
Proclets in Healthcare

R.S. Mans1,2, N.C. Russell1, W.M.P. van der Aalst1, A.J. Moleman2, P.J.M.
Bakker2

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box
513, NL-5600 MB, Eindhoven, The Netherlands.

{r.s.mans,n.c.russell,w.m.p.v.d.aalst}@tue.nl
2 Academic Medical Center, University of Amsterdam, Department of Quality

Assurance and Process Innovation, Amsterdam, The Netherlands.
{a.j.moleman,p.j.bakker}@amc.uva.nl

Abstract. Healthcare processes can be characterized as weakly-connected
interacting lightweight workflows coping with different levels of granular-
ity. Classical workflow notations are falling short with regard to support-
ing these kind of processes as they support monolithic processes which
describe the life-cycle of individual cases and allow for hierarchical de-
composition. The proclets framework is one of the formalisms provid-
ing a solution to this problem. Based on a large case study, describing
the diagnostic process of the gynecological oncology care process of the
Academic Medical Center (AMC), we identify the limitations of “mono-
lithic workflows”. Moreover, by using the same case study, we investigate
whether healthcare processes can be effectively described using proclets.
In this way, we provide a comparison between the proclet framework and
existing workflow languages and identify research challenges.

1 Introduction

In healthcare organizations, such as hospitals, many complex, non-trivial pro-
cesses are performed which are lengthy in duration. These processes are diverse,
flexible and often involves several medical disciplines in diagnosis and treatment.
For a group of patients with the same condition, a number of different examina-
tions and treatments may be required and the order in which they are conducted
can vary greatly.

In order to guarantee the correct and efficient execution of healthcare pro-
cesses, there is a need for technological support in controlling and monitoring
their delivery to patients [24]. Workflow Management Systems (WfMSs) are an
interesting means of achieving this goal. Based on a corresponding process defi-
nition, which specifies which tasks need to be executed and in which order, i.e.
the control-flow, they support processes by managing the flow of work such that
individual work-items are done at the right time by the proper person [6].

Contemporary WfMSs have difficulties dealing with the dynamic nature of
processes [4]. One of the main problems is that they require that the complete
workflow is described as one monolithic overarching workflow. This assumes that

a workflow process can be modeled by specifying the life-cycle of a single case in
isolation. For real-life processes this assumption can not be made. As a result, the
control-flow of several cases need to be artificially squeezed into a single model.
Obviously, if a complex healthcare process is described in this way, this results
in an unreadable process definition where essential parts of the control-flow are
ultimately hidden inside custom-made application software.

This can be illustrated when considering a typical healthcare process for the
diagnosis of patients. In general for a patient this consists of multiple visits to a
hospital in order to meet with doctors and undergo diagnostic tests (e.g. a lab
test). However, there also steps in which several medical specialists meet in order
to discuss the status of patients. Clearly, some tasks may operate at the level of
a single patient, whereas other tasks operate at the level of a group of patients.
So, processes may rely on information that is at different levels of aggregation.

The process of diagnosing a patient typically consists of the execution of a
number of smaller processes that run in conjunction to each other. Flexibility
in healthcare processes originates from the fact that these small processes can
be instantiated and synchronized at any point in time. For example, at any
point in the process of diagnosing a patient, a doctor may order a lab test.
However, although these process fragments execute independently from each
other, a certain “magnetism” exists between them. Such process fragments can
best be characterized as weakly-connected interacting lightweight workflows.

To date, contemporary WfMSs do not offer support for weakly-connected in-
teracting lightweight workflows which can deal with information that is at vary-
ing levels of aggregation. An interesting means of solving this issue is provided
by proclets [4, 5]. Proclets are a framework for lightweight workflow processes.
Together with performatives and channels it is possible to describe how these
proclets interact with each other. Moreover, the interaction between these pro-
clets is modeled explicitly using structured messages, called performatives, which
are exchanged via channels.

As proclets provide an interesting means of modeling and executing a health-
care process in WfMSs, in this paper we investigate whether healthcare processes
can indeed be modeled using this technique and how this compares to existing
workflow approaches. Therefore, we take the following approach. We focus on
the gynecological oncology workflow as it is performed at the Academic Medi-
cal Center (AMC) in Amsterdam, a large academic hospital in the Netherlands,
which is considered to be representative of other healthcare processes. The se-
lected healthcare process describes the diagnostic process for patients visiting
the gynecological oncology outpatient clinic and is a large process consisting of
around 325 activities. As an earlier effort, this healthcare process has already
been modeled in full using the workflow languages, YAWL and FLOWer, and
has been partially modeled using the Declare and ADEPT1 workflow languages
[25]. Additionally, this allows us to investigate the problems existing workflow
approaches are facing. We discuss in detail how the healthcare process has been
modeled using the YAWL workflow language. For FLOWer, ADEPT1, and De-
clare, we summarize the issues encountered. This leads on to a discussion of how

2

the same healthcare process is modeled using proclets and how the identified
issues can be addressed. It is worth noting that the reason for implementing a
hospital process in the four workflow systems mentioned above was to identify
the requirements that need to be fulfilled by workflow systems, in order to be
successfully applied in a hospital environment. These requirements have been
discussed in [27].

This paper is structured as follows: Section 2 introduces the proclets ap-
proach. In Section 3, we introduce the gynecological oncology healthcare process
and discuss how it is modeled using YAWL, FLOWer, Declare, and ADEPT1. In
Section 4, we discuss the modeling of the healthcare process using proclets and
elaborate on how the limitations, mentioned in Section 3, are addressed. Related
work is outlined in Section 5. Section 6 discusses the experiences associated with
modeling the healthcare processes using proclets and concludes the paper.

2 Introduction to Proclets

In this section, we will discuss proclets which form a framework for modeling
workflows. The concepts of the framework have already been introduced in [4,
5]. In this section, we give an introduction to this framework in order to assist
the reader in better understanding the proclet models that will be shown in the
remainder of this document. For complete details we refer the reader to [4, 5].
At the end of this section, the use and operation of proclets will be illustrated
by a small healthcare example.

In Figure 1, a graphical representation of the concepts, which underpin the
framework, is shown. As can be seen, there are five main concepts of which each
will be discussed below.

The framework is centered around a proclet . There is a distinction between
a proclet class and a proclet instance. A proclet class can best be seen as a
process definition which describes which tasks need to be executed and in which
order. For a proclet class, instances can be created and destroyed. One instance
is called a proclet instance. For the definition of a proclet class, a selection can
be made between multiple graphical languages. In this paper, we use a graphical
language based on the YAWL language [7]. However, other languages, like Petri
Nets [1] or EPCs [2], can also be used. With regard to the selection of a graphical
language, some limitations apply. First of all, proclet instances need to have a
state and they need to support the notion of a task. Second, a proclet class needs
to be sound [3].

With regard to the communication and collaboration among proclets, so
called channels, ports, and performatives are important. First of all, proclets
interact with each other via channels. A channel can be used to send a per-
formative to an individual proclet or to a group of proclets. A performative is
a specific kind of message with several attributes which is exchanged between
one or more proclets. A performative has the following attributes:

– Time: the moment the performative was created/received.

3

1,1

1,1

port

naming
service

channel
proclet

task

performative

Fig. 1. Graphical representation of the framework.

– Channel : the medium used to exchange the performative.
– Sender : the identifier of the proclet creating the performative.
– Set of receivers: the identifiers of the proclets receiving the performative, i.e.

a list of recipients.
– Action: the type of the performative. This attribute can be used to spec-

ify the illocutionary point of the performative. Examples are request, offer,
acknowledge, promise, decline, counter-offer, or commit-to-commit.

– Content : the actual information that is being exchanged.

Of course, it is possible to add more attributes to a performative. Note that
a channel may have different properties which affect the sending and receiving of
performatives, e.g. push/pull or synchronous/asynchronous. In order for proclets
to be able to find each other there is a naming service which keeps track of
existing proclets. A proclet class and instances of it are defined in the following
way:

– a proclet class has a unique name. In the same way, an instance of a proclet
class has an unique identifier.

– a proclet class has ports. Performatives are sent and received via these ports
in order for a proclet to be able to interact with other proclets. Every port,
either incoming or outgoing, is connected to one task. Moreover, a port has
two attributes.

4

First, the cardinality specifies the number of recipients of performatives ex-
changed via the port. An ∗ denotes an arbitrary number of recipients, + at
least one recipient, 1 precisely one recipient, and ? denotes no or just one
recipient. Note that by definition an input port has cardinality 1.
Second, the multiplicity specifies the number of performatives exchanged via
the port during the lifetime of an instance of the class. In a similar fashion
to the cardinality, an ∗ denotes that an arbitrary number of performatives
are exchanged, + at least one, 1 precisely one, and ? denotes that either one
or no performatives are exchanged. Note that by definition an input port
has a multiplicity of 1 or ?.

– a proclet instance has its own knowledge base for storing performatives
that are received and sent. Parts of the knowledge base can be public or
private. The public part is identical for all instances of the class, i.e. this part
resides at the class level even though it holds information about instances.
The private part resides exclusively at the instance level.

– The knowledge base can be queried by tasks. A task may have a precondition
based on the information that can be found in the knowledge base. A task
can only fire if (1) the task in the net itself is enabled, (2) each input port
contains a performative, and (3) the precondition evaluates to true. Note
that for the YAWL language, as can be seen in Figure 2, multiple ports can
be connected to an input condition. In this case, an instance is created on
the receival of each performative.

– A task connected to an output port may have a postcondition. The postcon-
dition specifies for the output ports, the number of performatives generated
and the content. The postcondition may also depend upon information that
can be found in the knowledge base.

In order to illustrate the framework, we use the small healthcare-related
example shown in Figure 2(a). The example deals with the process of taking
blood from a patient so that several lab tests can be performed in order to make
a diagnosis. Therefore, there are two proclet classes. The proclet class “lab visit”
is instantiated for every patient who visits the lab for whom a blood sample is
taken. Proclet class “lab test” is instantiated for every lab test that needs to
be performed on the blood sample. Hence, there is an one-to-many relationship
between “lab visit” and “lab test” as shown by the relationship requires in the
class diagram in Figure 2(b).

When a patient visits the lab, a blood sample is taken (“Take blood sample”
task) after which the doctor decides which lab tests need to be performed for the
sample (“Select lab tests” task). As a consequence, a trigger for each required
lab test is initiated, so that for every lab test a single instance of proclet class
“Lab test” is created. Consequently, the cardinality of the outgoing port of the
“Select lab tests” is ∗. Moreover, the multiplicity is 1 which means that during
the lifetime of an instance of the class “Lab visit” exactly one performative is
send via this port. The creation performative is send via the lab order system,
which explains why the name of the channel is “Order system”. The input port
connected to the input port of the “Lab test” proclet class has cardinality 1

5

*,1

Take
blood

sample

Select lab
tests

Receive
result

1,*

1,1

Perform
test

Make
report

1,1

Perform
additional

test

1,?

1,?

Provide
new result1,?

No more
tests

needed
Additional

tests
needed

Send
report

*,1

*,1

Lab visit Lab test

Receive
updated

result
1,*

Order system

HIS

Finish lab
test

(a) Two proclet classes connected through two channels

Lab visit

Lab test

(b) Class diagram containing
the two proclet classes

1..1

1..*

requires

(c) Example of a performative

Time Channel Sender Receivers Action Content Scope Direction
11:00 Order

system
Lab
visit -
John

Lab test –
HGB
John

Create Can you
perform a HGB
test for John?

