
Soundness of Workflow Nets: Classification,
Decidability, and Analysis

W.M.P. van der Aalst1,2, K.M. van Hee1, A.H.M. ter Hofstede2, N. Sidorova1,
H.M.W. Verbeek1, M. Voorhoeve1, and M.T. Wynn2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tue.nl

2 Business Process Management Group, Queensland University of Technology
P.O. Box 2434, Brisbane Qld 4001, Australia.

Abstract. Workflow nets, a particular class of Petri nets, have become
one of the standard ways to model and analyze workflows. Typically,
they are used as an abstraction of the workflow that is used to check the
so-called soundness property. This property guarantees the absence of
livelocks, deadlocks, and other anomalies that can be detected without
domain knowledge. Several authors have proposed alternative notions of
soundness and have suggested to use more expressive languages, e.g.,
models with cancellations or priorities. This paper provides an overview
of the different notions of soundness and investigates these in the pres-
ence of different extensions of workflow nets. We will show that the eight
soundness notions described in the literature are decidable for workflow
nets. However, most extensions will make all of these notions undecid-
able. These new results show the theoretical limits of workflow verifica-
tion. Moreover, we discuss some of the analysis approaches described in
the literature.

Keywords: Petri Nets, Decidability, Workflow Nets, Reset Nets, Soundness, and Ver-

ification.

1 Introduction

In the last 15 years, we have witnessed a shift from “data-aware” information
systems to “process-aware” information systems [24]. To support business pro-
cesses an enterprise information system needs to be aware of these processes and
their organizational context. Early examples of process-aware information sys-
tems were called WorkFlow Management (WFM) systems [4, 32, 38, 46, 47, 51,
61, 76]. In more recent years, vendors prefer the term Business Process Manage-
ment (BPM) systems. BPM systems have a wider scope than the classical WFM
systems and are not just focusing on process automation. BPM systems tend
to provide more support for various forms of analysis and management support.
Both WFM and BPM aim to support operational processes that we refer to as
“workflow processes” or simply “workflows”.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Most workflow
management systems provide a graphical language which is close to Petri nets.
Although the routing elements are different from Petri nets, the informal se-
mantics of the languages used are typically token-based and hence a (partial)
mapping is relatively straightforward. A characteristic of workflow processes is
that they are typically case-oriented, i.e., processes can be instantiated for mul-
tiple cases but the life-cycles of different cases do not get intertwined. This can
be illustrated using Figure 1. The process represented by the “cloud” can be
instantiated by putting tokens on the input place start. Each of these tokens
represents the creation of a particular case. The goal is that after a while there
will be a token in output place end for each initiated case.

Fig. 1. A WF-net is a Petri net with a start and an end place. The goal is that a case
initiated via place start successfully completes by putting a token in place end.

This paper focuses on processes having the structure shown in Figure 1.
These are so-called workflow nets (WF-nets). WF-nets were introduced in [1, 2].
Together these two papers got more than one thousand references illustrating
the interest in the topic.3 In the context of WF-nets a correctness criterion called
soundness has been defined [1, 2]. A WF-net such as the one sketched in Figure 1
is sound if and only if the following three requirements are satisfied: (1) option
to complete: for each case it is always still possible to reach the state which just
marks place end, (2) proper completion: if place end is marked all other places
are empty for a given case, and (3) no dead transitions: it should be possible
to execute an arbitrary activity by following the appropriate route through the
WF-net. In [1, 2] it was shown that soundness is decidable and that it can be
translated into a liveness and boundedness problem, i.e., a WF-net is sound if
and only if the corresponding short-circuited net is live and bounded.

Since the mid-nineties many people have been looking at the verification
of workflows. These papers all assume some underlying model (e.g., WF-nets)
and some correctness criterion (e.g., soundness). Hence there are two dimensions
when considering workflow verification:

3 In fact, [2] is the second most cited workflow paper after [32] according to Google
Scholar (visited on January 9th, 2008).

2

– Expressiveness of the model. Some authors assume a model that is less ex-
pressive than WF-nets, e.g., there are many variants of the so-called work-
flow graph model [66] which is essentially a free-choice net and thus easier
to analyze than WF-nets without restrictions. Other authors propose more
expressive models, e.g., models that allow for cancellation, priorities, data
dependencies, recursion, and complex joins such as the inclusive OR-join [43,
79].

– Correctness criterion. The notion of soundness defined in [1, 2] is intuitively
appealing. However, some authors suggest weakening the correctness notion
[17–19, 52, 53, 64] while others propose to strengthen the correctness notion
[36, 34, 70].

In this paper, we are interested in the verification of different variants of WF-nets
using different soundness notions. We will systematically consider four classes
of WF-nets and eight notions of soundness and focus on the decidability of the
corresponding 4*8=32 verification problems.

The four classes of WF-nets are based on two possible extensions of WF-nets:
reset arcs and inhibitor arcs. We will show that other extensions do not influence
the expressive power of WF-nets and therefore are less relevant. Reset arcs are
closely linked to notions of cancellation present in some of the more advanced
languages. Inhibitor arcs allow for the modeling of advanced constructs such as
priorities, preemption, OR-joins, etc.

The eight notions of soundness used in this paper have been identified after
a thorough analysis of literature. Some of the notions weaken one or more of the
requirements in the original definition [1, 2], e.g., the requirement that the net
should not have dead transitions or the requirement that the net should always
terminate properly. Other notions strengthen some of the conditions stated in [1,
2], e.g., the requirement that soundness still holds even if the net is instantiated
multiple times in parallel.

Thus far the decidability of soundness has not been investigated systemati-
cally. In fact, as far as we know, this is the first paper to investigate decidability
of soundness for WF-nets with reset and or inhibitor arcs.

The main motivation for this research is that researchers continue to come up
with new workflow models and verification techniques. By providing a systematic
overview, we hope to reveal the fundamental limits of workflow verification. This
way we hope to avoid that authors continue to come up with verification prob-
lems and approaches that turn out to be special cases of already know results,
i.e., we want to help the researchers with positioning their research problems
as special cases of already known results, thus avoiding re-inventing the wheel.
Moreover, we show that most correctness notions are in fact undecidable when
combined with certain extensions that correspond to reset or inhibitor arcs. This
clearly shows the theoretical limits of workflow verification.

The remainder of this paper is organized as follows. First, we briefly present
an overview of related work (Section 2). A more detailed review of related work
is given in later parts of the paper, e.g., when introducing the various soundness
notions. Then, Section 3 presents some of the preliminaries (mathematical no-

3

tations and Petri net basics). Section 4 presents the basic notion of a WF-net
and introduces the four classes of WF-nets investigated in this paper. In Sec-
tion 5 the classical notion of soundness is introduced followed by definitions of
seven other notions of soundness considered in the literature. Section 6 presents
the main results. It systematically investigates the four classes of WF-nets and
eight notions of soundness and focuses on the decidability of the corresponding
4*8=32 verification questions. Section 7 provides pointers to different analysis
approaches. The goal is not to present new methods but to provide a high-level
overview of existing approaches. Here we also emphasize that despite the fact
that many verification questions are undecidable, a more pragmatic approach can
help in finding numerous errors. Section 8 concludes the paper by summarizing
the results and reflecting on the state-of-the-art in workflow verification.

2 Related Work

Since the mid nineties, many researchers have been working on workflow verifi-
cation techniques [1–3, 5, 6, 8–11, 14, 15, 19, 21, 30, 31, 36, 37, 40, 45, 48–50, 53–59,
66–69, 71–74, 78–80]. It is impossible to give a complete overview here. Moreover,
most of the papers on workflow verification focus on rather simple languages,
e.g., AND/XOR-graphs which are even less expressive than classical Petri nets.
Therefore, we only mention the work directly relevant to this paper.

The use of Petri nets in workflow verification has been studied extensively. In
[1, 2] the foundational notions of WF-nets and soundness are introduced. In [35,
36] two alterative notions of soundness are introduced: k-soundness and general-
ized soundness. These notions allow for dead parts in the workflow but address
problems related to multiple instantiation. In [52, 53] the notion of weak sound-
ness is proposed. This notion allows for dead transitions. The notion of relaxed
soundness is introduced in [17–19]. This notion allows for potential deadlocks
and livelocks, however, for each transition there should be at least one proper
execution. Lazy soundness [64, 63] is another variant that only focuses on the
end place and allows for excess tokens in the rest of the net. Finally, the notions
of up-to-k-soundness and easy soundness are introduced in [70]. More details on
these notions proposed in the literature are given in Section 5.

Most soundness notions (except generalized soundness [35, 36]) can be inves-
tigated using classical model checking techniques that explore the state space.
However, such approaches can be intractable or even impossible because the
state-space may be infinite. Therefore, alternative approaches that avoid con-
structing the (full) state space have been proposed. [3] describes how structural
properties of a workflow net can be used to detect the soundness property. [72, 73]
presents an alternative approach for deciding relaxed soundness in the presence
of OR-joins using invariants. The approach taken results in the approximation of
OR-join semantics and transformation of YAWL nets [7] into Petri nets with in-
hibitor arcs. In the general area of reset nets, Dufourd et al.’s work has provided
valuable insights into the decidability status of various properties of reset nets

4

including reachability, boundedness and coverability [22, 23, 29]. For decidability
results for ordinary Petri nets we refer to [16, 25–27].

A number of authors have investigated reduction rules for Petri nets and
for various subclasses of Petri nets. In Murata’s paper [62], six reduction rules
are presented for Petri nets and this set of rules can be used as a starting
point for workflow reduction rules. In [20], a set of reduction rules is proposed
for free-choice Petri nets while preserving well-formedness. Berthelot presents a
set of reduction rules for general Petri nets [12, 13]. Reduction rules have been
suggested to be used together with Petri nets for the verification of workflows (cf.
Chapter 4 in [4]). Similar approaches have been applied to other languages such
as EPCs [42, 43], BPMN [77], etc. Six reduction rules that preserve correctness
for EPCs including reduction rules for trivial constructs, simple splits and joins,
similar splits and joins, XOR loop and optional OR-loop are proposed in [21].
In [67, 68] a set of reductions rules for AND-XOR graphs (i.e., a special case of
free-choice nets) is presented. The authors claim that these rules are complete
(i.e., any correct workflow can be reduced completely). However, as shown in [5,
49] this is not the case. This can be easily corrected by using the reduction rules
presented in [20] or by using a more direct method (e.g., based on the Rank
Theorem as shown in [5]). None of the reduction rules mentioned above takes
cancellation into account. This case is handled in [81]. In [75] the soundness
preserving reduction rules are extended to nets with inhibitor arcs.

We would also like to refer to some empirical work on workflow verification.
A detailed analysis of the SAP reference model is presented in [58, 60]. Here
604 EPC models [42, 43] are automatically translated to YAWL [7] and analyzed
using Petri-net invariants. This study showed, using a simple technique such as
invariants, that at least 5.6 percent of SAP’s EPC models have obvious flaws
(deadlocks, etc.). Later this study was extended to a larger set of models (more
than 2000 EPC models from various sources) using more precise analysis tech-
niques [57, 59]. Of these more than 2000 models at least 10 percent has errors.
In [71] a set of 340 real business processes modeled with the IBM WebSphere
Business Modeler is analyzed.

Empirical research clearly shows that modelers are likely to make errors if
they are not supported by analysis tools. This illustrates the practical relevance
of the research on workflow verification.

3 Preliminaries

This section introduces some of the basic mathematical and Petri-net related
concepts used in the remainder of this paper.

3.1 Multi-sets, Sequences, and Matrices

Let A be a set. IB(A) = A → IN is the set of multi-sets (bags) over A, i.e.,
X ∈ IB(A) is a multi-set where for each a ∈ A: X(a) denotes the number of
times a is included in the multi-set. The sum of two multi-sets (X + Y), the

5

difference (X − Y), the presence of an element in a multi-set (x ∈ X), and the
notion of sub-multi-set (X ≤ Y) are defined in a straightforward way and they
can handle a mixture of sets and multi-sets. The operators are also robust with
respect to the domains of the multi-sets, i.e., even if X and Y are defined on
different domains, X + Y , X − Y , and X ≤ Y are defined properly by taking
the union of the domains where needed. |X| =

∑
a∈A X(a) is the size of some

multi-set X over A. X(A′) =
∑

a∈A′ X(a) denotes the number of elements in
X with a value in A′ ⊆ A. πA′(X) is the projection of X onto A′ ⊆ A, i.e.,
(πA′(X))(a) = X(a) if a ∈ A′ and (πA′(X))(a) = 0 if a 6∈ A′.

