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Abstract. Reference process models capture recurrent business opera-
tions in a given domain such as procurement or logistics. These models
are intended to be configured to fit the requirements of specific orga-
nizations or projects, leading to individualized process models that are
subsequently used for domain analysis or solution design. Although the
advantages of reusing reference process models compared to designing
process models from scratch are widely accepted, the methods employed
to configure reference process models are manual and error-prone. In par-
ticular, analysts are left with the burden of ensuring the correctness of
the individualized process models and to manually fix errors. This paper
proposes a foundation for configuring reference process models incre-
mentally and in a way that ensures the correctness of the individualized
process models, both with respect to syntax and behavioral semantics.
Specifically, assuming the reference process model is behaviorally sound,
the individualized process models are guaranteed to be sound.
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1 Introduction

The design of business process models is labor-intensive, especially when such
models are required to be detailed enough to support the development of software
systems. To avoid the effort of creating process models from scratch, several con-
sortia and vendors have defined so-called reference process models. These models
capture proven practices and recurrent business operations in a given domain.
They are designed in a generic manner and are intended to be individualized
to fit the requirements of specific organizations or IT projects. Commercial pro-
cess modeling tools come with standardized libraries of reference process models
such as the IT Infrastructure Library (ITIL) [21] or the Supply Chain Operations
Reference (SCOR) model [20]. Also, the SAP Reference Model [6] incorporates
a collection of process models corresponding to common business operations
supported by SAP’s Enterprise Resource Planning (ERP) system.

Reference process models in commercial use lack an explicit representation
of configuration alternatives and decisions. As a result, their individualization
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is entirely manual [18]. Analysts take the reference models merely as a source
of inspiration, but ultimately, they design their own model on the basis of the
reference model, with little guidance as to which model elements need to be
removed, added or modified to address a given requirement. To address this
shortcoming, we introduced in previous work the concept of configurable pro-
cess models [18]. A configurable process model represents multiple variants of a
business process model in an integrated manner. In line with methods from the
field of software product lines [17], these alternatives are captured as variation
points. That means, instead of having to add or remove model elements manu-
ally, the fact that a task in a reference process model may or may not appear in
an individualized model is captured by attaching a variation point to that task
allowing users to select or deselect it. Individualized models are obtained from
configurable models by interpreting the values for each variation point.

While configurable process models provide guidance to analysts during indi-
vidualization, they do not guarantee that the individualized models are correct,
whether syntactically or semantically. For example, if a model element or an
entire path in a reference process model is removed during configuration, the
remaining model elements need to be re-connected to maintain syntactic cor-
rectness. Also, the configuration of variation points attached to parallel splits,
decision points and synchronization points in a configurable process model may
lead to the introduction of deadlocks. And if the individualized process model
contains such semantic errors, it needs to be manually fixed.

The contribution of this paper is a framework for configuring reference pro-
cess models in a correctness-preserving manner. The framework includes a tech-
nique to derive propositional logic constraints that, if satisfied by a configuration
step, guarantee the syntactic correctness of the resulting model. We prove that
for a large class of process models, these constraints also ensure that semantic
correctness is preserved. The framework supports staged configuration [8]. In
other words, it allows correctness to be checked at each intermediate step of
the configuration procedure. Whenever a value is assigned to a variation point,
the current set of constraints is evaluated. If the constraints are satisfied, the
configuration step is applied. If on the other hand the constraints are violated,
we compute a reduced propositional logic formula, from which we can identify
additional variation points that need to be configured simultaneously in order to
preserve correctness (e.g. if an edge in the process model is removed, all nodes
in a path starting with that edge need to be removed). The set of constraints is
incrementally updated after each step of the configuration procedure.

