
Beyond Control-Flow: Extending Business
Process Configuration to Roles and Objects

M. La Rosa1, M. Dumas2,1, A.H.M. ter Hofstede1, J. Mendling1, and F. Gottschalk3

1 Queensland University of Technology, Australia
{m.larosa, j.mendling, m.dumas, a.terhofstede}@qut.edu.au

2 University of Tartu, Estonia
marlon.dumas@ut.ee

3 Eindhoven University of Technology, The Netherlands
f.gottschalk@tm.tue.nl

Abstract. A configurable process model is an integrated representation of mul-
tiple variants of a business process. It is designed to be individualized to meet
a particular set of requirements. As such, configurable process models promote
systematic reuse of proven or common practices. Existing notations for config-
urable process modeling focus on capturing tasks and control-flow dependencies,
neglecting equally important aspects of business processes such as data flow,
material flow and resource management. This paper fills this gap by proposing
an integrated meta-model for configurable processes with advanced features for
capturing resources involved in the performance of tasks (through task-role as-
sociations) as well as flow of data and physical artifacts (through task-object
associations). Although embodied as an extension of a popular process model-
ing notation, namely EPC, the meta-model is defined in an abstract and formal
manner to make it applicable to other notations.

Key words: Process model, configuration, resource, object flow

1 Introduction

Reference process models such as the Supply Chain Operations Reference (SCOR)
model [18] or the SAP Reference Model [5], capture recurrent business operations in
their respective domains. They are packaged as libraries of models in several business
process modeling tools and are used by analysts to derive process models for specific
organizations or IT projects (a practice known as individualization) as an alternative to
designing process models from scratch.

Reference process models in commercial use lack a representation of variation
points and configuration decisions. As a result, analysts are given little guidance as
to which model elements need to be removed, added or modified to address a given re-
quirement. This shortcoming is addressed by the concept of configurable process mod-
els [15], which captures process variants in an integrated manner. This concept is a step
forward towards systematic reuse of (reference) process models. However, existing con-
figurable process modeling languages focus on the control-flow perspective and fail to
capture resources, data and physical artifacts participating in the process.

This paper extends a configurable process modeling notation, namely Configurable
Event-driven Process Chains (C-EPCs), with notions of roles and objects. The pro-
posed extension supports the representation of a range of variations in the way roles

2 M. La Rosa et al.

and objects are associated with tasks. We define a notion of valid configuration and an
algorithm to individualize a configurable process model given a valid configuration. By
construction, this algorithm ensures that the individualized process models are syntac-
tically correct. The paper also explores interplays that occur across the control-flow,
object flow and resource modeling perspectives during individualization. The proposal
has been applied to a comprehensive case study in the film industry, which is used as
an example throughout the paper.

The rest of the paper is structured as follows. Section 2 reviews previous work
related to the modeling of object flow and resources in business processes and the notion
of configurable process model. Section 3 introduces the working example and uses it
to illustrate a meta-model that extends EPCs with resource and object flow modeling.
Next, Section 4 explores the configuration of process models along the resource and
object flow perspectives. Section 5 presents a formal model of a fully-featured C-EPC,
which leads to the definition of an individualization algorithm. The paper concludes
with a summary and an outlook on open issues.

2 Background and Related Work

2.1 Integrated Process Modeling

Business processes can be seen from a number of perspectives, including the control-
flow, the data and the resource perspectives [9]. Control-flow is generally modeled in
terms of activities and events related by control arcs and connectors. The resource per-
spective, on the other hand, is commonly modeled in terms of associations between
activities and roles, where roles represent capabilities and/or organizational groups [1].
In UML Activity Diagrams (ADs) [6] and BPMN [19], this association is encoded by
means of swimlanes. Each activity is associated with a swimlane representing a role or
an organizational unit. UML ADs allow multiple swimlanes (or partitions) to be associ-
ated with an activity. In (extended) EPCs [17], symbols denoting roles or organizational
units can be attached to tasks. In this paper, we define sophisticated role-based resource
modeling features, which go beyond those found in UML ADs, BPMN and EPCs, and
we layer configuration features on top of them. A notation-independent discussion of
resource allocation for business processes is reported in [13, 16].

The flow of data and physical artifacts is generally captured by associating objects
with activities. UML ADs support the association of object nodes with activity nodes
to denote inputs and outputs. One can associate multiple objects as input or as output of
an activity. The execution of an activity consumes one object from each of the activity’s
input object nodes and produces one object in each of its output object nodes. Similar
features are found in BPMN and extended EPCs. In this paper, we propose a more
fine-grained approach to object flow modeling and mechanisms to capture variability in
relation to tasks. Yet, we do not consider data mapping issues which are important for
executable languages such as ADEPTflex [14], BPEL [3] or YAWL [2].

2.2 Configurable Process Modeling

Research on configurable business process models has focused on mechanisms for cap-
turing variability along the control-flow perspective. Rosemann & van der Aalst [15]

Extending Business Process Configuration to Roles and Objects 3

put forward the C-EPC notation where tasks can be switched on or off and routing
connectors can be made configurable and linked through configuration requirements.
Becker et al. [4] introduce an approach to hide element types in EPCs for configuration
purposes. Although the emphasis is on tasks and control-flow connectors, this approach
can also be used to show or hide resource or data types. However, this only affects
the view on the EPC, not its underlying behavior. Also, this approach does not enable
fine-grained configuration of task-role and task-object associations (beyond hiding). In
previous work, we have investigated a set of process configuration operators based on
skipping and blocking of tasks [7], and applied them to configure the control-flow of
executable process modeling languages, such as YAWL and BPEL [8].

We use EPCs as a base notation to define variability mechanisms along the data and
resource perspectives. Three reasons underpin this choice. First, EPCs are widely used
for reference process modeling (cf. the SAP reference model). Secondly, EPCs provide
basic features for associating data and roles to tasks, which we extend in this paper.
Finally, this choice allows us to build on top of the existing definition of the C-EPC
notation. Nonetheless, we define our extensions in an abstract manner so that they are
applicable beyond the scope of EPCs.

