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Abstract. Hidden Markov Models (HMMs) are a stochastic signal mod-
eling formalism that is actively used in the machine learning community
for a wide range of applications such as speech and activity recognition.
Efficient techniques exist to learn HMM models from a given data set,
and to estimate the data likelihood with respect to a given HMM (i.e.,
“How probable is it that these data were produced by this HMM?”).
The latter enables the evaluation and selection of suitable models. In
the domain of process mining the evaluation of models (i.e., “How can
we measure the quality of a mined process model?”) is still subject to
ongoing research. Because the types of models used in process mining are
typically on a higher level of abstraction (i.e., they are more expressive as
they, for example, allow to capture concurrency), the problem of model
evaluation is challenging. In this paper, we investigate the possibilities
and limitations of using HMMs for evaluating process models and com-
pare the resulting quality measurements to the metrics typically used in
the process mining domain.

1 Introduction

Process mining deals with the discovery of process models (i.e., structures that
model behavior) from event-based data. The goal is to construct a process model
which reflects the behavior that has been observed in some kind of event log.
An event log is a set of finite event sequences, whereas each event sequence
corresponds to one particular materialization of the process. Process modeling
languages, such as Petri nets [13], can then be used to capture the causal rela-
tionships of the steps, or activities, in the process. While many different process
mining approaches have been proposed over the last decade, no standard measure
is available to evaluate the quality of such a learned model [29]. Quality measures
are needed because a learned model cannot always explain all the data, and there
are multiple models for the same data (“Which one is the best?”). These prob-
lems are due to the fact that a log typically does not contain negative examples
and that there may be syntactically different models having the same (or very
similar) behavior. This paper deals with the topic of evaluating process models
and we use Petri nets as a typical representation of the class of graph-based
process modeling languages (EPCs, BPMN, UML Activity Diagrams etc.).



Hidden Markov Models (HMMs) [26] are a stochastic signal modeling for-
malism. HMMs are actively used in the machine learning community for a wide
range of applications such as speech and activity recognition [26, 19]. Efficient
techniques exist to learn HMM models from a given data set, and to estimate
the data likelihood with respect to a given HMM (i.e., “How probable is it that
these data were produced by this HMM?”). The latter enables to evaluate, and
choose between, alternative models.

In this paper, we investigate the applicability of HMMSs for the purpose of
evaluating process models. Because the types of models used in process mining
are typically on a higher level of abstraction (i.e., they are more expressive as
they, for example, allow to capture concurrency), the problem of model evalua-
tion is challenging and HMMs can only be used by posing certain restrictions.
Within these limits, in this paper we will apply HMM-based quality measure-
ments and compare them to the metrics typically used in the process mining do-
main. We will see that typical process mining evaluation techniques—precisely
because they need to deal with concurrency—have a bias when applied to sim-
pler, sequential models. Furthermore, while focusing on evaluation, we also show
the differences in representational power by comparing HMMs and Petri nets as
a modeling technique, and we validate our analysis approach based on data of
significant complexity. In summary, the contributions of this paper are as follows:

— We define an efficient mapping from Simple Petri nets (Labeled Petri nets
without parallelism) to HMMs, based on which we provide metrics for the
quality dimensions fitness and precision.

— We demonstrate that if this mapping is applied to Petri nets with concur-
rency, the metrics—due to the simplification—yield optimistic fitness and
pessimistic precision results.

— We leverage the probabilistic nature of HMMs and present a framework to
generate logs for a given model with varying, yet determined levels of noise.
We then use this framework to evaluate a number of fitness metrics.

The remainder of the paper is organized as follows. First, we explain the prob-
lem domain of process model evaluation in more detail (Section 2). Then, we
introduce the HMM and Petri net formalisms and scope the setting of our work
(Section 3). Afterwards, we explain our mapping from Sequential Petri nets to
HMMs based on a simple example (Section 4). Then, we define a number of
HMM-based quality measurements (Section 5) and illustrate the differences in
representational power of HMMSs and Petri nets based on the presented mapping
(Section 6). Next, we describe the experimental setup (Section 7) and present
our results (Section 8). Finally, we conclude the paper (Section 9).

2 Process Model Evaluation

Process mining techniques focus on discovering behavioral aspects from log data.
Since the mid-nineties several groups have been concentrating on the discovery
of process models from event-based data. Process models are structures—usually



directed graphs—that model behavior. The idea of applying process mining in
the context of workflow management was first introduced by Agrawal et al. in
[5]. Over the last decade many process mining approaches have been proposed
[10,20,4,33,34,14,11,18,2,31]. In [3] van der Aalst et al. provide an overview
about the early work in this domain. While all these approaches aim at the
discovery of a “good” process model, often targeting particular challenges (e.g.,
the mining of loops, duplicate tasks, or in the presence of noise), they have their
limitations and many different event logs and quality measurements are used.
Hence, no commonly agreed upon measure is available.

In [28,29] we motivate the need for a concrete framework that evaluates the
quality of a process model, and thus enables (a) process mining researchers to
compare the performance of their algorithms, and (b) end users to estimate the
validity of their process mining results (“How much does this model reflect real-
ity?”), and to choose between alternative models (“Which model is the best”?).
It is important to understand that there is never only one single model for a
given event log, but multiple models are possible due to two main reasons.

1. There are syntactically different models having the same (or very similar)
behavior. Furthermore, there are numerous different modeling formalisms
that can be employed. These models could be evaluated with respect to
their complexity, size, understandability etc. We do not focus on this aspect
in this paper.

2. For a given input, an infinite number of models can be constructed. Resulting
models might not always accommodate all the traces in the event log, and
they might allow for behavior not represented by any trace in the log. Both
scenarios could be desirable, and different criteria can be used to construct
and evaluate these models.

To illustrate the second aspect, consider Figure 1 which depicts four different
process models that could be constructed based on the event log in the center.
The event log contains five different traces with frequencies ranging from 1207
to 23 instances per trace. For example, the sequence ABDEI (i.e., A followed by
B, etc.) occurred 1207 times. While the model in Figure 1(c) does not accom-
modate all these five traces but only the first one (lack of fitness), the model in
Figure 1(d) allows for much more behavior than just the traces in the event log
(lack of precision).

Cook and Wolf [10] approach the discovery of Finite State Machine (FSM)
models for software processes as a grammar inference problem, and, reflecting on
the “goodness” of a model, they cite Gold [16] who showed that both positive and
negative samples are required to construct ‘accurate’ (the FSM accepting all legal
sentences and rejecting all illegal sentences of the language) and ‘minimal’ (the
FSM containing the minimum number of states necessary) models. Furthermore,
the samples must be complete (i.e., cover all possible inputs). However, the event
logs used for process discovery cannot be assumed to be complete, and they
normally do not contain negative examples. Note that the five traces in the
event log in Figure 1(a) are positive examples, but no negative, or forbidden,
traces are given. Furthermore, in some situations it can be the case that the
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Fig. 1. Process model evaluation can place in different dimensions [28].

positive examples are in fact distorted (noise), or contain exceptions that should
not be included in the model. Therefore, process discovery algorithms have to
face the following problems.

Dealing with Incompleteness If the log would be complete, it would be easy
to assume that every sequence not present in the log is a negative example,
and thus should not be possible according to the discovered model. Unfor-
tunately, total completeness is an unrealistic assumption as the number of
possible interleavings of concurrent activities increases exponentially®. Thus,
generalization beyond the observed sequences to accommodate concurrent
or combined behavior is often desirable.

