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Abstract. Simulation is widely used as a tool for analyzing business
processes but is mostly focused on examining rather abstract steady-state
situations. Such analyses are helpful for the initial design of a business
process but are less suitable for operational decision making and contin-
uous improvement. Here we describe a simulation system for operational
decision support in the context of workflow management. To do this we
exploit not only the workflow’s design, but also logged data describing
the system’s observed historic behavior, and information extracted about
the current state of the workflow. Making use of actual data capturing
the current state and historic information allows our simulations to ac-
curately predict potential near-future behaviors for different scenarios.
The approach is supported by a practical toolset which combines and ex-
tends the workflow management system YAWL and the process mining
framework ProM.
This technical report contains a detailed description of how a simulation
model including operational decision support can be generated by our
software based on the running example.
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1 Introduction

Business process simulation is a powerful tool for process analysis and improve-
ment. One of the main challenges is to create simulation models that accurately
reflect the real-world process of interest. Moreover, we do not want to use simu-
lation just for answering strategic questions but also for tactical and even oper-
ational decision making. To achieve this, different sources of simulation-relevant
information need to be leveraged. In this paper, we present a new way of creating
a simulation model for a business process supported by a workflow management
system, in which we integrate design, historic, and state information.
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Fig. 1. Overview of our integrated workflow management (right) and simulation (left)
system

Figure 1 illustrates our approach. We consider the setting of a workflow
system that supports some real-world process based on a workflow and orga-
nizational model. Note that the workflow and organizational models have been
designed before enactment and are used for the configuration of the workflow sys-
tem. During the enactment of the process, the performed activities are recorded
in event logs. An event log records events related to the offering, start, and
completion of work items, e.g., an event may be ‘Mary completes the approval
activity for insurance claim XY160598 at 16.05 on Monday 21-1-2008’.

The right-hand side of Figure 1 is concerned with enactment using a workflow
system while the left-hand side focuses on analysis using simulation. In order to
link enactment and simulation we propose to use three types of information
readily available in workflow systems. These are used to create and initialize the
simulation model.
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– Design information. The workflow system has been configured based on an
explicit process model describing control and data flows. Moreover, the work-
flow system uses organizational data, e.g., information about users, roles,
groups, etc.

– Historic information. The workflow system records all events that take place
in ‘event logs’ from which the complete history of the process can be recon-
structed. By analyzing historic data, probability distributions for workflow
events and their timing can be extracted.

– State information. At any point in time, the workflow process is in a partic-
ular state. The current state of each process instance is known and can be
used to initialize the simulation model. Note that this current state informa-
tion includes the control-flow state (i.e., ‘tokens’ in the process model), case
data, and resource data (e.g., resource availability).

By merging the above information into a simulation model, it is possible to
construct an accurate model based on observed behavior rather than a manually-
constructed model which approximates the workflow’s anticipated behavior. More-
over, the current state information supports a ‘fast forward’ capability, in which
simulation can be used to explore different scenarios with respect to their effect
in the near future. In this way, simulation can be used for operational decision
making.

Based on this approach, the system design in Figure 1 allows different simu-
lation experiments to be conducted. For the ‘as-is’ situation, the simulated and
real-world processes should overlap as much as possible, i.e., the two process
‘clouds’ in Figure 1 coincide. For the ‘to-be’ situation, the observed differences
between the simulated and real-world processes can be explored and quantified.
In our implementation we ensure that the simulation logs have the same format
as the event logs recorded by the workflow system. In this way we can use the
same tools to analyze both simulated and real-world processes.

To do this, we need state-of-the art process mining techniques to analyze the
simulation and event logs and to generate the simulation model. To demonstrate
the applicability of our approach, we have implemented the system shown in Fig-
ure 1 using ProM [1] and YAWL [2]. YAWL is used as the workflow management
system and has been extended to provide high-quality design, historic, and state
information. The process mining framework ProM has been extended to merge
the three types of information into a single simulation model. Moreover, ProM
is also used to analyze and compare the logs in various ways.

The paper is organized as follows. Related work is reviewed in Section 2.
Section 3 describes the overall approach proposed, presents a running example,
and provides a brief overview of the implementation realized using YAWL and
ProM. Section 4 then describes on a detailed, step-by-step basis how a simulation
model including operational decision support can be generated by our software
for the running example. Section 5 concludes the paper by discussing the three
main innovations presented in this paper.
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2 Related Work

Our work combines aspects of workflow management, simulation, and process
mining. Some of the most relevant contributions from these broad areas are
reviewed below.

Prominent literature on workflow management [6, 14, 19] focuses on enact-
ment, and research on workflow analysis usually focuses on verification, rather
than simulation. Conversely, publications on simulation typically concentrate on
statistical aspects [12, 17, 13] or on a specific simulation language [11]. Several
authors have used simulation or queuing techniques to address business process
redesign questions [4, 5, 15], and most mature workflow management systems
provide a simulation component [8, 9]. However, none of these systems uses his-
toric and state information to learn from the past and to enable operational
decision making. We are not aware of any toolset that is able to extract the
current state from an operational workflow management system and use this as
the starting point for transient analysis.

In earlier work we first introduced the notion of using historic and state in-
formation to construct and calibrate simulation models [16, 20], and used Protos,
ExSpect, and COSA to realize the concept of short-term simulation [16]. How-
ever, this research did not produce a practical publicly available implementation
and did not use process mining techniques.

Process mining aims at the analysis of event logs [3]. It is typically used
to construct a static model that is presented to the end-user to reflect on the
process. Previously we showed that process mining can also be used to generate
simulation models [18], but design and state information were not used in that
work.

3 Approach

In this section, we first describe the overall approach, and presents a running
example (Section 3.1). Then, we provide a brief overview of the implementation
realized using YAWL and ProM (Section 3.2).

3.1 Overview and Example

A crucial element of the approach in Figure 1 is that the design, historic and
state information provided by the workflow system are used as the basis for
simulation. Table 1 describes this information in more detail.

The design information is static, i.e., this is the specification of the process
and supporting organization that is provided at design time. This information
is used to create the structure of the simulation model. The historic and state
information are dynamic, i.e., each event adds to the history of the process
and changes the current state. Historic information is aggregated and is used
to set parameters in the simulation model. For instance, the arrival rate and
processing times are derived by aggregating historic data, e.g., the (weighted)
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Table 1. Process characteristics and the data sources from which they are obtained

Design information Historic information State information
(obtained from the workflow
and organization model
used to configure the
workflow system)

(extracted from event logs
containing information on
the actual execution of
cases)

(based on information
about cases currently being
enacted using the workflow
system)

• control and data flow
(activities and causalities)

• data value range
distributions

• progress state of cases
(state markers)

• organizational model
(roles, resources, etc.)