The proposal is intended as a foundation for reference process model configu-
ration. Accordingly, we adopt a Petri net-based representation of process models,
thus abstracting from the specificities of process modeling notations used in prac-
tice (e.g. UML Activity Diagrams, EPC, BPMN). We use a class of Petri nets,
namely workflow nets, which are specifically designed to represent business pro-
cesses [1]. Workflow nets come with a notion of behavioral correctness known as
soundness, which ensures the absence of deadlocks and improper completion. In
this paper, we enhance workflow nets with the notion of variation point, leading
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to the concept of a configurable workflow net. We then define a notion of con-
figuration step over such nets and we show how to derive correctness-preserving
constraints for such steps. A core result of the paper is that, for workflow nets
that satisfy the “free-choice” property [9], if the outcome of a configuration step
starting from a sound workflow net is a workflow net, then this latter workflow
net is sound. This means that for this class of nets, configuration steps that
preserve syntactic correctness also preserve behavioral correctness.

The paper is structured as follows. Section 2 introduces workflow nets and the
notion of soundness while Section 3 introduces the notion of configurable work-
flow net and configuration step. Section 4 discusses the derivation of constraints
that guarantee the preservation of syntactic correctness, and proves that these
constraints also guarantee soundness for free-choice nets. The paper concludes
with a section on related work, a summary, and an outlook on open issues.

2 Background

Petri nets are a formal model of concurrent systems [16]. Petri nets benefit from
a rich body of theoretical results, analysis techniques and tools. They have been
extensively applied to the formal verification of business process models [23].
These features make Petri nets suitable for establishing a formal foundation
for business process model configuration. In addition, mappings exist between
process modeling languages used in practice (e.g. UML Activity Diagrams, EPC,
BPMN, BPEL) and Petri nets. These mappings provide a basis for extending
the results outlined in this paper to concrete process modeling notations.

We use a class of Petri nets, namely workflow nets, specifically designed for
business process modeling. Workflow nets have a single starting point and ending
point, which captures the intuition that business processes are instantiated, and
each process instance progresses independently through a series of activities until
completion. A desirable property is that an instance of a workflow net always
completes properly. This is captured by the notion of soundness. To make the
paper self-contained, we provide an introduction to workflow nets and soundness.

2.1 Workflow nets: Syntax

Petri nets are composed of two types of elements, namely transitions and places,
connected by directed arcs. Transitions represent tasks while places represent
the status of the system before or after the execution of a transition. Formally:

Definition 1 (Petri net, Preset, Postset). A Petri net is a triple PN =
(P, T, F ), such that:

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation).

For each node x ∈ P ∪ T , we use •x and x• to denote the set of inputs to x
(preset) and the set of outputs of x (postset). �
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Fig. 1. Reference model for travel form approval.

Fig. 1 shows a process model for travel requisition approval as a Petri net. It
consists of two variants: the left one for international travel and the right one
for domestic travel. After requesting a quote for international travel, either the
employee or an assistant prepares the travel requisition form. In case of the
latter, the employee needs to check the form before submitting it for approval.
The administrator can then approve or reject the requisition, or make a request
for change. At this point, the employee can update the form according to the
administrator’s suggestions and re-submit it, or drop the case. In contrast, the
application for domestic travel only requires the employee to ask for a quote and
to report the travel requisition to the administration.

A business process model may be executed a number of times to deal with
different cases (e.g. different travel requests in the example). Each of these cases
(called process instances) has a distinct start (input) and an end (output). Ac-
cordingly, we are only interested in Petri nets with a unique source place (rep-
resenting the input) and a unique sink place (output), and such that all other
nodes are on a directed path between the input and the output places. A Petri
net satisfying these conditions represents a structurally correct process model
and is known as a workflow net [1]. Formally:

Definition 2 (Workflow net). Let PN = (P, T, F ) be a Petri net and F ∗ is
the reflexive transitive closure of F . PN is a workflow net (WF-net) iff:

– there exists exactly one pI ∈ P such that •pI = ∅, and
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– there exists exactly one pO ∈ P such that pO• = ∅, and
– for all n ∈ P ∪ T, (pI , n) ∈ F ∗ and (n, pO) ∈ F ∗. �

The Petri net in Fig. 1 is a WF -net.