Further Abstraction Besides generalizing to deal with incompleteness, fur-
ther abstraction may be necessary to obtain meaningful process models. For
example, in the presence of overly complex processes it often does not make
sense to show a very detailed (“spaghetti-like”) model. Furthermore, one
might want to deal with noise, or show the main flow of a process and thus
ignore possible exceptions. In theses case, abstraction can lead to models
with a decreased precision and a decreased fitness.

3 Already 5 concurrent activities can generate 5! = 120 possible traces, and 10 con-
current activities can result in 10! = 3628800 differently ordered sequences.



So, we can see that—while on the first glance it seems logical to aim at
models with perfect fitness and precision—this is not always desirable. Instead,
algorithms strive to find “the right degree of abstraction”, depending on the
assumed circumstances and the purpose of the discovered model. As a conse-
quence, process model evaluation needs to take these goals into account, and
may have an unwanted bias if applied in the wrong context. For example, the
model depicted in Figure 1(c) might be considered a good abstraction of the
80% most frequent behavior, but would be a relatively poor model if the goal is
to obtain a complete picture of the overall process.

Although it is vital to develop practical methods that are able to take the
desired abstractions made by process discovery algorithms into account when
evaluating the resulting models, in reality there are often also simpler processes
(or parts of processes) that only exhibit sequential routing, alternative behavior,
and loops (but no parallelism). Examples of such processes can be found in
administrative procedures employed in municipalities, insurance companies etc.

In the remainder of this paper we want to focus on such simple processes
with the assumption that the models should be as accurate, i.e., fitting and
precise, as possible for a given event log. We will define new evaluation metrics
and compare them to existing evaluation methods used in the process mining
field. It is important to note that here we do not seek for the all-encompassing
standard measure (for this, posing restrictions on concurrency would not be a
good idea), but rather aim at providing efficient base line metrics against which
other evaluation metrics can be compared to see how they perform in these
simple situations. Ultimately, the goal should be to give better support for what
is the “right” quality metric for the situation at hand.

3 Preliminaries

We want to evaluate a given process model in terms of a Petri net with respect
to a given event log. To do this, we will map the Petri net onto a Hidden Markov
Model. However, in this section we first introduce the notion of an event log and
the two modeling formalisms in more detail.

3.1 Event logs

Control flow discovery algorithms typically ignore time stamps and additional
data that are commonly present in real-life logs and focus on the actual steps
that take place. A process instance can then be seen as a sequence of such steps
and an event log can be simplified to a set of different log traces and their
frequencies. Figure 1(a) depicts such a simplified event log. We define an event
log as follows.

Definition 1 (Event Log) An event log is a tuple (L, E,m), where:

- L is a finite set of labels that can be observed,



- E C L* is a finite set of event sequences (L* is the set of all sequences of
arbitrary length over alphabet L), and
- m: E — N> is a frequency function for event sequences.

For simplicity, we write event sequences by juxtaposing the function values
(e.g., ABDEI in Figure 1(a)). Furthermore, note that—rather than a set of
event sequences—we consider a bag (or multiset), which can contain duplicate
members. The multiplicity of the bag members is captured by the frequency
function (e.g., m(o) = 1207 for sequence 0 = ABDEI).

3.2 HMDMs

A Hidden Markov Model (HMM) [26] is an extension of a discrete markov pro-
cess. A discrete, first order, Markov chain consists of a set of states and a set of
state transition probabilities, whereas the probabilistic description is truncated
to just the current and the predecessor state. This means, associated with each
state we have a set of probabilities describing the likelihood of changing to a par-
ticular other state (possibly going back to the same state) that are independent
of any previous states, and thus sum up to 1.

The difference between Hidden Markov Models and plain Markov Models
is that the actual states of the process cannot be observed (they are hidden).
Instead, there is a set of observable elements, whereas one observation can be
produced by more than one state. Therefore, seeing a particular observation
element in isolation is not enough to suggest the current state of the process.
We define the Hidden Markov Model as follows.

Definition 2 (Hidden Markov Model) A Hidden Markov Model is a tuple
(N,L, A, B,7), where:

— N is a finite set of states,

- L is a finite set of observations,

- A: (N x N)—[0,1] is a state transition matrix, such that:
vsleN ZSQEN A(Sl, 82) = ].,

- B: (N x L) — [0,1] are the observation probabilities, such that:
VeeN Docr B(s,0) =1, and

- m: N —[0,1] is the initial state distribution, such that:

ZSEN 71'(8) =1

So, in each of the states all of the observation elements could be produced,
and the likelihood of observation o to be produced in a particular state s is cap-
tured by the observation probability B(s, o). Note that we want to use HMMs to
represent processes that have been observed by recording an event log, and there-
fore link the observations that can be produced by the HMM to the observable
log elements by using the same identifier L.

Consider the following coin-tossing example taken from [26]. A certain se-
quence of coin tossing outcomes has been observed. That is, the observation



elements are heads (H) and tails (T'). In each state, we can determine the prob-
abilities for how likely each of the observation elements is to be produced. The
HMM depicted in Figure 3.2(a) models one biased coin by producing only heads
in state 0 and only tails in state 1. It is, therefore, a degenerate HMM, which cor-
responds to an ordinary Markov chain, where the states are observable. Consider
now Figure 3.2(b) which depicts an HMM that can produce both heads and tails
in each state, with different probabilities. This representation is more powerful
as it can model the situation of two biased coins that are tossed in an arbitrary
order, which is useful as we do not know whether the observed sequence was
produced by a single or multiple coins (only the outcome is visible—the under-
lying source is hidden). Similarly, we could construct an HMM with three states,
which would be capable of modeling three biased coins, etc., and we could also
represent the HMM from Figure 3.2(a) by one state only. Obviously, the more
states an HMM has, the more representational power it embeds.

(a) HMM modeling a single biased (b) HMM modeling the merged outcome of

coin. The state sequence for the two biased coins. A possible state sequence
given observation sequence would for the given observation sequence could be
be 00110100110... 10011101101...

Fig. 2. Two possible HMMs that could be used to model the observation sequence of
heads (H) and tails (7'): HHTTHTHHTTH... Within the square brackets the proba-
bilities for the observations [H T] are given for each state, respectively.

There are three fundamental problems for HMMSs, for which formalized so-
lutions are provided in [26]. These problems are:

1. “Given observation sequence ¢ = 01,09, ..., 05, how to compute the proba-
bility of o, given the model A, i.e., Pr(c|\)?”

2. “Given o, how do we choose a corresponding state sequence si, 83, ..., Sp
which best explains the observations?”

3. “How do we adjust the model parameters to maximize the fit with the ob-
servation sequences?”

The first problem can be solved efficiently using the Forward-Backward Pro-
cedure [6,8]. The solution for the second problem depends on the optimality



criterion (i.e., what exactly means “best”?), and the most commonly used ap-
proach is to determine the single state sequence that is most likely to produce the
provided observation sequence using the Viterbi Algorithm [32,15]. The third is
the far most difficult problem and can be solved iteratively, such as by Baum-
Welch [7]. Furthermore, it is possible to calculate the distance between two
HMMs, for example using a Kullback-Leibler distance as in [22].

In the remainder of this paper, we make use of existing solutions to the first
two problems (without going into further detail about these solutions). That is,
we will compute the probability of a given observation sequence with respect to
a given HMM, and we will need to determine the most likely state sequence for
a given observation sequence with respect to a given HMM.

3.3 Petri nets

A Petri net [13] is a dynamic structure that consists of a set of ¢transitions, which
are indicated by boxes and relate to some task, or action that can be executed,
a set of places, which are indicated by circles and may hold one or more tokens
(indicated as black dots), and a set of directed arcs that connect these transitions
and places with each other in a bipartite manner. Transitions are enabled as soon
as all of their input places (places connected to this transition via an incoming
arc) contain a token. If a transition is enabled, it may fire whereas it consumes
a token from each of its input places and produces a token for each of its output
places (places connected to this transition via an outgoing arc). This way, the
firing of a transition may change the marking of a net, and therefore the state
of the process, which is defined by the distribution of tokens over the places.
Examples of Petri nets can be seen in Figure 1(b)—(e).