• execution time
distributions

• data values for running
cases

• initial data values • case arrival rate • busy resources
• roles per task • availability patterns of

resources
• run times for cases

average over the last 100 cases is used to fit a probability distribution. Typically,
these simulation parameters are not very sensitive to individual changes. For
example, the average processing time typically changes only gradually over a
long period. The current state, however, is highly sensitive to change. Individual
events directly influence the current state and must be directly incorporated into
the initial state of the simulation. Therefore, design information can be treated
as static, while historic information evolves gradually, and state information is
highly dynamic.

To realize the approach illustrated in Figure 1 we need to merge design,
historic and state information into a single simulation model. The design infor-
mation is used to construct the structure of the simulation model. The historic
information is used to set parameters of the model (e.g., fit distributions). The
state information is used to initialize the simulation model. Following this, tradi-
tional simulation techniques can be used. For example, using a random generator
and replication, an arbitrary number of independent simulation experiments can
be conducted. Then statistical methods can be employed to estimate different
performance indicators and compute confidence intervals for these estimates.

By modifying the simulation model, various ‘what-if’ scenarios can be inves-
tigated. For example, one can add or remove resources, skip activities, remove
cases, etc. and see what the effect is. Because the simulation experiments for
these scenarios start from the current state of the actual system, they provide
a kind of ‘fast-forward button’ showing what will happen in the near future, to
support operational decision making. For instance, based on the predicted sys-
tem behavior, a manager may decide to hire more personnel or stop accepting
new cases.

Importantly, the simulations yield simulation logs in the same format as the
event logs. This allows process mining techniques to be used to view the real-
world processes and the simulated processes in a unified way. Moreover, both
can be compared to highlight deviations, etc.
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Consider the credit card application process expressed as a YAWL workflow
model in Figure 2. The process starts when an applicant submits an application.
Upon receiving an application, a credit clerk checks whether it is complete. If
not, the clerk requests additional information and waits until this information is
received before proceeding. For a complete application, the clerk performs further
checks to validate the applicant’s income and credit history. Different checks are
performed depending on whether the requested loan is large (e.g. greater than
$500) or small. The validated application is then passed on to a manager to
decide whether to accept or reject the application. In the case of acceptance, the
applicant is notified of the decision and a credit card is produced and delivered to
the applicant. For a rejected application, the applicant is notified of the decision
and the process ends.

Fig. 2. A credit application process modeled in YAWL

Here we assume that this example workflow has been running for a while. In
YAWL but also any other workflow system the following runtime statistics can
be gathered about the long-term behavior of this process.

– Case arrival rate: 100 applications per week
– Throughput time: 4 working days on average

With respect to resources, there are eight members of staff available, which
include three capable of acting as ‘managers’ and seven capable of acting as
‘clerks’. (One person can have more than one role.)

Further assume that due to a successful Christmas promotion advertised in
November, the number of credit card applications per week has temporarily
doubled to 200. The promotion period is now over and we expect the rate to
decrease to 100 applications per week again. However, as a result of the increased
interest, the system now has a backlog of 150 applications in various stages of
processing, some of which have been in the system for more than a week. Since
it is essential that most applications are processed before the holiday season,
which begins in a fortnight from now (the ‘time horizon’ of interest), manage-
ment would like to perform simulation experiments from the current state (‘fast
forward’) to determine whether or not the backlog can be cleared in time.
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3.2 Realization through YAWL and ProM

We now use the example introduced in Section 3 to describe our proof-of-concept
implementation supporting the approach depicted in Figure 1. The realization is
based on the YAWL workflow environment [2] and the process mining framework
ProM [1]. We focus on the new capabilities that have been added to these sys-
tems, and briefly explain the main steps that need to be performed. A detailed
description is provided in the tutorial section of this report (cf. Section 4).

Extracting Simulation-Relevant Information The information contained
in the workflow specification is supplemented with historical data obtained from
the event logs and data from the organizational model database. This was
achieved by implementing two new functions in the workflow engine to export
historical data from the logs for a particular specification and to export the
organizational model (i.e., information about roles and resources).

In the YAWL workflow system, event logs are created whenever an activity
is enabled, started, completed or cancelled, together with the time when this
event occurred and with the actor who was involved. Logs are also kept for data
values that have been entered and used throughout the system. Therefore, we
can retrieve historical data about process instances that have finished execution.
In this work we assume that the simulation experiments are being carried out on
‘as-is’ process models for which historical data is available. A function has been
created which extracts the historical data for a specification from the workflow
engine and exports it in the M ining XML (MXML) log format. Some sample
data for the credit application example is shown in Figure 3(a). This historical
data is used for mining information about case arrival rates and distribution
functions for the data values used in the future simulation experiments.

Similarly, the YAWL workflow system gives access to the organizational
model through a function which extracts all available role and resource data
in an organization and exports this information in the XML format required
by ProM. Some sample data with the roles of clerk and manager are shown in
Figure 3(b). This information is used to identify available roles and resources
that are relevant for a given specification.

Generating the Simulation Model From the (1) extracted workflow spec-
ification, (2) the newly extracted organizational model, and (3) the event log
file, we can now generate a simulation model that reflects the process as it is
currently enacted. The direct usage of design information avoids mistakes that
are likely to be introduced when models are constructed manually, and the au-
tomated extraction of data from event logs allows the calibration of the model
based on actually observed parameters.

To generate the model, four basic steps need to be performed within ProM:

1. The workflow and organizational model and the event log need to be im-
ported from YAWL and analyzed.
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<Process>
       <ProcessInstance id="5">
              <AuditTrailEntry>
                  <Data>
                      <Attribute name="loanAmt">550</Attribute>
                  </Data>
                  <WorkflowModelElement>

              receive_application_3
                  </WorkflowModelElement>
                  <EventType>complete</EventType>
                  <Timestamp>

              2008-02-29T15:20:01.050+01:00
                  </Timestamp>
                  <Originator>MoeW</Originator>
              </AuditTrailEntry>

...
       </ProcessInstance>

...
</Process>

(a) A log entry for the completion of ac-
tivity ‘receive application’ carried out by
resource MoeW with loan amount $550

<OrgModel>       
       <OrgEntity>
      <EntityID>1</EntityID> 
      <EntityName>manager</EntityName> 
      <EntityType>Role</EntityType> 
       </OrgEntity>
       <OrgEntity>
      <EntityID>2</EntityID> 
      <EntityName>clerk</EntityName> 
      <EntityType>Role</EntityType> 
       </OrgEntity>
    ...
       <Resource>
    <ResourceID>PA-529f00b8-0339</ResourceID> 
      <ResourceName>JonesA</ResourceName> 
      <HasEntity>2</HasEntity> 
       </Resource>

...
</OrgModel>

(b) An excerpt from an organizational
model with roles and resources, where re-
source JonesA has role ‘clerk’

Fig. 3. Part of an organizational model and historical data extracted from the workflow
engine

2. Simulation-relevant information from the organizational model and log anal-
ysis needs to be integrated into the YAWL model.

