding are explicit actions of the
partner. It is also possible to use a completely different starting point and
initially block all activities.

Definition 11 (Configuration interface; block by default). Let N = (P, T,
F,m,Q, L, £) be an open net. We define the open net with configuration interface
NEL = (PC,TC FC mS.QC, LC, (C) with

o PY = PU{pstart} U {ps,p%, 0%, 1 |z € L},
o TC =T U {tsars} U{ap, he | z € L},

L4 FC = FU{(pstart;tstart)}u{(tstarmp) ‘ pE P/\m()(p) = I}U{(t7p't)7 (p'tat) |
g(t) = 1'} U {(azapstart)a (pstart; az) ‘ T E L} U {(hzapstart>7 (pstart; hm) | WS

L{ U {(pi,az), (az,pg), (az,pz) | ® € L} U {(pg7hm), (hm,p’;), (he,p2) |z €
L b

o m§ = [p" | p € {Pstars} U{P} |z € L},
e 0= {m@ EBaceL m:: | m € A vwEL m; € {[pvaﬂv [pg]v [pvag]} }7
o LY = {start} U {allow,, hide, | € L}

o (C(tspary) = start, £9(a,) = allow, and ¢“(h,) = hide, for 2 € L, and
Ct)y=rforteT.

NET in Fig. [7(c)| shows the configuration interface where all activities are
blocked by default. The idea is analogous to the construction of N&Z. Instead
of b, and by, transitions a, and a, are added to model the explicit allowing
of labels x and y, respectively. Furthermore, the initial marking was adjusted:
places p, and p, are initially unmarked such that, by default, none of the
original transitions can fire. These places can be marked by allowing or hiding
the respective label. Very similar to the “allow by default” case, we define a
canonical configuration partner.

Definition 12 (Canonical configuration partner; block by default). Let
N be an open net and let Cy : L — {allow, hide, block} be a configuration for
N. QbCN = (P, T, F,mg,Q, L9, () is the canonical configuration partner with:
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o L*={x e L|Cn(x)# block} is the set of labels other than “block”,
P={py,p | we L},

T={t, | © € L*} U {tstart},

F =A{(phtz), (ta: ), (B tstare) | @ € L7},

mo = [(p2)" | = € L7,

Q={[1}

L? = {allow,, hide,, | x € L*} U {start},

0(t,) = allow,, if Cy(x) = allow, £(t;) = hide,, if Cy(z) = hide, and
L(tstars) = start.

The structure of the canonical configuration partner QbCN is identical to that
of QY~. Only the labels are different; that is, L\ L* are the labels that need
to be “unblocked” (i.e., allow or hide). Moreover, we obtain the same results
linking feasibility to controllability.

Lemma 2. Let N be an open net and let Cy be a configuration for N. Cy is a
feasible configuration iff NbCI D QbCN is weakly terminating.

Proof. Analogous to the proof of Lemma O

Theorem 2 (Feasibility coincides with controllability). Let N be an open net.
NbCI is controllable iff there exists a feasible configuration Cn of N

Proof. Analogous to the proof of Theorem O

Figure [8(b)| shows the configuration guideline CG® for the configurable
model in Fig. computed from the configuration interface NbCI in Fig.[7(c)
Again, any path in CG? starting in the initial state and ending in a final state
correspond to a feasible configuration. The leftmost path (i.e., (allow,, start))
corresponds to the configuration which “unblocks” label x by allowing it. Paths
(allow,, allow,, start) and (allow,, allow,, start) correspond to the configuration
where both « and y are allowed. The path (allow,,start)) allows y only. Similar
paths exists for hiding, e.g., (hide,, start) corresponds to the configuration which
“unblocks” label x by hiding it. Again there are eight feasible configurations (see
final states in Fig. .