3 Working Example

The working example in Fig. 1 is an extract of a reference process model on audio edit-
ing for screen post-production, which has been developed and validated in collabora-
tion with subject-matter experts of the Australian Film Television & Radio School.1 We
chose this case study for the high level of creativity, and thus of variability, that charac-
terizes the screen business. Indeed, the whole editing phase can radically change if the
screen project aims to produce a documentary (usually without music) or a silent movie
(without spoken dialogs). Below we describe the process as if it were non-configurable,
to illustrate how we capture roles and objects participating in an EPC process. The con-
figuration aspects will be addressed later on, so for now we ignore the meaning of the
thick border of some elements in the picture.

EPC’s main elements are events, functions, control-flow connectors, and arcs link-
ing these elements. Events model triggers or conditions, functions correspond to tasks
and connectors denote splits and joins of type AND, OR or XOR. We extend these con-
cepts by associating roles and objects to functions, in an integrated EPC (iEPC). A role,
depicted on a function’s left hand, captures a class of organizational resources that is
able to perform that function: e.g. the role Producer captures the set of all the persons
with this role in a given screen project. A role is dynamically bound to one concrete
resource at run-time (e.g. the Producer associated with function Spotting session will
be bound to Michelle Portland). A resource can be human or non-human (e.g. an infor-
mation system or a robot), but for simplicity, we only consider human resources in the
example. An object, depicted on a function’s right hand, captures a physical or software
artifact of an enterprise, that is used (input object) or produced (output object) by a
function. Each object in the process model is statically bound to a concrete artifact.

The first function is Spotting session, which starts once the shooting has completed.
Roles and objects are linked to functions either directly or via a connector. For example,

1 The school’s web-site can be accessed at www.aftrs.edu.au

4 M. La Rosa et al.

the OR-join between Composer and Sound Designer indicates that at least one of these
roles is required to perform this activity. Composer is needed if the project features
music, Sound Designer is needed if the project features sound, where sound consists of
dialogs, effects (FX) and/or atmospheres (atmos). Based on the screening of the Picture
cut, Composer and Sound Designer hold a Spotting session to decide what music or
sound should be added at which point of time. This information is stored in the cues
(e.g. Music cues for music). Picture cut is thus an input object, while the cues are output
objects connected via an OR-split that indicates that at least one set of cues is produced,
depending on the type of project. A spotting session may be supervised by at least two
roles among Producer, Director and Assistant Director that have creative authority in the
project. These roles are linked together by a range connector. This connector indicates
the upper bound and lower bound for a number of elements (roles or objects) that are
required (where k refers to the indegree for a join or to the outdegree for a split; in this
case k = 3).

Once the cues are ready, the design of music and/or sound starts. In the former, the
Composer records the project’s Music tracks (an output) following the Music cues and
using the Picture cut as a reference (an AND-join connects these two inputs). A Temp
music file may also be produced at this stage. This object is linked to the function via a
dashed arc, which indicates that an object, a role, or a combination thereof is optional,
whereas a full arc indicates mandatoriness. Sound design is usually more complex as it
involves the recording of the Dialog, FX and/or Atmos tracks, according to the respec-
tive cues on the Picture cut. The Editor or the Sound Designer are responsible for this
task. Similarly to Music design, a Temp sound file may also be produced.

Afterwards, the Composer and/or the Sound Designer provide the Director and usu-
ally the Producer with an update on the work-in-progress. Producer is an optional role.
At least one mandatory role is to be assigned to each function to ensure its execution.
Temp files may be used by the Composer and by the Sound Designer as a guide for
the Progress update (the OR-join between these two objects is thus optional). Gener-
ally, the result of this task is a set of notes describing the changes required; sometimes,
however, the Composer or the Sound Designer may prefer not to take notes. If changes
are needed, the Music and Sound design can be repeated as specified by the loop in the
model. In this case, the notes can be used as input to these tasks.

Upon completion of the design phase, the Mixer and the Composer mix the Music
tracks into a Music premix if the project has music, while the Mixer and the Sound De-
signer mix the Sound tracks into a Sound premix if the project has sound. The Producer
may supervise both mixings. In Picture editing, the Picture cut is edited by an Editor,
while a Negcutter is required if the cut is on Film. The cross below ‘Picture cut’ indi-
cates that the object is consumed by the function and is no longer available afterwards.
The process ends with Final mixing, where the Mixer with the Sound Designer and/or
the Composer release a Final mix using the available Premixes. A Deliverable may also
be released by overlaying the premixes onto the Edited picture, should a demo of the
video with the integrated audio be required.

Beside the process model, we use a ‘hierarchy model’ to represent all the roles
and objects referred to by the nodes of the process model. For example, in the editing
process there are five nodes for the role Producer and four for the object Picture cut. A
hierarchy model also captures the specializations that can be associated with a role or
object, by means of a specialization relation. Fig. 2 shows the hierarchy models for the