To represent a concrete multi-set we use square brackets, e.g., [a, a, b, a, b, c],
[a3, b2, c], and 3[a] + 2[b] + [c] all refer to the same multi-set with six elements: 3
a’s, 2 b’s, and one c. [] refers to the empty bag, i.e., |[]| = 0.

Every multi-set over a finite domain can be represented as a vector, i.e.,
X ∈ IB(A) can be represented as a row vector (X(a1), X(a2), . . . , X(an)) where
a1, a2, . . . ,an enumerate the domain of X. (X(a1), X(a2), . . . , X(an))T denotes
the corresponding column vector (T transposes the vector). Assume X is an
k× ` matrix, i.e., a matrix with k rows and ` columns. A row vector can be seen
as 1 × ` matrix and a column vector can be seen as a k × 1 vector. X(i, j) is
the value of the element in the ith row and the jth column. Let X be a k × `
matrix and Y an ` × m matrix. The product X · Y is the product of X and
Y yielding a k × m matrix, where (X · Y)(i, j) =

∑
1≤q≤` X(i, q)Y (q, j). The

sum of two matrices having the same dimensions is denoted by X + Y , i.e.,
(X + Y)(i, j) = X(i, j) + X(i, j).

For a given set A, A∗ is the set of all finite sequences over A. A finite se-
quence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
hd(σ, k) = 〈a1, a2, . . . , ak〉, i.e., the sequence of just the first k elements. Note
that hd(σ, 0) is the empty sequence.

For a relation R on A, i.e., R ⊆ A×A, we define R∗ as the reflexive transitive
closure of R.

For any sequence σ ∈ {1, . . . , n} → A over some finite set A, the Parikh
vector −→σ maps every element a of A onto the number of occurrences of a in σ,
i.e., −→σ ∈ IB(A) where for any a ∈ A: −→σ (a) = |{i ∈ IN | 1 ≤ i ≤ n ∧ σ(i) = a}|.
The projection of σ into some set X ⊆ A, notation projX(σ), is the sequence
obtained by removing all elements that are not in X.

3.2 Basic Petri nets

This subsection briefly introduces some basic Petri net terminology [20, 39, 65]
and notations used in the remainder of this paper. First, we informally introduce
the classical Petri net. In the next subsection, this model is extended and further
formalized.

Definition 1 (Basic Petri net). A basic Petri net is a triple (P, T, F). P is
a finite set of places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆
(P × T) ∪ (T × P) is a set of arcs (flow relation).

6

Figure 2 shows a basic Petri net. Places are represented by circles and transitions
are represented by squares.

Fig. 2. A basic Petri net with places {p1, p2, p3, p4, p5, p6} and transitions
{t1, t2, t3, t4, t5}.

For any relation/directed graph G ⊆ A× A (including the graph defined by
the flow relation of a Petri net F), we define the preset •a = {a1 | (a1, a) ∈ G}
and postset a• = {a2 | (a, a2) ∈ G} for any node a ∈ A. We use G• a or a

G• to
explicitly indicate the context G if needed. Based on the flow relation F we use
this notation as follows. •t denotes the set of input places for a transition t. The
notations t•, •p and p• have similar meanings, e.g., p• is the set of transitions
sharing p as an input place. In the Petri net shown in Figure 2: •p5 = {t3, t4},
p5• = {t5}, •t3 = {p2, p3}, t3• = {p4, p5}, etc.

At any time a place contains zero or more tokens, drawn as black dots. The
state of the Petri net, often referred to as marking, is the distribution of tokens
over its places, i.e., M ∈ IB(P). In the Petri net shown in Figure 2 only one place
is initially marked (p1), i.e., M = [p1]. Note that more places could be marked
in the initial state and that places can be marked with multiple tokens.

For a basic Petri net, we assume the standard firing rule, i.e., a transition t
is said to be enabled with respect to some marking M if and only if each input
place p of t contains at least one token. An enabled transition may fire, and if
transition t fires, then t consumes one token from each input place p of t and
produces one token for each output place p of t. For example, in Figure 2, t1
is enabled and the firing of t1 will result in the state that marks places p2 and
p3. In this state t2, t3, and t4 are enabled. If t2 fires, t3 becomes disabled, but
t4 remains enabled. Similarly, if t4 fires, t3 becomes disabled, but t2 remains
enabled, etc.

In the next subsection, we will formalize the firing rule for an extended class
of Petri nets. Before doing so, we introduce some well-known subclasses of Petri
nets.

Definition 2 (Net classes). Let N = (P, T, F) be a basic Petri net.

7

– N is a state machine net if and only if ∀t∈T | • t| = |t • | = 1.
– N is a marked graph if and only if ∀p∈T | • p| = |p • | = 1.
– N is a free-choice net if and only if ∀t1,t2∈T (•t1 ∩ •t2 6= ∅) ⇒ (•t1 = •t2).

The Petri net shown in Figure 2 does not fit into any of the classes defined
above. If we remove transition t3, the resulting net is free-choice. These different
net classes are relevant from the viewpoint of analysis. For example, liveness and
boundedness (two behavioral properties) can be decided in polynomial time for
free-choice nets while this is not the case for non-free-choice nets [20].

A Petri net is connected if there is path from any node (place or transition)
to any other node in the graph while ignoring the direction of the arcs, i.e., the
Petri net cannot be partitioned in two disconnected parts. In the remainder we
assume any Petri net to be connected and having at least two nodes, i.e., at least
a place and a transition.

3.3 Extended Petri nets

The basic Petri net model (Definition 1) is very simple and is not able to express
all routing constructs one may encounter in real-life workflows. However, there
are several obvious extensions of the basic model. Some of these extensions en-
hance the expressiveness (e.g., reset and inhibitor arcs) while other extensions
only provide convenient shorthands (e.g., arc weights).

When modeling workflows in term of Petri nets, transitions correspond to
activities. Let A be a universe of activity labels, i.e., a ∈ A refers to some
activity. Multiple transitions can refer to the same activity, i.e., have the same
activity label. The special label τ refers to a silent step [33]. We also say that
transitions bearing the τ label are “invisible”, i.e., transitions not corresponding
to any activity and only added for routing purposes. Note that τ 6∈ A.

Definition 3 (Extended Petri net). An extended Petri net is a tuple (P, T, F,
W,A, L,R, H), where:

– (P, T, F) is a basic Petri net,
– W ∈ F → IN \ {0} is an (arc) weight function,
– A ⊆ A is a set of (activity) labels,
– L ∈ T → A ∪ {τ} is a labeling function,
– R ∈ T → 2P is a function defining reset arcs, and
– H ∈ T → 2P is a function defining inhibitor arcs.

Figure 3 illustrates the four extensions mentioned in the above definition.
Figure 3(a) shows the extension with arc weights. The arc from place p1 to
transition t1 denotes an ordinary arc, i.e., W (p1, t1) = 1 indicating that t1
consumes one token from p1 when firing. The arc from transition t1 to place p2
has weight 10, i.e., W (t1, p2) = 10 indicating that t1 produces ten tokens for p2
when firing. We extend the weight function for the situation that there is not an
arc connecting two nodes, i.e., W (x, y) = 0 if (x, y) 6∈ F . Moreover, for extended

8

p1 t1

tr

t3

t4

t5

p2

p3

p4

p5

p6

t2

pr

(c) Extended Petri net with reset arcs

p1 t1 t2 t3 p4p2 p3

10 2 2 10

(a) Extended Petri net with arc weights

X Y X

p1 t1 t2 t3 p4p2 p3

(b) Extended Petri net with transition labels

p1 t1 t3

t4

t5

p2

p3

p4

p5

p6

t2

(d) Extended Petri net with inhibitor arcs

Fig. 3. Four extended Petri nets illustrating the different extensions.

9

nets we redefine the preset and postset operator to return bags rather than sets:
•a = [xW (x,y) | (x, y) ∈ F ∧ a = y] and a• = [yW (x,y) | (x, y) ∈ F ∧ a = x].

Figure 3(b) illustrates the notion of transition labels, i.e., each transition has
a label. Note that multiple transitions may have the same label, e.g., L(t1) =
L(t3) = X in Figure 3(b). The label defines the “observable effect”. In workflow
terms: the label refers to the activity being executed while firing the correspond-
ing transition. As a convention we will not show labels graphically if the labels
coincide with transition identifiers, i.e., if L(t) = t, the label is omitted and just
the transition identifier is shown (cf. Figure 3(a)).

The notion of reset arcs is illustrated in Figure 3(c). Here the four double-
headed arcs are reset arcs. Note that R(tr) = {p2, p3, p4, p5} and R(t) = ∅ for
all other transitions t. Transition tr is enabled if and only if there is a token in
place pr, i.e., reset arcs do not influence enabling. However, after the firing of tr
all tokens are removed from the four places p2, p3, p4, and p5.

Figure 3(d) has one so-called inhibitor arc. The arc connecting p2 and t4
specifies that p2 should be empty when t4 fires. Note that t4 is enabled if and
only if p3 contains at least one token and p2 contains no tokens. Note that in
this example this implies that t2 has priority over t4, i.e., t4 can only occur after
t2 has removed the token from p2. Note that H(t4) = {p2} and H(t) = ∅ for all
other transitions t.

After this informal introduction of the firing rule and the various extensions,
we formalize this notion.

Definition 4 (Firing rule). Let N = (P, T, F, W,A, L, R, H) be an extended
Petri net and M ∈ IB(P) be a marking.

– A transition t ∈ T is enabled, notation (N,M)[t〉, if and only if, M ≥ •t
and M(H(t)) = 0.

– An enabled transition t can fire while changing the state to M ′, notation
(N, M)[t〉(N,M ′), if and only if, M ′ = πP\R(t)(M − •t) + t•.

The additional requirement M(H(t)) = 0 (i.e.,
∑

p∈H(t) M(p) = 0) states
that all places in H(t) need to be empty for t to be enabled. Note that we
use the notations introduced in Section 3.1 here. The resulting marking M ′ =
πP\R(t)(M−•t)+t• is obtained by first removing the tokens required for enabling:
M −•t. Then all tokens are removed from the reset places of t using projection.
Applying function πP\R(t) removes all tokens except the ones in the non-reset
places P \R(t). Finally, the specified numbers of tokens are added to the output
places. Note that t• is a bag of tokens.

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to
another by firing a transition. We can extend this notion to firing sequences.
Suppose σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net
N with initial marking M . (N, M)[σ〉(N,M ′) means that there is also a sequence
of markings 〈M0,M1, . . . ,Mn〉 where M0 = M , Mn = M ′, and for any 0 ≤ i <
n: (N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M ′ ∈ IB(P) | ∃σ(N, M)[σ〉(N, M ′)}.

10

Note that by definition M ∈ R(N,M) because the initial marking M is trivially
reachable via the empty sequence (n = 0).

The notions from Definition 4 can easily be lifted to the level of labels.
(N, M)[(a)〉 means that starting in state M it is possible to reach a marking
through a (possibly empty) sequence of silent transitions such that a tran-
sition t with a visible label a (L(t) = a ∈ A) becomes enabled. Note that
a is enclosed by brackets to indicate that a is a label rather than a transi-
tion.. (N,M)[(σ)〉(N,M ′) with σ ∈ A∗ means that there exists a sequence
σ′ ∈ (A ∪ {τ})∗ such that the projection of σ′ onto visible transitions yields
σ (i.e., σ = projA(σ′)) and (N,M)[σ〉(N, M ′).

For a marked Petri net we also define classical behavioral properties such as
liveness and boundedness.

Definition 5 (Liveness, boundedness). Let N = (P, T, F,W,A, L,R, H) be
an extended Petri net and M ∈ IB(P) be a marking.

– (N, M) is live if and only if ∀M ′∈R(N,M) ∀t∈T ∃M ′′∈R(N,M ′) (N, M ′′)[t〉.
– (N, M) is bounded if and only if R(N, M) is finite.
– (N, M) is safe if and only if ∀M ′∈R(N,M) ∀p∈P M ′(p) ≤ 1.

A marked Petri net is live if from any reachable marking it is possible to (again)
enable any transition. A place p is bounded if there is a k ∈ IN such that
M ′(p) ≤ k for any reachable marking M ′. A marked Petri net is bounded if all
of its places are bounded. This is the case if and only if the number of reachable
markings is finite. A net is safe if the number of tokens per place is bounded by
1, i.e., safeness is a special case of boundedness.

To conclude this section of preliminaries, we show the relation between the
firing rule and the matrix representation of a Petri net.