Private OUT

Analyze
results

Fig. 2. Example of two proclet classes.

and multiplicity 1 as an instance can only be created once. Figure 2(b) shows
an example of a performative that is sent by a “lab visit” proclet to a “Lab
test” proclet. From the figure, we can see that at 11 ’o clock a performative is
sent by the “Lab visit” proclet for patient John in order to create an instance
of the “Lab test” proclet called “Lab test - HGB John”. More specifically, an
instance of a “Lab test” proclet class is created so that a HGB blood test can
be performed. The performative is stored in the private knowledge base of the
“Lab visit” proclet.

After an instance of the “Lab test” proclet class is created, a test is performed
on the blood sample (“Perform test” task) which is followed by the creation of a
report which contains the result of the test (“Make report”). This has as conse-
quence that a performative is sent to the instance of the initiating proclet class
“Lab visit”. Note that each instance of “Lab test” sends performatives via the
hospital information system (HIS). The results of the individual lab tests are
received by the “Receive result” task. Note that the input port of task “Re-
ceive result” has cardinality 1 and multiplicity ∗, indicating that multiple test
results may be received. Each performative received is stored in a knowledge
base. The “lab visit” proclet continuously inspects this knowledge base and may

6

decide to start analyzing the results to see if more tests are needed (“analyze
results” task). If no more tests are needed, the “No more tests needed” task is
performed after which all instances of the “Lab test” proclet class are destroyed.
In the situation where the doctor is not confident, a performative is sent via the
“Additional tests needed” task to the “Perform additional test” task of all “Lab
test” proclet instances to indicate that additional work needs to be done. Note
that the cardinality of the output port of both the “Additional tests needed”
and “No more tests needed” tasks is ∗, i.e., in one step all the “lab test” proclets
are informed about whether additional tests are needed or not. Moreover, the
ports connected to the “Perform additional test” task and “Finished lab test”
task both have cardinality 1 (i.e. one recipient) and multiplicity ? (one performa-
tive is sent via one of the two ports). Furthermore, the “Finish lab test” task is
grey-colored as no human input is required when performing the task. After per-
forming the additional test, the “Update report” task is performed which sends
the updated report to the “Lab visit” proclet instance where they are collected
via the “Receive updated result” task. Finally, the patient is informed via the
“Send report” task after which the “Lab visit” proclet instance is destroyed.

3 Limitations of Monolithic Workflows

In this section, we identify the problems existing monolithic workflow approaches
are facing dealing with the dynamic nature of processes. We take the following
approach. First, we examine the gynecological oncology workflow as it is per-
formed at the Academic Medical Center (AMC) in Amsterdam which is con-
sidered to be representative for other healthcare processes. As an earlier effort
this process has been modeled in full using two workflow languages, YAWL and
FLOWer [25], and has been partially modeled using the Declare and ADEPT1
workflow languages [25]. We discuss the selected healthcare process in detail by
elaborating on how the healthcare process has been modeled using the YAWL
workflow language and identify issues that arose when doing so. For FLOWer,
ADEPT1, and Declare, we also discuss issues that arose when implementing the
process although we do not elaborate on specific implementation details. In doing
so, we exemplify the problems existing workflow approaches are facing. Subse-
quently, in Section 4, we discuss how the same healthcare process is modeled
using proclets and how the issues identified are addressed using our approach.

The gynecological oncology workflow is a large process, consisting of over 230
activities, and is performed at the gynecological oncology outpatient department
at the AMC hospital. The AMC is the most prominent medical research center
in the Netherlands and one of the largest hospitals in the country. The healthcare
process deals with the diagnosis of patients suffering from cancer once they are
referred to the AMC hospital for treatment. The care process can be considered
to be non-trivial and illustrative for other healthcare processes, both at the AMC
and in other hospitals.

The healthcare process under consideration consists of two distinct parts. The
first one is depicted in Figure 3 and shows the top page of the YAWL model.

7

Fig. 3. General overview of the gynecological oncology healthcare process.

The process describes all of the steps that may be taken with a patient up to the
point where they are diagnosed. The process starts with the “referral patient and
preparations for first visit” composite activity. This subprocess deals with the
steps that need to be taken for the first visit of the patient to the outpatient clinic.
The next step in the process is the “visit outpatient clinic” composite activity
where the patient visits the outpatient clinic for a consultation with a doctor.
Such a consultation can also be done by telephone (“consultation by telephone”
composite activity). During a visit or consultation, the patient discusses their
medical status with the doctor and it is decided whether any further steps need
to be taken, e.g., diagnostic tests.

8

Fig. 4. Visit of the patient to the outpatient clinic.

The execution of the tests that may be needed are modeled by the “exami-
nations” multiple instance task which allows for the concurrent instantiation of
a number of different tests for a patient. However, for each patient there are also
other steps that may be taken. These are modeled by the “ask for gynecology
data”, “ask for radiology data”, and “examination under anesthetic” composite
tasks and the “ask for pathology slides” and “take tissue sample” tasks. For ex-
ample, the “ask for pathology slides” and “take tissue sample” tasks model the
situation where a pathology examination is required after which the referring
hospital is requested to send their pathology slides to the AMC or tissue sample
is taken at the AMC.

Looking at the overall process we see that while the patient is visiting the
outpatient clinic (shown in the top part of Figure 3) it is possible for a series of
subprocesses to run concurrently (as shown in the lower part of the figure). As
the execution of these subprocesses can be complex and time consuming, there is
no guarantee that all of them will be finished before the start of the next patient
consultation, e.g. the result of a certain test might be delayed. Consequently,
these subprocesses should be seen as separate intertwined life-cycles running
at different speeds rather than as one workflow covering different but related
cases. However, if we want to denote that there is in fact a connection between
these related cases, we need to model them in one monolithic workflow. For the
FLOWer, Declare, and ADEPT1 workflow languages, these observations also
apply. Therefore, we can conclude that for existing workflow approaches cases
need to be straightjacketed into a monolithic workflow despite the fact that it is
more natural to view processes as intertwined loosely-coupled object life-cycles.

In Figure 4, the subprocess underlying the “Visit outpatient clinic” composite
task is shown which describes the visit of a patient to the outpatient clinic.
During such a consultation, the medical status of the patient is discussed and a
decision is made about the next steps to be taken (“Make diagnosis” task). At

9

Fig. 5. Meetings which are held on Monday afternoon to discuss the medical status of
patients.

different stages during the process, several administrative tasks, such as handing
out brochures (task “Additional information with brochures”), and producing a
patient card (task “Make patient card”) may be necessary. As a result of the
execution of the “Make diagnosis” task, subsequent steps in the process need
to be triggered, such as further diagnostic tests or a pathology examination.
However, these next steps are depicted on the top page of the YAWL model
(see Figure 3). As a consequence, they can only be enabled when the process
modeled in Figure 4 is already finished. It would be more natural if these kind of
processes were instantiated at the moment that it is known that they need to be
created, i.e. immediately after execution of the “Make diagnosis” task. In general,
for each of the subprocesses modeled in Figure 3, no direct interaction can take
place during their execution. This is due to the fact that in YAWL there is no way
of modeling interactions between (sub)processes. The same observation holds for
FLOWer, ADEPT1, and Declare as well. Consequently, facilitating interactions
between (sub)processes is far from trivial. Where these need to be supported,
they are typically hidden in application logic or in custom built applications.

Note that business process notations exist which support interactions be-
tween processes. For example, the Business Process Modeling Notation (BPMN)
allows the flow of messages between two entities to be shown via the message
flow construct [38]. In general, we can conclude that as most workflow languages
do not provide support for interaction between (sub)processes, it is difficult to
model interactions between processes.

In Figure 5, the second part of the gynecological oncology healthcare process
is shown. This involves meetings between gynecological oncology doctors and
other medical specialists. First, the participants from the different medical dis-
ciplines prepare themselves for these meetings (“prepare radiology, pathology,
and MDO meeting” composite task). During the radiology meeting (compos-
ite task “radiology meeting”), the doctors from gynecological oncology discuss
with a radiologist the results of the radiology tests that have been performed
for various patients during last week. The same holds for the “pathology meet-

10

ing” composite task for the pathology examinations that have been performed
during the last week. Finally, during the MDO meeting (“MDO meeting”) the
medical status of patients is discussed and a decision is made about their final
diagnosis before the treatment phase is started. Finally, as a result of these meet-
ings, several subsequent steps may need to be initiated for individual patients.
These steps are modeled at the right-hand side of Figure 5. For example, for
some patients, existing tissue may need to be re-examined whereas for others,
the referring hospital may need to be asked to send their pathology material to
the AMC for investigation (“ask for tissue” task).

However, most importantly, compared to the two models discussed earlier,
we are dealing with a group of patients instead of a single patient. Obviously,
compared to the two previous models, we are dealing with a different level of
aggregation. Due to this difference, the workflows executed for a single patient,
shown in Figure 3, and the workflow executed for a group of patients, shown in
Figure 5, are modeled separately. Consequently, the two models are completely
disconnected whereas in reality (examinations for) patients need to be registered
for these meetings, which can be initiated from different places in the process
described in Figure 3. For example, a patient can be registered during the initial
phases of the process and also during a visit to the outpatient clinic. Should these
workflows, operating at different levels of aggregation, need to be described in
a single model, a decision needs to be made about what is to be considered the
case - a service executed for a single patient, or a group of patients. Choosing
either these as the unit of modeling causes problems.

For the modeling of the healthcare process using the FLOWer, ADEPT1,
and Declare workflow languages, the same problem applies. We are not aware of
any workflow language which is able to deal with different levels of granularity.
Consequently, models often need to be artificially flattened as they are unable to
account for the mix of different granularities that co-exist.

Furthermore, the fact that multiple patients can be registered for the afore
mentioned meetings (even from different points in the process) indicates that
one-to-many relationships may exist between entities in a workflow. For example,
during a visit to the outpatient clinic, a patient can be registered for discussion
during an MDO meeting. This means that a one-to-many relationship exists
between the entity “MDO meeting” and the “visit outpatient clinic” entity.
However, as models are unable to account for different granularities that co-
exist in a workflow this also means that it is impossible to capture one-to-many
and many-to-many relationships that may exist between entities in a workflow.
Although, it is impossible to capture the fact that one-to-many and many-to-
many relationships exist between entities in a workflow, such relationships are
common as can be seen in any data/object model.

We have discussed problems that we are faced with when modeling the gy-
necological oncology healthcare process using the YAWL, FLOWer, ADEPT1,
and Declare workflow languages. In summary, we may conclude that existing
workflow approaches currently exhibit the following problems:

11

– Issue 1: Models need to be artificially flattened and are unable to account
for the mix of granularities that co-exist in real-life processes.

– Issue 2: Cases need to be straightjacketed into a monolithic workflow even
though it is more natural to see processes as intertwined loosely-coupled
object life-cycles.

– Issue 3: It is impossible to capture the fact that one-to-many and many-to-
many relationships exist between entities in a workflow, yet such relation-
ships are common as can be seen in any data/object model.