Extending Business Process Configuration to Roles and Objects 5

Sound
premixing

Music
premixing

Sound premix

Design
finished

Shooting
finished

Spotting
session

x

Composer

S. Designer

Changes
required

x

Spotting
finished

Sound
design

Dialog tracks FX tracks Atmos tracks

Music
design

Design
startedV

V

V

V

V

 Atmos cues Effect cues

 Atmos cues Effect cues Dialog cues Music cues

Music premix

Composer

r2

r1

 S. Designer

Producer

r4

r3

Director

r5

Director

Producer

 Dialog cues Music cues A. Director

V

2:k

Picture cut

Picture cut

Music notes Sound notes

V

Sound notes Picture cut

Music
premixed

Editing
finished

Final
mixing

Editor

Negcutter
Edited picture

Picture
editing

Edited picture

Picture
edited

Music notes

Function

Connector

Conf. function

Conf. connector

Event

Optional role /
object / range
connector

Role Conf. optionality
for role
Conf. optionality
for objectObject

Conf. specialization
for role / object

Conf. consumption
for input object

Sound
premixed

Picture cut

Composer

Mixer

Producer

S. Designer

Mixer

Temp music file

Temp sound file

Temp sound fileTemp music file

Dialog tracks FX tracks Atmos tracks

Music tracks

Music tracks

Sound premixMusic premix

V

 Final mixDeliverable

S. Designer

V

Editor

Mixer

Composer

VV

Producer

V
Composer

S. Designer

V

r6

r7

r8

r10

r9

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

f2 f3

o1

o2 o3 o4 o5

o6 o7 o8

o9 o10

o11 o12

o13 o14 o15

o16

o17 o18 o19

o20 o21

o22 o23

o24

o25

o26 o27 o28

o29

o30

o31

o32 o33 o34

o35 o36

c1

c2

f5 f6

Progress
update

f4

c3

c11

c8

c9

c7

c13

c19
c20

V

V

V

V

e1

e2

e3

e4

e5

e6 e7

e8

e9

V

f7

f8

c4

c5

c6

c10

c12

c13

c14

c15

c16 c17

c18

f1

Fig. 1. The reference process model for audio editing

roles and objects of the editing process, where the specialization relation is depicted by
an empty arrow linking a special role (object) to its generalization. Typically, for a role
this relation represents a separation of tasks among its specializations (e.g., Executive
Producer, Line Producer and Co-Producer share the Producer’s duties). For an object, it
represents a set of subtypes (e.g. 16mm and 35mm are two types of Film). The hierarchy
models will be used later on in the configuration of the process model.

4 Exploring Integrated Process Configuration

A reference process model provides a generic solution that needs to be individualized
to fit a specific setting. For this reason, process configuration can be interpreted as a
restriction of the reference process model’s behavior [7, 15]. Following this principle,
we configure an integrated process model by restricting the behavior of a set of variation

6 M. La Rosa et al.

Dialog tracks FX tracks Atmos tracks

Sound premixMusic premix

Picture cut

Temp music file Temp sound file

 Deliverable

Tape

Analogue

Uncomp. digital

Compr. digital

Film

16mm

35mm

65mm

Sound notesMusic notes

Director

Composer

Sound Designer

Edited picture

Mixer

Music tracks

Final mixNegcutter

Producer

Editor

 Assistant Director

Line Producer

 Executive Producer

Co-Producer

2nd A. Director

1st A. Director

3rd A. Director

Sound Editor

 Video Editor

FX Editor

Atmos Editor

Dialog Editor

Music cues

Effect cues

Atmos cues

Dialog cues

Paper

XML

Fig. 2. The role-hierarchy model and the object-hierarchy model for the process of Fig. 1

points (configurable nodes) identified in the reference process model. A variation point
can be any active node of a process model (function, role, object or connector), and is
represented via the use of a thick border. A configuration assigns each variation point
a (set of) configuration value(s) to keep or restrict the node’s behavior. Since arcs and
events are not active elements of a process model, they are not directly configurable.
However, as a result of configuring a variation point, neighboring events and arcs can
be affected (e.g. an event can be dropped). The extended iEPC meta-model that captures
these concepts is called Configurable iEPC (C-iEPC). In the following, we describe the
characteristics of each variation point.

Configurable functions can be left ‘activated’ (ON), or restricted to ‘excluded’
(OFF) or ‘optional’ (OPT). The second value removes the function from the pro-
cess model (i.e. the function is skipped from the process flow). The third value permits
deferring this choice until run-time, so that the decision whether to execute or skip the
function is made on an instance-by-instance basis. In the example, Music design is con-
figurable: it can be set to OFF if the Director has planned not to have any music in the
project, or to OPT to let the Director decide whether to have it or not, once the project
has started.

Configurable control-flow connectors can be restricted to a less expressive connec-
tor type, or to a sequence of incoming control-flow nodes (in case of a join) or outgoing
nodes (in case of a split). The last option is achieved by removing the connector alto-
gether. An OR can be restricted to an XOR, to an AND or to a sequence. An XOR
can only be restricted to a sequence. An AND cannot be restricted. For instance, if
the project cannot afford the repetition of music and sound design, due to the costs in-
volved, the configurable XOR-split (id. c14 of the example, can be set to the sequence
starting with event Design finished, so as to exclude the loop after function Progress
update. For further details on the configuration of the control-flow, we refer to [15].

Configurable roles and objects have two configuration dimensions: optionality and
specialization, i.e. they can take a value for each dimension. If a configurable role (ob-
ject) is ‘optional’ (OPT), it can be restricted to ‘mandatory’ (MND), or to ‘excluded’
to be removed from the process (OFF); if it is ‘mandatory’ it can only be restricted
to ‘excluded’. For example, if a project does not feature music, the participation of the

Extending Business Process Configuration to Roles and Objects 7

Composer and the production of Music cues can be excluded from the Spotting session.
Configurable roles and objects for which there exists a specialization in the hierarchy
model, can be restricted to any of their specializations. As per the hierarchy model of
Fig. 2, Picture cut can be specialized to Tape, if the project does not support an editing
on Film. Also, the Producer associated with Progress update can be specialized to Line
Producer and made mandatory, should the Director need creative support in this phase.
The availability of a specialization for a role or object, is depicted with a small pyramid
in the node’s right-hand side.

Configurable input objects have a further configuration dimension – usage, such that
those inputs that are ‘consumed’ (CNS) can be restricted to ‘used’ (USE). For instance,
we can restrict Picture cut to used if its specialization is Tape, as only a Picture cut on
Film is destroyed during the Picture editing.

Configurable range connectors have two configuration dimensions: optionality and
range restriction. The same rules for roles and objects govern the possible changes of
optionality values of a range connector. For example, the optional OR-join connecting
the temp files in Progress update, can be made mandatory if the temp files are always
used by this function. The range restriction is achieved by increasing the lower bound
and decreasing the upper bound, or a choice can be made for a single node (role or
object) to be associated with the function linked to the connector, effectively removing
the connector altogether. This is allowed if the lower bound is 1 and the node is in the
connector’s preset (in case of a join), or in its postset (in case of a split). For example, the
configurable range connector (2 : k) associated with Spotting session, can be restricted
to (3 : k) – all the supervisors have to partake in the Spotting session, or to (2 : 2)
– exactly two of them have to partake. This is consistent with the configuration of the
control-flow connectors, as the range connector subsumes any connector type. In fact,
an OR is equivalent to a (1 : k) range connector and can be restricted to an XOR (1 : 1),
to an AND (k : k), to a single node, but also to any other reduced range (e.g. 2 : k). An
XOR can only be restricted to a single node. An AND (k : k) cannot be restricted.