Definition 6 (Incidence matrix). Let N = (P, T, F,W,A, L, R, H) be an ex-
tended Petri net. The incidence matrix of N , denoted Ñ , is a |P | × |T | matrix
with Ñ(p, t) = W (t, p)−W (p, t).

The incidence matrix of a Petri net can be used for different types of anal-
ysis, e.g., based on Ñ it is possible to efficiently calculate place and transition
invariants and to provide minimal (but not sufficient) requirements for the reach-
ability of a marking [62]. For example, consider an extended Petri N net with-
out reset arcs (i.e., ∀t∈T R(t) = ∅) and let M, M ′ ∈ IB(P) be two markings: if
(N, M)[σ〉(N,M ′), then by definition M ′ = M + Ñ ·−→σ (i.e., the marking result-
ing after firing σ ∈ T ∗ can be computed using a simple equation). Therefore, if
there is no σ such that M ′ = M + Ñ · −→σ , then M ′ is not reachable from M .

4 Workflow Nets

In the previous section, we considered arbitrary Petri nets without having an
application in mind. However, when looking at workflows, we can make some
assumptions about the structure of the Petri net. The idea of a workflow process

11

is that many cases (also called process instances) are handled in a uniform man-
ner. The workflow definition describes the ordering of activities to be executed
for each case. For example, the workflow for the handling of insurance claims
describes how an individual claim is processed. Although at any point in time
there may be many claims in the pipeline, the workflow definition only looks at
one case in isolation. Note that cases may compete for resources. However, if
one abstracts from resources, the cases are completely independent. Moreover,
each of the cases will have a well-defined starting point and ending point. There
is a point in time where the instance starts, i.e., the process is instantiated for
a particular case, and, hopefully, there is a point in time where the instance
is completed. Even if one considers multiple start activities and multiple end
activities, from a conceptual viewpoint there is still a unique initial state and a
unique final state.

These basic assumptions lead to the notion of a WorkFlow net (WF-net) [1,
2]. Using Figure 1 we already informally introduced the notion of such a WF-net
and now it is time to formalize this notion.

Definition 7 (WF-net). An extended Petri net N = (P, T, F,W,A, L, R, H)
is a WorkFlow net (WF-net) if and only if

– There is a single source place i, i.e., {p ∈ P | • p = ∅} = {i}.
– There is a single sink place o, i.e., {p ∈ P | p• = ∅} = {o}.
– Every node is on a path from i to o, i.e., for any n ∈ P ∪ T : (i, n) ∈ F ∗ and

(n, o) ∈ F ∗.
– There is no reset arc connected to the sink place, i.e., ∀t∈T o 6∈ R(t).

Figures 2 and 3 show five WF-nets. In each of these nets i = p1 is the source
place and either p4 or p6 is the sink place o. Every node in each of these Petri nets
is on a path from i to o. The requirement that ∀t∈T o 6∈ R(t) has been added
to emphasize that termination should be irreversible, i.e., it is not allowed to
complete (put a token in o) and then undo this completion (remove the token
from o).

Transitions in a WF-net correspond to activities. Note that Definition 7 al-
lows for multiple start (i•) and end (•o) activities. It is also easy to generalize
this definition to multiple start and end places. However, to simplify notation we
assume a single start and end place. Definition 7 also does not explicitly address
notions such as AND/XOR-splits/joins. By default a transition corresponds to
an AND-join/AND-split activity. To model an XOR-join or XOR-split activity,
the desired behavior can be added using silent transitions (transitions with label
τ) or duplicate transitions (multiple transitions having identical labels). Such
transformations are trivial as shown in [2].

Definition 7 focuses on the control-flow and abstracts from resources, in-
teraction, and data. While the definition can be extended with additional per-
spectives, we deliberately abstract from such things for several reasons. First
of all, WF-nets are not proposed as an end-user language. We envision that
people use languages such as (extended) EPCs [43], BPMN [77], etc. or some
proprietary workflow language. The control-flow aspects of such languages can

12

be mapped onto WF-nets. We aim to investigate the foundations of workflow
modeling and analysis and do not want to focus on a particular language. Re-
sources, interaction, and data can be added by introducing resource places (cf.
resource-constrained WF-nets [9, 34]), communication places (cf. open WF-nets
[50, 55, 56]), or data places. However, for a more realistic modeling of these per-
spectives one needs to resort to colored Petri nets [39]. As a result, analysis
(other than simulation) tends to get intractable. Moreover, it may be impossible
to accurately model these perspectives. For example, a decision may be based
on some complex calculation, external data, or human judgment. Hence, many
decisions need to be modeled as non-deterministic choices anyway. Therefore,
it seems natural to abstract from these aspects and first analyze the control-
flow in isolation as further motivated in [2] and many other papers on workflow
verification.

5 Soundness

Based on the notion of WF-nets we now investigate the fundamental question:
“Is the workflow correct?”. If one has domain knowledge, this question can be
answered in many different ways. However, without domain knowledge one can
only resort to generic questions such as: “Does the workflow terminate?”, “Are
there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of
generic questions triggered the definition of soundness [1, 2]. In this paper, we
consider different soundness notions. However, we first start with the original
definition given in [1].

Definition 8 (Classical soundness [1, 2]). Let N = (P, T, F,W,A, L, R, H)
be a WF-net. N is sound if and only if the following three requirements are
satisfied:

– Option to complete: ∀M∈R(N,[i]) [o] ∈ R(N, M).
– Proper completion: ∀M∈R(N,[i]) (M ≥ [o]) ⇒ (M = [o]).
– No dead transitions: ∀t∈T ∃M∈R(N,[i]) (N, M)[t〉.

Figure 1 was used to informally introduce the notion of soundness. Note that
here i = start and o = end . Each of the five WF-nets depicted in figures 2 and
3 is sound.

The first requirement in Definition 8 states that starting from the initial
state (just a token in place i), it is always possible to reach the state with
one token in place o (state [o]). If we assume a strong notion of fairness, then
the first requirement implies that eventually state [o] is reached. Strong fairness,
sometimes also referred to as “impartial” or “recurrent” [44], means that in every
infinite firing sequence, each transition fires infinitely often. Note that weaker
notions of fairness are not sufficient, see Figure 2 in [44]. However, such a fairness
assumption is reasonable in the context of workflow management since all choices
are made (implicitly or explicitly) by applications, humans or external actors. If
we required termination without this assumption, all nets allowing loops in their

13

execution sequences would be called unsound, which is clearly not desirable.
The second requirement states that the moment a token is put in place o, all
the other places should be empty. The last requirement states that there are no
dead transitions (tasks) in the initial state [i].

By carefully looking at Definition 8 one can see that the second requirement
is implied by the first one.

Proposition 1 (Proper completion is implied). Let N be a WF-net. The
“option to complete” implies “proper completion”, i.e., (∀M∈R(N,[i]) [o] ∈ R(N, M))
⇒ (∀M∈R(N,[i]) (M ≥ [o]) ⇒ (M = [o])).

Proof. Once a token is put in o there is no way of removing it, because o is a
sink place and reset arcs are not allowed to empty o. Any transition produces
tokens. Hence, if there are at least two tokens of which one is in o (i.e., improper
completion), then there will always be at least two tokens (i.e., no option to
complete). ut

Hence we can ignore the second requirement in Definition 8. The reason that
we include it anyway is because it represents an intuitive behavioral requirement.

As pointed out in [1, 2], classical soundness of a WF-net without reset and/or
inhibitor corresponds to liveness and boundedness of the so-called short-circuited
net. The short-circuited net is the Petri net obtained by connecting o to i, thus
making the net cyclic.

Lemma 1 (Soundness, liveness and boundedness). Let N be a WF-net
and N the extended Petri net obtained by connecting o to i through a new tran-
sition t∗.

– If N is sound, then (N, [i]) is live.
– If N has no reset and inhibitor arcs, then N is sound if and only if (N, [i])

is live and bounded.

Proof. If N is sound, then the moment a token is put into o all other places are
empty. Hence, t∗ can only bring the net back to the initial state. Moreover, the
set of reachable states of does not change by adding t∗ and all transitions remain
non-dead. Since (N, [i]) can return to the initial state again and again, the net
is live.

If N has no reset and inhibitor arcs, then the results presented in [2] apply.
Hence soundness coincides with liveness and boundedness of the short-circuited
net. ut

Note that if N is sound, the net does not need to be bounded. For example,
there could be a reset arc removing an arbitrary (i.e., unbounded) number of
tokens before producing a token for o.

After the initial paper on soundness of WF-nets [1, 2] many other papers
followed. Some extend the results while others explore alternative notions of
soundness. In the remainder of this section we define seven alternative notions

14

described in the literature. These notions strengthen or weaken some of the
requirements mentioned in Definition 8.

The first notion of soundness focuses on the “option to complete”, i.e., the
first requirement in Definition 8. Moreover, this notion is parameterized with a
variable k which indicates the initial number of tokens in the source place.

Definition 9 (k-soundness [35, 36]). Let N be a WF-net. N is k-sound if
and only if ∀M∈R(N,[ik]) [ok] ∈ R(N,M).

Note that any WF-net is 0-sound and that 1-soundness corresponds to the
first requirement in Definition 8. In Lemma 11 in [36] it is shown that also for
k-soundness the “option to complete” implies “proper completion”, i.e., Propo-
sition 1 also holds for k tokens. We introduce k-soundness mainly to be able to
define useful notions such as weak soundness and generalized soundness.

Fig. 4. A WF-net that is 1-sound but not 2-sound.

Consider the WF-net shown in Figure 4. This WF-net is classical sound and
therefore also 1-sound. From the marking [p1] there are two firing sequences both
leading to [o]: 〈t1, t4, t5〉 and 〈t2, t3, t6〉. However, the net is not 2-sound, e.g.,
the sequence 〈t1, t1, t4, t3〉 results in a deadlock not being the desired final state.
In fact it is not sound for any k ≥ 2.

The notion of 1-soundness is also known as weak soundness [52, 53].

Definition 10 (Weak soundness [52, 53]). Let N be a WF-net. N is weak
sound if and only if N is 1-sound.

Figure 5 shows three WF-nets that are all weak sound. The WF-net shown
in Figure 5(a) is not classical sound, because transition t3 is dead. It is also
not 2-sound because it is possible to reach state [p3] when starting in [p12] (i.e.,
a token is missing in the final state). Figure 5(b) is not 2-sound because of a

15

similar problem (state [p3] is reachable from [p12]). Figure 5(c) is not 2-sound
because the workflow may deadlock in state [p1, p3]. It is easy to see that similar
problems occur when k > 2.

Fig. 5. Some more WF-nets that are 1-sound but not k-sound for any k ≥ 2.

For a given k, it is easy to construct a WF-net that is k-sound but not
k + 1-sound. Therefore, we define the notion of up-to-k-soundness.

Definition 11 (up-to-k-soundness [70]). Let N be a WF-net. N is up-to-k-
sound if and only if N is l-sound for all 0 ≤ l ≤ k

Generalized soundness [35, 36] intuitively corresponds to up-to-∞-soundness,
i.e., k-sound for any k ∈ IN.

Definition 12 (Generalized soundness [35, 36]). Let N be a WF-net. N is
generalized sound if and only if for all k ∈ IN: N is k-sound.

The soundness notions discussed so far consider all possible execution paths
and if for one path the desired end state is not reachable, the net is not sound.
In a way this implies that the workflow is “lunacy proof”, e.g., the user cannot
select a path that will deadlock. The notion of relaxed soundness assumes a
responsible user or environment, i.e., the net does not have to be “lunacy proof”
as long as there exist “good” execution paths.

Definition 13 (Relaxed soundness [17–19]). Let N be a WF-net. N is re-
laxed sound if and only if for each transition t ∈ T :
∃M,M ′∈R(N,[i]) (N, M)[t〉(N, M ′) ∧ [o] ∈ R(N, M ′).

16

Figure 6(a) shows a net that is not weak sound but that is relaxed sound.
Note that firing sequences 〈t2, t4, t6〉 and 〈t1, t3, t4, t5〉 represent “good” execu-
tions ending in [p6] and covering all transitions. It is assumed that the incorrect
firing sequence 〈t1, t3, t4, t6〉 is avoided. As shown in [17, 18] it is possible to au-
tomatically convert a relaxed sound WF-net into a sound WF-net by blocking
the undesired paths, i.e., the workflow engine can select the “good” behavior.
The relaxed sound WF-net in Figure 6(a) can be converted into a sound WF-net
by adding a place connecting t2 and t6.

Fig. 6. Some more WF-nets illustrating relaxed, lazy, and easy soundness.