3. The YAWL model must be converted into a Petri net model (because our
simulation tool is based on Coloured Petri Nets).

4. Finally, the integrated and converted model can be exported as a Coloured
Petri Net (CPN) model.

We can then use the CPN Tools system [10] to simulate the generated model.
However, to produce useful results we do not want to start from an empty initial
state. Instead we load the current state of the actual YAWL system into the
CPN Tools for simulation.

Loading the Current State To carry out simulation experiments for opera-
tional decision making purposes (the ‘fast forward’ approach) it is essential to
include the current state of the workflow system. This allows us to make use
of the data values for the current cases as well as the status of the work items
for current cases within the simulation experiments. A new function has been
created to extract current state information for a running specification from the
YAWL workflow engine and to export this information as a CPN Tools input
file (see Figure 4).

The following information is obtained about the current state and is intro-
duced as the initial state of a simulation run.

– All the running cases of a given specification and their marking.
– All the data values associated with each case.
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fun getInitialCaseData() = [(41, {loanAmt = 1500,completeApp = false,decideApp = false}),

(40, {loanAmt = 0,completeApp = false,decideApp = false}),

(39, {loanAmt = 500,completeApp = false,decideApp = false})];

fun getNextCaseID() = 42;

fun getInitialTokensExePlace(pname:STRING) = case pname of 

"TASK_check_for_completeness_4`E"=>[(41,"-154","JonesA")] | _ => empty;

fun getInitialTokens(pname:STRING) = case pname of 

"Process`COND_c2_15"=>[(39,"-43200")] | "Overview`Start"=>[(40,"-155")] | _ => empty;

fun getBusyResources() = ["JonesA"];

fun getCurrentTimeStamp() = “1205203218”;

fun getTimeUnit() = “Sec”;

Fig. 4. CPN Tools input file with initial state information. Several cases are in different
states in the system. For example, application No. 41 is currently being checked by
JonesA for completeness, and has a run time of 154 sec, i.e., ca. 2.57 min

Fig. 5. The generated CPN model after loading the current state file

– Information about enabled work items.
– Information about executing work items and the resources used.
– The date and time at which the current state file is generated.

When the empty initial state file of the generated simulation model is replaced
with the file depicted in Figure 4, tokens are created in the CPN model that
reflect the current system status (see Figure 5). For example, among the three
Case data tokens is the data associated with application No. 41. The resource
JonesA is currently performing a check activity on this case and hence, it does
not appear in the list of free resources.

We now follow the scenario described in Section 3 for simulation experiments,
i.e., due to a promotion 150 cases are in the system. We load the state file
containing these 150 cases into the model and perform simulation experiments
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for the coming two weeks. We also add more resources to the model and observe
how this influences the backlog and the throughput times for processing credit
card applications within this time horizon.

Analyzing the Simulation Logs We simulate the process from the generated
CPN model for four different scenarios:

1. An empty initial state. (‘empty’ in Figure 6)
2. After loading the current state file with the 150 applications that are cur-

rently in the system and no modifications to the model, i.e., the ‘as-is’ situ-
ation. (‘as is’ in Figure 6)

3. After loading the current state file but adding four extra resources (two
having the role ‘manager’ and three having the role ‘clerk’), i.e., a possible
‘to-be’ situation to help clear the backlog more quickly. (‘to be A’ in Figure 6)

4. After loading the current state file and adding eight extra resources (four
having the role ‘manager’ and six having the role ‘clerk’). (‘to be B’ in
Figure 6)
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Fig. 6. Number of applications in the simulated process for the different scenarios.
While the scenario with the empty state has initially 0 applications, the other scenarios
are initialized by loading 150 applications from the current state file

We can see the difference among these four scenarios in Figure 6, which de-
picts the development of the number of cases (i.e., applications) in the workflow
system over the coming two weeks for an example simulation run per scenario.
In the case of Scenario 1 the simulation starts with having 0 credit card appli-
cations in the system. This does neither reflect the normal situation nor does
it capture our current backlog of cases. Only after a while, does this simulation
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represent the normal behavior of the credit card application process (i.e., with
ca. 100 applications arriving per week). The other three scenarios load a defined
initial state, which contains the 150 applications that we assume to be currently
in the system. Furthermore, one can observe that in the scenarios where we add
extra resources to the process, the case load decreases more quickly to a normal
level than without further intervention. However, the scenario ‘to be B’ does
not seem to perform much better than the scenario ‘to be A’ although twice as
many resources have been added. This way, we can assess the effect of possible
measures to address the problem at hand, i.e., we can compare different ‘what-if’
scenarios in terms of their estimated real effects.

CPN Tools has powerful simulation capabilities, which we can leverage. For
example, it is possible to automatically replicate simulation experiments to en-
able statistical analyses, such as calculating confidence intervals for specific pro-
cess characteristics. For instance, Figure 7 depicts the 95% confidence intervals
of the average case throughput times based on 50 replicated simulations for each
of the four simulation scenarios. One can observe that the estimated through-
put time for the ‘empty’ scenario (i.e., based on the usual situation) is ca. 4
days, while the expected throughput time for the ‘as is’ scenario (i.e., actually
expected based on the current backlog situation) is almost 6 days.

While CPN Tools already provides powerful logging facilities and even gener-
ates gnuplot scripts that can be used to plot certain properties of the simulated
process, we also generate MXML event log fragments per case during simulation,
similar to the one shown in Figure 3(a) for the workflow log. These fragments
can then be combined using the CPN Tools filter of the ProMimport frame-
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Fig. 8. The generated simulation logs can be analyzed with the same tool set as the
initial workflow logs

work, which facilitates the conversion of event logs from various systems into
the MXML format that is read by ProM.

The ability to use the same toolset for analyzing the simulation logs and
analyzing the actual workflow logs constitutes a big advantage because the sim-
ulation analysis results can be more easily related to the initial properties of
the process. In particular, since we support the loading of current cases into
the initial state at the beginning of the simulation, we can easily combine the
real process execution log (‘up to now’) and the simulation log (which simulates
the future ‘from now on’) and look at the process in a unified manner (with the
possibility of tracking both the history and the future of particular cases that
are in the system at this point in time).