Under certain circumstances, a configuration node may not be allowed to be freely
set, and this may depend on the configuration of other nodes. In fact, there can be an
interplay between the configuration of functions and roles, or objects and functions,
determined by the domain in which the reference process model has been constructed.
For example, an Edited picture is needed in Final mixing only if a Delivery is produced,
otherwise it must be excluded. Configuration requirements capture such restrictions
in the form of logical predicates that govern the values of configurable nodes. In the
following, we classify these requirements according to the type of interplay and support
this classification with examples taken from the model of Fig. 1 (where M , S and U
stand for the optionality, specialization and usage dimension, resp.):

Single Node requirements: constrain the configuration of a single node, i.e. no depen-
dency exists on other nodes. For example, the Picture cut associated with the Spotting
session cannot be excluded as this is the initial input object to the whole process [Req1].
Another example constraining the specialization of roles is given by the Editor in Sound
design, which cannot be specialized to Video Editor, due to the capabilities required by
associated the function [Req2]. Concerning the control-flow, the XOR-split (c14) after
Progress update cannot be set to the sequence starting with the event Changes required
only, as this would lead to skip the whole premixing phase [Req3].

8 M. La Rosa et al.

Connector–Connector requirements: constrain the configuration of multiple connec-
tors. For instance, the two OR-joins for the roles and the input objects of Progress
update (id. c11 and c12) must be restricted the same way [Req4]. The configuration of
the former join allows the restriction of the run-time choice of which role is to partake
in Progress update, while the configuration of the latter allows the restriction of which
temp files to be used. Although the second connector is optional (i.e. no temp file may
be used), a configuration where, e.g., the first OR is restricted to AND and the second
one is restricted to a mandatory XOR must be denied. The reason is that if temp files
are available, these need to be linked to the roles Composer and Sound Designer that
will actually use them: the Composer will use the Temp music files, while the Sound
Designer will use the Temp sound files.

Function–Function requirements: constrain the configuration of multiple functions.
For example, an editing project deals with the editing of music and/or sound, so at least
one function between Music design and Sound design must be present [Req5]. Another
constraint exists, e.g., between Music premixing and Music design, as the former needs
to be dropped if the latter is excluded from the model [Req6].

Role–Role requirements: constrain the configuration of multiple roles. For example,
the Producer in Music premixing must be specialized in the same way as the Producer in
Sound premixing, since these roles are typically covered by the same person [Req7 (on
S)]. To run a Spotting session, at least one role between Composer and Sound Designer
need to be present [Req8 (on M)].

Object–Object requirements: constrain the configuration of multiple objects. For in-
stance, all the occurrences of the objects Picture cut and Edited picture must have the
same specialization as the object Deliverable, to ensure a consistent propagation of the
picture medium throughout the process [Req9 (on S)]. The Picture cut in Picture editing
is consumed if it is specialized to Film [Req10 (on S, U)], as in this case the medium
is physically cut (thus destroyed) and then spliced. Also, the exclusion of Dialog cues
from Sound design implies the exclusion of Dialog tracks, since these are produced
according to the cues [Req11 (on M)].

Connector–Node requirements: constrain the configuration of connectors and nodes.
For example, the exclusion of function Progress update implies the restriction of the
XOR-split (c14) to the sequence starting with Design finished, as at run-time the repe-
tition of the design phase depends on the result of Progress update [Req12].

Function–Role requirements: constrain the configuration of functions and roles. For
instance, Music design must be excluded if the Composer is excluded from this func-
tion. On the other hand, if Sound Designer is excluded from Sound Design, this function
can still be performed by the Editor [Req13 (on M)].

Function–Object requirements: constrain the configuration of functions and objects.
For example, function Progress update cannot be excluded if Temp music file in Music
design or Temp sound file in Sound design are included, since the files are produced to
be later used by this function. Otherwise, if Progress update is set to optional, the files
cannot be made mandatory [Req14 (on M)].

Role–Object requirements: constrain the configuration of roles and objects. An ex-
ample is given by the role Negcutter, which is only required if the project is edited and
delivered on Film. Thus, if this role is mandatory, all the occurrences of Picture cut and

Extending Business Process Configuration to Roles and Objects 9

Edited picture, and the Deliverable, must be specialized to Film. In this case the Picture
cut in function Picture editing needs to be set to consumed [Req15 (on M,S, U)].

More complex requirements can be captured by combining requirements from the above
classes. Fig. 3 shows the audio editing process that was followed by Bill Bennett to di-
rect the feature film “Kiss or Kill”.2 This model is the result of configuring the reference
process model of Fig. 1 for an editing on Tape without music. Here, for instance, Music
premixing has been excluded and, as per Req6, so has been Music design. Similarly,
Progress update has been excluded, and thus, as per Req12, the loop capturing the repe-
tition of the design phase has also been removed. Moreover, the Editor in Picture editing
has been specialized to a Video Editor (this complies with Req2). Since the editing is
on Tape, the Picture cut in input to Picture editing has been set to ‘used’ and specialized
to Tape, and thus, as per Req15, the Negcutter has been excluded from this function.

Shooting
finished

Spotting
session

Spotting
finished

Dialog tracks

 S. Designer

Producer

Director

Picture cut
(Tape)

Editing
finished

 Video Editor Picture
editing

Picture
edited

Sound
premixed

Sound premix

 Final mix

S. Designer

S. Designer

 Editor

Mixer

V Sound
design

Design
finished

V

Picture cut
(Tape)

Edited picture
(Tape)

Picture cut
(Tape)

Deliverable
(Tape)

Final
mixing

Edited picture
(Tape)

Dialog cues
(Paper)

Dialog cues
(Paper)

Sound premix
S. Designer

Mixer
Dialog tracks

V Sound
premixing

Fig. 3. The audio editing process model configured for a project without music

5 Correctness and Configuration of Integrated Process Models

This section presents an algorithm to generate an individualized iEPC from a C-iEPC
with respect to a set of configuration values (i.e. a configuration). For example, this
algorithm is able to generate the model shown in Fig. 3 from the model of Fig. 1 given
a valid configuration. In doing so, the algorithm ensures the preservation of syntactic
correctness, i.e. the individualized C-iEPC will be syntactically correct provided that
the original C-iEPC was syntactically correct. To define this algorithm, we first need to
define the notions of syntactically correct iEPC and valid configuration.