Clearly, the two configuration guidelines in Fig. [§] point to the same set
of feasible configurations as they refer to the same original model. In can be
noted that for each configuration that contains an allow, there also exists a
configuration with a hide,, but otherwise identical actions. This is always the
case; hiding and allowing are equivalent with respect to feasibility. For this
reason, we shall not depict hiding actions in the remainder of this section. We
have included them both in the constructs used because they become relevant
when dealing domain knowledge and data dependencies (see Section @ For
example, if a transition produces a data element used later in the process, there
is a clear difference between hiding or blocking it.
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Figure 10: The configuration guidelines (allow by default) for N1 (a), N2 (b) and N3 (c).
Hiding actions are not depicted.

5.4. Another Example

Let us now consider a more elaborated example to see how configuration
guidelines can be used to rule out unfeasible configurations. Figure[shows three
open nets. The structures are identical, only the labels are different. For example,
blocking = in N» corresponds to removing both ¢; and ¢4 as both transitions
bear the same label, while blocking x in N3 corresponds to removing ¢; and t5.
For these three nets, we can construct the configuration interfaces using Def. [J]
and then synthesize the configuration guidelines, as shown in Fig.

For these three nets, we can construct the configuration interfaces using Def. [J]
or Def. [I1] and then synthesize the configuration guidelines. Figure [I0] shows
the three configuration guidelines using Def. |§| (allow by default). As mentioned
before, we refrained from presenting configurations that contain hiding activities.

Figure reveals all feasible configurations for N; in Fig. From
the initial state in the configuration guideline CGY{, we can immediately reach
a final state by following the rightmost path (start). This indicates that all
configurations which block nothing (i. e., only allow or hide activities) are feasible.
It is possible to just block v (cf. path (block,,start)) or block both v and y
(cf. paths (block,, block,, start) and (block,, block,, start)). However, it is not
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allowed to block y only, otherwise a token would deadlock in ps. For the same
reasons, one can block w only or w and z, but not z only. Moreover, it is not
possible to combine the blocking of w and/or z on the one hand and v and/or y
on the other hand, otherwise no final marking can be reached. Also x can never
be blocked, otherwise both v and w would also need to be blocked (to avoid a
token to deadlock in py) which is not possible. There are 3° = 243 configurations
for Ny. If we abstract from hiding as this does not influence feasibility (assuming
we abstract from data and domain knowledge; see Section @, there remain
2% = 32 possible configurations. Of these only 5 are feasible configurations which
correspond to the final states in Fig.[10(a)l This illustrates that the configuration
guideline can indeed represent all feasible configurations in an intuitive manner.

Figure|10(b)[shows the three feasible configurations for N5 in Fig. Again
all final states correspond to feasible configurations. Here one can block the two
leftmost transitions (labeled x) or the two rightmost transitions (labeled y), but
not both.

The configuration guideline in Fig. [10(c)| shows that nothing can be blocked
for N5 (Fig. . Blocking x or y will yield an unfeasible configuration as a
token will get stuck in py (when blocking x) or ps (when blocking ). If both
labels are blocked, none of the transitions can fire and thus no final marking can
be reached.

In the next section we show how the partner synthesis can be further refined by
ruling out specific partners based on domain knowledge and data dependencies.

6. Dealing with Domain Knowledge and Data Dependencies

Typically, configurable process models cannot be freely configured, i.e., even
if the resulting configured model is free of deadlock and livelocks, there may be
good reasons for not allowing a particular configuration.

First of all, the configuration has to comply with constraints imposed by
characteristics of the application domain [27]. For instance, in the travel request
example (Fig. , there must always be an option to approve the request. Thus,
we cannot block the label of transition tg although this leads to a feasible
configuration. Corporate governance and regulatory compliance typically limit
the set of possible configurations. For example, there may be legal reasons for
excluding particular configurations, e.g., it is not allowed to skip a check activity
if another activity is present.

In a similar vein, data dependencies among activities may prevent certain
combinations of hiding and blocking. Activities typically have input data and
output data, Suppose that activity a; creates a data element d that is later used
by activity as. Obviously, it is not possible to hide or block a; while keeping as.
Consider, for example, the travel request example in Fig. [5} It is not allowed to
hide t; or t5 in the travel request because these activities create the travel form
which is used as input by all other activities.