2.2 Workflow nets: Semantics

Behavioral correctness of a WF -net is defined with respect to the states that a
process instance can be in during its execution. A state of a WF -net is repre-
sented by the marking of its places with tokens. In other words, in a given state,
each place is either empty, or it contains one or more tokens (i.e. it is marked).
A transition is enabled in a given marking, if all the places in the transition’s
preset are marked. Once enabled, the transition can fire (i.e. can be executed)
by removing a token from each place in the preset and putting a token into each
subsequent place of the transition’s postset. This leads to a new state. Formally:

Definition 3 (Marking, Enabling Rule, Firing Rule). Let N = (P, T, F )
be a WF-net with source place pI and sink place pO:

– M : P → N is a marking of N and M(N) is the set of markings of N ,
– MI is the initial marking of N with one token in place pI , i.e. MI = [pI ],
– MO is the final marking of N with one token in place pO, i.e. MO = [pO],
– M(p) returns the number of tokens in place p if p ∈ dom(M),
– For any two markings M,M ′ ∈M(N), M ≥ M ′ iff ∀p∈P M(p) ≥ M ′(p),
– For any transition t ∈ T and any marking M ∈ M(N), t is enabled at M ,

denoted as M [t〉, iff ∀p∈•t M(p) ≥ 1. Marking M ′ is reached from M by
firing t and M ′ = M − •t + t•,

– For any two markings M,M ′ ∈ M(N), M ′ is reachable from M in N , de-
noted as M ′ ∈ N [M〉, iff there exists a firing sequence σ = 〈t1, t2, ..., tn〉
leading from M to M ′, and we write M

σ

�
N

M ′. If σ = 〈t〉, we use the
notation M

t−→
N

M ′. N can be omitted if clear from the context. �

The execution of a process instance starts with the state in which the input
place has one token and no other place is marked. The execution of this process
instance should then progress through transition firings until a proper completion
state. This intuition is captured by three requirements [1]. Firstly, every process
instance should always have the option to complete. If a WF -net satisfies this
requirement, it will never run into a deadlock or livelock. Secondly, every process
instance should eventually reach the state in which there is one token in the
output place pO, and no tokens are left behind in any other place, since this
would signal that there is still work to be done. Thirdly, for every transition,
there should be at least one execution sequence from the initial marking (where
only pI is marked) to the final marking (where only pO is marked) that includes
at least one firing of this transition. In other words, no transition in the WF -net
should be spurious. A WF -net fulfilling these requirements is sound. Formally:

Definition 4 (Sound WF -net). Let N = (P, T, F ) be a WF-net and MI ,MO

be the initial and end markings. N is sound iff:
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– option to complete: for every marking M reachable from MI , there exists a
firing sequence leading from M to MO, i.e. ∀M∈N [MI〉 MO ∈ N [M〉, and

– proper completion: the marking MO is the only marking reachable from MI

with at least one token in place po, i.e. ∀M∈N [MI〉 M ≥ MO ⇒ M = MO,
– no dead transitions: every transition can be reached by the initial marking,

i.e. ∀t∈T ∃M∈N [MI〉 M [t〉. �

3 Process Model Configuration

There are several ways to capture variation points for the purpose of represent-
ing a configurable process model [7, 11, 18]. In this paper we choose the approach
presented in [11], which is based on the concept of inheritance of process behav-
ior [2], since it abstracts from vendor-specific process modeling notations and
can easily be applied to Petri nets. Accordingly, we define the notion of config-
urable WF-net, where each transition captures a variation point whose possible
values (or variants) are: allowed, hidden and blocked.

Hiding a transition refers to skipping its execution while it is fired, without
affecting the rest of the process flow. Consider for example the WF -net in Fig. 1.
Some organizations may not require a quote for domestic travels. Thus, the task
to request a quote can be skipped from the process model by hiding transition
t2. The process continues without forcing the employee to request a quote.

Blocking a transition implies to inhibit it in the process model. Blocked
transitions cannot forward cases and all the subsequent transitions will never be
executed if they cannot be enabled via other paths. For example, if t2 in Fig.
1 is blocked, the process for domestic travels cannot be triggered and all travel
approvals must be done via the complex variant.