The soundness notions discussed so far focus on ending in a state with no
tokens in any place other than the sink place. Lazy soundness weakens this
requirement, i.e., tokens may be left behind as long as the sink place is marked
precisely once.

17

Definition 14 (Lazy soundness [64, 63]). Let N be a WF-net. N is lazy
sound if and only if the following two requirements are satisfied:

– Option to complete: ∀M∈R(N,[i]) ∃M ′∈R(N,M) M ′(o) = 1.
– Proper completion: ∀M∈R(N,[i]) M(o) ≤ 1.

The net in Figure 6(b) is lazy sound. Note that t3 can even fire repeatedly
after putting a token in p5. The last notion of soundness, named easy soundness,
only considers the possibility of the option to complete.

Definition 15 (Easy soundness [70]). Let N be a WF-net. N is easy sound
if and only [o] ∈ R(N, [i]).4

Figure 6(c) is easy sound but does not satisfy any of the other 7 soundness
notions. It is easy sound because the firing sequence 〈t1, t2〉 indeed leads from
[i] to [o].

(classical) soundness generalized soundness

relaxed soundness
weak soundness =

1-soundness

up-to-k-soundness

(k 2)

lazy soundness k-soundness (k 2)easy soundness

Fig. 7. Relationships between different various kinds of soundness (→ = “implies”).

While introducing the various soundness notions, we already indicated that
some soundness notions are stronger than other soundness notions. Figure 7
shows the different implications. Classical soundness implies relaxed soundness
and weak soundness. Weak soundness corresponds to the first requirement of
classical soundness. Relaxed soundness corresponds to a weakening of this first
requirement. It is trivial to see that generalized soundness implies weak sound-
ness and up-to-k soundness. Up-to-k soundness of course also implies k sound-
ness. Weak soundness implies lazy soundness because it weakens the “option to
complete” and “proper completion” requirements by just considering sink place
o. Easy soundness is implied by relaxed soundness and by weak soundness since
4 In [70] this notion was named weak soundness but interpreted differently from [52,

53]. Hence, in this paper this notion is referred to as “easy” soundness to avoid
confusion.

18

both imply that there is at least one path from [i] to [o]. Note that Figure 7 only
shows the transitive reduction of all implications, e.g., because of transitivity
generalized soundness also implies lazy soundness.

The eight soundness notions mentioned in Figure 7 will be considered in the
remainder of this paper. Several other soundness notions have been defined in
the literature. For example, in the context of open WF-nets [50, 55, 56], cross-
organizational WF-nets [45], and interacting BPMN/π-calculus processes [63]
additional notions of soundness have been defined. However, these notions do
not look at a single WF-net in isolation and therefore are outside the scope of
this paper. Note that when considering interaction and/or resources different
notions are needed.

6 Decidability

In this section we explore the different notions of soundness and the various
classes of WF-nets and their decidability. Here will will focus on extended WF-
nets and the eight notions of soundness defined earlier. First, we show that arc
weights and transition labels are not relevant for decidability. Then, we show
that WF-nets with inhibitor arcs are more expressive than nets with reset arcs.
Based on these initial insights we present our decidability results.

6.1 Removing arc weights and labels

This subsection shows that arc weights and transition labels are not relevant for
decidability. It is easy to see that transition labels do not influence soundness.
Moreover, as Figure 8 shows, weighted arcs can also be removed. In Figure 8
it is assumed that k is the maximal arc weight on the input side and output
side of p. Note that there happens to be an input transition producing k tokens
and an output transition consuming k tokens. In the general case there may be
arbitrarily many input and output transitions as long as they consume/produce
not more than k tokens from/for place p. Suppose there is an output transition
which consumes l ≤ k tokens from p in Figure 8(a). In Figure 8(b) this transition
will have l out of the k newly added places as input. Any subset of these places
will do, e.g., {p1, . . . , pl}.

Note that the construction does not introduce any new type of arcs, e.g.,
inhibitor arcs are only needed if they were already present in the original net.
Moreover, if the initial net has a WF-net structure, the resulting net also has
this structure.

Since we can abstract from arc weights and transition labels, we restrict
ourselves to core WF-nets in the remainder.

Definition 16 (Core WF-nets). A core WF-net is a WF-net (P, T, F, W,A, L,
R, H) where A = T , for all t ∈ T : L(t) = t, and for all f ∈ F : W (f) = 1. A
core WF-net can be represented by (P, T, F, R,H).

19

(a) net with arc weights

p

(b) net without arc weights

p1

p2

pk

2

k k

2
t12 t21

Fig. 8. Removing arc weights: place p is split up into k places and transitions are
added such that tokens can freely move among these places. The arc weights 2 and k
can be replaced by any weight 1 ≤ l ≤ k and the construction also works for more/less
input/output transitions.

Since arc weights and transition labels are just “syntactical sugaring”, we
do not need to consider them when investigating soundness. For example, if
generalized soundness is decidable for WF-nets without arc weights, then it will
also be decidable for WF-nets with arc weights.

6.2 Inhibitor arcs can emulate reset arcs

Reset and inhibitor arcs are clearly more than “syntactical sugaring” and really
add to the expressiveness, i.e., one can construct WF-nets with reset or inhibitor
arcs that do not have an equivalent WF-net without such arcs.5 However, as
shown below, WF-nets with reset arcs can be translated into equivalent WF-
nets with inhibitor arcs. First, we show this for arbitrary extended Petri nets.

Proposition 2 (Inhibitor arcs can emulate reset arcs). Let N be an ex-
tended Petri net. All reset arcs can be replaced by inhibitor arcs without changing
the behavior (modulo branching bisimulation [33]).

Proof. It is easy to see that the construction shown in Figure 9 can be used to
remove any reset arc. Transition t is replaced by a start transition ts and an
5 Note that the term “equivalent” is ill defined in this context. Although this statement

is not very sensitive to the notion of equivalence considered, one can think of standard
equivalence notions such as branching bisimulation [33].

20

end transition te. The start transition ts has the same label as transition t and
the end transition te has a τ label. Each transition with a reset arc is replaced
by a small network as shown in Figure 9. Place x is added to guarantee mutual
exclusion, i.e., there is one such place and all original transitions in the new net
consume a token from x and return a token to x while all new start transitions
consume a token from x and all new end transitions produce a token for x. As
a result, any firing of ts is followed by zero of more firings of tc, followed by one
firing of te. The effect of firing in one sequence ts(tc)nte is equivalent to firing t
in the original. It is easy to establish a branching bisimulation relation between
both nets by associating the label of t to ts and giving transitions tc and te a τ
label. ut

s t e

c

Fig. 9. Construction showing that reset arcs can be translated into inhibitor arcs.

Proposition 2 is also applicable to (core) WF-nets, i.e., by adding a new
global start and end transition, place x can be marked and unmarked and the
“WF-net structure” remains intact.

In the remainder of this section we investigate decidability for the eight no-
tions of soundness and WF-nets with reset and/or inhibitor arcs. Here, we often
use the following corollary.

Corollary 1 (Undecidability of weak soundness). If a particular sound-
ness property (classical soundness, k-soundness, weak soundness, etc.) is unde-
cidable for WF-nets with reset arcs it will also be undecidable for WF-nets with
inhibitor arcs.

This corollary follows directly from Proposition 2. Any WF-net with reset
arcs can be converted into a Petri net without reset arcs and just inhibitor arcs.
Note that the resulting net is not a WF-net because of the initially marked x
place. However, by adding a new “start transition” and a new “end transition”,
the net can be transformed into an equivalent WF-net.

21

6.3 Classical soundness

In this subsection, we explore the decidability of soundness for WF-nets. If a
WF-net has no reset and no inhibitor arcs, we can use Lemma 1 to show that
soundness is decidable. Such a WF-net N is sound if and only if (N, [i]) is live
and bounded. Since liveness and boundedness are both decidable, soundness is
also decidable. For some subclasses (e.g., free-choice nets), this is even decidable
in polynomial time [1, 2].

Unfortunately, soundness is not decidable for WF-nets with reset and/or
inhibitor arcs. First, we show that reset arcs make the verification problem un-
decidable.

Theorem 1 (Undecidability of soundness). Soundness is undecidable for
WF-nets with reset arcs.

Proof. Let (N, MI) be an arbitrary marked Petri net with reset arcs but no
inhibitors. In the general case it is known that reachability is undecidable for
reset nets [22, 23]. Without loss of generality we can assume that N is connected
and that every transition has input and output places, since any reset net can be
translated into a behaviorally equivalent net that has these properties. Moreover,
since coverability is decidable for reset nets [22, 29], we can assume that all dead
transitions have been removed. (Because we can check whether •t is coverable
from the initial marking, we can test whether transition t is dead for any t ∈ T .)
Hence we may assume that (N, MI) is connected, every transition has input and
output places, and there are no dead transitions.

To show that soundness is undecidable, we construct a new net (N ′, [i])
which embeds (N,MI) such that N ′ is sound if and only if some marking MX

is NOT reachable from (N, MI). By doing so, we show that reachability in an
arbitrary reset net can be analyzed through soundness, making soundness also
undecidable.

The construction is shown in Figure 10. However, to explain this we first
need to introduce some notation. P is the set of places in N and T is the set
of transitions in N . Assume {i, o, u, s, v, w} ∩ P = ∅ and ({a, b, c, z} ∪ {zp | p ∈
P}) ∩ T = ∅. These are the “fresh” identifiers corresponding to the places and
transitions added to N to form N ′. I ⊆ P are all the places that are initially
marked in (N, MI) and X ⊆ P are the places that are marked in (N, MX). As
Figure 10 shows, transition c initializes the places in I, i.e., for p ∈ I: W (c, p) =
MI(p).6 Similarly, transition b can fire and consume all tokens from X if marking
MX is reached, i.e., for p ∈ X: W (p, b) = MX(p), and transition a marks the
places in X appropriately, i.e., for p ∈ X: W (a, p) = MX(p). The transitions z
and zp (p ∈ P) have reset arcs from all places in N ′ except the new sink place
o. Any transition in the original net has a bidirectional arc with s. All other
connections are as shown in Figure 10.

The constructed net (N ′, [i]) has the following behavior. First a fires, marking
u, v and the places in X. No transition t ∈ T can fire because s is still empty
6 Note that we are assuming weighted arcs here. However, as shown before these can

be removed using the construction in Figure 8.

22

b

s

any place in

N including I

and X

a

t

i

p

any place

in X

any

transition

in N

X

any

place in I

I

v

c

w

u

zp

all

z

all

o

Fig. 10. Construction showing that soundness is undecidable for WF-nets with reset
arcs. The original net comprises the three dashed areas: I is the set of places of N
initially marked, X is the set of places that are marked in MX , and all other nodes of
N are shown in the dashed area in the middle. Note that I and X may overlap.

and c is also blocked because w is empty. The only two transitions that can
fire are b and z. If z occurs, the net ends in marking [o]. If b fires, it will be
followed by c. The firing of c brings the net into marking MI + [s, v]. Note
that in marking MI + [s, v] the original transitions are not constrained in any
way and the embedded subnet can evolve as in (N, MI) until one of the newly
added transitions fires. Transitions {zp | p ∈ P} can fire as long as there is at
least one token in a place in P and z can fire as long as there is a token in
v. The firing of such a transition always leads to [o], i.e., firing a transition in
{z} ∪ {zp | p ∈ P} always leads to the proper end state. Transition b can fire as
soon as the embedded subnet has a marking which covers MX .

23

It is obvious that net N ′ shown in Figure 10 is a WF-net, i.e., there is one
source place i, one sink place o, all nodes are on a path from i to o, and there is
no reset on o.

Now we can show that N ′ is sound if and only if some marking MX is NOT
reachable from (N, MI):

– Assume marking MX is reachable from (N, MI). This implies that from
(N ′, [i]) the marking MX +[s, v] is reachable. Hence b can fire for the second
time resulting in a state [s, w]. In this state all transitions in T are blocked
because transitions have input places and all input places in P are empty.
Also all added transitions are dead in [s, w]. Hence a deadlock state [s, w] is
reachable from (N ′, [i]) implying that N ′ is not sound.

– Assume marking MX is not reachable from (N,MI) and MX is also not cov-
erable. This implies that b cannot fire for the second time. Hence, there al-
ways remain tokens in some place of P after initialization and it is always pos-
sible to terminate in state [o] by firing one of the “z transitions”. Moreover,
none of the transitions is dead in (N ′, [i]) because {a, b, c, z} ∪ {zp | p ∈ P}
can fire and the transitions in T are not dead in (N,MI) (because of the
initial cleaning). Therefore, N ′ is indeed sound.