– Issue 4: It is difficult to model interactions between processes, i.e., interac-
tion is not a first-class citizen in most process notations.

4 Realization of the Gynecological Oncology Workflow
using Proclets

In this section, we elaborate on how the gynecological oncology healthcare pro-
cess is modeled using proclets. First, in Section 4.1, we discuss which entities
can be identified in the workflow and how they relate to each other. In Section
4.2, a selection of proclet classes will be discussed, illustrating how the entire
healthcare process is modeled using proclets. However, most importantly, it will
be explained how the issues identified in Section 3 are addressed using proclets.

4.1 Overview

The class diagram in Figure 6 gives an overview of the entities that exist within
the healthcare process and the relationships between them. The dark-grey col-
ored classes correspond to concrete proclet classes. The inheritance relations
show which proclet classes have common features, i.e., the light-grey and white
colored classes can be seen as abstract classes used to group and structure pro-
clets. The associations show the relationships that exist between proclet classes
together with their multiplicity.

Starting with the white colored classes, we see that four main entities exist
within the healthcare process. These are:

– Visit: A patient can visit a hospital multiple times to see a doctor. This
can either be at the outpatient clinic where the doctor examines the patient
(“Visit outpatient clinic” class), or an examination under anesthetic (“Ex-
amination under anesthetic” class). Moreover, also related to a visit are the
initial stages of the process (“Initial phase”) in order to prepare for the first
visit of the patient.

– Test: A doctor can select multiple diagnostic tests that need to be conducted
for a patient. The tests that can be chosen range from medical imaging
(“MRI”, “CT”, and “X-ray” classes) to a lab test (“Lab” class), an ECG
(“ECG” class), and a pre-assessment (“Pre-assessment” class). For all of
these, the presence of the patient is required.

12

Input: additional
information, MDM, tests
Output: visit, additional

information, MDMs, tests

Input: tests
Output: visit, MDMs,

tests, pathology

Visit

Input: request
Output: result

 Input: request,
conclusion

Output: preliminary
result, final result

Additional information

Input: request,
additional information,

Output: conclusion,
additional info,

MDMs, final result

 Input: request, test,
additional information,

Output: conclusion, tests,
additional information,

MDMs, final result

Multi-disciplinary
meeting
(MDM)

 Input: request, MDMs,
tests

Output: MDMs, tests,
additional information,

final result

Input: request
Output: preliminary

result,
final result

Input: request
Output: final result

Input: request,
conclusion

Output: preliminary
result

Input: request
Output: final result

External: tests

Test

Visit outpatient clinic Examination under
anesthetic

Obtain gynecology data Radiology revision Pathology

Radiology meeting MDO meetingPathology meeting

Pre-assessmentLabECG
CT

MRI

X-ray

follows_8

0..*

follows_1
preceding_1

1..1

0..*
0..*

1..1

follows_2
preceding_2

0..*
0..*

0..1
0..1

Tests

follows_3

preceding_3

0..*0..*

0..1
0..1

follows_5

preceding_5

0..*

0..*

0..1
0..1

follows_4
preceding_40..*

0..1
0..1

follows_6

preceding_6

0..*

0..*

0..*

0..*

class diagram

follows_7

0..10..1

T1 T2 T3 T4

A1 A2

M1 M2 M3

Initial phase

Input:
Output: visit,

additional information,
MDMs, tests

0..*

0..1

preceding_8

preceding_7

Fig. 6. Class diagram outlining the concepts that exist within the healthcare process
and their relationships.

– Additional information: A doctor might require additional information
in order to reach a diagnosis. This may involve requesting the referring hos-
pital to send patient related data (class “Obtain gynecology data”), and also
to send pathology slices (“Pathology” class) and radiology data (“Radiology
revision” class) so that they can be reviewed. However, the “Pathology” pro-
clet class also involves (re)examining patient tissue which has been collected
in the AMC.

– Multi-disciplinary meeting: Every Monday afternoon multiple meetings
are organized for discussing the status of patients and/or the outcome of
examinations. These meetings involve the departments of radiology (“Radi-
ology meeting” class), pathology (“Pathology meeting” class) and a multi-
disciplinary meeting (“MDO meeting” class) involving the departments of
gynecological oncology, radiotherapy, and internal medicine (in order to give
chemotherapy).

13

For these four main types, proclets are instantiated a variable number of times
and interact in different ways with each other. For these interactions between
proclets, a single proclet might require multiple inputs and outputs from other
existing proclets. For example, a lab test can be triggered during a visit to the
outpatient clinic and also during the initial phases of the process or during an
MDO meeting.

To make these interaction related commonalities explicit, the light-grey col-
ored classes in Figure 6, outline these interaction characteristics in terms of in-
puts and outputs. The items depicted in bold italic indicate that an interaction
is optional whereas an item written in normal text indicates that an interaction
is mandatory. In this way, the light-grey colored classes explicitly identify (at a
high level) the interface that exists for a specific (group of) proclets. Note that
not all proclet classes have the same level of aggregation. The multi-disciplinary
meeting related proclet classes all deal with a group of patients whereas the
other proclet classes are all related to a single patient.

For each main type of proclet class, we will now elaborate on the four main
types of proclet classes that have been identified and examine now their inter-
action with other proclet classes. First, we focus on the “Test” and “Additional
information” entities in isolation. Then, we focus on the “Visit” and the “Multi-
disciplinary meeting (MDM)” entities and elaborate on the specified associa-
tions. In general, an association with the name “follows” indicates that, seen
from the viewpoint of the “Visit” and the “Multi-disciplinary meeting (MDM)”
entities, an action is initiated (e.g. a lab test). Similarly, an association with
name “preceding” indicates that a specific action serves as input to either the
“Visit” or “Multi-disciplinary meeting (MDM)” entity (e.g. the result of a lab
test is required for a visit to the outpatient clinic).

First of all, for a test for which the patient is required to be present, three
different ways can be distinguished in which a test is requested and ultimately
the result is communicated. One possibility is that a test is requested and the
outcome of the test is immediately reported (“T1”), Another possibility is that
a test is requested, a preliminary result is communicated, followed by a final
result (“T2”) at a later time. The third alternative is that a test is requested
and a preliminary result is communicated to either the requester or a nominated
group of medical specialists. They in turn decide whether an amendment is
needed (“T3”). A somewhat special case is “T4” which is similar to “T1”. In
addition to “T1”, proclet classes of this type may also request diagnostic tests
for a patient in order to come to a decision. For example, for a pre-assessment
test, the anesthetist might require that a lung function test is completed or a
consultation with an internist. The act of requesting additional tests in order to
come to a final decision are also modeled by the “follows 1” and “preceding 1”
associations. These associations indicate that during a pre-assessment multiple
tests can be triggered, i.e. the multiplicity is 0..∗, but also that results of multiple
tests may be required as input for an examination, i.e. the multiplicity is 0..∗.
Note that the requester only initiates an examination and might not be aware

14

of the fact that additional tests need to be performed in order to arrive at an
outcome.

A doctor might decide that additional information is required to reach the
final diagnosis for a patient. Two different ways can be distinguished in which a
request for additional information can be made and the result is delivered to the
requester. These are: (1) additional information is requested and the requested
information is immediately communicated (“A1”), (2) additional information is
requested and a preliminary result is communicated to either the requester or a
group of medical specialists. They in turn advise whether further investigation is
required (“A2”). Note that the way in which additional information is requested,
and the result communicated, is very similar to the way tests are requested and
the result communicated.

During a visit to the hospital, the patient is examined either at the outpa-
tient clinic or during a procedure under anesthetic. For a visit of the patient
at the outpatient clinic (which can also be a consultation by telephone), several
inputs might be required. These can be the results of preceding tests, i.e. the
multiplicity attached to the “Test” class of association “previous 2” is 0..∗, or
additional information that needs to be available, i.e. the multiplicity attached
to the “Visit” class of association “previous 4” is 0..∗. Note that the results of
tests and additional information may also be required as input to a multidis-
ciplinary meeting. Therefore, the multiplicity attached to the “Visit” class of
associations “previous 2” and “previous 4” is 0..1. Moreover, as the status of a
patient might be discussed during the MDO multi-disciplinary meeting (“MDO
meeting”), the patient may be informed about the discussion afterwards, i.e.
the multiplicity attached to “Visit outpatient clinic” and “MDO meeting” of
association “previous 6” is 0..∗ and 0..1, respectively.

During a visit by a patient to the hospital, a doctor might require that a
subsequent visit, i.e. the multiplicity of associations “follows 7” is 0..1, or that
a patient needs to be registered for one or more multidisciplinary meetings, i.e.
the multiplicity attached to the “Multi-disciplinary meeting (MDM)” class of
association “follows 6” is 0..∗.

Moreover, a doctor might also request additional information, i.e. the multi-
plicity attached to the “Additional information” class of association “follows 4”
is 0..∗, or that tests are triggered for a patient, i.e. the multiplicity attached
to the “Test” class of association “follows 2” is 0..∗. Note that tests and addi-
tional information may also be triggered for a patient during a multidisciplinary
meeting. Therefore, the multiplicity attached to the “Visit” class for associations
“follows 4” and “follows 2” is 0..1.

Finally, there are the multidisciplinary meetings to discuss the status of mul-
tiple patients, to review the outcome of selected diagnostic tests, and to examine
additional information that has been requested. Although for a certain meeting
distinct inputs and outputs might exist, several commonalities can be identi-
fied. As inputs to a meeting, additional information (“previous 5”), tests (“pre-
vious 3”), and the outcome of other multidisciplinary meetings (“previous 8”)
might be required for multiple patients. Furthermore, as outputs, it might be

15

necessary to request additional information (“follows 5”), order further tests for
a patient (“follows 3”), or to initiate a multidisciplinary meeting (“follows 8”).
This is done for multiple patients. Note that for the above mentioned associ-
ations, the reasoning for the multiplicities is similar to those for the “Visit”
class.

4.2 Proclets

As already indicated earlier, the dark-grey colored classes in Figure 6 correspond
to concrete proclet classes. In total 15 proclet classes have been identified for
the gynecological oncology workflow.

The 15 proclet classes identified are connected to other proclet classes via
the port and channel concepts. Figure 7 shows a high-level view of the inter-
connection structure together with the cardinality and multiplicity of the ports.
In total, there are 86 possible interactions between the proclet classes which
illustrates the complexity of the process.

By using proclets the relationships between different entities can be described
in their own process definition. So, it is more natural to define processes as in-
tertwined loosely-coupled object life-cycles. Using existing workflow languages, as
can be seen in Section 3, it is necessary to flatten this structure into a monolithic
workflow model, which is potentially very difficult or even intractable in prac-
tice. Moreover, when looking at the cardinalities of individual ports, it is easy
to take different granularities into account, whereas for existing workflow ap-
proaches these relationships can not be captured. In this way, by using proclets,
the second issue mentioned in Section 3 can be solved.