We use Labeled Place/Transition nets, which is a variant of the classic Petri-
net model, and which from now on we refer to as Labeled Petri nets for simplicity.
They are defined as follows.

Definition 3 (Labeled Petri net) A labeled Petri net is a tuple (P, T, F, L,1),
where:

— P is a finite set of places,

— T is a finite set of transitions such that PNT = 0,

- FC(PxT)U(T x P) is a set of directed arcs, called the flow relation,
— L is a finite set of labels, and

—1:T 4 L is a partial labeling function.

Note that observable log elements are linked to the transitions in the Petri
net model by the labeling function I. Because [ is a partial function, there may be
transitions in the model that are unlabeled, and therefore cannot be observed in
the event log. They are also called ‘invisible tasks’ and used for routing purposes,
such as to “skip” a particular part of the process. These unlabeled tasks are
denoted as small transitions filled with black color. For example, in the model
depicted in Figure 1(b) the transition G can be skipped by such an invisible



task. Furthermore, there can be multiple transitions in the Petri net that have
the same label. They are also called ‘duplicate tasks’ and their occurrence cannot
be distinguished in the event log. Duplicate tasks add expressiveness to the
formalism as they allow to model behavior in different contexts (e.g., at the
beginning and at the end of the process). For example, the model depicted in
Figure 1(e) contains many transitions with the same label.

We assume that each process model belongs to a well-investigated subclass
of Petri nets that is typically used to model business processes, which is the
class of sound WF-nets [1]. A WF-net requires the Petri net to have (i) a single
Start place, (ii) a single Fnd place, and (iii) every node must be on some path
from Start to End, i.e., the process is expected to define a dedicated begin and
end point and there should be no “dangling” tasks in between. The soundness
property further requires that (iv) each task can be potentially executed (i.e.,
there are no dead tasks), and (v) that the process—with only a single token in the
Start place—can always terminate properly (i.e., finish with only a single token
in the End place). Note that the soundness property guarantees the absence of
deadlocks and live-locks. This way, we abstract from correctness problems and
solely focus on the issue of model quality.

When evaluating process models based on HMMs, we restrict ourselves to
simple Petri nets as defined in the following.

Definition 4 (Simple Petri net) Let ex = {y | (z,y) € F} denote the input
nodes and zo = {y | (y,z) € F} denote the output nodes of xt € PUT. A
simple Petri net is then a labeled Petri net (P, T, F, L,1) where the following two
additional constraints hold:

—VteTi‘tO|§1
7Vt€T:‘.t|§]~

The two constraints ensure that no transition has more than one outgoing
and one incoming arc and, therefore, no parallelism is present in the the model.
This sub class of Petri nets is called state machines and also excludes so-called
long-distance dependencies. These restrictions are necessary due to differences
in the representational power of labeled Petri nets and HMMs as we will show
in Section 6. In the next section, we define a mapping of these simple Petri nets
onto HMMs.

4 Constructing HMMs for Process Model and Event Log

To evaluate the quality of a simple Petri net model (with respect to a given event
log) by HMM-based techniques we need to define a mapping from Petri nets to
HMMs: First, we create an HMM based on the given Petri net (Section 4.1).
Second, we relate sequences from the event log to this HMM to be able to
evaluate their “match” (Section 4.2).



4.1 Mapping a Simple Petri Net onto an HMM

Figure 3 depicts a simple Petri net. In this Petri net, after placing a token in
the left-most place, transition A is enabled and can be fired. Afterwards, either
transition B or C (but not both) can be fired. Finally, A is fired and the process
ends. Thus, there are precisely two valid firing sequence for this process, namely
ABA and ACA.

L]
o~~o<_\,x>~~o

Fig. 3. A simple Petri net modeling the choice between C' and B. Possible firing se-
quences are thus ABA and ACA.

Now we want to map this Petri net onto an HMM. For this, we basically
represent each labeled transition by a state in the HMM, whereas we link the
corresponding observation element with 100% probability to that state (but
multiple states may be linked to the same observation). Unlabeled tasks are not
represented by a separate state in the HMM as they are not observable.

As explained earlier, an HMM—in contrast to an ordinary Markov chain—
does not assume that the states correspond to directly observable events. Instead,
the observation is a probabilistic function of the state (for example, in a particu-
lar state two types of observable events might be equally likely to be produced).
Thus, each state is, in addition to the parameters present in an observable Marko-
vian model, associated with a vector of observation element probabilities (which
again sum up to 1). Note that for our mapping we need this separation of states
and observations although each state produces exactly one type of observation
with 100% certainty (see Figure 4). However, because two states may produce
the same observation element (for example, state 0 and state § both produce
observation element A), from the mere observation we cannot conclude in which
state we are. Thus, the states are not observable.

While a Markov chain is an inherently stochastic model, plain Petri nets
are an analytical representation and do not directly support probabilistic de-
scriptions?. We thus need to infer the probabilistic parameters of the Markovian
model from the structure of the Petri net. This can be done as follows.

Step 1: Each labeled transition in the Petri net is represented by exactly one
state in the Markov model (associated with a degenerate probabilistic obser-
vation function as described earlier). Transitions corresponding to invisible
tasks are not represented by a state in the HMM.

4 Note that there are more expressive representations, such as Colored Petri nets
(CPNs) [21], which extend Petri nets—mnext to, e.g., hierarchy and time—also with
probabilistic capabilities.

10
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Fig. 4. The HMM constructed from the Petri net model in Figure 3. In our mapping,
we create a direct link of the state and the observation element to be produced. For
example, in state 0 we definitely produce the event A, in state I we produce event B
etc. The observation event probability vector corresponds to [A B C e].

Step 2: All states that correspond to transitions connected to the Start place
of the Petri net are assigned an equal probability of being the initial state
of the HMM. In the Petri net of Figure 3 transition A is the only start task
(i.e., all possible event sequences start with A). Therefore, state 0 has an
initial probability P: = 1 and all other states have an initial probability
Pi =0 (see Figure 4). Initial probabilities equal to 0 are not shown.

Step 3: To assign transition probabilities between states we analyze the
structure of the Petri net and assign an equal transition probability from
the state corresponding to the current transition to all states corresponding
to possible successor transitions. For example, after executing A in the Petri
net in Figure 3 either B or C are possible. Thus, in the HMM depicted in
Figure 4 the transition probabilities from state 0 to state 1 and the transition
probability from state 0 to state 2 are both 0.5. After firing C' it is only
possible to fire A. Therefore, the transition probability from state I to state
3 is 1 etc. Invisible tasks are traced, i.e., they are ignored and their successor
transitions are determined instead (until only labeled successor transitions
are left). Transition probabilities equal to 0 are not shown.

Step 4: To model the end of the process, a separate final state is introduced,
which does not produce any observable events from the set L. Instead, it is
associated to some dummy end element e. Once it is reached, it cannot be
left anymore. In the HMM depicted in Figure 4 this is state 4. Transition
probabilities from states that correspond to possible final tasks in the Petri
net (i.e., tasks that can happen at the very end of the process) are not only
split among possible successor states but also the final state. In the Petri net
shown in Figure 3 the process always ends after firing transition A. Thus,
the transition probability from state 3 to state 4 is 1.

11



4.2 Relating Event Sequences to the HMM

So far, we have used the given Petri net to create an HMM, which is simply
another representation of the same process. For example, according to the Petri
net in Figure 3 it is not possible to fire the second transition A directly after
firing the first A. Correspondingly, the transition probability from state 0 to
state 3 in the HMM depicted in Figure 4 is 0.