– Assume marking MX is not reachable from (N, MI) but MX is coverable.
This implies that in the embedded subnet it is only possible to reach states
M ′ that are not covering MX or that are bigger than MX , i.e., M ′ ≥ MX

implies M ′ 6= MX . For states smaller than MX we have shown that sound-
ness is not jeopardized. For states bigger than MX , b can fire. However, if
b fires, tokens remain in P and b cannot fire anymore. Hence, at least one
transition in {zp | p ∈ P} is enabled at any time because one of the places in
P is marked. As a result, it is always possible to terminate in state [o] and
N ′ is indeed sound.

Hence, if soundness is decidable for reset nets, then reachability is also decidable.
This leads to a contradiction. Hence soundness is not decidable. ut

Theorem 1 shows that the ability of cancellation combined with unbounded
places makes soundness undecidable. This is a relevant result because many
workflow languages have such features.

Since inhibitor arcs can emulate reset arcs (cf. Proposition 2), the undecid-
ability result also applies to WF-nets with inhibitor arcs.

6.4 Weak soundness

Next, we investigate the decidability of weak soundness, also known as 1-sound-
ness. Weak soundness corresponds to the first requirement of classical soundness.
Since the second requirement is implied by the first one, the only difference is the
third requirement, i.e., for weak soundness it is not required that there are no
dead transitions. From the viewpoint of decidability this is less relevant because
dead transitions can be removed from a WF-net with reset arcs.

24

Corollary 2 (Undecidability of weak soundness). Weak soundness is un-
decidable for WF-nets with reset arcs.

Proof. Let N be an arbitrary WF-net with reset arcs but no inhibitor arcs.
Remove all dead transitions in (N, [i]) and let N ′ be the resulting WF-net. This
is possible because coverability is decidable for reset nets [22, 29] and therefore it
is possible to check for each transition t whether •t is coverable from the initial
marking (see also proof of Theorem 1). Now N is weak sound if and only if N ′

is sound. Since Theorem 1 shows that soundness is undecidable, weak soundness
is also undecidable. ut

If a WF-net has no reset and no inhibitor arcs, weak soundness is decid-
able. Note that we can first remove all dead transitions from N , then soundness
corresponds again to liveness and boundedness of the short-circuited net, which
is decidable [1, 2].7 It is also obvious that, in this case, weak soundness can be
checked by simply inspecting the well-known coverability graph [28, 62].8

Because of Corollary 1, soundness is also undecidable for WF-nets with in-
hibitor arcs.

6.5 k-soundness

Now we consider the situation of k-soundness with k ≥ 2. Just like 1-soundness,
the decidability results are equal to classical soundness. The question whether a
net is weak sound can be translated into a k-soundness question, and vice versa,
for any k as shown in Figure 11.

Corollary 3 (Undecidability of k-soundness). For any k ≥ 2: k-soundness
is undecidable for WF-nets with reset arcs.

Proof. We will show that decidability of k-soundness for WF-nets with reset
arcs would imply decidability of weak soundness for WF-nets with reset arcs,
which would contradict Theorem 1. Let N be an arbitrary WF-net with reset
arcs. From N we construct the WF-net Nk which embeds N and has parameter
k ≥ 2 as shown in Figure 11. Clearly, Nk is a WF-net. Again the arc weights can
7 The removal of dead transitions could potentially transform a WF-net into a non-

WF-net. However, this can be repaired easily by adding a new source place is, start
transition ts, sink place oe, end transition te, and self-loop place x. ts consumes a
token from the new source place is and produces a token for the old source place i
and the self-loop place x. te consumes a token from the old sink place o and x, and
produces a token for the new sink place oe. All original transitions have x as a self
loop, i.e., they consume and produce a token from x.

8 Note that given a Petri net there may be multiple coverability graphs, i.e., the clas-
sical Karp and Miller algorithm [41] does not necessarily produce a unique graph.
This is not a problem, because the different graphs lead to identical conclusions.
Moreover, as shown in [28] it is possible to construct a unique “minimal coverability
graph”. Therefore, we will refer to “the” coverability graph rather than “a” cover-
ability graph in the context of a particular marked net.

25

a b

start

ci
original

net
o w dv

end

k k

k tokens

Fig. 11. The original WF-net is weak sound if and only if the constructed WF-net is
k-sound. Because k tokens are put in place start , transition b fires once to initialize the
original net. If the original net puts one token in o, then c can fire once followed by k
executions of b, thus producing k tokens for place end .

be removed as shown in Figure 8; this is the reason for adding the additional
transitions at the beginning and end. Moreover, it is easy to verify that N is
weak sound if and only if Nk is k-sound. Therefore, we can apply Theorem 1 to
show undecidability. ut

Note that k-soundness is also undecidable for WF-nets with inhibitor arcs
(cf. Corollary 1), but is decidable for WF-nets without reset and/or inhibitor
arcs.

6.6 Up-to-k-soundness

Up-to-k-soundness can be translated into k “l-soundness” problems where 1 ≤
l ≤ k. Therefore, intuitively it is no surprise that the results are identical.

Corollary 4 (Undecidability of up-to-k-soundness). For any k ≥ 2: up-
to-k-soundness is undecidable for WF-nets with reset arcs.

Proof. We will show that decidability of up-to-k-soundness for WF-nets with
reset arcs would imply decidability of weak soundness for WF-nets with reset
arcs, which would contradict Theorem 1. Let N be an arbitrary WF-net with
reset arcs. From N we construct the WF-net Nk which embeds N and has
parameter k ≥ 2 as shown in Figure 12. This net is identical to the one in
Figure 11 apart from the “bypass” transition x. N is weak sound if and only if

a b

start

ci
original

net
o w dv

end

k k

x
l tokens with 1 l k

Fig. 12. The original WF-net is weak sound if and only if the constructed WF-net is
up-to-k-sound.

26

Nk is up-to-k-sound and therefore the latter is also undecidable. Note that if less
than k tokens are put into the source place, the original net N is not activated
and the tokens bypass N via x. Therefore, k-soundness of the net in Figure 11
is the same as up-to-k-soundness of the net in Figure 12. ut

Using Corollary 1 it can be shown that up-to-k-soundness is also undecidable
for WF-nets with inhibitor arcs.

6.7 Generalized soundness

While weak-soundness and k-soundness are closely related to classical soundness,
generalized soundness is quite different because it marks the source place with
an arbitrary (i.e., non-predefined) number of tokens. Let us first consider the
situation without reset and/or inhibitor arcs. Even in this simple setting it is
not possible to use the coverability graph [62] to decide soundness. The reason is
that the problem corresponds to inspecting infinitely many coverability graphs.
Fortunately, in [36] it was shown that generalized soundness is decidable for
WF-nets without reset and/or inhibitor arcs.

Theorem 2 (Decidability of generalized soundness [36]). Generalized
soundness is decidable for WF-nets without reset and/or inhibitor arcs.

Proof. See [36]. ut
Let us now consider a WF-net with inhibitor arcs and no reset arcs. It is well-

known that the reachability problem is undecidable for Petri nets with inhibitor
arcs [16]. This can be used to prove that generalized soundness is undecidable.

Proposition 3 (Undecidability of generalized soundness). Generalized
soundness is undecidable for WF-nets with inhibitor arcs.

Proof. Let N be an arbitrary inhibitor WF-net. Let N ′ be the net obtained
using the construction shown in Figure 13.

a

start

i
original

net
o

end

b

Fig. 13. The original WF-net is weak sound if and only if the constructed WF-net is
generalized sound. Note that a short-hand notation is used; transition a has an inhibitor
arc for each place in the original net.

For any k and any reachable state of (N ′, [startk]), a blocks if there is still
a token in the original net and will continue to block until b removes the last
token from N .

27

Assume N is weak sound. It is easy to see that any token put into i, can
always evolve to a state with a token in o and where the rest of the original
net is empty and a continues to block. In this state b can fire and this can be
repeated for all k tokens initially put in place start. Hence N ′ is generalized
sound.

Assume N ′ is generalized sound. Hence the net N ′ is also weak sound which
implies that N is weak sound.

Therefore, N ′ is generalized sound if and only if N is weak sound. Since weak
soundness is undecidable for WF-nets with inhibitor arcs, generalized soundness
is also undecidable. ut

In Figure 13, the original WF-net N is activated only once, i.e., a blocks
any new activations until b removes the last token from N . This is sufficient for
proving undecidability. However, using Figure 14, we also explore the reverse
situation. Let N be the original net in Figure 14 and let N ′ be the extended
WF-net as shown in the same figure. N is generalized sound if and only if N ′ is
weak sound. This construction provides additional insight in the relation between
weak and generalized soundness.

a u

b

start c

i
original

net
o

w

d

v

e

end

Fig. 14. Construction showing that generalized soundness can be expressed in terms
of weak soundness for WF-nets with inhibitor arcs.

Generalized soundness is decidable for WF-nets without reset/inhibitor arcs
and undecidable for WF-nets with inhibitor arcs. Therefore, the remaining ques-
tion is: “Is generalized soundness decidable for WF-nets with reset arcs?”. The
answer to this question is unknown, i.e., it is still an open problem.

One may think that a construction similar to Figure 13 is possible for reset
arcs. Such an attempt is made in Figure 15. Let N be the original net in Figure 15
and let N ′ be the extended WF-net as shown in the same figure. The goal would
be to show that N is generalized sound if and only if N ′ is weak sound. However,
this construction does not work because the N ′ produces a single token for place
end, independent of the number of tokens initially put in start. The thing that
is missing is a “counter” like place v in Figure 14. However, using reset arcs
it is impossible to make such a construction. It is also not possible to use the
construction of Theorem 1, because if multiple cases enter the construction, the
original net fragment is able to reach states not reachable from MI . It is not

28

a

start

i
original

net
o

end

b

Fig. 15. Failed attempt to show that generalized soundness is undecidable for WF-nets
with reset arcs.

possible to temporarily block the entry of additional cases, because the WF-
net starts empty (i.e., no “mutex place” is possible) and no inhibitor arcs are
allowed. Therefore, decidability of generalized soundness for WF-nets with reset
arcs remains an open problem.

6.8 Relaxed soundness

Relaxed soundness differs fundamentally from notions such as classical, weak,
and generalized soundness, because it allows for deadlocks, etc. as long as there
is a “good execution” possible for each transition.

Theorem 3 (Undecidability of relaxed soundness). Relaxed soundness is
undecidable for WF-nets with reset arcs.

Proof. Let (N, MI) be an arbitrary marked Petri net with reset arcs and without
inhibitor arcs. Without loss of generality we can assume that N is connected and
that every transition has input and output places. Any net can be translated
into a behaviorally equivalent net that has these properties.

To show that relaxed soundness is undecidable, we construct a new net
(N ′, [i]) which embeds (N, MI) such that N ′ is relaxed sound if and only if some
marking MX is reachable from (N,MI). By doing so, we show that reachability
in an arbitrary reset net can be analyzed through relaxed soundness, making
relaxed soundness undecidable because reachability is undecidable for reset nets
[22, 23].

Note that here we choose a different strategy than in Theorem 1 where sound-
ness corresponds to the non-reachability of a given marking MI . Here, we make
a construction such that the relaxed soundness of N ′ corresponds to the reach-
ability of MI in (N, MI).

Figure 16 shows the basic idea of the constructing N ′ from N . P is the set
of places in N and T is the set of transitions in N . I ⊆ P is the set of places
marked in MI and X ⊆ P is the set of places marked in MX . Although not
shown in Figure 16, I and X may overlap. Let Tstart = {tstart | t ∈ T} and
Tend = {tend | t ∈ T} be new transitions and let S = {st | t ∈ T} be new
places, i.e., for each t ∈ T we add a place st and transitions tstart and tend.
Assume ({i, o, u, v, w} ∪ S) ∩ P = ∅ and ({a, b, c} ∪ Tstart ∪ Tend) ∩ T = ∅.

29

c

st

a

t

i

any place

in X

X

any

place in I

I

b pin

u

pout

tstart tend

o

st’

t t’

w

v

Fig. 16. Construction showing that reachability can be expressed in terms of relaxed
soundness for WF-nets with reset arcs.

For any t: •tstart = [u] + S, tstart• = (•t) + [st, v], •tend = (t•) + [st, v], and
tend• = [u] + S. As Figure 16 shows, transition b initializes the places in I, i.e.,
for p ∈ I: W (b, p) = MI(p). Similarly, transition c consumes all tokens from X
if marking MX is reached, i.e., for p ∈ X: W (p, c) = MX(p).

To better understand the structure of N ′ note that there are the following
place invariants: i+u+v+w+o and k.i+

∑
t∈T st+(k−1).v+k.o where k = |T |.