Data dependencies can be formalized using workflow nets with data (WFD-
nets) as shown in [34]. WFD-nets extend WF-nets with data elements while
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identifying four relationships between activities (i.e., transitions) and data
elements: read (activity a requires a data element d as input), write (activity
a creates or updates data element d), destroy (activity a deletes data element
d, and guard (data element d is used for routing). WFEFD-nets can be seen as
an abstraction from notations deployed by widely used modeling tools (YAWL,
BPM]|one, ARIS, etc.) and languages (BPMN, UML activity diagrams, eEPCs,
etc.). In fact, the basic idea to link data elements to activities originates from
IBM’s Business Systems Planning (BSP) methodology developed in the early
eighties. Here a so-called CRUD matriz is used showing Create, Read, Update,
and Delete relationships between activities and data elements. The elements of
a CRUD matrix can be translated into data dependencies in a WFD-net. In
[34], nine data-flow anti-patterns are defined. For instance, the anti-pattern
DAP 1 (Missing Data) describes the situation where some data element d needs
to be accessed, i.e., read or destroyed, but either it has never been created
or it has been deleted without having been created again. Hiding an activity
that creates a data element d may easily result in the situation described by
DAP 1. Blocking an activity that uses d may help to avoid this anti-pattern.
Hence, configuration decisions impact the correctness of a model with respect to
data-flow. Anti-pattern DAP 1 is just one of the nine patterns defined in [34].
These patterns show that it is not sufficient to focus on control-flow only.

In summary, both domain knowledge and data dependencies may limit the
total number of feasible configurations. In order to consider these aspects in
the partner synthesis, we first need to capture both domain knowledge and data
dependencies as boolean constraints (“formulae”) over activity labels (i.e., set
L). For example, the domain constraint that label z cannot be blocked can
be expressed as —block,. Recall that visible transition labels correspond to
activities, i.e., we do not block a specific transition, but all transitions having
label . The data constraint that x and y cannot be simultaneously hidden can
be expressed as ((hide, = —hide,) A (hide, = —hide,)).

Definition 13 (Formula). Formulae are defined inductively:

(Base) For a label z € L, allow,, block, and hide, are formulae. F =
{allow,, block,, hide, | z € L} is the set of all atomic formulae.

(Step) If ¢ and 1 are formulae, so are =, (¢ V ¥), (¢ A1), and (p = ).

Examples of atomic formulae are allow, and hide,. Examples of non-atomic
formulae are (allow, V hide,) and ((hide, A block,) = —hide,).

Such formulae are generated based on domain knowledge and data depen-
dencies. Some typical examples are:

e Check activity « can only be skipped if update activity y is blocked.
Formally: (hide, = block,).

e Activity y uses data produced by activity x, hence activity = cannot be
skipped if y is allowed. Formally: (allow, = —hide,).

e It is not allowed by block both x and y unless z is skipped. Formally:
((block, A block,) = hide;).
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In [24, 28] 27] it is shown how domain constraints can be transformed into such
formulae. The anti-patterns and formalization of WFD-nets in [34] also indicate
how CRUD-like constraints can be incorporated, i.e., data-flow dependencies
can be extracted from a configurable model also covering create, read, update,
and delete operations.

Next, we translate these formulae into constraints on the set of final markings
of a configuration interface. In Definition [0} we defined that the set of final mark-
ings of the configuration interface (allow by default) is Q¢ = {m & @, m} |
m € Q A Veer mi € {[pep, [P2], [P, p"]} }. The configuration interface
defined in Definition [11] (block by default) specified the same set of final mark-
ings Q€. Hence, in both cases each label z is required to be in one of the
following three states: [p,,p?] (allowed), [p%] (blocked), and [p.,p!] (hidden).
Since this covers all three possibilities, it does not constrain the set of feasible
configurations. Note that after firing ts a1, the state of a label does not change
any more. Therefore, domain knowledge and data dependencies can be captured
by removing undesirable markings from Q.