However, recall that our goal is to evaluate a Petri net model with respect
to a given event log. Therefore, consider Figure 5, which depicts three different
example scenarios containing each 100 process instances. We want to evaluate
the Petri net in Figure 3 with respect to each of these event logs. In the first
scenario, the event sequences ABA and ACA have been observed, whereas ABA
occurred 90 times and ACA occurred 10 times. In the second scenario, three
different event sequences have been recorded. In addition to ABA (88 times)
and ACA (10 times) also the sequence AA (2 times) was observed. Finally, in
the third scenario only the sequence ABA was observed (100 times). The element
e is not actually in the event log, but we artificially inserted it to mark the end
of the sequence.

Trace O (# 88) ﬂ
Trace 0 (# 90) HH Trace 1 (# 10)
Trace 1 (# 10) H Trace 2 (# 02) H Trace 0 (# 100) EE

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 5. Three different event logs are given in the scenarios 1-3.

If we now want to relate these observation sequences to the HMM constructed
from the model to evaluate their “match”, then we cannot do this directly al-
though each state is linked with 100% certainty to a specific observation element.
The reason is that there can be more than one state that are linked to the same
observation element (for example, both state 0 and state 3 are linked to the
observation A). Fortunately, we can make use of existing solutions to the com-
mon HMM problem of finding the best sequence of states for a given observation
sequence, such as the Viterbi algorithm (cf. Section 3.2).

So, using such an existing mechanism to retrieve the best state sequence
51,52, ..., Sn, S final fOT & given observation sequence 01, 02, ..., 05, €, we could, for
example, relate the first trace ABAe in the log depicted in Figure 5(a) to the
state sequence 0134 in the HMM depicted in Figure 4. Similarly, we obtain the
state sequence 0234 for the second trace ACAe in Figure 5(a).

However, if we try to do the same for the event log depicted in Figure 5(b),
we will find out that the last trace AAe cannot be related to any state sequence
of equal length as the observation sequence. The reason is that in the HMM

12



in Figure 4 there is no possible way to transition from the start state 0, which
does produce observation A, to a state also producing A (both the transition
probability from state 0 to state 0 as well as the transition probability from
state 0 to state 3 is 0). So, for this observation sequence the Viterbi algorithm
cannot give us a result (there is no “most likely” sequence as there is no possible
sequence at all).

Nevertheless, we want to be able to obtain a state sequence for any given
observation sequence. For this, we have to adapt the HMM that was constructed
from the process model in such a way that it also allows for state transitions
that are not possible for the input model. Furthermore, the initial state probabil-
ities must be adapted as an observation sequence can potentially start with any
observation. But on the other hand we want that in the case of multiple possi-
ble state sequences those paths that are correct according to the input model
are chosen over incorrect state sequence, if they are available. Therefore, correct
state transitions in the adapted HMM must be much more likely than incorrect
state transitions. We call this adapted HMM to be used to relate event sequences
to the input model an e-HMM.

Definition 5 (e-HMM) Let A\yy = (N, L, Ay, B,mar) be the HMM created
from the simple Petri net model, and € be a sufficiently small value. The state
transition probabilities A. and the initial state probabilities 7. of the e-HMM
Ae = (N, L, A, B,7) are defined as follows:

1 if ' = Sfinai
Ae(s, S’) = {(s,s") |1;(€S7s~)>0}‘ ifA(s,s’) >0 5 878/, SH eN
MG TaGsn=oy o Als,s") =0
0 if 8= Sfinal
me(s) = T Tresoy U8 >0 s eN

o Tren=oy Y m(s)=0

Figure 6 shows the e-HMM for the HMM depicted in Figure 4 with € being
0.01. For example, while the transition probability from state 0 to state I and
from state 0 to state 2 was 0.5 for the model HMM, it is now % = 0.495 for
the eeHMM. The transition probabilities from state 0 to the remaining states 0,
3, and 4 where previously 0, and are now % ~ 0.003. Similarly, the initial state
probability for the previously only possible initial state, state 0, is % = 0.99,
while the remaining states, which were previously impossible initial states, have
now an initial state probability of ig'ol ~ 0.003.

Now, using the e-HMM, we are able to find a state sequence for the observa-
tion sequence AAe. The most likely state sequence is 034. Note that this state
sequence contains a transition from state 0 to state &, which was not possible
according to the initial model HMM. These situations are interesting because
according to the model AA should not be possible (B or C' must happen in be-
tween), but it still occurred in the event log. So, the model fails to capture all the
observed behavior. Coming from a model perspective, we call these situations
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3(A) Pi=0.003
[1000]

2(C) Pi=0.003
[0010]

Fig. 6. The eeHMM. To allow the detection of the most likely state sequence for each
event sequence, impossible transitions and initial states must be made possible. Here,
the e-Hmm for the Petri net model in Figure 3 is depicted with € = 0.01

‘false negatives’, and we will use them later to measure the fitness of the process
model.

Definition 6 (False Negatives) Let \yy = (N, L, Ay, B,mp) be the HMM
created from the simple Petri net model and w = (L, E,m) the event log. Fur-
thermore, assume that given any observed event sequence o = 01,02, ...,0, of
length n € N>o the most likely state sequence v = 51, 82, ..., 8p, Sfinal can be de-
termined for 01,09, ...,0,, e with respect to the e-HMM. The false negatives FN
over a set of event sequences E is defined as follows:

FN = U {(84,8i+1) | (Am(84,8i41) =0, 1 <i<n-—1}
leA<I

Finally consider the log depicted in Figure 5(c), which only contains the event
sequence ABAe. The most likely state sequence for this observation sequence
with respect to the eeHMM (and also with respect to the initial model HMM)
is 0134. Looking at the model HMM in Figure 4, we notice that not all initially
possible state transitions have been observed (for example from state 0 to state 2
and from state 2 to state 3). These situations are interesting because according
to the model AC' and CA should be possible, but they did not occur in the
event log. So, the model actually captures more than the observed behavior. We
call these situations ‘false positives’, and we will use them later to measure the
precision of the process model.

Definition 7 (False Positives) Let A\yy = (N, L, Ay, B,my) be the HMM
created from the simple Petri net model and w = (L, E,m) the event log. Fur-
thermore, assume that given any observed event sequence o = 01,02, ...,0, Of
length n € N>o the most likely state sequence v = 51,82, ..., 5n, Sfinal CoN be
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determined for 01,02, ..., 0n, € with respect to the e-HMM. The false postives F'P
over a set of event sequences E set is defined as follows:

FP=(NxN)\ ({(si,si1) , 1<i<n—1}
celE

5 Metrics and Evaluation of Data

Based on the mapping presented in the previous section, we now define several
metrics to evaluate the fitness (Section 5.1) and precision (Section 5.2) of the
process model with respect to the given event log. These metrics will then be used
together with other metrics to evaluate a larger set of models in the experiments
in Section 8.

5.1 Fitness

Fitness essentially measures the extent of observed behavior that is rejected by
the model. Depending on the viewpoint, it either evaluates to which degree “legal
sequences are not properly captured by the model” (log-based view) or to which
degree “sequences are erroneous given the model” (model-based view). These
viewpoints are equivalent and matter mostly when it comes to interpreting the
results to take corrective actions.

A very simple notion of fitness is defined by the fraction of process instances
in the event log that can be represented by the model without any error. This
notion has been used before, for example by the ‘Parsing Measure’ defined in
[33]. We state an error if there are two events in the trace directly following
each other, but in the model-based HMM the transition probability between
the corresponding states is 0. This can be directly measured by Pr(o|A), the
probability of the given observation sequence o with respect to the HMM A,
which yields 0 if it contains a transition which is impossible. Fortunately, the
probability of a given observation sequence with respect to a given HMM can
be efficiently computed (see [26]).