The first invariant indicates that there will always be one token in exactly one
of the places i, u, v, w, and o. The second invariant shows that there is a token
in i (weight k), or there is a token in o (weight k), or there are tokens in S∪{v}.
In the latter case, there may be one token in v with weight k− 1 and one token
in one of the places in S with weight 1. So the sum of these two tokens is also k.
Note that tstart consumes k tokens with weight one from S, returns one token
to place st ∈ S, and puts a token with weight k − 1 in place v. Transition tend

consumes one token from place st ∈ S and one token with weight k− 1 for place
v, and produces k tokens with weight one for S. It is easy to show that these are
indeed invariants because the reset arcs only affect the places in P and not any
of the newly added places.

Initially a fires thus marking u and all places in S. In [u] + S, any of the
Tstart transitions can fire. Say tstart fires. In the resulting state ((•t) + [st, v]),
t is the only transition that can fire. Note that all other transitions in T are
blocked because the corresponding places in S \{st} are not marked. After firing

30

t, tend is the only transition that can fire. Note that reset arcs do not play a
role here because transition t removes the tokens in •t and nothing more. Firing
the sequence 〈tstart, t, tend〉 results again in marking [u]+S. Hence this could be
repeated for all t ∈ T , still resulting in marking [u] + S. In marking [u] + S also
b can fire resulting in marking MI + S + [w]. Hence is it possible to move from
marking [i] to marking MI + S + [w] by firing σb = 〈a, . . . , tstart, t, tend, . . . , b〉,
i.e., (N ′, [i])[σb〉(N ′,MI + S + [w]). Note that σb contains all transitions except
c. After executing σb, the transitions in T can fire like in (N, MI), i.e., not
constrained by the added constructs, until c occurs. When c occurs all tokens
in S are removed thus blocking all transitions in T . After firing c a token is put
into o and no transition can fire anymore. After c fires the net is in a dead state
that at least covers marking [o].

Now we can show that N ′ is relaxed sound if and only if some marking MX

is reachable in (N, MI):

– Assume marking MX is reachable from (N,MI). There exists a firing se-
quence σN such that (N, MI)[σN 〉(N, MX). This sequence is also enabled
in the state after executing σb: (N ′,MI + S + [w])[σN 〉(N ′,MX + S + [w]).
Hence, (N ′, [i])[σbσNc〉(N ′, [o]) and it becomes clear that N ′ is indeed re-
laxed sound.

– Assume N ′ is relaxed sound. Hence there is a sequence σ: (N ′, [i])[σ〉(N ′, [o]).
σ needs to have the following structure σb = 〈a, . . . , b, . . . , c〉 because in order
to mark o, c must have been the last step and must have been preceded by b
which in turn must have been preceded by a. Recall that i+u+ v +w + o is
a place invariant illustrating the main control-flow in the net and the linear
dependencies between a, b and c. It is also clear that a, b, and c can fire only
once. Just before firing c the marking must have been precisely MX +S+[w]
because c does not have any reset arcs. Just after firing b the marking must
have been MI + S + [w]. Hence, there exists a firing sequence σN such that
(N ′,MI +S + [w])[σN 〉(N ′,MX +S + [w]). Note that in σN only transitions
of T can be present (Tstart ∪ Tend are dead after removing the token from
u). Hence, σN is also enabled in the original net, i.e., (N,MI)[σN 〉(N, MX).
Therefore, MX must be reachable in (N,MI) thus completing the proof.

ut

Combining Theorem 3 and Proposition 2 shows that relaxed soundness is
also undecidable for WF-nets with inhibitor arcs. However, it is also possible to
provide a direct proof using the same construction as shown in Figure 16. Note
that the construction does not use any reset arcs and is therefore also applicable
in this case. The same sequence σb = 〈a, . . . , tstart, t, tend, . . . , b〉 used in the proof
of Theorem 3 is still enabled if the transitions are assumed to be not trivially
dead (i.e., an inhibitor arc connected to an input place). Moreover, after firing b
the net is guaranteed to be in MI + S + [w]. Hence the same arguments apply.

Relaxed soundness is decidable for WF-nets without reset/inhibitor arcs.
In most cases, a direct inspection of the coverability graph will be sufficient
to conclude this. Often one can also use a partially constructed reachability

31

t
yes

1

2

t
no

Fig. 17. Construction showing that relaxed soundness is decidable for WF-nets without
reset/inhibitor arcs, i.e., t is involved in a “good run” in the original model (left) if and
only if [o, pt

yes] is reachable in the adapted model (right).

graph to show relaxed soundness. If the net is unbounded, there may be cases
where such simple inspections are inconclusive. A conclusive strategy to check for
relaxed soundness would be to add two places (e.g., pt

yes and pt
no) for transition

t that record whether t has been fired or not. Note that transition t needs to be
duplicated into t1 and t≥2 as shown in Figure 17. Transition t1 corresponds to the
first execution of t while t≥2 corresponds to later executions. A “good execution”
in the original model leads from [i] to [o]. Now the reachability of state [o, pt

yes]
corresponds to a “good” execution sequence where t occurred at least once.
This can be repeated for all transitions, and, since reachability is decidable for
classical Petri nets, this implies that relaxed soundness is decidable for WF-nets
without reset/inhibitor arcs.

6.9 Lazy soundness

Lazy soundness focuses on the marking of place o and does not require the net
to be empty after putting a token in o. Nevertheless, we can use the construction
of Theorem 1 to show that the property is undecidable for WF-nets with reset
arcs

Theorem 4 (Undecidability of lazy soundness). Lazy soundness is unde-
cidable for WF-nets with reset arcs.

Proof. To show that lazy soundness is undecidable, we again use the construction
shown in Figure 10. A new net (N ′, [i]) is created which embeds (N, MI) such
that N ′ is lazy sound if and only if some marking MX is NOT reachable from
(N, MI).

– Assume marking MX is reachable from (N, MI). This implies that from
(N ′, [i]) the deadlock marking [s, w] is reachable. Hence there is a scenario
where place o cannot be marked. Hence N ′ is not lazy sound.

– Assume marking MX is not reachable from (N, MI) and MX is also not
coverable. Hence, it is always possible to terminate in state [o] by firing one

32

of the “z transitions” because one of the places in P will remain marked
because b cannot fire. This is the only reachable state marking o. Therefore,
N ′ is indeed lazy sound.

– Assume marking MX is not reachable from (N, MI) but MX is coverable.
This implies that in the embedded subnet it is only possible to reach states
that do not cover MX or that are bigger than MX . For states smaller than
MX we have shown that lazy soundness is not jeopardized. For states bigger
than MX , b can fire. However, if b fires, tokens remain in P and b cannot
fire anymore. Hence, at least one “z transition” is enabled at any time and,
as a result, it is always possible to terminate in state [o]. This implies that
N ′ is indeed lazy sound.

ut
As a result, lazy soundness is also undecidable for WF-nets with inhibitor

arcs. The property is, however, decidable for WF-nets without reset and/or
inhibitor arcs, e.g., by inspecting the coverability graph.

6.10 Easy soundness

The last soundness notion we consider is easy soundness. Recall that this notion
simply checks whether there is an execution path from [i] to [o].

Theorem 5 (Undecidability of easy soundness). Easy soundness is unde-
cidable for WF-nets with reset arcs.

Proof. Let (N, MI) be an arbitrarily marked Petri net with reset arcs but no
inhibitors. Without loss of generality we again assume that N is connected and
that every transition has input and output places.

To show that easy soundness is undecidable, we construct a new net (N ′, [i])
which embeds (N, MI) such that N ′ is easy sound if and only if some marking
MX is reachable from (N, MI). By doing so, we show that reachability in an
arbitrary reset net can be analyzed through soundness, making easy soundness
also undecidable.

ba

i any place

in X

X

any

place in I

I

o

Fig. 18. Construction showing that easy soundness is undecidable for WF-nets with
reset arcs.

Figure 18 shows N and N ′ using the notation used before.

33

– Assume marking MX is reachable from (N, MI). This implies that MX is
also reachable in (N ′, [i]) and that b can fire without leaving any tokens
behind in the set of places of the original net. Hence, firing b results in [o]
and clearly the net is easy sound.

– Assume N ′ is easy sound, i.e., there is a firing sequence leading from [i] to [o].
Hence there was a moment when b fired. If at this point in time the marking
was not exactly MX , then tokens are left behind in the original net. Since
all transitions have input and output places, the remaining tokens cannot be
removed completely and hence all subsequent markings are larger than [o].
Hence, just before b fired, the marking was exactly MX showing that MX is
indeed reachable from (N, MI).

ut

Easy soundness is therefore also undecidable for WF-nets with inhibitors. The
property is decidable for WF-nets without reset/inhibitor arcs because reacha-
bility is decidable for classical Petri nets.

6.11 Overview

Table 1 summarizes the results presented in this section. As shown, all eight
soundness properties are decidable for WF-nets without reset and/or inhibitor
arcs. For WF-nets with reset arcs the decidability of generalized soundness is still
unknown. For all other cases, soundness is undecidable. As Table 1 indicates, it is
difficult to precisely analyze models in more advanced languages having features
which correspond to reset or inhibitor arcs. Nevertheless, there are pragmatic
approaches that allow for the discovery of design errors even if such features are
present. This will be explained further in the next section.

Table 1. Decidability of soundness (U=Undecidable, D=Decidable, and ?=unknown).

(c
la

ss
ic

a
l)

so
u
n
d
n
es

s

w
ea

k
so

u
n
d
n
es

s

k
-s

o
u
n
d
n
es

s

u
p
-t

o
-k

so
u
n
d
n
es

s

g
en

er
a
li
ze

d
so

u
n
d
n
es

s

re
la

x
ed

so
u
n
d
n
es

s

la
zy

so
u
n
d
n
es

s

ea
sy

so
u
n
d
n
es

s

no reset/inhibitor arcs D D D D D D D D

just reset arcs U U U U ? U U U

just inhibitor arcs U U U U U U U U

reset and inhibitor arcs U U U U U U U U

34

7 Analysis

In this section, we focus more on the pragmatic side of workflow verification. As
illustrated by Table 1 one can roughly say that for WF-nets without reset and/or
inhibitor arcs all soundness properties are decidable while for extended WF-
nets (e.g., nets with reset and/or inhibitor arcs) these notions are undecidable.
Note that most workflow and process modeling languages (e.g., BPMN, EPCs,
Staffware, BPEL, FileNet, etc.) have a control-flow language where the basic
elements correspond to WF-nets without reset and/or inhibitor arcs, while the
more advanced constructs require reset or inhibitor arcs. Therefore, one can
argue that, as a rule-of-thumb, for simple models (independent of the language
used) any form of soundness is decidable while for models using notions such as
priorities, cancellation, etc. no form of soundness is decidable. However, even if
more advanced constructs are used, workflow verification is still possible! Note
that even if soundness is undecidable for a particular class of WF-nets, for many
representatives of such a class, it may still be possible to conclude soundness or
non-soundness. There may be rules of the form “If WF-net N has property X,
then N is sound” or “If WF-net N has property Y , then N is not sound”. As
shown in [57, 59, 58, 60] it is possible to find many errors using such an approach.
In [58, 60] it was shown that at least 5.6 percent of the process models in SAP’s
reference model are not sound. However, this 5.6 percent is merely a lower bound.
In [57, 59] an even larger set of more than 2000 process models from practice
was analyzed. It could be shown that at least 10 percent of these models is not
sound. These examples show that even if soundness is undecidable, errors can be
discovered. Similarly, for many models it is still possible to guarantee soundness
even if the general verification problem is undecidable.

As for many specific process models it is possible to make useful conclusions
even if the general question is undecidable, we advocate a more down-to-earth
approach. In this section, we discuss three analysis approaches in relation to the
4*8=32 verification problems portrayed in Table 1.

7.1 Coverability graph

The construction of a coverability graph is one of the standard approaches for
analyzing classical Petri nets [62, 65]. If the state-space is finite, the coverability
graph coincides with the reachability graph where nodes correspond to reachable
markings and arcs correspond to state transitions. If the state-space is infinite,
the coverability graph contains so-called ω markings indicating that the num-
ber of tokens on a particular place may grow unbounded. Figure 19 shows a
WF-net (please ignore the dashed arcs for the moment) and the corresponding
coverability graph is shown in Figure 20.