Definition 14 (Translation of formulae into a set of final markings).
Let N = (P, T, F,mg,Q,L,£) be an open net and ¢ be a formula representing
the conjunction of all constraints resulting from domain knowledge and data
dependencies. A, C 27 is the set of all satisfying assignments of ¢.

For an assignment A € A, and label € L, we define the multiset m? with:

[Pz, p%], allow, € A
m% = < [pl], block, € A
[pz,p"], hide, € A

This allows us to redefine the set of final markings of the configuration interface:

Qc:{m@eamfdmeQ N Ae Ay}
el

Each assignment corresponds to a set of final markings. The redefined set of final
markings Q¢ can be used in the configuration interfaces defined in Definitions |§|
and By restricting Q¢, domain knowledge and data dependencies are taken
into account when checking feasibility and when constructing the configuration
guideline. The idea to constrain the set of partners of an open net by adjusting
its final marking is inspired by the concept of behavioral constraints presented
in [28].

From the viewpoint of domain knowledge and data dependencies there is a
considerable difference between allow, and hide,. Therefore, we included hiding
in the configuration interfaces (Definitions |§| and . Without adding this to
the interfaces, we would be unable to express constraints related to hiding.

Definition [14] demonstrates the flexibility of our approach. As shown, we are
able to take additional constraints into account without changing our algorithms
for synthesizing the configuration guideline.
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7. Tool Support

To prove the feasibility of our approach, we applied it to the configuration
of C-YAWL models [20] and extended the YAWL system accordingly. The
YAWL language can be seen as an extension of Petri nets which provides
“syntactic sugaring” (shorthand notations for sequences and XOR-splits/joins)
[23]. An atomic activity is called a task in YAWL. Composite tasks represent
subprocesses. YAWL also provides advanced constructs such as cancelation sets,
multiple instance tasks and OR~joins. YAWL is based on the well-know workflow
patterns [6]. The YAWL system supporting this language is one of the most
widely used open source workflow systems [23]. For configuration, we restrict
ourselves to the basic control-flow patterns supported by most systems. Thus we
leave out YAWL’s cancelation sets, multiple instance tasks and OR-joins. This
allows us to easily map a YAWL model onto an open net.

A C-YAWL model is a YAWL model where some tasks are annotated as
configurable. Configuration is achieved by restricting the routing behavior of
configurable tasks via the notion of ports. A configurable task’s joining behavior is
identified by one or more inflow ports, whereas its splitting behavior is identified
by one or more outflow ports. The number of ports for a configurable task
depends on the task’s routing behavior. For example, an AND-split/join and
an OR-join are each identified by a single port, whereas an XOR-split/join is
identified by one port for each outgoing/incoming flow. An OR-split is identified
by a port for each combination of outgoing flows. To restrict a configurable
task’s routing behavior, inflow ports can be hidden (thus the corresponding
task will be skipped) or blocked (no control will be passed to the corresponding
task via that port), whereas outflow ports can only be blocked (the outgoing
paths from that task via that port are disabled). For instance, Fig. shows
the C-YAWL model for the travel request approval in the YAWL Editor, where
configurable tasks are marked with a thicker border.

The YAWL Editor can be downloaded from www.yawlfoundation.org. It
provides a graphical interface to conveniently configure and check C-YAWL
models and subsequently generate configured models. Given a configuration, the
tool can show a preview of the resulting configured net by graying out all model
fragments which have been blocked, and commit the configuration by removing
these fragments altogether.

To assist end users in ruling out all unfeasible configurations in an interactive
manner, we developed a new component for the YAWL Editor named C-YAWL
Correctness Checker. Given a C-YAWL model in memory, the component first
maps this model into an open net. More precisely, it maps each condition to
a place, each configurable task’s port to a labeled transition, and each non-
configurable task to a silent transition. Also, for each task it adds an extra place
to connect the transition(s) derived from its inflow port(s) with the transition(s)
derived from its outflow port(s). By using silent transitions we prevent all
non-configurable tasks from being later configured via a configuration interface.
Next, the component passes the generated open net to the tool Wendy [30].
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Figure 11: The C-YAWL model for travel request approval.