Metric 1 (Trace Fitness) Let \yy = (N, L, Ay, B, war) be the HMM created
from the simple Petri net model and w = (L, E, m) the event log. Furthermore,
Ey={o | Pr(oc = 01,02,...,0n|An) =0, 0 € E} is the set of non-fitting event
sequences. The trace fitness firqce is defined as follows:

ZUGEO m(o)
>oerm(o)

Assuming that the event log is not empty, this metric yields a value between
0 (none of the observed sequences is possible according to the model) to 1 (all
observed sequences are possible). For example, for the Scenario 2 depicted in
Figure 5(b) the trace fitness yields 1 — ;25 = 0.98.

ftrace =1-
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A second way to look at fitness is to evaluate how many “forbidden” transi-
tions in the model have been “broken” by the log. So, the fitness is measured in
direct relation to the causal relations of the model. Here, we can use the notion
of ‘false negatives’ defined in Section 4.2. Note that we ignore the final state
here as our goal is not to evaluate the “proper completion” of the traces. That
is, sequences that do not lead to the final state but are otherwise possible with
respect to the model are considered to be correct®.

Metric 2 (Model Fitness) Let Ayy = (N, L, Ay, B, 7ar) be the HMM created
from the simple Petri net model and w = (L, E, m) the event log. Furthermore,
AN = {(s,s') € N x N | Au(s,s') = 0 AN s # Spina} is the set of all
negative transitions in the model-based HMM. The model fitness fmoqer 1S defined

as follows:
|FN|
— 1 N B
fmodel - | ]Nl

Assuming that at least one transition probability in the HMM is 0, the metric
ranges from 0 (all “forbidden” transitions in the model have been “broken”) to
1 (none of them has been “broken”). For example, in the Scenario 2 depicted in
Figure 5(b) (3,0) € FN and the model fitness yields 1 — & ~ 0.92.

A third way to define fitness is to take the direct succession of events as a ref-
erence point and to punish the occurrence of subsequences that are “forbidden”
by the model based on their frequency in relation to the whole log.

Metric 3 (Log Event Fitness) Let A\yy = (N, L, Ay, B,7mp) be the HUM
created from the simple Petri net model and w = (L, E,m) the event log. Fur-
thermore, m! : N x N — N is a frequency function for how often a pair of states
(s,8") € NXN has been listed as direct successors, i.e., s = s; N\ 8’ = s;41, in the
most likely state sequence v = 81,82, ..., Sn, Sfinal determined for o1, 02, ...,0n,€
with respect to the e-HMM, given an event sequence o = 01,09, ...,0, of length
n € N>o. The log event fitness feyent 15 defined as follows:

Z(TEE Z(s,s’)eFN (m(a) ’ m;(sv S/))
Zer E(S,S/)E(NX(N\Sfinal)) (m(o) - mi(s,s))

The metric yields a value between 0 (none of the observed event pairs should
be possible according to the model) to 1 (all the observed transitions were allowed
according to the model). For example, for the Scenario 2 depicted in Figure 5(b)

the event fitness yields 1 — 1% ~ 0.99.

feuent =1-

5.2 Precision

Precision essentially measures the extent to which non-observed behavior is ac-
cepted by the model. As discussed earlier, the notion of precision is highly linked
to how we define the completeness of a log.

5 This is motivated by our later simulation experiments where we generate traces that
are not necessarily completed.
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Similarly to the model fitness metric defined in Section 5.1 we can define a
precision metric based on how many “allowed” transitions in the model have
“not been used” by the log. So, the precision is measured in direct relation to
the causal relations of the model. Here, we can use the notion of ‘false positives’
defined in Section 4.2.

Metric 4 (Model Precision) Let Ay = (N, L, Ay, B, war) be the HMM cre-
ated from the simple Petri net model and w = (L, E,m) the event log. Further-
more, AP = {(s;,s;) € NXN | Ar(8i,85) >0 A S; # Sfinat N Sj # Sfinal} 1S
the set of all positive transitions in the model-based HMM. The model precision
Pmodel 18 defined as follows:

[P
Pmodel = 1- m

Assuming that at least one transition probability in the HMM is not 0, which
is always true for a non-empty model as there is at least one state leading to
the Sfinaql, the metric ranges from 0 (none of the “allowed” transitions in the
model have been “used”) to 1 (all of them have been “used”). For example, in
the Scenario 3 depicted in Figure 5(c) (3,1),(1,0) € FP and the model precision
yields 1 — % =0.5.

Furthermore, we can again use the fact that the probability of a given ob-
servation sequence with respect to the HMM can be efficiently computed, and
add up the probabilities of all different traces in the log with respect to the
model HMM to see how much of the model behavior is covered. Note that this
essentially enables us to efficiently compute the portion of observed sequences
in relation to the total number of possible sequences as, for example, defined
by the ‘completeness’ precision metric defined in [17], despite the fact that the
number of sequences allowed by the model may be infinite!

Metric 5 (Log Completeness) Let A\yy = (N, L, Ay, B,mp) be the HMM
created from the simple Petri net model and w = (L, E,m) the event log. The
total precision Piora; S defined as follows:

Protat = »_ Pr(c = 01,02, ..., 0nAnr)
ocE

For the Scenario 3 depicted in Figure 5(c) the only sequence in the log has a
probability of 0.5, and thus the log completeness yields 0.5.

6 Representational Power of HMMs and Petri Nets

In our mapping we have associated each labeled task with only one state in the
Markov process. To do this, we had to pose restrictions on the process models
and limit them to Simple Petri nets The assumption of Markovian processes
is to determine the next step only based on the current state (ignoring the
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history), which is usually not appropriate for process models that may exhibit
long-distance dependencies (e.g., some later choice depends on the outcome of
an earlier choice in the process) and concurrency. However, being inclined to
look more than one step forward then also renders the situation inherently more
complicated.

For example, if one wants to map the situation more precisely then one
could model the state space of the process model by representing each possible
marking by a separate state. This then corresponds to a so-called reachability
graph (or coverability graph if infinitely growing markings are to be caught in
w-states). But unfortunately the state space of a model grows exponentially fast
(“state space explosion”), and already seemingly small models may not be com-
putable anymore with contemporary personal hardware (see Appendix A for an
example). Therefore, theoreticians strive for finding ways to evaluate interesting
properties by structural analysis, i.e., investigating the structure of the Petri net
rather than the state space.

Formal methods often employ abstraction techniques such as in model check-
ing [9], or the reduction rules in Petri nets [25], to verify interesting properties on
only a subset of the original model. In a similar way, we can apply our mapping
of one state per labeled task to models beyond the limits of Simple Petri nets
(which can be truthfully represented) and see it as an abstraction of the original
model.

O—{c—0O-
o=nd -0

~O—[ 0"

3(A) Pi= 1
[0001]

Fig. 7. A Petri net that includes concurrency (B and C can be executed in parallel)
and its HMM mapping.

Consider, for example, the concurrent Petri net in Figure 7. The process
model contains two parallel tasks B and C, which can be executed in any order
after A but must be completed before starting D. If we map this Petri net onto
our HMM representation with one state per labeled task we obtain the HMM
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shown in Figure 7. Due to the simplification, this HMM allows for observation
sequences that were not possible for the Petri net (e.g., ABCBCBD would be a
possible observation sequence with respect to the HMM but not a legal sequence
for the Petri net).