Of the 15 proclet classes, we discuss the “Visit outpatient clinic”, “Pathol-
ogy”, and “Pathology meeting” proclet classes in detail. The other proclet classes
will be discussed in detail in Appendix A. When discussing the proclets, we will
show how the limitations of monolithic workflows can be addressed using pro-
clets. Furthermore, we elaborate on the interaction of an individual proclet with
other proclets, i.e. the interface of a proclet. As can be seen in Figure 7, there can
be many interactions between proclets and even multiple interactions between
the same proclets. In order to show the kind of interactions between two proclets,
the following naming strategy is chosen for a port, consisting of several distinct
parts: sending proclet.task name sending proclet.[name].S/R. “sending proclet”
refers to the proclet class which sends the performative, “task name sending proclet”
refers to the specific task (or composite task) in the proclet class that sends the
performative, “S/R” indicates whether a performative is sent via the port or is
received via the port. “[name]” refers to a specific (optional) identifier that is
added when the naming chosen for the other parts does not lead to a unique
name. Note that by using this naming strategy each port will get a unique name.
Moreover, each port can only send a performative to one other port and each
port can only receive one performative from another port.

The healthcare process involves multiple medical departments, such as ra-
diology and pathology. In order to clearly identify the resource perspective for
each task in a proclet class, it is indicated for each task which department and

16

Examination
under

anesthetic

Obtain
gynecology

data

Radiology
revision

Pathology

Radiology meeting MDO meetingPathology meeting

Pre-
assessment

Lab

ECG

CT

MRI

X-ray

Initial phase

Visit outpatient
clinic

1,?

1,?

1,1

1,?

1,?

1,?
1,?

1,?

1,1

1,1

1,?

1,?

1,
?

1,?1,1

1,?
1,

?

1,
1

1,
?

1,?
1,?

1,1

1,?
1,?

1,1

1,?

1,?

1,?

1,?

1,1

1,1

1,?
1,?

1,?

1,?

1,?

1,1

1,1

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?
1,?

1,?

1,?

1,?
1,?
1,?

1,?

1,?
1,?

*,
1

1,
*

*,
1

*,
1

*,
1

1,
*

1,
*

1,
*

1,
*

1,
*

1,
1

*,
1

1,
*

1,
*

1,
*

1,
*

*,
1

*,
1

*,
1

*,
1

1,
*

1,
*

*,
1

*,
1

*,
1

*,
1

1,
1

1,
*

1,
*

1,?
1,?
1,?

1,
?

1,?
1,?
1,?
1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,?

1,?

1,
?

1,
?

1,
?

1,?

1,?

1,?

1,
?

1,?
1,?
1,?

1,?

1,
?

1,
?

1,
? 1,?

1,?
1,?
1,?
1,?
1,?
1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

1,?
1,?

1,*

*,
1

1,
*

*,
1

1,
*

*,1
*,1
*,1
*,1
*,1
*,1

*,
1

*,
1

*,
1

*,
1

*,
1

1,
1

1,
1

1,*
1,*

1,
*

1,
*

1,?

1,?

*,1

Fig. 7. The proclet classes that are defined for the healthcare process and all of the
possible interactions between them.

which role is required. The corresponding organizational model is shown in Fig-
ure 8. For example, we can see that for the “gynecological oncology department”,
the roles “doctor” and “nurse” have been defined, and that for the “radiology”
department the roles “radiologist” and “radiology assistant” have been defined.

Note that the proclet classes discussed below (and also the ones that are
discussed in Appendix A) are somewhat simplified in comparison to the models
produced for the YAWL, FLOWer, ADEPT1, and Declare systems. First of
all, the proclet classes do not model all of the tasks that are relevant for a
specific workflow. Clearly, our main motivation for defining the proclet classes
are to show the interactions between these proclets as this is the core focus of
the proclet approach. Obviously, by modeling these interactions, information is
included which is typically not present in a single monolithic workflow.

Visit Outpatient Clinic We now analyze in detail the “Visit outpatient clinic”
proclet class that can be seen in Figure 9. This proclet class deals with a visit

17

Gynecological oncology
(GO) Radiology Pathology Anesthesia

Nurse

Doctor

Fellow

Radiologist

Radiology assistant

Pathologist Anesthesiologist

Administrative staff

organizational diagram

Fig. 8. The organizational model for the healthcare process.

Meet with
patient

sync Give information
and brochures

Inform patient
about tests

Register patient
Check patient
data and make

card

GO,nurse
GO,

administrative staff GO,doctor
GO,nurse

GO,nurse

visit OC gynecological oncology

visit_outpatient_clinic.
output_vists.
visit_OC.R

examination_under
_anesthetic.
output_visits.
visit_OC.R

MDO_meeting.
output_visits.
visit_OC.R

initial_phase.
output_visits.
visit_OC.R

GO_data.
finish_GO_data.

visit OC.R

ECG.
finish_ECG.
visit_OC.R

pre_assessment.
send_report.
visit_OC.R

lab.
preliminary_

result.
visit_OC.R

lab.
finish_lab.
visit_OC.R

MDO_meeting.
output_tests.visit_OC.R

visit_OC.
output_additional_information.

GO_data.S

visit_OC.output_additional
information.radiology

revision.S

visit_OC.output_additional
_information.pathology.

tissue_taken_of.S

visit_OC.
output_visits.

examination_under_
anesthetic.S

visit_OC.
output_visits.

visit_OC.S

visit_OC.
output_tests.

ECG.S

visit_OC.
output_tests.

Lab.S

visit_OC.
output_tests.

X_ray.S

visit_OC.
output_tests.

MRI.S

visit_OC.
output_tests.

CT.S

visit_OC.
output_tests.

pre_assessment.S

visit_OC.
output_MDMs.

pathology_
meeting.S

visit_OC.
output_MDMs.

radiology_
meeting.S

visit_OC.
output_MDMs.

MDO_
meeting.S

visit_OC.output_additional
_information.pathology.

receive_fax.S

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,
? 1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,
?

1,
?

1,
?

1,
?

1,
?

1,
?

End visit

Create visit
outpatient clinic

Receive gynecology
data

Receive MDO
meeting result

1,
?

Receive report ECG

Receive pre-
assessment result

Receive final lab
result

Receive preliminary
lab result

Request registration
for pathology

meeting

Request registration
for MDO meeting

Request registration
for radiology meeting

Initiate visit to
outpatient clinic

Initiate examination
under anesthetic

Request gynecology
data

Request radiology
revision

Request pathology
examination

Request pathology
slices referring

hospital

Request ECG

Request lab test Request x-ray Request MRI Request CT Request pre-
assessment

GO,doctor GO,doctor GO,doctor

GO,doctor

GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor

GO,doctorGO,doctorGO,doctorGO,doctorGO,doctorGO,doctor

Fig. 9. The “Visit outpatient clinic” proclet class.

by a patient to the outpatient clinic of gynecological oncology in order to see a
doctor. The contents of this subprocess has already been discussed in detail in
Section 3.

A visit of a patient can be requested at different parts of the process conse-
quently triggering the creation of the respective proclet. This is indicated by the
cardinality 1 and multiplicity ? of the ports connected to the input condition.
For example, a visit requested during the initial stages of the healthcare process
and also during a visit itself or during the MDO meeting. The next few tasks
in the proclet class deal with the meeting of the patient with the doctor (“Meet
with patient” task). Directly related with such a meeting is that the results
of multiple tests (“Receive preliminary lab result”, “Receive final lab result”,
“Receive report ECG” tasks, “Receive pre-assessment result” tasks), additional
information (“Receive gynecology data” task), and the result of a MDO meeting
(“Receive MDO meeting result” task) might be required as input. The fact that
only a selection of them might be required is indicated by the cardinality 1 and
multiplicity ? of the associated ports. For example, as input, the outcome of an

18

MRI and lab test might be necessary but along with the data received from the
referring hospital.

Note that the tasks, required for the receipt of all the necessary inputs for a
patient meeting, are modeled using a loop. Each performative received is stored
in a knowledge base. The proclet continuously inspects this knowledge base and
continues with the next step (“Register patient” task) if all required performa-
tives are received.

During a visit to the doctor, it may be decided that several subsequent steps
need to be taken in order to diagnose the patient. In general, a doctor can request
that additional information is required (“Request gynecology data”, “Request
radiology revision”, “Request pathology examination”, “Request pathology slices
referring hospital” tasks), that tests need to be undergone by a patient (“Re-
quest ECG”, “Request lab test”, “Request x-ray”, “Request MRI”, “Request
CT”, “Request pre-assessment” tasks), and that the patient needs to be dis-
cussed during a multidisciplinary meeting (“Request registration for pathology
meeting”, “Request registration for radiology meeting”, “Request registration
for MDO meeting” tasks). Moreover, a subsequent visit by the patient might
be necessary (“Initiate visit to outpatient clinic”, “Initiate examination under
anesthetic” tasks). For all of these steps, a doctor makes a selection of those
that are necessary. So, either a step is selected once or not at all. This is also
indicated by cardinality 1 and multiplicity ? of the associated ports.

Note that in this proclet, the communication with other proclets is made
explicit, i.e. communication is a first-class citizen. In comparison to Figure 4,
interaction with other processes is possible. For example, after the meeting with
the doctor, subsequent steps can immediately be triggered (e.g. a lab test),
whereas in Figure 4, the subprocess first needs to be finished. Furthermore, in
Figure 4, subprocess dependencies are hidden in the data perspective. For exam-
ple, in Figure 4 it is not visible that during the performance of task “Meet with
patient”, data fields are set, which after completion of the subprocess, cause
any subsequent subprocesses to be triggered. In this way, by using proclets, the
fourth issue mentioned in Section 3 can be solved.

Note that at run-time information held by proclets might need to be updated
or that proclets may need to be canceled. For example, as input to a meeting
with a doctor, the result of a lab test might be necessary. However, the result
of the lab test may not be available at the moment the meeting should take
place. An option is to either cancel the whole proclet involving the lab test or to
“relink” the result of the lab test to the next meeting with the patient. At the
moment, the models do not cater for the fact that proclets can be updated or
even canceled.

It is important to mention that a doctor does not have complete freedom
in selecting the next steps to be taken. For example, if a radiology test (MRI,
CT, x-ray) is selected or further examination of the radiology material from the
referring hospital is required, then the results of these tests need to be discussed
during the radiology meeting.

19

Send fax Receive material

Receive tissue

Put on other pa
meetingReminder

Investigate

Make report Make amendment

Pathology,
administrative staff

Pathology,
administrative staff

Pathology,
administrative staffPathology,

administrative staff

Pathology, pathologist

Pathology, pathologist Pathology, pathologist

Pathology,
administrative staff

pathology

visit_OC.output_
additional_information.

pathology.
receive_fax.R

initial_phase.
output_

additional_information.
pathology.

receive_fax.R

MDO_meeting.
output_additional_information.

pathology.
additional_investigation.R

pathology.
send_report.

pathology_meeting.S

pathology_meeting.
output_make_conclusion.

pathology.S

pathology_meeting.
output_additional_

information.
pathology.

receive_fax.R

MDO_meeting.
output_additional_

information.
pathology.

receive_fax.R

visit_OC.output_
additional_information.

pathology.
tissue_taken_of.R

examination_under_
anesthetic..

output_additional_
information.

tissue_taken_of.R

pathology_meeting.
output_additional_information.

pathology.
additional_investigation.R

1,?

1,?

1,?

1,?

1,?

1,?
1,1 1,

1

1,
?

1,
?

Send report Receive
conclusion

Additional
investigation /

receive fax / tissue
taken of

Pathology, pathologist

Fig. 10. The “Pathology” proclet class.