Wendy creates the corresponding configuration interface (allow by default), and
produces the configuration guideline (allow by default) from the latter artifact.

Wendy is a free and open source tooﬂ which implements the algorithms for
partner synthesis [35] and to calculate operating guidelines [29]. Wendy itself
offers no graphical user interface, but is controlled by input/output streams. In
our setting, Wendy’s output is piped back into the Correctness Checker, where it
can be parsed. The component’s interaction with Wendy is illustrated in Fig.

The complexity of the partner synthesis is exponential in the size of the
open net with the configuration interface (the reachability graph needs to be
generated) and the size of the interface. However, practical experiences show
that Wendy is able to analyze industrial models with up to five million states
and to synthesize partners of about the same size [30].

At each configuration step, the Correctness Checker scans the set of outgoing
edges of the current state in the configuration guideline, and prevents users
from blocking those ports not included in this set. This is done by disabling
the block button for those ports. As users block a valid port, the Correctness
Checker traverses the configuration guideline through the corresponding edge
and updates the current state. If this is not a consistent state, that is, a state
with an outgoing edge labeled “start”, further ports need to be blocked, because
the current configuration is unfeasible. In this case the component provides an
“auto complete” option. This is achieved by traversing the shortest path from

5 Available for download at http://service-technology.org/wendy.
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the current state to a consistent state and automatically blocking all ports on
that path. After this, the component updates the current state and notifies the
user with the list of ports that have been automatically blocked. For example,
Fig. [11| shows that after blocking the input port of task Check and Update Travel
Form, the component notifies the user that the input port of task Prepare Travel
Form for Approval (Secretary) and the output port of task Submit Travel Form
for Approval to task Request for Change have also been blocked. Figure [I3]
shows the preview of the resulting configured net. From this we can observe
that condition ps and task Request for Change will also be removed from the
net as a result of applying the earlier configuration. Similarly, the component
maintains a consistent state in case users decide to allow a previously blocked
port. In this case the component traverses the shortest backward path to the
closest consistent state and allows all ports on that path. By traversing the
shortest path we ensure that the number of ports being automatically blocked
or allowed is minimal.

This auto-completion feature can be extended by prompting the user with
the set of paths from the current state to a consistent state of a given length
(e.g. five states). In this way the user can select which combinations of ports to
block/allow in order to keep the configuration feasible.

The C-YAWL example of Fig. [11] comprises ten inflow ports and nine outflow
ports. In total more than 30 million configurations are potentially possible. If
we abstract from hiding we obtain 524,288 possible configurations, of which
only 1,593 are feasible according to the configuration guideline (in the current
implementation of C-YAWL, we do not support hiding). Wendy took an average
of 336 seconds (on a 2.4 GHz processor with 2GB of RAM) to generate this
configuration guideline which consumes 3.37 MB of disk space. Nonetheless, the
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Figure 13: The preview of a configured net for the example in Fig.

shortest path computation is a simple depth-first search which is linear in the
number of nodes in the configuration guideline. Thus, once the configuration
guideline has been generated, the component’s response time at each user
interaction is instantaneous.

8. Related Work

Traditional reference models [I1, 12} [T6] are typically not executable. For
example, the well-known SAP reference model is disconnected from the actual
system and has many internal inconsistencies [31]. Such models focus on training
and documentation rather than enactment. Configurable process models [I8-
211 B2] can be seen as executable reference models. Since they are actively used
to support processes, they need to be correct.

Many researchers have worked on the verification of business processes,
workflows, and services [11, [5, 15l BT [33] [34]. However, these approaches focus
on the analysis of one process in isolation and can only be used to exhaustively
verify all possible configurations to create a configuration guideline. In this
respect, they face the state-space explosion problem.