Figure 8 shows a screenshot of ProM while analyzing the simulation logs
generated by CPN Tools. Various plug-ins can be used to gain more insight into
the simulated process. For example, in Figure 8 the Log Dashboard (top left), the
Basic Statistics plug-in (bottom left), the Performance Analysis plug-in (bottom
right), and the LTL Checker (top right) are shown. The former two provide a
more general overview about the cases and activities in the process, whereas the
Performance Analysis plug-in finds bottlenecks (e.g., in Figure 8 a bottleneck for
starting the activity ‘Make decision’ is highlighted), and the LTL Checker can
be used to verify specific properties of interest (e.g., “How many cases could be
processed until they are in the stage where a decision can be made in under 3
days?”).
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4 Tutorial

In this tutorial section, we will demonstrate the creation of a simulation model
for a YAWL process based on the running example. As described earlier, the
resulting simulation model consists of two parts: (1) a CPN model that represents
the process (based on specified and discovered characteristics), which is more or
less static, and (2) a separate SML file containing information about the state
of currently running cases and available resources, which can be exported from
the YAWL engine and will be read by CPN Tools to create tokens that represent
this non-empty initial state of the simulation experiment. This separation allows
the most up-to-date current state file to be used without the need to change the
simulation model.

Figure 9 depicts the landscape of tools and information sources that are
involved in the creation of the simulation model for the YAWL process. In the
top left corner one can see the process designer who initially creates a YAWL
process specification that is to be enacted on a YAWL engine. Note that in
this tutorial we do not provide any details about the creation and deployment
of processes as this is covered by the documentation of the YAWL workflow
system3. Instead, we demonstrate how to create a simulation model for a running
process, and allow you to try this yourself using the files from the example4. In
Figure 9, one can see that the YAWL editor has access to a Resource database,
which contains information about the relations between roles and resources in the
organization. This is needed to support resource allocation mechanisms in the
YAWL editor, to associate tasks with roles (i.e., specify which people are allowed
to perform which tasks in the process). This organizational model is also used
by the YAWL engine during enactment when newly created work items are to
be offered to users of the workflow system. Finally, the YAWL engine records
log data during the execution of each case (i.e., process instance).

All these data sources (the process specification, the organizational model,
and the execution log containing historic data) are relevant for the creation of
a simulation model that reflects reality as closely as possible. The ProM frame-
work5 allows for the creation of a CPN model based on different data sources.
Furthermore, knowledge about the current state (operational characteristics)
of the process, which is available from the YAWL engine itself, is needed for
short-term simulation tasks. By making this current state information available
through an SML file, it can be loaded dynamically into the CPN model to let
its marking reflects the current state of the process. Finally, one possibility to
obtain information about the simulation itself is to generate simulation logs that
in turn can be analyzed using the ProM framework.

3 User manuals and technical documentation for YAWL are available from the public
website at http://sourceforge.net/projects/yawl/.

4 You can download the example files to follow the steps shown in this document from
the Tutorial page at http://www.processmining.org/.

5 The ProM framework including source code and documentation can be freely down-
loaded from http://prom.sf.net/.
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Fig. 9. Overview of the involved tools and information sources
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To extract all the simulation-relevant information from YAWL in a form that
can be interpreted by ProM and CPN Tools, a number of steps need to be taken.
They are described in more detail in Section 4.1. Then, the creation of the actual
CPN model after importing and merging the different data sources is explained
in Section 4.2. Afterward, the incorporation of current-state information in the
CPN model is discussed in Section 4.3, and the generation of MXML logs from
CPN Tools is described in Section 4.4. Finally, the features and limitations of
the current implementation are summarized in Section 4.5.

4.1 Extracting Simulation Information from YAWL

In this section, we first describe briefly how to construct a YAWL workflow
model in the YAWL editor. It is followed by the discussion on how to retrieve
simulation relevant information from the YAWL workflow system for simulation
experiments.

Creating and Deploying the YAWL Engine File Here, we briefly mention
the notation used in YAWL. In YAWL, tasks are depicted as boxes, conditions (or
places in Petri net terminology) as circles, and the control flow is modelled using
directed arrows between tasks and conditions. Tasks can be argumented with a
join behavior on the left of the task symbol and a split behavior on the right side
of the task symbol, which is one of XOR, AND, and OR. If the split and join
behaviors of a task are not explicitly specified, it should be considered as having
a default XOR-join behavior and an AND-split behavior. For instance, the check
loan amount task is modelled with an XOR-split behavior and a (default) XOR-
join behavior. Similarly, the start approval task has an AND-split behavior and a
(default) XOR-join behavior. The starting point in the process is depicted using
an input condition (which is represented by a circle with a filled triangle inside)
and the end point is depicted using an output condition (which is represented
by a circle with a filled square).

In addition of specifying the control flow requirements of a process model, it
is also possible to specify the data and the resource requirements of the process
using the YAWL editor as shown as Figure 10. The data perspective in YAWL
is modelled using XML technologies. For instance, data attributes are modelled
as XML data types, string, boolean etc. The decision points such as XOR-splits
are modelled using Xpath expressions (see Figure 10(b)). In the credit applica-
tion example, three variables were used to model decision points, one numeric
attribute for the loan amount (loanAmt), and two boolean attributes (com-
pleteApp and decideApp). A rich resource behavior of a YAWL task can also be
specified using the information available from an organizational database (see
Figure 10(c)). For simulation purposes, we chose to assign resources based on the
role-based allocation mechanism to align the model with the simulation capabil-
ities of the CPN tools. Clerk and Manager roles are used in the example process
to demonstrate the role-based allocation strategy. For instance, we specify that
only a resource with a manager role can work on the Perform checks for large
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(a) Specifying the control flow behavior

(b) Specifying the decision based on the loan amount in xpath

(c) Specifying the resource requirements of the make decision
task (manager role)

Fig. 10. Creating a workflow specification in the YAWL editor
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amount and Make decision tasks. After the process designer has specified all the
requirements of the process in the editor, the specification is exported from the
editor as an XML file. This file is used by the YAWL execution environment
(YAWL engine) to enact the workflow.

Converting the YAWL Logs into MXML Data In the YAWL workflow
system, event logs are being created whenever an activity is enabled, started,
completed or cancelled together with the time when it is enacted and who has
enacted this event. The logs are also kept for the data values that have been
entered and used throughout the system. Therefore, it is possible to easily re-
trieve historical data about a specification that has been executed before. A
function has been created which extracts the historical data for a given specifi-
cation from the engine (through Interface E) and exports this information in the
MXML mining log format. This conversion function is made available through
the ProMImport framework and a screenshot of the user interface is shown in
Figure 11.