5.1 Integrated Business Process Model

In order to formally define the concepts of iEPC and correct iEPC, we first need to have
a formal definition of role and object-hierarchies. A role (object) hierarchy is essentially
a set of roles (objects) together with a specialization relation.

Definition 1 (Role-hierarchy Model). A role-hierarchy model is a tuple Rh = (R,
R^), where:
2 Kiss or Kill, 1997 (Australia), http://www.imdb.com/title/tt0119467

10 M. La Rosa et al.

– R is a finite, non-empty set of roles,
– R^ ⊆ R×R is the specialization relation on R (R^ is transitive, reflexive, acyclic3).

Definition 2 (Object-hierarchy Model). An object-hierarchy model is a tuple Oh =
(O,

O^), where:

– O is a finite, non-empty set of objects, i.e. physical or software artifacts,
– O^ ⊆ O ×O is the specialization relation on O (O^ is transitive, reflexive, acyclic).

If x1
R/O

^ x2, we say x1 is a generalization of x2 and x2 is a specialization of x1

(x1 6= x2). For example, Dialog Editor is a specialization of Editor.
The definition of iEPC given below extends that of EPCs from [15], which focuses

on the control-flow only. Specifically, iEPCs add a precise representation of roles and
objects participating in the process. These roles and objects stem from the hierarchy-
models defined above. In an iEPC, each node represents an instance of a function, role
or object. The range connector is modeled by a pair of natural numbers: lower bound (n)
and upper bound (m). Indeed, an AND, OR and XOR correspond to a range connector
resp. with n = m = k, with n = 1,m = k and with n = m = 1. So we do not need
to model the logic operators with separate connectors for roles and objects, although
they can be graphically represented with the traditional EPC notation, as in Fig. 1.
For the sake of keeping the model consistent with previous EPC formalizations, the
range connector is not allowed in the control-flow, although a minimal effort would be
required to add this construct. The optionality of roles, objects and range connectors,
shown in the process as a property of the arc that links the node with the function,
is modeled in iEPC as an attribute of the node. The consumption of input objects is
modeled in the same way.

Definition 3 (iEPC). Let F be a set of functions, Rh = (R,
R^) be a role-hierarchy

model and Oh = (O,
O^) be an object-hierarchy model. An integrated EPC over

F,Rh,Oh is a tuple iEPCF,Rh,Oh = (E,F
N
, R

N
, O

N
,nm, C, A, L), where:

– E is a finite, non-empty set of events;
– FN is a finite, non-empty set of function nodes for the process;
– RN is a finite, non-empty set of role nodes for the process;
– ON is a finite set of object nodes for the process;
– nm = nf ∪ nr ∪ no, where:

• nf ∈ FN → F assigns each function node to a function;
• nr ∈ RN → R assigns each role node to a role;
• no ∈ ON → O assigns each object node to an object;

– C = CCF ∪ CR ∪ CIN ∪ COUT is a finite set of logical connectors, where:
• CCF is the set of control-flow connectors,
• CR is the set of range connectors for role nodes (role connectors),
• CIN is the set of range connectors for input nodes (input connectors),
• COUT is the set of range connectors for output nodes (output connectors),

where CCF , CR , CIN and COUT are mutually disjoint;
– A = ACF ∪AR ∪AIN ∪AOUT is a set of arcs, where:

• ACF ⊆ (E × FN) ∪ (FN ×E) ∪ (E ×CCF) ∪ (CCF ×E) ∪ (FN ×CCF) ∪ (CCF ×
FN) ∪ (CCF × CCF) is the set of control-flow arcs,

3 no cycles of length greater than one

Extending Business Process Configuration to Roles and Objects 11

• AR ⊆ (RN × FN) ∪ (RN × CR) ∪ (CR × FN) is the set of role arcs,
• AIN ⊆ (ON × FN) ∪ (ON × CIN) ∪ (CIN × FN) is the set of input arcs,
• AOUT ⊆ (FN ×ON) ∪ (FN × COUT) ∪ (COUT ×ON) is the set of output arcs,

where AR , AIN and AOUT are intransitive relations;
– L = lT

C
∪ lN

C
∪ lM

C
∪ lM

R
∪ lM

O
∪ lU

O
is a set of label assignments, where:

• lT
C
∈ CCF → {AND ,OR,XOR} specifies the type of control-flow connector,

• lN
C
∈ (CR ∪ CIN ∪ COUT) → N × (N ∪ {k}) ∪ {(k, k)}, specifies lower bound and

upper bound of the range connector,
• lM

C
∈ (CR ∪ CIN ∪ COUT) → {MND ,OPT} specifies if a role connector, an input

connector or an output connector is mandatory or optional,
• lM

R
∈ RN → {MND ,OPT} specifies if a role node is mandatory or optional;

• lM
O
∈ ON → {MND ,OPT} specifies if an object node is mandatory or optional;

• lU
O
∈ OIN

N
→ {USE ,CNS} specifies if an input object node is used or consumed,

where OIN
N

= dom(AIN) ∩ON .

Given a connector c, let lN
C

(c) = (n, m) for all c ∈ C \ CCF . Then we use lwb(c) = n
and upb(c) = m to refer to lower bound and upper bound of c. If F , Rh and Oh are
clear from the context, we drop the subscript from iEPC . Also, we call all the function
nodes, role nodes and object nodes simply as functions, roles and objects, wherever this
does not lead to confusion.

We introduce the following notation to allow a more concise characterization of
iEPCs.