To the best of our knowledge, our earlier approach [4] is the only one focusing
on the behavioral correctness of process configurations which avoids state-space
explosion. Other approaches either only discuss syntactical correctness related
to configuration [T} 13}, 32], or deal with behavioral correctness but run into
the state-space problem [22]. For example, [32] preserves syntactic correctness
by construction of the configured EPC model from a C-EPC, whereas [I1], 13]
prompt users with a list of syntactic issues detected during process configuration,
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which need to be manually fixed. Finally, [22] proposes to check the correctness
of each single configured process model.

The approach presented in [4] presents a technique to derive propositional logic
constraints from configurable process models that, if satisfied by a configuration
step, guarantee the behavioral correctness of the configured model. This approach
allows correctness to be checked at each intermediate step of the configuration
procedure. Whenever a configuration value is assigned to a transition label (e.g.
x is blocked), the current set of constraints is evaluated. If the constraints are
satisfied, the configuration step is applied. If on the other hand the constraints
are violated, a reduced propositional logic formula is computed, from which
additional configuration values are determined, that also need to be applied
in order to preserve correctness. Unfortunately, this approach requires the
configurable process model to be a sound, free-choice Workflow net. Thus, these
requirements limit the applicability of the approach. In the current paper, we
do not require to impose such requirements.

This paper is an extended version of [7]. In [7], we already described the
idea of synthesizing a configuration guideline based on the approach described
by Wolf [35]. However, in [7] we abstracted from hiding and only showed one
configuration interface (allow by default). The actual construction presented in
Section |5| is different from that in [7] to be able to deal with hiding. Moreover,
we showed the configuration interface where everything is blocked by default.
Hiding, blocking and allowing are now symmetric. In principle, we could have
also provided a configuration interface that hides by default. Finally, we showed
how constraints can be incorporated in our approach. These constraints may
be derived from the domain in which the configurable process model has been
constructed, or from data dependencies that there exist among process tasks.

9. Conclusion

Configurable process models are a means to compactly represent families of
process models. However, the verification of such models is difficult as the number
of possible configurations grows exponentially in the number of configurable
elements. Due to concurrency and branching structures, configuration decisions
may interfere with each other and thus introduce deadlocks, livelocks and other
anomalies. The verification of configurable process models is challenging and only
few researchers have worked on this. Moreover, existing results impose restrictions
on the structure of the configurable process model and fail to provide insights
into the complex dependencies among different process model configuration
decisions.

The main contribution of this paper is an innovative approach for ensuring
correctness during process configuration. Using partner synthesis we compute the
configuration guideline— a compact characterization of all feasible configurations,
which allows us to rule out configurations that lead to behavioral problems. The
approach is highly generic and imposes no constraints on the configurable process
models that can be analyzed. Moreover, all computations are done at design
time and not at configuration time. Thus, once the configuration guideline
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has been generated, the response time is instantaneous thus stimulating the
practical (re-)use of configurable process models. The approach is implemented
in a checker integrated in the YAWL Editor. This checker uses the Wendy tool
to ensure correctness while users configure C-YAWL models.

Several interesting extensions are possible. First, it is possible to create more
compact representations of configuration guidelines (e.g. exploiting concurrency
[9]). The “diamond structures” in the example configuration guidelines illustrate
that regions can help to fold the guidelines and separate unrelated configuration
decisions. However, more research is needed to understand how to best present the
configuration guidelines to end-users (see e.g. our earlier work on questionnaire-
based variability modeling [25]). Second, one could consider configuration at
run-time, that is, while instances are running, configurations can be set or
modified. This can be easily embedded in the current approach, but would be
impossible when using conventional techniques. Finally, we are interested in
relating this work on process configuration to process mining [2]. Process mining
has been focusing on the analysis of individual processes. However, as more
and more variants of the same process need to be supported, it is interesting to
analyze differences between these variants based on empirical data. We refer to
this as cross-organizational process mining.

Acknowledgments.. We thank Jingxin Xu for his help with the implementation
and testing of the C-YAWL component, and its integration with the Wendy tool.
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