Fig. 11. A screenshot of the YAWL log filter

Exporting the Organizational Model from the Resource DB Similarly,
the YAWL workflow system exposes the organizational model data through In-
terface R. A function has been created to extract the organizational model data
which contains all available roles and resources in the resource DB and to export
this information in an XML format required by ProM (see Figure 12).

18



Fig. 12. A screenshot of the YAWL Organisation Model filter

Exporting the Current State from the YAWL Engine A new function has
been created to extract the current state information for a running specification
in the YAWL workflow system using Interface B and to export this information
as a CPN tool input file (Figures 13 and 4). All three functions require an active
connection to a running YAWL engine (local or remote) to request the required
data.

Fig. 13. A screenshot of the YAWL Current state filter

4.2 Creating a Simulation Model in ProM

As one can see in Figure 9, we have three data sources from which we build
the simulation model: the YAWL engine file, the MXML execution log, and the
organizational model file. These sources need to be imported, and merged into
a YAWL-based high-level model. Note that with high-level information we refer
to process information beyond the pure control-flow, i.e., additional information
like data and time that can be either attached to the process as a whole, or
to certain elements in the process (see for example the items in the clouds in
the overview picture in Figure 9, which reflect high-level information attached
to activities and choices). The merged model is then to be converted into a
Petri-net based high-level process, which can be exported to CPN Tools.
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In the remainder of this sub section we describe in detail how to import, com-
bine, and transform the simulation-relevant information, so that a CPN model
reflecting the running YAWL process can be generated from it.

Importing the YAWL Engine File To open the YAWL engine file (in the
following also called YAWL specification), press the left-most button in the ProM
toolbar, locate the YAWL specification on your file system, and then choose
newYAWL from the list of import types (see Figure 14).

Fig. 14. Opening the YAWL engine file in ProM

As can be seen in Figure 9, the information we can get from the YAWL engine
file covers a YAWL process model including roles at tasks, data flow, and link
conditions at choice points in the process. When importing the YAWL engine file
into ProM, we create a YAWL-based high-level process, which is immediately
visualized using the View/Edit High Level Process plug-in in ProM. This
plug-in provides an editable view on the non-control flow characteristics of the
YAWL specification.

The different views are discussed in the following sub sections. Note that
currently only non-hierarchical YAWL models are supported to create simulation
information. That is, if an imported YAWL process contains sub processes, then
only the top-most level of the hierarchy is evaluated and a sub process may
be seen as only one step in the model. For a detailed list of limitations and
assumptions please refer to Section 4.5.

Data Variables Figure 15(a) and Figure 15(b) show the data view of the high-
level process. We can see the names of the three data attributes in the ex-
ample process in the table to the left, which are loanAmt, completeApp, and
decideApp. While both attributes completeApp and decideApp are of type
boolean, i.e., their possible values are only “true” and “false”, the attribute
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loanAmt is of type numeric. Note that double-clicking an attribute in the ta-
ble to the left will highlight all activities in the process that provide this data
item. For example, in Figure 15(a) the attribute completeApp was clicked,
and as a consequence the task “Check for completeness”, which outputs this
data item, is marked in the YAWL model visualization.
Next to the name and the type of an attribute we also get the initial value
from the YAWL specification. For example, for the loanAmt attribute dis-
played in Figure 15(b) we see the initial value 0. If an explicit initial or
default value is available, then this value will be used when the case data is
initialized at the beginning of the simulation. If no initial value is provided
by the YAWL specification (which is, for example, the case for variables of
the type inputParam), a random value can be generated upon initialization.
However, for a realistic simulation it is also important to know what are typ-
ical actual values (value range distribution) for an attribute. For example,
if we simulate our example process for many cases with a low amount (in
which case it suffices to perform a quicker check task), but in reality we deal
with almost only high amount claims (in which case we need to perform a
lengthy check procedure), then the simulation outcome is likely to be overly
optimistic. Typical actual values cannot be obtained from the YAWL spec-
ification itself, but we will get this later from the log analysis (see Section
4.2).

Activities and Role Assignments Figure 16(a) shows the activity view of
the high-level process. We can see the names of the activities in the example
process in the table to the left. Double-clicking any of them will show the
corresponding activity information, and also highlight the belonging YAWL
task in the visualization below. From the YAWL engine file we get informa-
tion about the activities with respect to their relation to data attributes and
roles. For example, in Figure 16(a) one can see that the activity “Check for
completeness” outputs the data attribute completeApp, and that the Role
ID: 2 is required to perform this task. However, we do not obtain informa-
tion about, for example, execution time and waiting time statistics for the
activities. For this, we need to analyze the execution log, which is described
in Section 4.2.
Figure 16(b) shows the resource view of the high-level process. From the
YAWL specification we can obtain the roles that are relevant in the context
of this process. For example, in Figure 16(b) we can see that our exam-
ple process requires two different roles, which are Role ID: 1 and Role ID:
2. These are IDs referring to actual roles in the Resource DB depicted in
Figure9. However, we do not obtain any information about the organiza-
tional structure itself, such as which resources actually belong to those roles.
Observe that the set of resources belonging to these roles in Figure 16(b)
is empty. Also, we do not know the names of these roles. If we would look
up the IDs in the Resource DB, we would find out that the role with ID 1
corresponds to the manager and the role with the ID 2 corresponds to the
clerk role.
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(a) Boolean data attribute view

(b) Numeric data attribute view

Fig. 15. Data variables and their initialization values are imported together with the
YAWL specification
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(a) Activity view

(b) Resources view

Fig. 16. Output data variables and role assignments per activity are imported together
with the YAWL specification
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Because the number of available resources per role significantly influences
the concurrent processing power of a process, we need this organizational in-
formation for our simulation model. Section 4.2 describes how organizational
data that was obtained from the YAWL workflow system can be loaded into
ProM.