Definition 4 (Auxiliary sets, functions and predicates). For an iEPC we define the
following subsets of its nodes, functions and predicates:

– NCF = E ∪ FN ∪ CCF , as its set of control-flow nodes;
– NR = FN ∪RN ∪ CR , as its set of role nodes;
– NIN = FN ∪OIN

N
∪ CIN , as its set of input nodes;

– NOUT = FN ∪OOUT
N

∪COUT , as its set of output nodes, where OOUT
N

= dom(AOUT)∩ON ;
– N = NCF ∪NR ∪NIN ∪NOUT , as its set of nodes;
– ∀n∈Nα

α• n = {x ∈ Nα | (x, n) ∈ Aα}, as the α-preset of n, α ∈ {CF ,R, IN ,OUT};
– ∀n∈Nα n

α•= {x ∈ Nα | (n, x) ∈ Aα}, as the α-postset of n, α ∈ {CF ,R, IN ,OUT};
– Es = {e ∈ E | | CF• e| = 0 ∧ |e CF• | = 1} as the set of start events;
– Ee = {e ∈ E | | CF• e| = 1| ∧ |e CF• | = 0} as the set of end events;
– CS

CF
= {c ∈ CCF | |

CF• c| = 1 ∧ |c CF• | > 1} as the set of control-flow split connectors;
– CJ

CF
= {c ∈ CCF | |

CF• c| > 1 ∧ |c CF• | = 1} as the set of control-flow join connectors;

– linkα(x, y) =

8<:
(y, x) ∈ AR , if α = R, returns the role arc from y to x,
(y, x) ∈ AIN , if α = IN , returns the input arc from y to x,
(x, y) ∈ AOUT , if α = OUT , returns the output arc from x to y;

– degree(x) =

8><>:
| R• x|, if x ∈ CR , returns the indegree of a role connector,
| IN• x|, if x ∈ CIN , returns the indegree of an input connector,
|x OUT• |, if x ∈ COUT , returns the outdegree of an output connector;

– p = 〈n1, n2, . . . , nk〉 is a control-flow path such that (ni, ni+1) ∈ ACF for 1 6 i 6 k− 1.
For short, we indicate that p is a path from n1 to nk as p : n1 ↪→ nk. Also, P (p) =
{n1, . . . , nk} indicates the alphabet of p.

We can now define a syntactically correct iEPC.

Definition 5 (Syntactically Correct iEPC). An iEPC is syntactically correct if it ful-
fills the following requirements:

12 M. La Rosa et al.

1. iEPC is a directed graph such that every control-flow node is on a control-flow path from a
start to an end event: let es ∈ Es and ee ∈ Ee, then ∀n∈N

CF
∃p∈N+

CF
,p:es↪→ee

[n ∈ P (p)].
2. There is at least one start event and one end event in iEPC : |Es| > 0 and |Ee| > 0.
3. Events have at most one incoming and one outgoing control-flow arc:
∀e∈E [| CF• e| 6 1 ∧ |e CF• | 6 1].

4. Functions have exactly one incoming and one outgoing control-flow arc:
∀f∈F

N
[| CF• f | = |f CF• | = 1].

5. Control-flow connectors have one incoming and multiple outgoing arcs or vice versa:
∀c∈C

CF
[(| CF• c| = 1 ∧ |c CF• | > 1) ∨ (| CF• c| > 1 ∧ |c CF• | = 1)], (split, join),

Role connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈C

R
[| R• c| > 1 ∧ |c R• | = 1], (join),

Input connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈C

IN
[| IN• c| > 1 ∧ |c IN• | = 1], (join),

Output connectors have exactly one incoming arc and multiple outgoing arcs:
∀c∈C

OUT
[| OUT• c| = 1 ∧ |c OUT• | > 1], (split).

6. Roles have exactly one outgoing arc: ∀r∈R
N
|r R• | = 1.

7. Objects have exactly one outgoing input arc or one incoming output arc:
∀o∈O

N
[(|o IN• | = 1 ∧ | OUT• o| = 0) ∨ (|o IN• | = 0 ∧ | OUT• o| = 1)].

8. Functions are linked to at least a mandatory role or a mandatory role connector:
∀f∈F

N
[∃

r∈R•f
[lM

R
(r) = MND] ∨ ∃

c∈R•f
[lM

C
(c) = MND]], it follows that | R• f | > 0.

9. Roles and objects linked to connectors are mandatory:
∀r∈R

N
[r ∈ dom((RN × CR) ∩AR) ⇒ lM

R
(r) = MND],

∀o∈OIN
N

[o ∈ dom((ON × CIN) ∩AIN) ⇒ lM
O

(o) = MND],
∀o∈OOUT

N
[o ∈ dom((COUT ×ON) ∩AOUT) ⇒ lM

O
(o) = MND].

10. Upper bound and lower bound of range connectors are restricted as follows:
∀c∈C

R
∪C

IN
∪C

OUT
[1 6 lwb(c) 6 upb(c) ∧ (lwb(c) 6 degree(c) ∨ upb(c) = k)],

where n 6 m iff (n 6 m) ∨ (m = k) ∨ (n = m = k).

In the remainder, we assume an iEPC fulfills the above requirements. The editing pro-
cess model of Fig. 1 is syntactically correct. However, Def. 5 does not prevent behav-
ioral issues (e.g. deadlocks) that may occur at run-time. It is outside the scope of this
paper to provide a formal definition of the dynamic behavior of iEPCs, as we only
consider structural correctness in the context of configuration. Hence, here we briefly
discuss its semantics for completeness, while for a formal definition we refer to a tech-
nical report [12].

The dynamic behavior of iEPC has to take into account the routing rules of the
control-flow, the availability of the resources and the existence of the objects participat-
ing in the process. A state of the execution of an iEPC can be identified by a marking
of tokens for the control-flow, plus a variable for each role indicating the availability
of the relative resource, and a variable for each object, indicating their existence. A
function is enabled and can fire if it receives control, if at least all its mandatory roles
are available and all its mandatory input objects exist. The state of roles and objects
is evaluated directly or via the respective range connectors. During a function’s execu-
tion, the associated roles become unavailable and once the execution is concluded, the
output objects are created (i.e. they become existent), and those ones that are indicated
as consumed, are destroyed. Initial process objects, i.e. those ones that are used by a
function that follows a start event (e.g. the Picture cut), exist before the execution starts.

Extending Business Process Configuration to Roles and Objects 13

A function does not wait for an optional role to become available. However, if such a
role is available before the function is executed, it is treated as a mandatory role.

5.2 Integrated Process Configuration

A C-iEPC is an extension of an iEPC where some nodes are identified as configurable,
and a set of requirements is specified to constrain their values.