In addition to this, a doctor might also influence the way in which the invoked
proclets interact based on the way they want the process to execute. For example,
it is a general rule that a patient is discussed during the MDO meeting, to decide
on the final diagnosis, and that afterwards the patient is informed. Consequently,
the MDO meeting needs to take place before the next meeting with the patient.
However, a doctor might also first inform the patient first while the patient is
also discussed during the MDO meeting. In this scenario, the MDO meeting does
not need to take place before the meeting with the patient.

These examples clearly show that the invocation of proclets and the way that
proclets interact might be bound by specific domain dependant rules. They may
also be influenced based on preferences.

Pathology The “Pathology” proclet class, shown in Figure 10, describes the
process in which (1) patient tissue needs to be investigated by a pathologist, (2)
a request is made to review pathology material from another hospital, or that
(3) a request is made to reinvestigate pathology material. The analysis shows
that a proclet class can be used to represent a workflow process which can handle
multiple types of cases. The resulting model reuses as much as possible, i.e. no
duplication of process parts is necessary or creation of separate proclet classes.

For each type of case, specific ports are connected to the input condition
in the net. For example, ports of which the names ends with “tissue taken of”

20

are used to create a proclet instance where patient tissue needs to be investi-
gated. Immediately connected to the input condition is the light-grey colored,
automatic, “Additional investigation / receive fax / tissue taken of” task. De-
pending on the performative received, the right path is taken for a specific type
of case. Note that as a different path needs to be taken based on the performative
received, this illustrates the need for a knowledge base.

In the situation where a request is raised for asking another hospital to send
its pathology material for investigation, the “Send fax” task is performed which
requires a fax to be send. After this, either the material is received (“Receive
material” task) or the other hospital needs to be reminded to send the relevant
material to the AMC (“Reminder” task). When the material is received, it can
be investigated by a pathologist (“Investigate” task) which prepares a report
(“Make report” task) that is discussed during the relevant pathology meeting
(“Send report” task). After discussion at this meeting, a performative is returned
(“receive conclusion” task) which informs whether any final amendments needs
to be made (“Make amendment”) or not.

An alternate situation involves a request where a tissue sample taken at the
AMC needs to be investigated. After receipt of the tissue (“Receive tissue”), the
process follows the same course as for the previous situation, starting from the
“Investigate” task.

Finally, a possible alternative involves a request where existing samples need
to be reinvestigated, e.g. additional colorings might be necessary. After the re-
quest is received, the same steps can be taken as for the two previous situations,
starting from the “Investigate” task.

Pathology Meeting The “Pathology meeting” proclet class, shown in Figure
11, describes the weekly meeting in which the gynecological oncology doctors
and a pathologist discuss the samples that have been examined by a pathologist
and need further review. During this meeting, samples from multiple patients
are discussed. For each weekly meeting, a separate proclet is created (“Create
pathology meeting” task). In order to discuss a patient sample, this first needs to
be registered (tasks starting with “Register for meeting”). This can be done at
different points in the process which explains why there are multiple tasks start-
ing with “Register for meeting” each connected to a single port. However, as is
indicated by the cardinality 1 and multiplicity * of the associated ports, multiple
patients can be registered using the same port. Furthermore, as a consequence
of the registration for the “Pathology meeting” proclet, a separate instance of
the “Pathology” proclet is created such that the sample can be investigated by
a pathologist. The result of this proclet is received via the “Receive pathology
report” task. Consequently, there exists a tight connection between one “Pathol-
ogy meeting” proclet and multiple “Pathology” proclets.

Note that both the tasks for the registration for the meeting and the corre-
sponding receipt of the result are modeled using a loop. By using a loop, multiple
performatives can be received, one at a time, as indicated by cardinality 1 and
multiplicity * of the associated ports. The “Pathology meeting” proclet con-

21

Prepare pathology
meeting Pathology meeting

Pathology,
administrative staff

Pathology,
pathologist GO, doctor

pathology meeting

visit_OC.
output_MDMs.

pathology_meeting.R

initial_phase.
output_MDMs.

pathology_meeting.R

MDO_meeting.
output_MDMs.

pathology_meeting.R

pathology_meeting.
output_MDMs.

radiology_meeting.R

examination_
under_

anesthetic.
output_MDMs.

pathology_meeting.R

pathology.send_report.pathology_
meeting.S

pathology_meeting.
output_make_conclusion.

pathology.S

pathology_meeting.
output_additional_

information.
pathology.

receive_fax.S

pathology_meeting.
output_additional_information.

pathology.
additional_investigation.S

pathology_meeting.
output_MDMs.

pathology_
meeting.S

pathology_meeting.
end_pathology_

meeting.
MDO_meeting.S

1,*

1,*

1,*

1,*

1,*

1,
*

*,
1

*,1

*,1

*,1

1,
1

Create pathology
meeting

Receive pathology
report

Register for meeting
(via ex. under

anesthetic proclet)

Register for meeting
(via visit outpatient

clinic proclet)

Register for meeting
(via initial phase

proclet)

Register for meeting
(via MDO meeting

proclet)

Register for meeting
(via radiology

meeting proclet)

End pathology
meeting

Make conclusion

Request registration
for pathology

meeting

Request pathology
slides

Request additional
colorings

GO, doctorGO, doctor GO, doctor

Fig. 11. The “pathology meeting” proclet class.

stantly inspects this knowledge base in order to decide whether all necessary
performatives have been received and the process may continue, i.e. the “Pre-
pare pathology meeting” task may be performed in which a pathologist prepares
themselves for the pathology meeting that is held afterwards (“Pathology meet-
ing” task).

During this meeting, it might be decided that several subsequent steps need
to be taken. For each of the samples that are discussed during the pathology
meeting, the corresponding “Pathology” proclet needs to be informed whether
an amendment is required or not. This involves sending a performative to each
corresponding “Pathology” proclet (“Make diagnosis”) as is indicated by the
cardinality * of the accompanying port. Moreover, new pathology examinations
might be required (“Request Pathology slides”, “Request additional colorings”
tasks) which subsequently need to be discussed during a later pathology meet-
ing (“Request registration for pathology meeting” task). Here also performa-
tives need to be sent to multiple proclets as indicated by the cardinality * of
the accompanying ports. Finally, before destroying the instance, the results of
the discussion are transferred to the MDO meeting so that the patient can be
discussed during this meeting (“End pathology meeting” task).

As becomes clear from this analysis, in this proclet class we are dealing with
a different level of aggregation (a group of patients) than the previous proclet
classes, and performatives are received from proclet classes which are at a lower
level of aggregation (a specific service delivered for a patient). Using proclets
we can easily handle these differences in the level of aggregation whereas most
workflow management systems force one to depict the process at an arbitrarily
chosen level and to describe them in terms of one monolithic workflow. Obviously,
issue number one, mentioned in Section 3, can be solved using proclets.

Moreover, for this proclet several one-to-many relationships exist within the
“Pathology” proclet. For example, via task “Request additional colorings”, for

22

multiple patients it can be requested that existing samples be reinvestigated.
The output port of this task has cardinality ∗, indicating that the performative
is sent to potentially multiple recipients. In the class diagram of Figure 6, this re-
lationship is also indicated by the “follows 5” association. Clearly, using proclets
it can easily be captured that there one-to-many or many-to-many relationships
exists between entities in a workflow, whereas this is impossible to capture using
existing workflow approaches. So, issue number three, mentioned in Section 3,
can be solved.

5 Related Work

The first WfMSs were developed in the early 1970’s. See for example the Offic-
eTalk system of Skip Ellis [20], an office automation system based on Petri Nets.
However, only in the late nineties these systems became more mature and used
in practice. Currently, there are several hundred WfMS’s and workflow tech-
nology has become an integral part of numerous products, including Enterprise
Resource Planning (ERP) (e.g. SAP/R3), Product Data Management (PDM),
and Customer Relationship Management (CRM) systems.

Currently, administrative processes, which tend to be rather rigid, can be
well supported by WfMSs. However, as indicated in [34, 35], so called “careflow
systems”, systems used for supporting care processes in hospitals, have spe-
cial demands with regard to workflow technology. Successful implementations
of workflow systems in healthcare do exist, but “widespread” adoption and dis-
semination is the exception rather than the rule [32]. One of the problems that
must be dealt with in order to effectively support healthcare processes using
WfMS’s is that process flexibility needs to be provided by the system [29, 37].
Unfortunately, current workflow systems fall short in this area, an observation
often reported in the literature [8, 10, 21, 22].

One of the problems related to flexibility is that for a given patient a lot
of concurrent processes need to run in conjunction with each other [19, 24].
When complex care needs to be delivered, co-operation between various clinicians
across different medical specialties and departments is needed [28], e.g. by having
multidisciplinary meeting in which doctors from several medical disciplines dis-
cuss the status of a patient. In this paper, these processes can be characterized by
weakly-connected interacting lightweight workflows in which communication and
collaboration between instances of these processes is of particular importance.

Contemporary languages and systems provide limited support for the execu-
tion of lightweight interacting workflows. Instead, one is forced to squeeze real-life
processes into a single “monolithic overarching workflow” which describes how
an individual case is handled in isolation. In doing this, the overview is lost and
flexibility is restricted. This issue has been recognized in literature [4, 5, 14, 23,
31] and is not limited to the healthcare domain. It also applies in other areas,
e.g. the automotive domain [31], or when reviewing papers for a conference [5].

When applied to lightweight interacting workflows, the proclet approach sup-
ports the following considerations: (1) different processes interacting with each

23

other, (2) processes operating at different levels of aggregation, and (3) batch-
oriented tasks. There are a limited range of alternate approaches to deal with
these issues [23].

The Corepro framework [30, 31] allows for automatic generation and coordi-
nation of individual processes, operating at different levels of aggregation, based
on their underlying data structure. The initial number of process instances cre-
ated is decided at run-time. However, the creation of new instances at runtime
is possible, but requires an ad-hoc change to the related data structures. For
the proclet approach, the number of process instances created is based on post-
conditions, evaluated at runtime.

In [16–18], a two-tier, goal-driven model for workflow processes in the health-
care domain is presented. A goal-ontology, presented as a directed acyclic graph,
is utilized to represent the business model at the upper level and is decomposed
into an extended Petri-net model for the lower level workflow schema. A map-
ping is defined from the goal-graph to (sub)processes and activities such that
each of the (sub)processes is designed such that it achieves one of the upper
level goals. This approach leads to a hierarchy of process models with a number
of the top-level goals being implemented through subprocesses. However, there
is no interaction between subprocesses instead of the classical way in which hi-
erarchical processes communicate with each other which is only in a top-down
fashion.

In [13–15, 33], the concept of artifacts is used to distinguish different lev-
els of aggregation. However, the content of one or more artifacts can only be
changed by the execution of an activity. Consequently, aggregation issues are
only addressed at the activity level instead of at process level.

Batch-oriented tasks are tasks that are based on groupings of lower aggrega-
tion elements. The concept of a batch-oriented task is already coined in [12] in
order to allow for a task that is executed for multiple instances at the same time.
In [36], the problem is defined and deliberations are provided on the required
technology support to deal with the issue.