Link Conditions Figure 17 shows the choice view of the high-level process.
We can see the names of the choice points in the example process in the
table to the left, which are “Check for completeness”, “Make decision”, and
“Check loan amount”. They all correspond to all XOR-split tasks, but also
conditions with more than one outgoing arc would constitute a choice point
in a YAWL process. If you double-click one of these choices in the table,
the corresponding choice node in the YAWL process is highlighted together
with the target activities (i.e., the activities which may be enabled by this
choice)6. We can obtain the enabling conditions for each of these target
activities from the flow predicates in the YAWL specification. In Figure 17(a)
the choice point “Check for completeness” and the enabling conditions for
the two targets “Check loan amount” and “Get more info” are displayed.
Figure 17(b) depicts a screenshot of the information about the choice point
“Check loan amount” with the two target activities “Perform checks for large
amount” and “Perform checks for small amount”.
Note that while YAWL here allows for arbitrary XPath expressions, we cur-
rently only read simple boolean conditions over data attributes in the pro-
cess. However, we do evaluate the default branch semantics and respect the
order rank provided for each flow predicate. The order rank is used in YAWL
to ensure that only one branch is enabled for an XOR split: if more than one
of the descending flow conditions evaluates to “true”, then only the branch
with the lowest order rank will be chosen. The order rank information is
stored with the expressions, and is used later on to generate consistent pre-
conditions in the CPN Export. Refer to Section 4.5 for a detailed overview
of features and limitations in the current implementation.

Analyzing the YAWL Execution Log In the next step, we want to analyze
the YAWL execution log. To open the MXML log file, press the left-most button
in the ProM toolbar, choose the file from the right location, and leave the import
type as MXML Log reader (see Figure 18). The resulting log window in ProM
6 Be aware that the decision point concept employed in ProM is slightly different

from the one in YAWL. In ProM, where - coming from a mining perspective - gen-
erally only task occurrences can be observed (but no explicit state information is
available), it is natural to define data dependecies in terms of pre-conditions for ac-
tivities. YAWL comes from a specification viewpoint, where it is possible to define
complex routing patterns that enable or not enable particular branches (regardless
of possible further conditional branching). So, in YAWL enabling expressions are at-
tached to arcs rather than to activities (and tokens will be produced for the output
condition nodes depending on whether the flow predicate is fulfilled or not). There-
fore, when we import the YAWL specification, we automatically map the initial
branching conditions onto pre-conditions for the corresponding (target) activities.
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(a) Link condition ”Check for completeness”

(b) Link condition ”Check loan amount”

Fig. 17. Link conditions at XOR split tasks are imported together with the YAWL
specification
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is shown in Figure 19(a). Within this log dialog, the dashboard and the log
summary already provide an overview and simple frequency statistics about
cases and activities in the logged process. Furthermore, the log can be inspected
and filtered.

Generally, the event log is a valuable source of information and enables var-
ious kinds of analysis. For example, we can use it to discover a process model,
or check the conformance of the real process to some a-priori model. For our
simulation model we specifically seek information about the case arrival rate,
value range distributions for data attributes, and observed execution times at
tasks in the process (cf. Figure 9). The extraction of these characteristics from
an execution log provides us with the opportunity to further approximate the
real process.

Fig. 18. Opening the MXML log file in ProM

To obtain these characteristics, we can analyze the log with the Basic Log
Statistics plug-in in ProM. It can be invoked via choosing Analysis → Basic
Log Statistics from the menu while the window shown in Figure 19(a) is in the
foreground. Alternatively, you can press the Action trigger (“Play”) button in
the toolbar, or press <Command/Control> + <D>, and start typing until the
plug-in “Basic log statistics” is selected. Then, hit the < RETURN > key.

The Basic Log Statistics plug-in allows to view simple time and data attribute
statistics about the process both in a table and a graphical view as depicted in
Figure 19(b). In addition, it creates an activity-based high-level process, which
can be viewed with the plug-in View/Edit High Level Process. The relevant
views are discussed in the following sub sections.

Case arrival rate Figure 20(a) shows the global characteristics of the example
process, among which is the discovered case generation scheme. Information
about the average number or arriving cases is crucial for simulation as it
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(a) Dashboard of the Log dialog

(b) Analyzing execution times with the Basic Log Statistics plug-in

Fig. 19. Analyzing the execution log in ProM

influences the workload in the system. Basing this parameter on real process
execution data makes the simulation model more realistic.
Note that the number of arriving new cases is also a simulation parameter
that one might want to modify for short-term simulation. Imagine, for ex-
ample, a company that expects twice as many applications as usual before
the Christmas period.

Data attributes and their value range Figure 20(b) depicts the discovered
value range distributions for the data variables of the example process. This
is supported for boolean, numeric and nominal attributes. Basing the sim-
ulation on typical value distributions obtained from log analysis also helps
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(a) Case arrival rate

(b) Data value range statistics

(c) Execution times of activities

Fig. 20. Viewing the extracted process characteristics
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to further approximate the real-world process. For example, if many appli-
cations are typically not complete, then more iterations in the process are
needed on average until it can be completed.

Activities and their execution times Figure 20(c) shows the activity view
for the high level process extracted from the execution log. We can see that
the execution times of the activities (here for “Perform checks for small
amount”) are now characterized by a distribution that was discovered from
the log.

Importing the Organizational Model Finally, we want to import the orga-
nization model file that has been extracted from the YAWL workflow system. To
open the OrgModel file, press the left-most button in the ProM toolbar, locate
the file, and choose Org Model from the list of import types (see Figure 21).

Fig. 21. Opening the organizational model file in ProM

Then, leave the option Open without log file selected, and press “OK”. The
resulting view is shown in Figure 22(a). When importing the OrgModel file
into ProM, we create a high-level process that only contains this organizational
information, and which again can be inspected via the View/Edit High Level
Process plug-in. The resulting resources view in the high-level process is shown
in Figure 22(b).

As can be seen in Figure 9, the information we can get from the OrgModel file
covers the relationship between all roles and resources in the whole organization.
For example, in our credit card application process the roles ceo and consultant
are not needed. During the merging phase of the various inputs, we will discard
those roles that are not relevant for the process to be simulated.
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(a) Resulting view after importing the organizational model

(b) The imported resource information in the high-level process

Fig. 22. The available roles and resources and their relationships are imported with
the organizational model

Merging the Different Sources Now that we have extracted simulation-
relevant information from the YAWL specification, the organizational model, and
the execution log, we need to merge all that together (cf. Figure 9). To do this,
there is a plug-in called Merge Simulation Models in the ProM framework.

It can be invoked by pressing the second left-most button in the ProM tool-
bar, and then selecting “Merge Simulation Models” from the list of plug-ins to
the left. On the right hand side the input models to be merged can now be se-
lected. Add one more input, and choose the imported YAWL model, the imported
organizational model, and the log analysis results, respectively. Then, press the
“Next >>” button and choose the YAWL model as the reference model like
shown in Figure 23. This means that the simulation-relevant information from
the organizational model and the log analysis will be integrated in the YAWL-
based simulation model. Afterward, two dialogs will appear where the high-level
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Fig. 23. Invoking the Merge Simulation Models plug-in in ProM

activities of the input models to be integrated will be mapped onto the reference
model. You can simply accept the default mapping, which is established based
on the names of the activities.