Definition 6 (Configurable iEPC). A configurable iEPC is a tuple C-iEPC =
(E,F

N
, R

N
, O

N
,nm, C, A, L, F C

N
, RC

N
, OC

N
, CC ,RSC), where:

– E, FN , RN , ON ,nm, C, A, L refer to the elements of a syntactically correct iEPC ,
– F C

N
⊆ FN is the set of configurable functions,

– RC
N
⊆ RN is the set of configurable roles,

– OC
N
⊆ ON is the set of configurable objects,

– CC ⊆ C is the set of configurable connectors,
– RSC is the set of configuration requirements.

All the auxiliary sets of Def. 4 are also defined for the configurable sets above. For ex-
ample, NC = F C

N
∪RC

N
∪OC

N
∪CC . A configuration assigns values to each configurable

node, according to the node type.

Definition 7 (Configuration). Let M = {MND ,OPT ,OFF} be the set of optionality
attributes, U = {USE ,CNS} the set of usage attributes, CT = {AND ,OR,XOR}
the set of control-flow connector types and CTS

CF
= {SEQn | n ∈ N

CF
} the

set of sequence operators for control-flow. A configuration of C-iEPC is defined as
conf C−iEPC = (conf

F
, conf

R
, conf

O
, conf

C
), where:

– conf
F
∈ F C

N
→ {ON ,OPT ,OFF};

– conf
R
∈ RC

N
→ M ×R, (M is used for optionality and R for role specialization);

– conf
O

= conf
IN
∪ conf

OUT
, where:

• conf
IN
∈ OIN C

N
→ M×O×U , (O is used for object specialization and U for usage);

• conf
OUT

∈ OOUT C

N
→ M ×O;

– conf
C

= conf
C CF

∪ conf
C R

∪ conf
C IN

∪ conf
C OUT

, where:
• conf

C CF
∈ CC

CF
→ CT ∪ CTSCF , (CT is used for the connector’s type and CTSCF

to configure the connector to a sequence of nodes);
• conf

C R
∈ CC

R
→ M×((N×N)∪RN), (N andN are used for lower bound increment

and upper bound decrement, RN is used to configure a role connector to a single role);
• conf

C IN
∈ CC

IN
→ M × ((N × N) ∪ OIN

N
), (OIN

N
is used to configure an input

connector to a single input object);
• conf

C OUT
∈ CC

OUT
→ M × ((N×N)∪OOUT

N
), (OOUT

N
is used to configure an output

connector to a single output object).

We define the following projections over the codomain of conf C−iEPC :
Let x ∈ RC

N
∪ OOUT C

N
, α ∈ {R,OUT} and conf α(x) = (m, s), then πM (x) = m and

πS (x) = s. Let x ∈ OIN C

N
and conf

IN
(x) = (m, s, u), then πM (x) = m, πS (x) = s and

πU (x) = u; Let x ∈ CC
R

∪ CC
IN

∪ CC
OUT

and α ∈ {R, IN ,OUT}, then if conf
C α

(x) =

(m, (p, q)), then πM (x) = m, πi(x) = p and πd(x) = q, otherwise if conf
C α

(x) = (m, y),
then πM (x) = m and πN (x) = y.

The restrictions on the values each configurable node can take, are captured by the
following partial orders, which are used in the definition of a valid configuration. For
example, the partial order on the optionality dimension, prevents a ‘mandatory’ node
from being configured to ‘optional’, while it allows the contrary.

14 M. La Rosa et al.

Definition 8 (Partial Orders for Configuration). Let M,U,CT and CTS
CF

as in
Def. 7. The partial orders for configuration are defined as follows:

– �M = {MND ,OFF} × {MND} ∪ M × {OPT} (on optionality),
– �U = {(n, n) | n ∈ U} ∪ {(USE ,CNS)} (on usage),
– �CF = {(n, n) | n ∈ CT} ∪ {XOR,AND} × {OR} ∪ CTSCF × {XOR,OR} (on the

type of control-flow connectors).

With these elements, we are now ready to define the notion of valid configuration.

Definition 9 (Valid Configuration). A configuration conf C−iEPC is valid iff it fulfills
the following requirements for any configurable node:

1. Roles and objects can be restricted to MND or OFF if they are OPT , or to OFF if they
are MND (α ∈ {R, O}): ∀x∈RC

N ∪ OC
N

[πM (x) �M lMα (x)].
2. Roles and objects can be restricted to any of their specialization:
∀x∈RC

N ∪ OC
N

[πS (x)
α
^ nm(x)].

3. Input objects that are CNS can be restricted to USE : ∀x∈OC
IN

[πU (x) �U lU
O

(x)].
4. Control-flow OR connectors can be restricted to XOR,AND or to SEQn; control-flow

XOR connectors can be restricted to SEQn:
∀x∈CC

CF ,n∈N
CF

[conf
C CF

(x) �CF lT
C

(x) ∧ (conf
C CF

(x) = SEQn ⇒ ((x ∈ CS
CF

∧
(x, n) ∈ ACF) ∨ (x ∈ CJ

CF
∧ (n, x) ∈ ACF)))] (the sequence must be in the connector’s

postset in case of split or in its preset in case of join).
Also, the configuration to SEQn must allow at least one path from a start to an end event:
let es ∈ Es and ee ∈ Ee, then
∃p∈N+

CF
,p:es↪→ee

∀x∈CC
CF ∩P (p) [conf

C CF
(x) = SEQn ⇒ n ∈ P (p)].

5. Range connectors can be restricted to MND or OFF if they are OPT , or to OFF if they
are MND: ∀x∈CC

R ∪ CC
IN ∪ CC

OUT
[πM (x) �M lM

C
(x)].

6. Range connectors can be restricted to a smaller range or to a single node (role or object):
• Range: ∀x∈CC

R ∪CC
IN ∪CC

OUT
:

– πi(x) = πd(x) = 0, if lwb(x) = upb(x) = k (the AND case cannot be restricted),

– lwb(x) + πi(x) 6

upb(x)− πd(x), if upb(x) ∈ N,
degree(x)− πd(x), if lwb(x) ∈ N and upb(x) = k;

• Node (α ∈ {R, IN ,OUT}):
∀x∈CC

R ∪CC
IN ∪CC

OUT
[πC (x) = y ⇒ (linkα(x, y) ∧ lwb(x) = 1)] (the node must be in the

connector’s postset in case of split or in its preset in case of join, and the lower bound be 1).