Finally, in [11], worklets are presented which can be seen as micro workflows.
Specific activities in a process are linked to a repertoire of possible actions. Based
on the properties of the case and other context information, the required action
is chosen. The selection process is based on a set of rules. During enactment
it is also possible to add new actions to the repertoire. However, these actions
can only be enacted at specific parts of the process which need to be decided at
design-time.

6 Discussion and Conclusion

In this paper, we have studied the gynecological oncology healthcare process and
elaborated on how it can be modeled using existing workflow languages, such as
YAWL, FLOWer, Declare, and ADEPT1. Moreover, we have examined how the
same process can be modeled using the proclet framework. If we compare the

24

proclet framework with existing workflow languages, the following differences
can be observed.

– Real-life healthcare care processes are often fragmented and composed of sep-
arate but intertwined life-cycles running at different speeds. These processes
can be effectively described using proclets, in which interaction is considered
as a first-class citizen, instead of straightjacketing them into one monolithic
workflow.

– Real-life healthcare processes often operate at different levels of granular-
ity. Existing workflow languages cannot take these differences into account,
however, by using proclets this is easily supported. Moreover, one-to-many
and many-to-many relationships that exist between entities in a workflow,
can be captured.

In healthcare, for a given patient, a lot of concurrent processes can run in
conjunction with each other. These processes can be created at any point in
time and can also be terminated at any point in time. Moreover, these processes
interact in different ways with each other. We have characterized these kinds of
processes as weakly-connected interacting lightweight workflows. Moreover, steps
in a healthcare process may either operate at the level of a single patient but
also at the level of a group of patients. In other words, these processes may
rely on information that is at different levels of aggregation. Given that these
characteristics of healthcare processes can be handled using proclets, we may
assume that these processes can be effectively modeled using proclets.

However, some challenges still remain. First of all, for the diagnosis and
treatment of a patient it can not be decided beforehand how many proclets will
need to be instantiated for the patient and the way in which they will interact
with each other. This only becomes clear at run-time. Future work needs to
investigate how to “connect” proclets at run-time and ways in which they can
be enacted. It is important that a proclet is aware of performatives that it will
receive. If these can not be handled efficiently, escalation actions need to be taken
(e.g. continue without waiting for the performative that needs to be received or
cancelation of a proclet).

Moreover, several other interesting issues have been identified. In the gy-
necological oncology healthcare process many different tests can be needed by
patients. These tests can be instantiated via different proclets and the results
can be received by different proclets. Clearly, for each distinct point that such a
test can be created or the result may be received a specific task with an outgoing
or incoming port is required. In the future new diagnostic tests might become
available which need to be included in the respective proclets. Therefore, we
see an interesting link with the worklet approach described in the related work
section. Using the worklet approach, it may be possible to invoke tasks with
input or output ports dynamically in proclets instead of needing to model them
explicitly.

For the proclet classes described, there is also a link with calendar-based
scheduling support [26]. Today’s WfMSs offer work-items to users through spe-
cific work-lists in which participants select the work-items they will perform.

25

However, no calendar-based scheduling is offered for these workitems. In [26] it
is investigated how a WfMS can be augmented with scheduling facilities such
that appointments can be scheduled for these kinds of tasks. Moreover, these
appointments are scheduled in the calendars of the participants involved in the
actual performance of the task in order to ensure that they occur at a precise
pre-agreed time suitable for all of the participants involved. Clearly, in several
proclet classes, we also find tasks for which a concrete appointment involving
specific resources needs to be made. For example, the “Meet with patient” task
in the “Visit outpatient clinic” proclet class is a task which needs to be scheduled
for both a doctor and a patient. Furthermore, the “Pathology meeting” task in
the “Pathology meeting” proclet class is also a task which needs to be scheduled
as a pathologist and several gynecological oncology doctors need to be available
at the same time.

Today’s information systems record many of the events relevant to a business
process. Obviously, there is an abundance of event data, and new and powerful
techniques such as process mining [9] provide many opportunities to analyze and
improve business processes. In this context, for all process instances that are
related to a given case, events are logged. Future work should focus on collecting
and correlating information about tasks that were executed for different process
instances, but between which a certain relationship exists.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

3. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In J. Desel, W. Reisig,
and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098
of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

4. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow Mod-
eling using Proclets. In O. Etzion and P. Scheuermann, editors, 7th International
Conference on Cooperative Information Systems (CoopIS 2000), volume 1901 of
Lecture Notes in Computer Science, pages 198–209. Springer-Verlag, Berlin, 2000.

5. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443–482, 2001.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

8. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identifica-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

26

9. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M.S. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

10. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

11. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facil-
itating Flexibility and Dynamic Exception Handling in Workflows. In O. Belo,
J. Eder, O. Pastor, and J. Falcao e Cunha, editors, Proceedings of the CAiSE’05
Forum, pages 45–50. FEUP, Porto, Portugal, 2005.

12. P. Barthelmess and J. Wainer. Workflow systems: a few definitions and a few
suggestions. In N. Comstock and C.A. Ellis, editors, Proceedings of the Confer-
ence on Organizational Computing Systems - COOCS’95, pages 138–147, Milpitas,
California, September 1995. ACM Press.

13. K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F.Y. Wu. Artifact-
centered operational modeling: Lessons from customer engagements. IBM Systems
Journal, 46(4):703–721, 2007.

14. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Anal-
ysis of Artifact-Centric Business Process Models. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 288–304.
Springer-Verlag, Berlin, 2007.

15. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis of
Artifact-Centric Business Process Models. In G. Alonso, P. Dadam, and M. Rose-
mann, editors, Business Process Management, volume 4714 of Lecture Notes in
Computer Science, pages 288–304. Springer-Verlag, Berlin, 2007.

16. E.D. Browne, M. Schrefl, and J.R. Warren. A Two Tier, Goal-Driven Workflow
Model for the Healthcare Domain. In Proceedings of the 5th International Confer-
ence on Enterprise Information Systems (ICEIS 2003), pages 32–39, 2003.

17. E.D. Browne, M. Schrefl, and J.R. Warren. Activity Crediting in Distributed
Workflow Environments. In Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS 2004), 2004.

18. E.D. Browne, M. Schrefl, and J.R. Warren. Goal-Focused Self-Modifying Workflow
in the Healthcare Domain. In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS-37 2004) - Track 6. IEEE Computer So-
ciety Press, 2004.

19. P. Dadam, M. Reichert, and K. Kuhn. Clinical Workflows - The Killer Application
for Process-oriented Information Systems? In W. Abramowicz and M.E. Orlowska,
editors, BIS2000 - Proc. of the 4th International Conference on Business Informa-
tion Systems, pages 36–59, Poznan, Poland, April 2000. Springer-Verlag.

20. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

21. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10 –
21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

22. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems,
Special Issue of Computer Supported Cooperative Work, 2000.

27

23. V. Künzle and M. Reichert. Towards Object-aware Process Management Systems:
Issues, Challenges, Benefits. In T. Halpin, J. Krogstie, S. Nurcan, E. Proper,
R. Schmidt, P. Soffer, and R. Ukor, editors, Proc. 10th Int’l Workshop on Business
Process Modeling, Development, and Support (BPMDS’09), volume 29 of Lecture
Notes in Business Information Processing, pages 197–210. Springer-Verlag, Berlin,
2009.

24. R. Lenz and M. Reichert. IT Support for Healthcare Processes - Premises, Chal-
lenges, Perspectives. Data and Knowledge Engineering, 61:49–58, 2007.

25. R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J. Bakker, A.J. Moleman, K.B.
Lassen, and J.B. Jorgensen. From Requirements via Colored Workflow Nets to
an Implementation in Several Workflow Systems. Transactions on Petri Nets and
Other Models of Concurrency III (to appear), 2009.

26. R.S. Mans, N.C. Russell, W.M.P. van der Aalst, A.J. Moleman, and P.J. Bakker.
Schedule-Aware Workflow Management Systems. In D. Moldt, editor, Proceedings
of the International Workshop on Petri Nets and Software Engineering (PNSE09),
pages 81–96, 2009.

27. R.S. Mans, W.M.P. van der Aalst, N.C. Russell, and P.J.M. Bakker. Flexibility
Schemes for Workflow Management Systems. In Lecture Notes in Business Infor-
mation Processing, volume 17, pages 361–372, 2009.

28. R.S. Mans, W.M.P. van der Aalst, N.C. Russell, A.J. Moleman, P.J. Bakker, and
M.W. Jaspers. YAWL - A State-of-the-Art Open Source BPM Environment, chap-
ter YAWL4Healthcare. Springer Verlag, 20009.

29. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and
W. Daelemans. Automated Discovery of Workflow Models from Hospital Data.
In C. Dousson, F. Höppner, and R. Quiniou, editors, Proceedings of the ECAI
Workshop on Knowledge Discovery and Spatial Data, pages 32–36, 2002.

30. D. Müller, M. Reichert, and J. Herbst. Data-Driven Modeling and Coordination
of Large Process Structures. In Z. Bellahsène and M. Léonard, editors, On the
Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and
IS, volume 4803 of Lecture Notes in Computer Science, pages 131–149. Springer-
Verlag, Berlin, 2007.

31. D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and
Dynamic Adaptation of Data-Driven Process Structures. In R. Meersman and
Z. Tari, editors, Advanced Information Systems Engineering, volume 5074 of Lec-
ture Notes in Computer Science, pages 48–63. Springer-Verlag, Berlin, 2008.

32. M. Murray. Strategies for the Successful Implementation of Workflow Systems
within Healthcare: A Cross Case Comparison. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pages 166–175, 2003.

33. A. Nigam and N.S. Caswell. Business artifacts: An approach to operational speci-
fication. IBM Systems Journal, 42(3):428–445, 2003.

34. S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and C. Mossa.
Guideline-based Careflow Systems. Artificial Intelligence in Medicine, 20(1):5–22,
2000.

35. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexi-
ble Guideline-based Patient Careflow Systems. Artificial Intelligence in Medicine,
22(1):65–80, 2001.

36. S. Sadiq, M. Orlowska, W. Sadiq, and K. Schulz. When workflows will not deliver:
The case of contradicting work practice. In W. Abramowicz, editor, Proc. BIS’05,
2005.

37. M. Stefanelli. Knowledge and Process Management in Health Care Organizations.
Methods Inf Med, 43:525–535, 2004.

28

38. S.A. White. Introduction to BPMN. BPTrends, 2004.

A Appendix

In this section, the “Initial phase”, “Examination under anesthetic”, “Radiology
meeting”, “MDO meeting”, “Obtain gynecology data”, “Radiology revision”,
“CT”, and “Pre-assessment” proclets classes will be discussed respectively.