Interestingly, we can still say something about the Petri net based on only
looking at the HMM, namely that sequences that are impossible for the HMM
must also be impossible for the Petri net (e.g., AD). Thus, if we find a sequence
to be illegal with respect to the HMM, we can conclude that the sequence is
also illegal for the Petri net, but this does not hold for legal sequences (possible
sequences for the HMM do not need to be legal for the Petri net). Thus, we
obtain optimistic fitness results based on our mapping. Conversely, we can look
at the precision of the mapped model with respect to some log. While we can-
not be sure that a sequence that would be possible according to the HMM and
is not present in the log should be also possible with respect to the Petri net,
we can say that those sequences that are represented by the Petri net are also
represented by the HMM. Thus, we obtain pessimistic precision results based
on our mapping.

Note that it is possible to “unfold” the concurrent Petri net from Figure 7
by listing each possible interleaving as an alternative path using duplicate tasks,
which are allowed for our simple Petri nets, like depicted in Figure 8. However—
due to the exponentially increasing number of possible interleavings—this leads
exactly to the same problem as the state space explosion described before (the
abstraction level of the model is simply lowered towards its state space), and,
thus, is only of limited applicability.

Fig. 8. The concurrent Petri net from Figure 7 as a simple Petri net, unfolded using
duplicate tasks.

Finally, one could say that—due to the fact that we link each state to precisely
one of the possible observation elements—the potential of HMMs has not been
fully leveraged. However, if we aim at an exact representation, which enables us
to calculate metrics like presented in Section 5, there is not much room to do
so. While the HMM from Figure 4 can be further abstracted by collapsing two
states without changing the behavior of the model as shown in Figure 9, already
for the Petri net model depicted before in Figure 8 cannot be mapped anymore
to such a more concise HMM representation without adding unwanted behavior.

Nevertheless, there may be other applications of HMMSs in the context of pro-
cess mining. For example, it would be interesting to see how one could leverage
the stochastic nature of HMMs to capture very unstructured processes that typ-
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Fig. 9. The HMM from Figure 4 further abstracted by collapsing two states.

ically result in so-called “spaghetti-models” when traditional mining techniques
are employed. As indicated in Section 3.2, several learning approaches are avail-
able to “fit” the probabilistic parameters of an HMM to a set of observation
sequences (cf. third common problem for HMMs).

7 Genererating Noise

In our experiments we now concentrate on the fitness dimension and want to
evaluate a model with respect to logs containing different degrees of noise. For
this, we first define two different types of noise (Section 7.1 and Section 7.2).
Then, we provide an overview about the setup and present the ProM plug-in
realizing our experimental approach (Section 7.3).

7.1 Observation Noise

One possibility to generate distorted logs is to make use of the separation of
states and observation elements in the HMM by adjusting the observation ele-
ment probabilities for each state. Previously, each state could only produce the
one observation element that was linked to this state. Now, with increasing de-
gree of noise we can decrease the probability of the “right” observation element
and introduce some probability to generate a “faulty” observation element for
each state. This way, we can conveniently use the modified HMM to generate
observation sequences by means of simulation.

Consider the example in Figure 10(a), where we adjusted the observation
probabilities of the HMM depicted in Figure 4 to introduce 20% noise. In each
state, the correct observation element is being generated with a probability of
0.8, and a wrong observation element is being generated with a probability of 0.2
(each of the possible wrong observations has a probability of 0.067). Now consider
the example in Figure 10(b), which represents the same HMM with degree of
100% noise. That is, in each state the correct observation is impossible, i.e., an
incorrect observation element is produced with 100% certainty.

More specifically, we can determine the observation element probabilities for
the noisy HMM in each state as follows.
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[0.067 0.0670.067 0.8 0 |

[0.80.0670.067 0.067 0]

[0.0670.067 0.8 0.0670 ]

(a) 20% noise

3(A) Pi=1

[0.3330.3330.33300]

4
[00.3330.3330.3330] [00001]

[0.3330.33300.3330]

(b) 100% noise

Fig. 10. Examples HMMs for different levels of observation noise.

Definition 8 (Observation Noise) Let A = (N, L, A, B, m) be an initial HMM,

nl € N1 the number of noise levels to be generated, and A = % the differ-

ence by which the correct observations are to be reduced on each noise level.
The observation probabilities B; of the HMM on noise level i,1 < i < nl, i.e.,
Xi=(N,L, A, B;, ), are defined as follows:

0 ifszsfinal
Bi(s,0)=¢ 1—i-A if B(s,0)=1,s€ N,oeL
iA

TeT if B(s,0) =0
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While the correct observation element probability (B(s,0) =1 in the initial
Hmm) decreases the incorrect observation element probabilities (B(s,0) = 0 in
the initial Hmm) increase with an increasing noise level. Note that the observa-
tion probabilities of the final state do not change, since the final state has the
special role of representing the end of the process and does not actually produce
an observation element from the set L.

Note that for this kind of noise we only distorted the observation element
probabilities of the HMM, but the transition probabilities remain the same. This
means that the generated traces for the running example will still always have
exactly three events, since the structure of the HMM is properly followed. We
can see this kind of noise as a faulty logging mechanism. That is, the right task
is being executed, but the corresponding log element that is produced is “noisy”.

7.2 State Transition Noise

While we only modified the observation element probabilities for the previous
type of noise, we now change the behavior of the process by modifying the tran-
sition probabilities between the states. This way, the process may increasingly
“jump” from one state to another although it would not be possible to the orig-
inal process description. We can see this kind of noise as a behavioral noise.

Consider the example in Figure 11(a), where we adjusted the state transi-
tion probabilities of the HMM depicted in Figure 4 to introduce 20% noise. In
each state, a correct state transition is performed with a probability of 0.8 (for
example, both transition probabilities from state & to state I and from state &
to state 2 are 0.4), and a wrong state transition is performed with a probability
of 0.2 (each of the otherwise wrong state transitions has a probability of 0.067).
Now consider the example in Figure 11(b), which represents the same HMM
with degree of 100% noise. That is, in each state the correct transitions are
impossible, i.e., an incorrect state transition is performed with 100% certainty.

More specifically, we can determine the observation element probabilities for
the noisy HMM in each state as follows.

Definition 9 (Transition Noise) Let A = (N, L, A, B, ) be an initial HMM,
nl € N>y the number of noise levels to be generated, and A = % the difference
by which the correct observations are to be reduced on each noise level. The

state transition probabilities A; of the HMM on noise level i,1 < i < nl, i.e.,
Ai = (N, L, A;, B,7), are defined as follows:

1 if 8§ = Sfinal A\ Sk = Sfinal
0 Zf §j = Sfinal N Sk 7é Sfinal
Ai(Sj,Sk) = 1—i-A if A(Sj78k) >0 s 8jySk, 81 €N

I{(Sj,sz)lA(ng_SAz)>0}l
[L[=1{(s5,51)[A(s5,51)>0}|+1

Zf A(Sj75k) =0
Note that transitions from the final state do not change as the final state

still represents the end of the process and should not be left once it has been
reached.
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Fig. 11. Examples HMMs for different levels of transition noise.

7.3 Overview Experimental Setup

Figure 12 illustrates our experimental approach. The upper part shows the HMM
Analyzer component, which—based on the Petri net—creates the initial model-
based HMM and the e-HMM. These two HMMSs and the event log are then used
to calculate the metrics presented in Section 5.

The Noise Experimenter component generates noisy logs based on the model-
based HMM. Each of these noisy logs is then evaluated with respect to the input
Petri net model using the metrics presented in Section 5 and potentially using
other existing process mining metrics.
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Furthermore, for each noise level—instead of only one log—we can also gen-
erate multiple logs based on the same HMM. These replications are independent
of each other and could be used to derive statistical measures, such as the con-
fidence interval of an average fitness value.