Beside the structural requirements presented above, a configuration must fulfill the con-
figuration requirements RSC to be domain-compliant. We can express the configuration
requirements of the editing process model using the notation in Def. 7. We refer to the
nodes by their id., as shown in Fig. 1. For example, Req6 is conf

F
(f5) = ON ⇒

conf
F
(f2) = ON , Req7 is πS (r15) = πS (r18) and Req10 is πU (o30) = CNS ⇔

πS (o30)
O^ Film.

The individualization algorithm applies a valid configuration to a syntactically cor-
rect C-iEPC, to generate a syntactically correct iEPC. The algorithm consists of a series
of steps, each of which operates over a different type of element in a C-iEPC. The order
of the steps in the algorithm has been chosen in such a way that no unnecessary opera-
tions are applied. For example, the control-flow connectors are configured first, as this
operation may lead to skipping certain paths of the process model including connectors,

Extending Business Process Configuration to Roles and Objects 15

events and functions. Then, all the roles, objects and range connectors that are associ-
ated with functions no longer existing are removed as well. Finally, the remaining roles
and objects are configured.

1. Apply control-flow connector configuration and remove arcs not involving sequences.
2. Remove nodes not on some path from an original start event to an original end event.
3. Replace functions switched off with an arc, and remove their roles, objects and connectors.
4. Remove range connectors switched off, together with their roles and objects.
5. Remove roles and objects switched off.
6. Remove range connectors no longer linked to roles and objects.
7. Replace all range connectors with a degree of one with arcs.
8. Increment lower bound and decrement upper bound of configured range connectors.
9. Align lower and upper bound of range connectors with potential change in degree.

10. Apply configuration of optionality dimension to roles, objects and range connectors; con-
figuration of usage dimension to objects and configuration of specialization to roles and
objects.

11. Remove functions without mandatory role assignment.
12. Replace one-input-one-output connectors with arcs.
13. Insert XOR-split, XOR-join and arcs to allow a bypass path for optional functions.

Fig. 4. Individualization algorithm.

The formal definition of this algorithm can be found in a technical report [10]. In the
report, we also prove that any iEPC yielded by the algorithm fulfils the properties of
syntactical correctness presented in Def. 5.

6 Conclusion

This work has addressed a major shortcoming in existing configurable process nota-
tions: their lack of support for the data and resource perspectives. In doing so, we pre-
sented a rich meta-model for capturing role-task and object-task associations, that while
embodied in the EPC notation, can be transposed to other notations. The study high-
lighted the intricacies that configurable process modeling across multiple perspectives
brings. We identified interplays between perspectives. And while we define conditions
to ensure syntactic correctness of individualized process models, we do not ensure se-
mantic correctness.

In future work, we will investigate techniques for preventing inconsistencies in the
individualized process models, such as object flow dependencies that contradict control
flow dependencies. Also, while the proposal has been validated on a case study con-
ducted with domain experts, further validation is required. The notion of configurable
process model brings significant advantages, but concomitantly induces an overhead to
the modeling lifecycle. In previous work [11] we have designed and implemented a tool,
namely Quaestio, that provides a questionnaire-based interface to guide users through
the individualization of configurable process models captured as C-EPCs. At present,
we are extending this questionnaire-based framework to deal with C-iEPCs. The next
step is to evaluate the framework by means of case studies in multiple domains and by
conducting usability tests.

16 M. La Rosa et al.

Acknowledgments. We thank Katherine Shortland and Mark Ward from the AFTRS
for their valuable contribution to the design and validation of the reference models.

References

1. W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

2. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

3. A. Alves et al. Web Services Business Process Execution Language (WS-BPEL) ver. 2.0,
Committee Specification, 31 Jan. 2007.

4. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative Pro-
cess Modeling – Outlining an Approach to increased Business Process Model Usability. In
Proceedings of the 15th IRMA International Conference, New Orleans, 2004. Gabler.

5. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business Process
Reference Model. Upper Saddle River, 1997.

6. G. Engels, A. Förster, R. Heckel, and S. Thöne. Process Modeling Using UML. In M.Dumas,
W.M.P. van der Aalst, and A.H.M. ter Hofstede, editors, Process-Aware Information Systems,
pages 85–117. Wiley, 2005.

7. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Configurable Process Models
– A Foundational Approach. In Reference Modeling. Efficient Information Systems Design
Through Reuse of Information Models, pages 59–78. Springer, 2007.

8. F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Configurable
Workflow Models. International Journal of Cooperative Information Systems, 17(2):177–
221, 2008.

9. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

10. M. La Rosa, M. Dumas, A. H. M. ter Hofstede, J. Mendling, and F. Gottschalk. Beyond
Control-flow: Extending Business Process Configuration to Resources and Objects. 2007.
Available at QUT ePrints, http://eprints.qut.edu.au/archive/00011240.

11. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. H. M. ter Hofstede. Questionnaire-driven
Configuration of Reference Process Models. In Proceedings of the 19th International Con-
ference on Advanced Information Systems Engineering (CAiSE), pages 424–438, 2007.

12. J. Mendling, M. La Rosa, and A. H. M. ter Hofstede. Correctness of Business Process Models
with Roles and Objects. 2008. Available at QUT ePrints, http://eprints.qut.edu.
au/archive/00013172.

13. M. zur Mühlen. Organizational Management in Workflow Applications Issues and Perspec-
tives. Information Technology and Management, 5(3–4):271–291, July-October 2004.

14. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

15. M. Rosemann and W. M. P van der Aalst. A Configurable Reference Modelling Language.
Information Systems, 32(1):1–23, 2007.

16. N. Russell, W. M. P.van der Aalst, A. H. M. ter Hofstede, and D. Edmond. Workflow Re-
source Patterns: Identification, Representation and Tool Support. In O. Pastor and J. Falcao e
Cunha, editors, Proceedings of the 17th International Conference on Advanced Information
Systems Engineering (CAiSE’05), pages 216–232, 2005.

17. A.W. Scheer. ARIS - Business Process Frameworks. Springer, Berlin, 3rd edition, 1999.
18. S. Stephens. The Supply Chain Council and the SCOR Reference Model. Supply Chain

Management - An International Journal, 1(1):9–13, 2001.
19. S.A. White et al. Business Process Modeling Notation (BPMN), Version 1.0, 2004.