Based on the coverability graph one can see that the WF-net without the
dashed arcs, i.e., net N , is not sound (classical soundness). Node p5 + ω.p3 in
Figure 20 indicates that it is possible to reach a state with one token in p5 and

35

p5p1

t1 t2 t3

p2 p3 p4

t5

t4

Fig. 19. N is the WF-net without the reset/inhibitor arc, NR is the net with the reset
arc, NI is the net with the inhibitor arc, and NRI is the net with both the reset arc
and inhibitor arc.

t1

p4

p1

t2

p2

p2+ .p3

p5
t4

t5

p4+ .p3 p5+ .p3
t4 t5

t2 t3

Fig. 20. The coverability graph of N .

36

an arbitrarily large number of tokens in p3.9 This proves that N is not sound (no
proper completion). Moreover, it can be used to show that N is also not weak
sound. For any k ≥ 2 the coverability graph can be constructed and this will
show that the net is also not k-sound. Therefore, it is possible to show that N
is also not up-to-k sound or generalized sound. However, using the coverability
graph in Figure 20 it can be shown that N is lazy sound and easy sound. Using
the construction illustrated in Figure 17, a set of adapted coverability graphs
can be used to prove relaxed soundness. In general, the coverability graph (or a
set of coverability graphs) can be used to decide on any type of soundness except
for generalized soundness. For generalized soundness one can use the approach
described in [36].

Let us consider again the WF-net shown in Figure 19. NR is the net with the
dashed reset arc and without the dashed inhibitor arc. NR is classical sound,
weak sound, k-sound, up-to-k sound, generalized sound, relaxed sound, lazy
sound, and easy sound. NI is the net with the inhibitor arc and not the re-
set arc and NRI is the net with both arcs. NI and NRI also satisfy all eight
notions of soundness.

In the presence of reset or inhibitor arcs, the coverability graph cannot be
used to come to a conclusive answer. If the state space is finite, the reachability
graph can be constructed and seven notions of soundness can be checked (all
except generalized soundness). Note however that boundedness is undecidable
for nets with reset or inhibitor arcs [23]. Nevertheless, the coverability graph
of a WF-net where the reset and inhibitor arcs are ignored, provides a kind
of “upperbound” for the model with reset and/or inhibitor arcs. Let NX be a
WF-net such that after moving the reset and inhibitor arcs, NX coincides with
N in Figure 19. Based on the coverability graph in Figure 20, we can conclude
that for such an NX there can never be two tokens in p5 or a token in p2 and
p4 at the same time. This illustrates that the coverability graph can be seen as
an over-approximation of the true behavior.

7.2 Invariants

As shown in [3, 74] structural techniques can be used to analyze WF-nets without
reset and/or inhibitor arcs. In this setting, the absence of certain invariants
points towards errors as explained below.

A place invariant is a weighted sum over the places that is invariant under
each possible transition firing. In Figure 19 the sum of tokens on the places
p1, p2, p4, and p5 is constant independent of the initial marking, i.e., it is a
structural property. The absence of particular place invariants hints at problems.
For example, in WF-net N shown in Figure 19 there is no place invariant adding
a positive weight to all places. This typically suggests some structural anomaly.
In this case, there is a positive invariant involving all places except p3 and there
is no such invariant involving p3. This is caused by the fact that p3 is unbounded

9 To be more precise: for any k ∈ IN there exists an l ≥ k such that state [p5, p3l] is
reachable.

37

and this is indeed the primary reason why N is not classical/weak sound. Hence,
the lack of such an invariant is a useful diagnostic.

A transition invariant assigns a weight to all transitions such that if each
transition is able to fire the number of times indicated by the weight, the sys-
tem is back in the initial state. Note that it is not guaranteed that a transition
invariant is realizable, i.e., it is a structural property independent of the initial
marking and there may be too few tokens to allow each of the transitions fire
the designated number of times. When applying transition invariants one should
consider the so-called short-circuited net mentioned earlier. The short-circuited
net is the Petri net obtained by connecting o to i via a new transition t∗ thus
making the net cyclic. When considering classical soundness or relaxed sound-
ness, there should be a semi-positive transition invariant for each transition, i.e.,
for each transition t it should be possible to find an invariant that assigns a
positive weight to both t and t∗. If it is not possible to find such an invariant for
t, the transition cannot contribute to any execution sequence leading from [i] to
[o].

The above shows that using invariants one can generate useful diagnostics
for WF-nets without reset and/or inhibitor arcs. It is easy to see that invariants
are less useful for nets with reset arcs because these arcs destroy the nice linear
algebraic properties that follow from the marking equation [62, 65]. However, all
the properties still hold for WF-nets with inhibitor arcs. This is shown in detail
in [73]. Consider NI in Figure 19 (i.e., the WF-net with the inhibitor arc). If NI

is classical sound or relaxed sound, then for each t here has to be an invariant
that assigns a positive weight to t and the short-circuiting transition t∗. This
is indeed the case. In fact, the transition invariant that assigns weight 1 to all
transitions including t∗ is such an invariant. If such invariant(s) would not exist,
the WF-net with the inhibitor arc could not be classical/relaxed sound. Also note
that inhibitor arcs leave place invariants intact, i.e., the behavioral properties
of place invariants obtained by ignoring inhibitor arcs still hold when inhibitor
arcs are added.

In a practical setting, invariants can be used to discover lots of errors. For
example, in [58, 60] it is shown that many errors in the SAP reference model can
be discovered using transition invariants.

7.3 Reduction rules

The construction of a coverability graph can be considered as a “brute force”
approach while the use of structural techniques such as invariants aim at a more
efficient analysis. However, in many cases the “brute force” takes too long and
structural techniques give inconclusive answers. Reductions rules provide a dif-
ferent approach and can be used in combination with other techniques. The goal
of a reduction rule is to make the net smaller without changing specific proper-
ties such as soundness. There are basically two reasons for using reduction rules
in the context of WF-nets. First of all, by making the WF-net smaller without
changing its soundness properties, it becomes easier to apply other methods such
as the construction of the coverability graph. Second, using reduction rules it is

38

possible to provide better diagnostics, i.e., by reducing the trivially correct parts
of a WF-net, the focus can be on the erroneous or suspicious constructs that
remain.

t1

start

p1 t2 p2 t3 p3

t4

t5

t6

end

p4 t7 p5 t8 p6

x

start end

Fig. 21. A sound WF-net that can be reduced to the trivially correct WF-net.

To illustrate the use of reduction rules, we consider the sound WF-net shown
in Figure 21 (top one). Note that this net satisfies all eight forms of soundness.
We can apply the liveness and boundedness preserving reduction rules described
in [12, 13, 62] and by doing so we obtain the net shown at the bottom of Figure 21.
The dashed lines illustrate the scopes of the various applications of the reduction
rules. The reduced model is trivially sound, so the original model was also sound.
We can apply the liveness and boundedness preserving reduction rules of [12,
13, 62] to get this result, because a WF-net is classical sound if and only if the
corresponding short-circuited net is live and bounded [1, 2].

Figure 22 shows how reduction rules can be used to show that a WF-net is
not sound and highlights the problematic parts. By applying the liveness and
boundedness preserving reduction rules, we can reduce the top net into the
small net at the bottom. The reduced net clearly shows the problem, i.e., a
lack of synchronization. Note that the short-circuited counterparts of both WF-
nets are unbounded and hence these WF-nets are not sound. Note that all the
classical liveness and boundedness preserving reduction rules [12, 13, 62] that do
not depend on the initial marking also preserve the other notions of soundness.

39

t1

start

p1 t2 p2 t3 p3

t4

t5

t6

end

p4 t7 p5 t8

start end

t1

Fig. 22. A WF-net that is not sound and that cannot be reduced completely.

However, these rules do not necessarily apply to Petri nets with reset and/or
inhibitor arcs.

In [75, 81] the liveness and boundedness preserving reduction rules are ex-
tended to reset and/or inhibitor arcs, i.e., new rules are given and existing rules
are modified. This set of rules can be applied to WF-nets such as the one shown
in Figure 23. The top net is classical sound, but is a bit difficult to interpret.
(Note that the net is also weak and relaxed sound, but not 2-sound.) Using the
rules presented in [75, 81] the net can be reduced without changing things with
respect to weak/classical soundness. In the resulting WF-net only half of the
transitions remain.

A detailed discussion on the application of reduction rules to soundness anal-
ysis is beyond the scope of this paper. However, we informally show one of
the reduction rules that preserves liveness and boundedness for nets with reset
and/or inhibitor arcs. Using the Fusion of Series Places (FSP) rule shown in
Figure 24, we can reduce two places and one transition to one place. Thus, this
rule effectively removes a transition and a place. The conditions are sketched in-
formally in Figure 24. Tokens which reside in the first place p can be considered
to be “ghost tokens” for the second place q. Since there is no transition having
p as input place other than t, tokens in p can/will always end up in q. If some
transition needs to consume a ghost token in p, the intermediate transition t
should fire first, replacing the ghost token in p by a tangible one in q. Since t
should not be blocked and have other side-effects, t should not have any reset
or inhibitor arcs. There can be reset and/or inhibitor arcs connected to p and
q. However, these two places should be “identical” in terms of such arcs. Under
such circumstances, p and q can be merged into r and t is no longer needed. The
net before applying the FSP rule is live if and only if the net after applying the

40

t1

start

p2

t3 p4 t6 p6

end

t1

start

p1

t2

t4 t8

p7t7t5 p5p3

x

t4p2

p7t7y

end

t8

Fig. 23. Partial reduction of a WF-net with reset and inhibitor arcs.

RI

FSP

p

t

q r

Fig. 24. One of the liveness and boundedness preserving reduction rules presented in
[75]: Fusion of Series of Places (FSP).

41

FSP rule is live. Moreover, the net before applying the FSP rule is bounded if
and only if the net after applying the FSP rule is bounded. This is proven in
[75]. Note that the FSP rule was applied repeatedly in figures 21, 22, and 23.
For WF-nets without reset and inhibitor arcs, soundness corresponds to liveness
and boundedness. This is not the case for WF-nets with reset and inhibitor arcs.
However, it is easy to prove that the the FSP rule also preserves soundness for
arbitrary WF-nets with reset and inhibitor arcs.

The above examples illustrate that reduction rules can be used to simplify the
problem and provide diagnostics. For particular languages variants of the above
rules can be developed. See [21] for a small set of reduction rules for EPCs. In [57,
59] a more extensive set of reduction rules for EPCs is given. Using these rules
in combination with state space analysis, many errors were found in a sample of
more than 2000 non-trivial EPCs from industry [57, 59]. Moreover, the reduction
rules could also be used to highlight the errors.

In this section, we discussed three different approaches to tackle workflow ver-
ification problems. The goal was not to present a particular analysis technique
but to provide an overview. This overview shows that for WF-nets without reset
and/or inhibitor arcs, standard techniques such as the coverability graph and
reduction rules can be used to decide soundness. Moreover, even though reset
and/or inhibitor arcs are present and soundness is in principle undecidable, of-
ten it is still possible to apply these techniques and obtain valuable answers.
Empirical studies show that in such cases many errors can be discovered even if
soundness is undecidable in the general case.

8 Conclusion

Over the last decade many papers on workflow verification have appeared. Some
of these papers use Petri nets as a representation language. Other papers use
a wide variety of similar graph-based languages (e.g., EPCs, BPMN, or simple
AND-XOR graphs). However, independent of the representation used, there is
always the basic notion of the creation of a process instance (case) and the suc-
cessful completion of it. This naturally leads to various notions of soundness,
i.e., reasoning about the correctness of a workflow model without any domain
knowledge. Typical ingredients are absence of deadlocks and livelocks, proper
termination, non-dead tasks, etc. Different soundness notions have been pre-
sented in the literature. Therefore, this paper provides a rigorous analysis of
the different notions of soundness. Decidability of the various soundness notions
has not been systematically investigated before. In fact, this is the first paper to
present decidability results for soundness in the presence of reset and/or inhibitor
arcs.

In order to investigate the various soundness notions, we use the so-called
extended WF-nets as a starting point. These nets support the basic routing
constructs but also allow for more advanced patterns through the so-called reset
and inhibitor arcs. Notions such as cancellation, priority, etc. can be modeled

42

using such arcs. As shown in Table 1, 4*8=32 verification problems have been
investigated for four classes of WF-nets and eight notions of soundness. For
WF-nets without reset and/or inhibitor arcs all eight notions of soundness are
decidable. However, as shown in this paper, most (if not all) notions of soundness
become undecidable when reset and/or inhibitor arcs are used. Only for the
combination of generalized soundness and WF-nets with reset arcs, did we not
find a conclusive answer. This remains an open problem and a topic for future
research.