HMM Analyzer

Model
SED
HMM
Creator e Epsilon Metrics
HMM Calculator

Event log >
Noise Experimenter
(oo Neiem N\
0% Noise
Event Log
Noise
Generator e TN
100% Noise
Event Log
Petri net > HMM
Analyzer

Fig.12. The HMM Analyzer component calculates the presented metrics, which is
then used by the Noise Exzperimenter to evaluate logs of different levels of noise.

The HMM Experimenter plug-in in the ProM framework® (see Figure 13)
realizes the described approach, and offers a number of parameters to configure
the experiment. More precisely, the following parameters are availble:

No. of Noise Levels The number of different noise levels to be generated. Be-
ing always distributed from 0% to 100%, the number of noise levels affects
the granularity, or noise step size. For example, 10 noise levels result in logs
generated with 10%, 20%, ..., 100% noise.

No. of Traces The number of traces to be generated for each log.

5 Both software (including source code) and documentation are freely available from
the websites hitp://prom.sf.net and www.processming.oryg.
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Maximum No. of Events The maximum number of events to be generated
for each trace (needed since some models may allow for infinitely long se-
quences).

No. of Replications If replications are desired, then this is the number of logs
to be generated for each noise level.

log.mxml

Imported - model.pnml - PNML file

| Elcomplete)l T _'7
800 Analysis —~ HMM Experimenter

HMM Experimenter

Start analysis

nne/Models & Logs/HMM Tests little &

Fig. 13. Screenshot of the HMM Experimenter in ProM.

8 Experimental Results

We used the described experimental setup to perform experiments for vary-
ing degrees of noise based on process models from different domains. First, we
used four process models that were mined based on log data collected by the
CMDragons team during the international robot soccer competition 'RoboCup’
2007, and thus constitute models of the behavior in a multi-agent robotic sys-
tem [30]. Second, we evaluated three different models of administrative processes
within a municipality in the Netherlands. The same processes were used for min-
ing experiments in [12]. Finally, we selected three suitable models from the SAP
reference models, which is a publically available model that contains more than
600 enterprise models [24], and analyzed them with our approach.
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The original models were given in terms of Heuristics nets and EPCs, and
they were translated into Petri nets using conversion facilities in the ProM frame-
work, respectively. We performed experiments on these models with varying pa-
rameters. The results of these experiments are very similar, and in the following
we use a single, but representative, example to point out the main conclusions
that we can draw from them. The detailed results are provided in Appendix B,
C, and D.

As for the process model evaluation metrics, we used the HMM-based metrics
defined in this paper as well as the following two other metrics from the process
mining domain.

— The token Fitness [27] is based on replaying the log in a Petri net process
model and relating the number of “missing” and “remaining” tokens dur-
ing log replay to the total number of produced and consumed tokens (here
referred to as Token Based). A similar metric is the Continuous Parsing Mea-
sure [33], which measures the number of missing and remaining activations
while replaying a Heuristics net.

— The Improved Continuous semantics fitness [12] is used by the Genetic Miner
to select the best process models in each generation of the genetic algorithm,
and incorporates a fitness evaluation similar to the Continuous Parsing Mea-
sure, a precision evaluation, and gives some extra weight based on the number
of traces that have problems.

Now consider Figure 14, which depicts the fitness values (y axis) for 50 differ-
ent noise levels (x axis), with 100 traces per log, and a maximum of 100 events
per trace, for one of the models mined from the robot soccer data. Since this fig-
ure is representative for the larger set of experiments, we can use it to illustrate
our main conclusions from the experiments.

1. Existing metrics have a bias when applied to simple models. We can see that
the Token Based fitness, which stands for other similar fitness approaches
in the process mining domain, does not drop to much less than a fitness
of 0.4 throughout the whole experiment. This can be explained by the fact
that the log replay “leaves tokens behind” for potential later use, which is
appropriate for models containing parallelism (as one needs to look more
than one step forward to satisfy all the dependencies) but not for simple
Petri nets as evaluated in our experiments. Thus, in these situations, and
more severely with an increasing level of noise, this metric provides overly
optimistic results.

2. Metrics should measure only one thing. We can see that the Improved Con-
tinuous fitness suddenly drops dramatically when the noise level is increased
above 40%. This can be explained by the fact that this metric was designed
to steer a genetic algorithm based on a mixture of different measurements.
For that purpose, it is a good metric. However, if one wants to use the metric
to gain insight into the quality of a process model, it becomes difficult as
the interpretation of results becomes difficult (“Which aspect contributed to
this value?”, “Is it the property I want to measure?”).
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Fitness Measurements for Different Noise Levels
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Fig. 14. Fitness values for 50 different observation noise levels on ‘BSmart’ model from
Appendix B.

3. Trace-based metrics do not make much sense for large models and long pro-
cess instances. Based on the Trace Based fitness, we can see that this metric
drops very quickly towards 0, already for low levels of noise. This is due to
the fact that in case of longer process instances (as here up to 100 events per
trace) already one small error in the trace renders the whole trace to have
a negative impact on the overall fitness. With an increasing level of noise,
there will be soon no more traces that have no errors, thus rendering the
measure to provide pessimistic results if compared to our notion of noise.

The underlying assumption here is that a fitness metric should decrease as
uniformly as possible with an increasing portion of noise, which is what one
would intuitively expect without further knowledge of the metric’s behavior. We
can translate this assumption into the requirement that a fitness metric should
be inversely proportional to the percentage of noise. If we further normalize the
ratio of noise and inverse fitness by subtracting 1, then we obtain an indicator
that yields 0 in the ideal situation, positive values if the fitness measurement is
optimistic given the noise level, and negative values in the case that the fitness
measurement is pessimistic given the noise level.

For example, the average noise fitness ratios for one of the models are shown
in Table 1.
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Definition 10 (Noise Fitness Ratio) With a fitness value f being calculated
for a log with n degrees of noise (n = 1 corresponding to 100% of noise), the
fitness noise ratio ryy, is defined as follows:

o1 iff A1
_ )17
Ty = ‘ , 0< fin<1
! {ﬂ‘llff:l

Table 1. Average noise fitness ratios during the replicated experiments for model
"1Be_2xk1’ from Appendix D with (1) observation noise and (2) transition noise.

5% Noise 10% Noise 20% Noise 50% Noise 100% Noise

Token |(1) -0.201  |(1) -0.168  [(1) -0.111 (1) 0.050 (1) 0.516
Based |[(2) 0.292  [(2) 0.568  |(2) 0.463  |(2) 0.433  [(2) 0.567

Improved |(1) -0.376 (1) -0.333 (1) -0.264 (1) -0.216 (1) 0.0

Continuous|(2) -0.024  [(2) 0.219  |(2) 0.153 (2) 0.132 (2) 0.0
Trace |(1) 0716 |(1) -0.677 _ |(1) -0.614 (1) -0.444  |(1) 0.0131
Based [(2)-0.704  [(2)-0.615  |(2)-0.582  [(2)-0.365  |(2) 0.141
Model |(1) -0.853  |(1) -0.81 (1) -0.72 (1) 0465 |(1) 0.029
Level [(2)-0.827  |(2) 0771  |(2)-0.728  |(2) -0.496  |(2) 0.0
Event |(1) -0.468  |(1) 0452  |(1)-0.380  |(1) 0.284 _|(1) 0.112

2) (2) ) (2) 2)

Level

In the appendices we provide graphs of the fitness values for different observa-
tion and transition noise levels. They visualize consistently that the Token Based
metric yields optimistic results for logs containing a high portion of noise, and
that the Trace Based metric and Model Level metric yield rather pessimistic re-
sults. Furthermore, if we calculate the average variance of the fitness noise ratios
of the replications within one noise level, then the Improved Continuous met-
ric consistently yields an average variance which is about one magnitude higher
than the average variance values of the remaining metrics, thus highlighting its
instability. The best metrics seem to be the Event Level metric.