Now, the plug-in creates a new high-level model based on the YAWL tem-
plate model, and the resulting view is shown in Figure 24(a). It automatically
makes a pre-selection of which pieces of simulation-relevant information are to
be taken from which model. We do not need to change anything. For example, in
Figure 24(a) one can see that the role assignments are obtained from the YAWL
specification. If you select the organizational model item, you will see that this
part of the model is taken from the imported organizational model.

To inspect the details of the merged high-level process, we can again use the
View/Edit High Level Process plug-in. You will see that the merged model
now contains all previously extracted elements: case arrival rate, data variables
including initial values and value range distributions, activies including their
output variables, role assignments and execution time distributions, and link
conditions, and the roles and resources from the organizational model.

One thing we can do now because we incorporated both the role assignments
for the activities and the organizational model is to dispose of all the groups and
resources that are not relevant for our example process: Simply press the button
“Remove unused” in the resource view. Figure 24(b) depicts a screenshot of the
resource view after this has been done.

Converting from YAWL to Petri Net As can be seen in Figure 9, there
is one last step that needs to be performed before we can generate the CPN
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(a) Merge Simulation Models plug-in (organizational perspective)

(b) Merged process after removing all unused roles and resources

Fig. 24. The simulation-relevant information is automatically merged based on the
covered perspectives

model for our example process7. Because the CPN Export expects a Petri net-
based model as input, the YAWL process needs to be translated into a Petri net
process. However, of course we want to keep all the high-level information that
was extracted and merged together linked to the activities and choices in the
process. This can be achieved by invoking a conversion plug-in called HLYAWL to
HLPetriNet. Again, you can either use the menu or the Action trigger while the
merged model from Figure 24(b) is in the foreground.

The converted model view is immediately visualized using the View/Edit
High Level Process plug-in, which is depicted in Figure 25. One can see that
the link conditions that were obtained from the YAWL specification are pre-

7 Alternatively, one could also convert the YAWL model directly after the import,
merge the organizational model and the log analysis results into the Petri net-based
model, and then invoke the CPN Export from there.
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Fig. 25. Viewing the converted model

served, and are now associated to the invisible (i.e., routing) transitions that
represent the XOR split after the conversion8.

Exporting the CPN Model Now we have everything that is needed to gen-
erate a CPN model for our example process: Based on the Petri net-based high-
level process shown in Figure 25, the Export to CPN Tools 2.0 plug-in can
be invoked. Again, simply press the action trigger and start typing “Export to
CPN Tools 2.0”. If you want to use the menu, be aware that—for some technical
reason—the plug-in is not an export but an analysis plug-in. Therefore, it will
not appear in the export but the analysis menu.

Figure 26 depicts the configuration screen of the CPN Export plug-in. On the
left side, one can choose which perspectives should be included in the model. On
the right side, one can determine which extra functionality, such as the current
state support and the logging monitors, should be generated. Select all of them
like shown in Figure 26. If you then press the “Export” button, and choose an
export location, then the .cpn file plus a file with the extension .sml (and the
same name as the .cpn file) will be generated. This .sml file represents the current
state, and per default the initial state will be empty. However, you can load some
real initial state reflecting the current situation in the workflow system, which
is described in the next section.

8 Note that we deliberately preserve the invisible transitions resulting from XOR splits
and XOR joins, even though they might seem redundant. This is needed to preserve
the moment of choice in connection with the current state: imagine that for some
case the decision for which alternative branch to take was already made, but the
activity has not been started yet. Reflecting this in the model would not be possible
if we would remove the invisible XOR split transitions.

33



Fig. 26. Configuring the simulation model before starting the export

4.3 Loading the Current State Information into the CPN Model

To load an actual current state that was extracted from the YAWL engine before
(cf. Figure 9) into the CPN model, you simply need to rename the .sml file that
was extracted from the engine in such a way that it has the same name as the
empty initial state file that was generated together with the CPN, and to place it
into the same directory as the CPN model (i.e., replace the empty current state
by the actual current state). If you then re-open9 the generated CPN model, you
will see tokens in the model that represent currently running cases.

Figure 27 shows another screenshot of the CPN model with the loaded current
state file (see also Figure 5). In Figure 27 you can see the sub page of the activity
“Check for completeness”, where the case with the ID 41 is currently in the state
of being executed by the resource “JonesA”. As a consequence, the resource
“JonesA” is not among the currently available resources.

4.4 Generating MXML Logs during Simulation in CPN Tools

The generated CPN already contains logging monitors that automatically create
event logs during the simulation of the model in CPN Tools. The screenshot
in Figure 5 depicts the simulation binder including play, stop, and fast forward
buttons, which can be used to invoke a simulation of the process for a determined
number of steps. During simulation event logs are created in a folder called logs,
which is located in the same directory as the CPN file itself. This folder contains
one file with the extension .cpnxml per started case. To obtain a coherent MXML
log, there exists a ProMimport plug-in called “CPN Tools”, which simply bundles
all the cases from the simulation in one process log.

9 Make sure to close all open CPN Tools windows including any console windows
before you open the CPN model with the newly loaded current state.
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Fig. 27. Generated CPN model with loaded current state

Fig. 28. ProMimport plug-in for creating MXML logs from CPN Tools simulation logs

Figure 28 depicts screenshots of the filter properties and the console output
view of the “CPN Tools” plug-in in ProMimport10 [7]. One only needs to select
the logs folder containing the .cpnxml files from the desired simulation run,
and press the “Start” button. As a result, the combined MXML log will be
created in the chosen output location. More information on how to use CPN
Tools to create synthetic logs is provided at the ProM CPN Library Tutorial
(www.processmining.org, “Tools” section).

10 The ProMimport framework including source code and documentation can be freely
downloaded from http://promimport.sf.net/.
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The simulation log in MXML format can now be loaded into the ProM frame-
work to analyze the simulated process. Using the same tool set for analyzing the
original execution logs as well as the simulation logs makes it easy to compare the
(effects of changes in the) simulated process with the observed real-life process.

4.5 Overview Features and Limitations

This last sub section is intended to give a compact overview about features and
limitations of the current implementation.

Features Building on existing tool sets such as YAWL, CPN Tools, ProM and
ProMimport, we can provide an implementation that supports most aspects that
need to be considered for Business Process Simulation. The following summarizes
the previously described functionality:

– YAWL models (enactable engine files generated with the YAWL editor) can
be imported into ProM, whereas the defined data variables, link conditions,
and role assignments for the contained task nodes are extracted and can be
used for simulation.