A.1 Initial Phase

The “Initial phase” proclet class concerns the initial stages of the gynecologi-
cal oncology healthcare process in which the necessary preparations are made
for the first visit of a patient. The process starts when a doctor at a referring
hospital calls a nurse or doctor at the AMC and obtaining patient related infor-
mation (“Receive info from doctor referring hospital” task). In order to register
the patient at AMC and to be able to trigger subsequent steps, patient data is
entered into the hospital information system (“Enter patient data into system”
task) and a document and stickers are made (“Make document and stickers”
task). After this, several steps are performed which involve the first visit of
the patient to the hospital. These include the initiation of the first visit itself
(“Initiate visit to outpatient clinic” task), tests that need to be undergone by a
patient (“Request ECG”, “Request lab test”, “Request x-ray”, “Request MRI”,
“Request CT”, “Request pre-assessment” tasks), the corresponding forms that
need to be filled in (“Fill in application forms” task), and additional information
that needs to be gathered (“Request gynecology data”, “Request radiology revi-
sion”, “Request pathology slices referring hospital” tasks). Moreover, depending
on the additional information that is required, the patient may need to be dis-
cussed during a multidisciplinary meeting (“Request registration for pathology
meeting”, “Request registration for radiology meeting”, “Request registration
for MDO meeting” tasks). Note that the selection of tests, additional informa-
tion, multidisciplinary meetings, and the next visit of the patient proceeds in
much the same way as for the “Visit outpatient clinic” proclet class. The only
small difference is that during the initial phase, there is no examination under
anesthetic.

The last steps involve informing the patient about the first visit to the hos-
pital (“Call patient”) and sending a confirmation of the appointment by mail
(“Send confirmation appointment”).

Note that during the initial phase some processes can be started immediately
(e.g. tests) in order to speed up the whole process even before the patient has
seen a doctor. This has the consequences that for some proclets there is not yet
enough information available about the way they need to interact with other
proclets or that proclets may need to be canceled lateron. For example, during
the initial phase a lab test is triggered for a patient which means that the patient
needs to visit the lab after the first meeting with the doctor. At this point it
is still not known whether the result of the test is needed for the second visit

29

Make document
and stickers

Receive info from
doctor referring

hospital

Inform doctor
referring hospital

Call patient Send confirmation
appointment

GO,nurse GO,nurse GO,nurse GO,nurse

initial phase

Enter patient data
into system

GO,nurse

Fill in application
forms

GO,nurse

iInitial_phase.
output_additional_information.

GO_data.S

initial_phase.
output_

additional_information.
radiology_
revision.S

initial_phase.
output_

additional_information.
pathology.

receive_fax.S

Initial_phase.
output_tests.

ECG.S

Initial_phase.
output_tests.

lab.S

Initial_phase.
output_tests.

X_ray.S

Initial_phase.
output_tests.

MRI.S

Initial_phase.
output_tests.

CT.S

Initial_phase.
output_tests.

pre_assessment.S

initial_phase.
output_MDMs.

pathology_
meeting.S

initial_phase.
output_MDMs.

radiology_
meeting.S

initial_phase.
output_MDMs.

MDO_
meeting.S

initial_phase.output_visits.
visit_OC.S

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,?

1,
? 1,
?

1,
?

1,
?

Initiate visit to
outpatient clinic

Request gynecology
data

Request radiology
revision

Request pathology
slices referring

hospital

Request registration
for pathology

meeting

Request registration
for MDO meeting

Request registration
for radiology meeting Request ECG Request lab test Request x-ray Request MRI Request CT Request pre-

assessment

GO,nurse

GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor GO,doctor

GO,doctor GO,doctor GO,doctor GO,doctor

Fig. 12. The “Initial phase” proclet class.

of the patient or for a discussion of the patient at an MDO meeting. At the
time the doctor sees the patient for the first time, it is determined when the
results need to be available. At this time the lab proclet needs is updated with
information so that it is known with which proclet it should interact. Another
possibility is that during the initial phase an MRI test is ordered meaning that
the MRI test can only be done after the first meeting with the doctor. However,
during the first meeting, the doctor decided that a CT test was sufficient instead
of an MRI. This requires the triggering of a CT proclet and the cancelation of
the MRI proclet. Furthermore, the cancelation of the MRI proclet might require
other dependent proclets to be updated or canceled. At the moment, the models
do not cater for the fact that proclets may be updated or even canceled.

A.2 Examination under Anesthetic

The “Examination under anesthetic” proclet class, Figure 13, concerns the ad-
mission of a patient to the hospital for an examination under general anesthesia.
The proclet starts when a request is made for an examination under anesthetic
(“Create examination under anesthetic” task) which can be triggered either dur-
ing a visit to the outpatient clinic or during the process of another examination
under anesthetic. In order to prepare for the examination, the results of some
preceding tests might be necessary (“Receive preliminary lab result”, “Receive
final lab result”, “Receive report ECG” tasks, “Receive pre-assessment result”
tasks) the procurement of which proceeds in a similar way as for the “Initial
phase” proclet class. The results of these tests need to available before the ad-
mission of the patient to the nursing ward (“Admission to nursing ward” task).
Prior to the examination, the doctor, who will do the examination, has an ini-
tial meeting with the patient to get acquainted (“Acquaintance meeting with

30

Examination under
anesthetics and

admission to nursing
ward

Inform patient about data
examination under

anesthetics

Acquaintance
meeting with patient

Perform examination
under anesthetic

Tissue taken of Register for
pathology meeting

Inform patient

GO, nurse GO, nurse
GO, doctor

GO, doctor

GO, doctor GO, doctor

GO, doctor

pre-assessment

visit_OC.output_visits.
examination_under_

anesthetic.R

examination_under_
anesthetic.

output_visits.
examination_under_

anesthetic.R

examination_under_
anesthetic.

output_additional_
information.pathology.

tissue_taken_of.S

examination_under_
anesthetic.

output_MDMs.
pathology_meeting.S

visit_OC.output_visits.
examination_under_

anesthetic.S

visit_OC.output_visits.
visit_OC.S

visit_OC.
output_tests.

ECG.S

visit_OC.
output_tests.

lab.S

visit_OC.
output_tests.

X_ray.S

visit_OC.
output_tests.

MRI.S

visit_OC.
output_tests.

CT

visit_OC.
output_tests.

Pre_assessment

visit_OC.
output_MDMs.

pathology_
meeting.S

visit_OC.
output_MDMs.

radiology_
meeting.S

visit_OC.
output_MDMs.

MDO_
meeting.S

1,
?

1,
?

1,?

1,?

1,?

1,?

1,
?

1,?

1,
?

1,?

1,?

1,?

1,?

1,
?

1,
?

1,
?

1,
?

1,
?

ECG.
finish_ECG.
visit_OC.R

pre_assessment.
send_report.
visit_OC.R

lab.
preliminary_

result.
visit_OC.R

lab.
finish_lab.
visit_OC.R

1,?

Create examination under
anesthetic

Receive report ECG Receive final lab
result

Receive preliminary
lab result

Receive pre-
assessment result

Request registration
for pathology

meeting

Request registration
for MDO meeting

Request registration
for radiology meeting

Initiate visit to
outpatient clinic

Initiate examination
under anesthetic

Request ECG Request lab test

Request x-ray

Request MRI

Request CT

Request pre-
assessment

Finish examination
under anesthetic

GO, doctor GO, doctor GO, doctor GO, doctor

GO, doctor

GO, doctor

GO, doctor

GO, doctor GO, doctor GO, doctor

GO, doctor

Fig. 13. The “Examination under anesthetic” proclet class.

patient” task). At this point, there is the opportunity not to proceed with the
examination and to cancel the process.

During the examination (“Perform examination under anesthetic” task),
some tissue might be taken from the patient, which needs to be investigated by
a pathologist. This requires both the creation of a “Pathology” proclet instance
in order to examine the tissue (“Tissue taken of” task) and the registration of
the patient for a pathology meeting in order to discuss the examination results
(“Register for pathology meeting”).

After the examination under general anesthesia, the patient is informed of
the results (“Inform patient” task). Several subsequent steps can be taken af-
ter which the process fragment is finished. These include tests that need to be
undergone by a patient (“Request ECG”, “Request lab test”, “Request x-ray”,
“Request MRI”, “Request CT”, “Request pre-assessment” tasks), discussion of
the patient during a multidisciplinary meeting (“Request registration for pathol-
ogy meeting”, “Request registration for radiology meeting”, “Request registra-
tion for MDO meeting” tasks), and arranging a subsequent visit of the patient
to the hospital (“Initiate visit to outpatient clinic” task). The selection of these
next steps proceeds in a similar way as for the “Initial phase” proclet class.

A.3 Radiology Meeting

The “Radiology meeting” proclet class, whose class is shown in Figure 14, de-
scribes the weekly meeting carried out after the pathology meeting, in which the
gynecological oncology doctors and a radiologist discuss the results of the ra-
diology examinations that have been performed. These radiology examinations
include an MRI, CT, X-ray and the revision of material of radiology examina-
tions that are carried out in other hospitals. The radiology meeting proceeds in
a similar way to the process for a pathology meeting discussed earlier in this

31

Prepare radiology
meeting Radiology meeting

Radiology,
administrative staff

Radiology,
radiologist

radiology meeting

GO, doctor
visit_OC.

output_MDMs.
radiology_meeting.R

initial_phase.
output_MDMs.

radiology_meeting.R

MDO_meeting.
output_MDMs.

radiology_meeting.R

radiology_meeting.
output_MDMs.

radiology_meeting.R

radiology_revision.
send_report.

radiology_meeting.R

CT.
send_report.

radiology_meeting.R

MRI.
send_report.

radiology_meeting.R

X_ray.
send_report.

radiology_meeting.R

radiology_meeting.
output_conclusion.

MRI.S

radiology_meeting.
output_conclusion.

radiology_revision.S

radiology_meeting.
output_conclusion.

CT.S

radiology_meeting.
output_conclusion.

X_ray.S

radiology_meeting.
output_tests.

X_ray.S

radiology_meeting.
output_tests.

MRI.S

radiology_meeting.
output_tests.

CT.S
radiology_meeting.

output_MDMs.
radiology_
meeting.S

radiology_meeting.
output_additional_informat

ion.radiology_
revision.S

radiology_meeting.
end_radiology_

meeting.
MDO_meeting.S

examination_under_
anesthetic.

output_MDMs.
radiology_meeting.R

1,*

1,*

1,*

1,*

1,*

1,*

1,
*

1,
*

1,
*

*,
1

*,
1

*,
1

*,
1

1,
1

*,1

*,1

*,1

*,1 *,1

Register for meeting
(via ex. under

anesthetic proclet)

Register for meeting
(via visit outpatient

clinic proclet)

Register for meeting
(via initial phase

proclet)

Register for meeting
(via MDO meeting

proclet)

Register for meeting
(via radiology

meeting proclet)

Receive MRI result Receive CT result Receive x-ray result

Receive radiology
revision result

Make conclusion
for MRI

Make conclusion
for CT

Make conclusion
for radiology revision

Make conclusion
for X_ray

End radiology
meeting

Request registration
for MDO meeting

Request radiology
revisionRequest x-ray Request MRI Request CT

GO, doctor GO, doctor GO, doctor GO, doctor

GO, doctor

GO, doctor GO, doctor GO, doctor GO, doctor

Fig. 14. The “Radiology meeting” proclet class.

paper. The only notable differences are that now instances of an “MRI”, “CT”,
“X-ray” and “Radiology revision” are created in which the corresponding results
are synchronized via the “Receive MRI result”, “Receive CT result”, “Receive
X-ray result”, and “Receive radiology revision result” tasks. Furthermore, after
the execution of the radiology meeting (“Radiology meeting” task), instead of
pathology examinations, now only radiology related tasks can be initiated via
the “Request X-ray”, “Request MRI”, “Request CT”, and“Request radiology
revision” tasks. Note that the aggregation we are dealing with is a group of
patients instead of an individual patient.