Overall, the results for the two different kinds of noise are very similar and
confirm the same trend. Two differences can be noted:

— If the transition noise has a level 100%, then the Event Level metric really
falls to the value 0, which is not the case for the observation noise. The
reason is that by generating random observation elements, it may be still
the case that, accidentally, correct sub sequences are created. This is similar
for noise generation mechanism typically used in the process mining domain,
such as deleting and exchanging log events as defined in [33], but it is not
true for the transition noise, which with a noise level of 100% is guaranteed
to produce no valid sub sequence anymore.

The Trace Based metric often drops not as quickly for the transition noise
as for the observation noise. This may be due to the fact that among the
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noisy transitions is also the transition to the final state, which then leads to
the end of the event sequence. Such shorter process instances are then less
likely to have an error than longer sequences.

Of course these results are influenced by our notion of noise and our assump-
tion that it is desirable for a fitness metric to scale as linearly as possible with
respect to the degree of distortion in the log. In principle, there may be different
notions of noise (e.g., introducing distortions gradually over different parts of
the process), which would render the Model Level metric less pessimistic, or one
might prefer the metric to scale linearly from 0% (metric yields 1) to 20% noise
(metric yields 0), since lower portions of noise (e.g., 5% or 10%) are much more
common in real processes than a very high portion (e.g., 80%). However, for a
first general evaluation the presented setup seems reasonable. In any case, knowl-
edge about the behavior of a metric is important as we interpret the calculated
values correspondingly (“How good or bad is a result of 0.77”).

9 Discussion

We generally use metrics to obtain information about the quality of a process
model. But to be sure that the conclusions that we draw from the measurements
are valid, we must first ensure the quality of the metric itself. The following re-
quirements are are generally considered relevant [23] to ensure the usefulness of
a metric: validity (the measure and the property to measure must be sufficiently
correlated), reproducibility (be independent of subjective influence), stability (be
as little as possible affected by properties that are not measured) and analyz-
ability (relates to the properties of the measured values).

Given the fact that the validity and reproducibility are typically not an issue,
in this paper we have proposed a structured approach to evaluate the analyz-
ability and stability of certain process mining metrics. As a first step, we focused
on simple process models and the fitness and precision quality dimensions. We
have seen that—in this simple setting—existing process mining metrics can yield
overly optimistic results, which affects their analyzability. Furthermore, some
metrics measure more than one aspect, which makes interpretation of the re-
sults difficult and negatively affects their stability. Further research is required
to develop evaluation approaches for further dimensions and more complex sce-
narios. The ultimate vision for process model evaluation would then be to have a
methodology that assists in selecting the “right” metric for the “right” situation,
and based on the goal of the evaluation.

In this paper, we have used HMMs to define quality metrics for process
models, and to generate logs with determined levels of noise. Possible next steps
could be the following:

— Carry out experiments for varying degrees of completeness to evaluate ex-
isting precision metrics. For example, the log completeness metric defined in
Section 5.2 could be iteratively calculated while generating logs for a deter-
mined level of completeness.
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— Perform experiments with Petri nets that contain parallelism using our one-
state-per-labeled-task mapping to see how optimistic the fitness and how
pessimistic the precision measurements really are.

Finally, further applications of HMMs in the process mining area could be ex-
plored as indicated in Section 6.
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A Small Petri net Model with Very Complex State Space

Fig. 15. Relatively small Petri net model, which already produces a coverability graph
that cannot be computed with contemporary personal hardware.
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B Robot Soccer Model Evaluations

The models used in these experiments were mined based on log data collected
by the CMDragons team during the international robot soccer competition
"RoboCup’ 2007, and thus constitute models of the behavior in a multi-agent
robotic system [30]. The data was gathered over four round robin games, fol-
lowed by the quarter-final, semi-final, and final games. The models were discov-
ered using the Heuristics Miner and converted to a Petri net in ProM, and from
all 7 models we selected those 4 that fulfilled the Simple Petri net requirement.

complete

complete

DefendCircle.

DefendCircle.
complete

Start
complete

complete

complete

Attacker_DefendCircle_DefendCircle_PositionForPass,

DefendCircle_Position_Position_Position,

DefendCircle_Wall_Wall_Wall
~ complete
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Mark_Mark_Wall_Wall
complete

Atacker_DefendCircle_DefendGircle_Mark_

complete

End
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| cor

complete

Attacker_DefendCircle_PositionForPass_PositionForPass_

Fig. 16. The Petri net model mined from the round robin game between “CMDragons”
and “Botnia”.
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Fitness Measurements for Different Noise Levels
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(b) Fitness values for 50 different transition noise levels, 100 traces per log, and
maximum 500 events per trace.
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(b) Fitness values for 50 different transition noise levels, 100 traces per log, and
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C Town Hall Model Evaluations

Some of the process mining experiments in [12] were performed on real-life logs
from administrative processes at a town hall in the Netherlands. Furthermore,
the original process descriptions of these processes were available in the form of
models. Three out of four of these process models fulfill the conditions of Simple
Petri nets as defined in this paper, and we used them for our experiments. They
all deal with the handling of complaints.

Domain: heus1
complete

AG08 GBA afnemer
complete

AG10 BS derden
complete

AG04 GBA betrokkene
complete

Fig. 20. The Petri net model depicting the ‘afschriften’ process in the town hall.
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Fitness Measurements for Different Noise Levels
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(b) Fitness values for 50 different transition noise levels, 100 traces per log, and
maximum 500 events per trace.
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Fig. 21. The Petri net model depicting the ‘bezwaar’ process in the town hall.
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Fig. 22. The Petri net model depicting the ‘bezwaarWOZ’ process in the town hall.
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Fitness Measurements for Different Noise Levels
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D EPC Reference Model Evaluations

The SAP reference model is a publically available model that contains more
than 600 enterprise models expressed in terms of Event-driven Process Chains
(EPCs) [24], of which—after conversion to Petri nets—118 fulfill the conditions
of Simple Petri nets as defined in this paper. Most of these 118 models are trivial
models, with only 8 models containing more than 4 tasks (i.e., functions in terms
of EPCs). We selected the 3 most complex models from these 8 enterprise models
for our experiment.
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Fig. 23. The EPC ’1Be_2xk1’ from the SAP reference model.
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Fitness Measurements for Different Noise Levels
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49



Collaborative:
oject

T

Processing
the configuration
folder
unknown:normal

i

Download
objects
unknown:normal

processing

Objoct unknown:normal

s compiete
Upload
objects

G Upload

Eo objects

unknown:normal

i

Status
tracking
unknown:normal

i

Object
comparison
unknown:normal

Review
unknown:normal

Changes.
Should
be adopted

Object
transfer Object

transfer
unknown:normal

Collaborative:

(c) EPC (d) Petri net

Fig. 24. The EPC ’1Pr_mpk-’ from the SAP reference model.
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Fitness Measurements for Different Noise Levels
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(a) Fitness values for 50 different observation noise levels, 100 traces per log, and
maximum 500 events per trace.
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(b) Fitness values for 50 different transition noise levels, 100 traces per log, and
maximum 500 events per trace.
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Fig. 25. The EPC ’1Tr_fyhp’ from the SAP reference model.
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Fitness Measurements for Different Noise Levels
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(a) Fitness values for 50 different observation noise levels, 100 traces per log, and
maximum 500 events per trace.
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(b) Fitness values for 50 different transition noise levels, 100 traces per log, and
maximum 500 events per trace.
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