As explained in Section 7, undecidability does not make things hopeless.
Many errors can be discovered using techniques such as invariants and reduction
rules. Applying such techniques to real-life models typically results in the dis-
covery of many errors. This has been demonstrated in the few empirical studies
that are available [58, 60, 57, 59, 71]. Currently, we are planning more empirical
studies on workflow verification. We consider this more important than inventing
new (toy) workflow notations and their corresponding soundness properties.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer-
Verlag, Berlin, 2000.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2004.

5. W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way
to Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo, and
M.T. Ozsu, editors, Proceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE’02), volume 2348 of Lecture Notes in
Computer Science, pages 535–552. Springer-Verlag, Berlin, 2002.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 25(1):43–69, 2000.

7. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

8. W.M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From
Public Views to Private Views: Correctness-by-Design for Services. In M. Dumas
and H. Heckel, editors, Informal Proceedings of the 4th International Workshop on
Web Services and Formal Methods (WS-FM 2007), pages 119–134. QUT, Brisbane,
Australia, 2007.

9. K. Barkaoui and L. Petrucci. Structural Analysis of Workflow Nets with Shared
Resources. In W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors,
Proceedings of Workflow Management: Net-based Concepts, Models, Techniques
and Tools (WFM’98), volume 98/7 of Computing Science Reports, pages 82–95,
Lisbon, Portugal, 1998. Eindhoven University of Technology, Eindhoven.

43

10. A. Basu and R.W. Blanning. A Formal Approach to Workflow Analysis. Informa-
tion Systems Research, 11(1):17–36, 2000.

11. A. Basu and A. Kumar. Research Commentary: Workflow Management Issues in
e-Business . Information Systems Research, 13(1):1–14, 2002.

12. G. Berthelot. Checking Properties of Nets Using Transformations. In G. Rozen-
berg, editor, Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer
Science, pages 19–40. Springer-Verlag, Berlin, 1986.

13. G. Berthelot. Transformations and Decompositions of Nets. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri
Nets, central models and their properties, volume 254 of Lecture Notes in Computer
Science, pages 360–376. Springer-Verlag, Berlin, 1987.

14. H.H. Bi and J.L. Zhao. Applying Propositional Logic to Workflow Verification.
Information Technology and Management, 5(3-4):293–318, 2004.

15. Y. Choi and J. Zhao. Decomposition-based Verification of Cyclic workflows. In
D.A. Peled and Y-K. Tsay, editors, Proceedings of Automated Technology for Ver-
ification and Analysis (ATVA 2005), volume 3707 of Lecture Notes in Computer
Science, pages 84–98, Taipei, Taiwan, 2005. Springer-Verlag.

16. P. Chrzastowski-Wachtel. Testing Undecidability of the Reachability in Petri Nets
with the Help of 10th Hilbert Problem. In S. Donatelli and J. Kleijn, editors, Appli-
cation and Theory of Petri Nets 1999, volume 1639 of Lecture Notes in Computer
Science, pages 268–281. Springer-Verlag, Berlin, 1999.

17. J. Dehnert. A Methodology for Workflow Modeling: From Business Process Mod-
eling Towards Sound Workflow Specification. PhD thesis, TU Berlin, Berlin, Ger-
many, 2003.

18. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

19. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01), vol-
ume 2068 of Lecture Notes in Computer Science, pages 157–170. Springer-Verlag,
Berlin, 2001.

20. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

21. B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Verification of
EPCs: Using Reduction Rules and Petri Nets. In O. Pastor and J. Falcão e Cunha,
editors, Proceedings of the 17th Conference on Advanced Information Systems En-
gineering (CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages
372–386. Springer-Verlag, Berlin, 2005.

22. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the
25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 103–115, Aalborg, Denmark,
July 1998. Springer-Verlag.

23. C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Lectures on Concur-
rency and Petri Nets, volume 1644 of Lecture Notes in Computer Science, pages
301–310, Prague, Czech Republic, July 1999. Springer-Verlag.

44

24. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

25. J. Esparza. Decidability and Complexity of Petri Net Problems: An Introduction.
In W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, vol-
ume 1491 of Lecture Notes in Computer Science, pages 374–428. Springer-Verlag,
Berlin, 1998.

26. J. Esparza. Reachability in Live and Safe Free-Choice Petri Nets is NP-Complete.
Theoretical Computer Science, 198(1-2):211–224, 1998.

27. J. Esparza and M. Nielsen. Decidability Issues for Petri Nets: A Survey. Journal
of Information Processing and Cybernetics, 30:143–160, 1994.

28. A. Finkel. The minimal coverability graph for Petri nets. In G. Rozenberg, editor,
Advances in Petri Nets 1993, volume 674 of Lecture Notes in Computer Science,
pages 210–243. Springer-Verlag, Berlin, 1993.

29. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, April 2001.

30. X. Fu, T. Bultan, and J. Su. Formal Verification of e-Services and Workflows.
In C. Bussler, R. Hull, S. McIlraith, M. Orlowska, B. Pernici, and J. Yang, edi-
tors, Web Services, E-Business, and the Semantic Web, CAiSE 2002 International
Workshop (WES 2002), volume 2512 of Lecture Notes in Computer Science, pages
188–202. Springer-Verlag, Berlin, 2002.

31. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In
International World Wide Web Conference: Proceedings of the 13th international
conference on World Wide Web, pages 621–630, New York, NY, USA, 2004. ACM
Press.

32. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

33. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

34. K.M. van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Soundness of
Resource-Constrained Workflow Nets. In G. Ciardo and P. Darondeau, editors,
Applications and Theory of Petri Nets 2005, volume 3536 of Lecture Notes in
Computer Science, pages 250–267. Springer-Verlag, Berlin, 2005.

35. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst
and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of
Lecture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.

36. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised Soundness of Workflow
Nets Is Decidable. In J. Cortadella and W. Reisig, editors, Application and Theory
of Petri Nets 2004, volume 3099 of Lecture Notes in Computer Science, pages
197–215. Springer-Verlag, Berlin, 2004.

37. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets. In W.M.P.
van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors, International Confer-
ence on Business Process Management (BPM 2005), volume 2678 of Lecture Notes
in Computer Science, pages 220–235. Springer-Verlag, Berlin, 2005.

38. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

45

39. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

40. C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater. Model Check-
ing of Workflow Schemas. In Proceedings of the Fourth International Enterprise
Distributed Object Computing Conference (EDOC’00), pages 170–181, Los Alami-
tos, CA, USA, 2000. IEEE Computer Society.

41. R.M. Karp and R.E. Miller. Parallel Program Schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

42. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

43. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23–40, 2006.

44. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. Infor-
mation Processing Letters, 70(6):269–274, June 1999.

45. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applica-
tions: Local Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and
A. Oberweis, editors, Business Process Management: Models, Techniques, and Em-
pirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 235–253.
Springer-Verlag, Berlin, 2000.

46. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997.

47. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

48. J. Li, Y. Fan, and M. Zhou. Performance Modeling and Analysis of Workflow. IEEE
Transactions on Systems, Man and Cybernetics, Part A, 34(2):229–242, 2004.

49. H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to
Identify Structural Conflicts. In Proceedings of the Thirty-Fourth Annual Hawaii
International Conference on System Science (HICSS-35). IEEE Computer Society
Press, 2002.

50. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing Interacting
BPEL Processes. In S. Dustdar, J.L. Faideiro, and A. Sheth, editors, International
Conference on Business Process Management (BPM 2006), volume 4102 of Lecture
Notes in Computer Science, pages 17–32. Springer-Verlag, Berlin, 2006.

51. D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

52. A. Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:12–20,
2003.

53. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor,
Proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin, 2005.

54. A. Martens. Consistency between executable and abstract processes. In Proceedings
of International IEEE Conference on e-Technology, e-Commerce, and e-Services
(EEE’05), pages 60–67. IEEE Computer Society Press, 2005.

55. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. In Proceedings of the 2nd South-East European Workshop on Formal
Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia, 2005.

46

56. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. Annals of Mathematics, Computing & Teleinformatics, 1(3):35–43, 2005.

57. J. Mendling. Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration, Vienna,
Austria, 2007.

58. J. Mendling, M. Moser, G. Neumann, H.M.W. Verbeek, B.F. van Dongen, and
W.M.P. van der Aalst. Faulty EPCs in the SAP Reference Model. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, International Conference on Business Process
Management (BPM 2006), volume 4102 of Lecture Notes in Computer Science,
pages 451–457. Springer-Verlag, Berlin, 2006.

59. J. Mendling, G. Neumann, and W.M.P. van der Aalst. Understanding the Occur-
rence of Errors in Process Models Based on Metrics. In F. Curbera, F. Leymann,
and M. Weske, editors, Proceedings of the OTM Conference on Cooperative infor-
mation Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science,
pages 113–130. Springer-Verlag, Berlin, 2007.

60. J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst, and
G. Neumann. Detection and Prediction of Errors in EPCs of the SAP Reference
Model. Data and Knowledge Engineering, 64(1):312–329, 2008.

61. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

62. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

63. F. Puhlmann and M. Weske. Interaction Soundness for Service Orchestrations. In
A. Dan and W. Lamersdorf, editors, Proceedings of Service-Oriented Computing
(ICSOC 2006), volume 4294 of Lecture Notes in Computer Science, pages 302–313.
Springer-Verlag, Berlin, 2006.

64. F. Puhlmann and M. Weske. Investigations on Soundness Regarding Lazy Activi-
ties. In S. Dustdar, J.L. Faideiro, and A. Sheth, editors, International Conference
on Business Process Management (BPM 2006), volume 4102 of Lecture Notes in
Computer Science, pages 145–160. Springer-Verlag, Berlin, 2006.

65. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

66. W. Sadiq and M.E. Orlowska. On Correctness Issues in Conceptual Modeling of
Workflows. In Proceedings of the 5th European Conference on Information Systems
(ECIS ’97), pages 19–21, Cork, Ireland, 1997.

67. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Iden-
tifying Structural Conflicts in Process Models. In M. Jarke and A. Oberweis,
editors, Proceedings of the 11th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, Berlin, 1999.

68. W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

69. K. Salimifard and M. Wright. Petri Net-Based Modelling of Workflow Systems:
An Overview. European Journal of Operational Research, 134(3):664–676, 2001.

70. R. van der Toorn. Component-Based Software Design with Petri nets: An Approach
Based on Inheritance of Behavior. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2004.

71. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In
B. Krämer, K. Lin, and P. Narasimhan, editors, Proceedings of Service-Oriented

47

Computing (ICSOC 2007), volume 4749 of Lecture Notes in Computer Science,
pages 43–55. Springer-Verlag, Berlin, 2007.

72. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri
Nets. In D. Marinescu, editor, Proceedings of the Second International Workshop
on Applications of Petri Nets to Coordination, Workflow and Business Process
Management, pages 59–78. Florida International University, Miami, Florida, USA,
2005.

73. H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Verifying Work-
flows with Cancellation Regions and OR-joins: An Approach Based on Relaxed
Soundness and Invariants. The Computer Journal, 50(3):294–314, 2007.

74. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

75. H.M.W. Verbeek, M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Reduction Rules for Reset/Inhibitor Nets. BPM Center Report BPM-07-13, BPM-
center.org, 2007.

76. M. Weske. Business Process Management: Concepts, Languages, Architectures .
Springer-Verlag, Berlin, 2007.

77. S.A. White et al. Business Process Modeling Notation Specification (Version 1.0,
OMG Final Adopted Specification), 2006.

78. A. Wombacher. Decentralized Consistency Checking in Cross-organizational Work-
flows. In Proceedings of International Conference on e-Technology, e-Commerce
and e-Service (CEC/EEE 2006), pages 39–46. IEEE Computer Society, 2006.

79. M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Verify-
ing Workflows with Cancellation Regions and OR-joins: An Approach Based on Re-
set Nets and Reachability Analysis. In S. Dustdar, J.L. Faideiro, and A. Sheth, edi-
tors, International Conference on Business Process Management (BPM 2006), vol-
ume 4102 of Lecture Notes in Computer Science, pages 389–394. Springer-Verlag,
Berlin, 2006.

80. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achiev-
ing a General, Formal and Decidable Approach to the OR-join in Workflow using
Reset nets. In G. Ciardo and P. Darondeau, editors, Applications and Theory of
Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 423–
443. Springer-Verlag, Berlin, 2005.

81. M.T. Wynn, H.M.W. Verbeek, W.M.P. van der Aalst, A.H.M. ter Hofstede, and
D. Edmond. Reduction Rules for Reset Workflow Nets. BPM Center Report
BPM-06-25, BPMcenter.org, 2006.

48