A.4 MDO Meeting

The “MDO meeting” proclet class, shown in Figure 15, describes the weekly
meeting, carried out after the radiology meeting, in which the status of several
patients is discussed and a decision is made about the next steps in the diagnostic
process for these patients. During the meeting it is mentioned which new patients
have been registered during the previous week. During the MDO meeting several
medical disciplines are involved in order to decide how the continuation of the
treatment process will proceed.

The process proceeds in a similar way to the processes that are carried out
for the pathology and radiology meeting, the only difference being that different
inputs and outputs are possible. Moreover, it is often the case that after the
MDO meeting, a patient has a meeting with a doctor to inform them about
the outcome of a meeting. Therefore, before destroying the proclet instance, as
indicated by the cardinality * at the accompanying port, a performative is sent
to the “Visit outpatient clinic” proclet of the patients that need to be informed.

32

Prepare MDO
meeting MDO meeting

GO, fellow

doctors:
- 4 gyn. onc.

- internists (medical oncologist)
- radiotherapists

- doctor assistants:
- gyn. onc.

- radiotherapy
- medical oncology (internal medicine)

MDO meeting

visit_OC.
output_MDMs.

MDO_meeting.R

initial_phase.
output_MDMs.

MDO_meeting.R

MDO_meeting.
output_MDMs.

MDO_meeting.R

MDO_meeting.
output_MDMs.

MDO_meeting.R

examination_
under_

anesthetic.
output_MDMs.

MDO_meeting.R

pathology_meeting.
end_pathology_

meeting.
MDO_meeting.R

radiology_meeting.
end_radiology_

meeting.
MDO_meeting.R

ECG.
finish_ECG.

MDO_meeting.R

pre_assessment.
send_report.

MDO_meeting.R

lab.
preliminary_

result.
MDO_meeting.R

lab.
finish_lab.

MDO_meeting.R

MDO_meeting.
output_MDMs.

radiology_
meeting.S

MDO_meeting.
output_MDMs.

MDO_
meeting

MDO_meeting.
output_tests.

ECG.S

MDO_meeting.
output_tests.

lab.S

MDO_meeting.
output_tests.

X_ray.S

MDO_meeting
.output_tests.

MRI.S

MDO_meeting.
output_tests.

CT.S

MDO_meeting.
output_tests.

Pre_assessment.S

MDO_meeting.
output_additional_information.

pathology.
additional_investigation.S

MDO_meeting.
output_additional_

information.
pathology.
send_fax.S

MDO_meeting.
output_additional_information.

radiology_revision.S

MDO_meeting.
end_MDO_meeting.

visit_OC.S

MDO_meeting.
output_MDMs.

pathology_
meeting.S

1,*

1,*

1,*

1,*

1,*

1,
1

1,
1

1,
*

1,
*

1,
*

1,
* *,1

*,1

*,1

*,
1

*,
1

*,
1

*,
1 *,
1

*,1

*,1

*,1

*,1

*,1

Create MDO meeting

Register for meeting
(via ex. under

anesthetic proclet)

Register for meeting
(via visit outpatient

clinic proclet)

Register for meeting
(via initial phase

proclet)

Register for meeting
(via MDO meeting

proclet)

Register for meeting
(via radiology

meeting proclet)

Receive result
pathology meeting

Receive result
radiology meeting Receive report ECG

Receive final lab
result

Receive preliminary
lab result

Receive pre-
assessment result

Request registration
for pathology

meeting

Request registration
for MDO meeting

Request registration
for radiology meeting

Request radiology
revision

Request pathology
additional colorings

Request pathology
slices referring

hospital

Request ECG Request lab test

Request x-ray

Request MRI

Request CT

Request pre-
assessment

Send result MDO
meeting

GO, doctor GO, doctor GO, doctor GO, doctor GO, doctor

GO, doctor

GO, doctor GO, doctor

GO, doctor

GO, doctor

GO, doctor

GO, doctor

Fig. 15. The “MDO meeting” proclet class.

Note that the aggregation level we are dealing with is a group of patients
instead of a single patient. The next proclet classes that will be discussed all have
the same aggregation level as the “Visit outpatient clinic”, “Initial phase”, and
“Examination under anesthetic” proclet classes. They correspond to a service
that is delivered for a patient.

A.5 Obtain Gynecology Data

The “Obtain gynecology data” proclet class, shown in Figure 16, is a simple
proclet class that deals with the retrieval of patient related data from the gy-
necological oncology department of the hospital that referred them to the AMC
for treatment. The trigger for this proclet class is either created during the ini-
tial phases of the process or during a visit of the patient to the hospital which
is indicated by the cardinality 1 and multiplicity ? of the accompanying ports
connected to the input condition in the net. Subsequently, a nurse in the gy-
necological oncology department contacts the referring hospital to request the
material to be sent to the AMC (“Telephone call” task). Either the material
is received (“Receive” task) and put in a document (“Put gynecology data in
document”) or a nurse again calls the referring hospital to remind them to send
the material to the AMC hospital (“Reminder” task). Finally, when the received
material is put into the document of the patient it can be used as input for
the next visit of the patient at the outpatient clinic (“Finish obtain gynecol-
ogy data”). Note that this interaction always takes place as indicated by the
cardinality 1 and multiplicity 1 of the accompanying port.

33

Telephone call

Reminder

Receive Put genecology data
in document

GO_data.
finish.visit_OC.S

GO,nurse GO,nurse GO,nurse

GO,nurse

GO data

visit_OC.
additional_information.

GO_data.R

initial_phase.
additional_information.

GO_data.R

1,?

1,? 1,
1

Finish gynecology
data

Fig. 16. The “Obtain gynecology data” proclet class.

Note that typically it is expected that the gynecology data is received before
the first visit of the patient to the AMC hospital. This has the consequence
that from the “Finish gynecology data” task a performative is sent to the “Visit
outpatient clinic” proclet instance that is started as a consequence of the first
visit of the patient. However, if the receival of the gynecology data is delayed
and it cannot be delivered in time, then it can be chosen to either send the
performative to another proclet instance, i.e. to “relink” the proclet instance to
another one, or that no performative needs to be sent anymore (so the “Obtain
gynecology data” proclet continues as a disconnected thread).

A.6 Radiology revision

The “Radiology revision” proclet class, shown in Figure 17, describes a process
which proceeds in a similar way to the one described by the “Obtain gynecology
data” proclet class. The main differences are that now the radiology department
of the referring hospital is requested to send its radiology data to the AMC so
that it can be investigated. Also a reminder may be needed, so a similar discus-
sion applies as for the “Obtain gynecology data” proclet class. After receiving
the material (“Receive” task), a form is filled in so that everything can be sent
to the radiology department (“Fill in form and send to radiology” task) in order
to be investigated by a radiologist (“Investigate” task). Afterwards, a report is
made (“Make report” task) which is sent to the “Radiology meeting” proclet
instance (“Send report” task) where it needs to be discussed. After discussion
during the radiology meeting, a performative is received back (“Receive conclu-
sion” task) which indicates whether an amendment needs to be made (“Make
amendment” task) or not (in this case the proclet instance finishes immediately).

34

Telephone call

Reminder

Receive Fill in forms and send
to radiology investigate

Make report

Make amendment

GO,nurse

GO,nurse

GO,nurse GO,nurse Radiology,radiologist

Radiology,radiologist

Radiology,radiologist

Radiology_revision

visit_OC.output.
additional_
information.

radiology_revision.R

initial_phase.
output.additional_

information.
radiology_revision.R

radiology_revision.send_re
port.radiology_meeting.S

radiology_meeting.output_con
clusion.radiology_revision.R

radiology_meeting.
output_additional_information.

radiology_revision.R

MDO_meeting.
output_additional_information.

radiology_revision.R

1,?

1,?

1,?

1,?

1,1

1,1

Send report

Receive conclusion

Radiology,radiologist

Fig. 17. The “Radiology revision” proclet class.

Make report

Make amendment

Radiology,
administrative staff

Radiology,
radiology assistant

Radiology,
radiologist

Radiology,
radiologist

CT/MRI

visit_OC.
output_tests.

CT.R

initial_phase.
output_tests.

CT.R

radiology_meeting.
output_tests.

CT.R

MDO_meeting.
output_tests.

CT.R
CT.send_report.

radiology_meeting.S

radiology_meeting.
output_make_conclusion.

CT.S

Prepare meeting Register patient Meeting
with patient

Radiology,
radiology assistant

1,?

1,?

1,?

1,? 1,
1 1,1

Create MRI
Send report Receive conclusion

Radiology,
radiologist

Fig. 18. The “CT” proclet class.

A.7 CT

The “CT” proclet class, shown in Figure 18, deals with the necessary prepara-
tions for a CT examination to be undergone by a patient and the discussion of
the results afterwards at the radiology meeting for which the CT examination
is registered. The process proceeds in a similar way to the “Radiology revision”
proclet class, however, instead of requesting radiology material, a CT examina-
tion is prepared (“Prepare meeting” task) and performed (“Meeting with pa-
tient” task). This involves the registration of the patient when he / she arrives
(“Register patient” task).

A.8 Pre-assessment

The “Pre-assessment” proclet class, shown in Figure 19, models the process of
a pre-assessment examination that needs to be undergone by a patient. A pre-

35

Prepare meeting Register patient Meeting
with patient Inform patient Make report

ANS,
anesthesiologist

ANS,
administrative staff

ANS,
anesthesiologist

ANS,
anesthesiologist

ANS,
anesthesiologist

anesthesia

visit_OC.
output_tests.
anesthesia.R

initial_phase.
output_tests.
anesthesia.R

MDO_meeting.
output_tests.
anesthesia.R

anesthesia.
send_report.
visit_OC.S

anesthesia.
send_report.
examination_

under_
anesthetic.S

1,?

1,?

1,? 1,
?

1,
?

Create anesthesia

Send report for Visit
outpatient clinic

Send report for
Examination under

anesthetic

End pre-assessment

Input: tests Output: tests

Fig. 19. The “Pre-assessment” proclet class.

assessment test is performed by an anesthesiologist and is required in order to
perform an examination under anesthetic or to perform a surgery. Note that this
process proceeds in more or less the same way as the process modeled by the
“CT” proclet class. However, there are some notable differences.

First of all, the anesthesiologist decides whether it is safe to perform a surgery
or examination under anesthetic as general anesthetics are used. In order to be
able to make this decision, the anesthesiologist might require the input of another
medical specialist (e.g. cardiologist, lung doctor). In other words, the anesthe-
siologist might require that additional tests are undergone by a patient. As an
anesthesiologist can trigger a complete different plethora of tests for a patient,
we decided to not model these interactions but to represent the triggering of
these tests and the receival of the accompanying result by the “Output: tests”
and “Input: tests” tasks respectively. Moreover, seen from the perspective of
the requester, they may not be aware of the fact that additional tests are in-
voked. Instead, the requester may only be aware that the report has not yet been
received.

During the performance of the “Inform patient” task a decision is made
whether new tests need to be requested and discussed during a subsequent meet-
ing or that no additional tests are needed and a report can be made (“Make re-
port”) and sent back to the requester (“Send report for Visit outpatient clinic”
and “Send report for Examination under anesthetic” tasks).

36