– Organizational models can be exported from the YAWL resource database
(used both by the YAWL editor as well as the engine enacting the workflow)
and imported in ProM. Hierarchical roles will be automatically flattened
before simulation.

– YAWL enactment logs can be extracted from the engine and converted into
the MXML format used by ProM. When analyzing the execution logs, we
obtain execution time distributions for activities, a distribution of the case
arrival rate, and value range distributions for boolean, numeric, and nominal
data attributes.

– The information obtained from analyzing the enactment logs can be inte-
grated with the imported YAWL model and the imported organizational
model and directly used to automatically create a simulation model that
can be loaded within CPN Tools. The conversion of the YAWL-based model
to the Petri net-based model preserves all simulation-relevant information.

– While the generated CPN model can be used to perform the typical steady-
state analysis, i.e., long-term behavior analysis, it also supports short-term
simulation via loading a current execution state. The current state of the
YAWL engine can be exported and re-loaded into the same CPN model at
any point in time (i.e., without re-generating the model).

– Data attributes of all the basic types that can be chosen in the YAWL editor
are imported. Variables of the YAWL type “boolean” are interpreted as the
simulation model data type boolean, “double” and “long” as numeric, and
the remaining types as nominal.

– If there is an initial or default value defined for a variable, then it is stored
and used to initialize the data during simulation. If there is no initial or
default value available, a random value will be generated upon initialization
during simulation. This is useful for globally initialized data variables.
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– When translating the YAWL model into a Petri net, implicit conditions need
to be made explicit. Thereby, we adhere to the naming conventions of the
YAWL engine to make it possible to load cases that are currently in a state
involving such an implicit condition.

Limitations YAWL is a very rich workflow specification language, which, for
example, provides the most extensive support in terms of Workflow Patterns
compared to other systems. Since the described software is a proof-of-concept
implementation of our approach, we had to make a few assumptions. They are
described in the following.

– We do not support OR joins, multiple instances, or cancellation regions.
– The current CPN model only supports role-based allocation. It does not yet

support rich resource allocation behavior supported by the YAWL engine.
To be precise, we only read the role element within the initialSet of the
distributionSet within the offer tag of the resourcing part. Furthermore,
there should be not more than one role assigned to a task. This can be
circumvented by defining “umbrella” roles that are defined as the union of
existing roles.

– We assume that a particular resource is only working on at most one task
(work item) at a time.

– Decision rules at OR splits are currently not imported.
– We do not yet support the import of data etc. from hierarchical YAWL

models (sub nets to the root net will be seen as atomic tasks). However,
the pure control-flow of hierarchical YAWL models can be imported and
flattened in ProM.

– We assume that the (global) net variables and the corresponding (local)
output parameters have the same name (which is not enforced by YAWL as
explicit data mappings are established). Note that decisions related to link
conditions are based on the net variables, and therefore can be simulated also
on global attributes. However, the logged data variable changes carry the
name of the local output parameter, and, therefore, cannot be automatically
linked to the net variables imported with the YAWL model if they do not
have the same name.

– YAWL allows for arbitrary data type extensions via XML Schema. This can
of course not easily be handled with general purpose tools such as CPN
Tools. Attributes that have a custom-defined data type are ignored.

– YAWL allows for arbitrary XPath expressions for data-based conditional
routing. When importing the YAWL model, we currently only evaluate link
conditions based on attribute and/or value comparisons via the operators
>, <, >=, <=, =, and ! =.

5 Discussion

In this paper we presented an innovative way to link workflow systems, simu-
lation, and process mining. By combining these ingredients it becomes possible
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to analyze and improve business processes in a consistent way. The approach
is feasible, as demonstrated by our implementation using YAWL and ProM. To
conclude, we would like to discuss the three main challenges that have been
addressed in this research.

5.1 Faithful Simulation Models

Although the principle of simulation is easy to grasp, it takes time and expertise
to build a good simulation model. In practice, simulation models are often flawed
because of incorrect input data and a näıve representation of reality. In most
simulation models it is assumed that resources are completely dedicated to the
simulated processes and are eager to start working on newly arriving cases. In
reality this is not the case and as a result the simulation model fails to capture
the behavior of resources accurately. Moreover, in manually constructed models
steps in the processes are often forgotten. Hence simulation models are usually
too optimistic and describe a behavior quite different from reality. To compensate
for this, artificial delays are added to the model to calibrate it and as a result
its predictive value and trustworthiness are limited. In the context of workflow
systems, this can be partly circumvented by using the workflow design (the
process as it is enforced by the system) and historic data. The approach presented
in this paper allows for a direct coupling of the real process and the simulation
model. However, the generated CPN models in this paper can be improved by a
better modeling of resource behavior. Moreover, the process mining techniques
that extract characteristic properties of resources need to be improved to create
truly faithful simulation models.

5.2 Short-term Simulation

Although most workflow management systems offer a simulation component,
simulation is rarely used for operational decision making and process improve-
ment. One of the reasons is the inability of traditional tools to capture the real
process (see above). However, another, perhaps more important, reason is that
existing simulation tools aim at strategic decisions. Existing simulation models
start in an arbitrary initial state (without any cases in the pipeline) and then
simulate the process for a long period to make statements about the steady-state
behavior. However, this steady-state behavior does not exist (the environment
of the process changes continuously) and is thus considered irrelevant by the
manager. Moreover, the really interesting questions are related to the near fu-
ture. Therefore, the ‘fast-forward button’ provided by short-term simulation is a
more useful option. Because of the use of the current state and historic data,
the predictions are more valuable, i.e., of higher quality and easier to interpret
and apply. The approach and toolset presented in this paper allow for short-
term simulation. In the current implementation the coupling between YAWL
and ProM is not well-integrated, e.g., the translation of insights from simulation
to concrete actions in the workflow system can be improved. Further research is
needed to provide a seamless, but generic, integration.
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5.3 Viewing Real and Simulated Processes in a Unified Manner

Both simulation tools and management information systems (e.g., BI tools)
present information about processes. It is remarkable that, although both are
typically used to analyze the same process, the results are presented in com-
pletely different ways using completely different tools. This may be explained
by the fact that for a simulated process different data is available than for the
real-world process. However, the emergence of process mining techniques allows
for a unification of both views. Process mining can be used to extract much more
detailed and dynamic data from processes than traditional data warehousing and
business intelligence tools. Moreover, it is easy to extend simulation tools with
the ability to record event data similar to the real-life process. Hence, process
mining can be used to view both simulated and real processes. As a result, it is
easier to both compare and to interpret ‘what-if’ scenarios.
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