If a transition is neither blocked nor hidden, we say it is allowed, meaning
nothing changes in the model. To configure a WF -net each transition has to be
assigned one value among hidden, blocked or allowed. Formally:

Definition 5 (Configuration). Let N = (P, T, F ) be a WF-net, then cN ∈
T → {allow , hide, block} is a configuration for N . We define:

– Ac
N = {t ∈ T | c(t) = allow} ⊆ T as the set of all allowed transitions,

– Hc
N = {t ∈ T | c(t) = hide} ⊆ T as the set of all hidden transitions,

– Bc
N = {t ∈ T | c(t) = block} ⊆ T as the set of all blocked transitions.1

If N is clear from the context, we drop the subscript. �

Based on these configuration values, a configured net is obtained representing
the new behavior of the process model. This new Petri net is a restriction of
the behavior of the starting model (the reference model), where all the hidden
transitions are replaced by silent τ transitions and all the blocked transitions are
removed. Also, all the places connected only to blocked transitions and all the
flow relations from/to blocked transitions have to be removed too. Formally:

1 Ac
N ∩ Hc

N ∩ Bc
N = ∅ follows from the definition of N .
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Definition 6 (Configured net). Let N = (P, T, F ) be a WF-net and let c be
a configuration of N . The resulting configured net Nc(P c , T c , F c)is defined as
follows:

– T c = (T \ (Bc ∪Hc)) ∪ {τt | t ∈ Hc},
– F c = (F ∩ ((P ∪ T c) × (P ∪ T c))) ∪ {(p, τt) | (p, t) ∈ F ∧ t ∈ Hc} ∪
{(τt, p) | (t, p) ∈ F ∧ t ∈ Hc},

– P c = (P ∩
⋃

(x,y)∈F c{x, y}) ∪ {pI , pO}. �

As an example, Fig. 2a shows a configuration derived from the WF -net in Fig. 1,
where the transitions t2 and t9 have been blocked to allow the complex approval
process only. In this configuration employees have to prepare the approval form
on their own, as t3 has been blocked, and cannot drop a form application if a
change is requested after approval (t10 also blocked). Place p5 has been removed
as it became disconnected after removing t2 and t9.

p1 p1

a) b)pI

p3 p4

pO

p2

p7

Waiting for
travel
quote

Waiting for 
accomodation 

quote

p6

t6

t1

t4

t7

t8

t11 t12

t5

Request for International 
Travel & Accomodation 

quote (Employee)

Check & Update 
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Request for change
(Admin)

pI

p3 p4

pO

p2

p7

Waiting for
travel
quote

Waiting for 
accomodation 

quote

p6

t6

t1

t4

t7

t11 t12

t5

Prepare 
Travel Form
(Employee)

Check & Update 
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit 
Travel Form 
for Approval 
(Employee)

Prepare 
Travel Form
(Employee)

Reject
Travel Form
(Admin)

Submit 
Travel Form 
for Approval 
(Employee)

Request for International 
Travel & Accomodation 

quote (Employee)

Fig. 2. a) Correct process configuration b) Incorrect process configuration.

A process configuration has to comply with the requirements of the domain. This
may prevent users from configuring the values of transitions freely. For example,
in the travel management domain, if an employee submits a travel form for
approval there must be at least an option to accept the request and an option
to reject it. This is clearly a requirement of the domain, which forbids users to
block both t11 and t12 in the process model. In [14] we showed how propositional
logic expressions can be used to encode domain constraints. By evaluating each
transition’s value against these constraints with a SAT solver, it is possible to
prevent all the configurations which would violate the constraints.



8 Wil M.P. van der Aalst et al.

Nonetheless, the set of constraints derived from the domain are in most
cases not sufficient to guarantee the syntactic and semantic correctness of the
configured model. Indeed, as per Definition 6, a configured net can be any Petri
net, which means that it can contain elements that are not on a path from pI to
pO, or which are completely disconnected. For example, forbidding the request
for a change by blocking t9 in the WF -net of Fig. 2a would make p6, t6, p3 and t5
unreachable, yielding the net of Fig. 2b. Such a configuration is not syntactically
correct and hence not semantically correct either, according to Definition 4. So,
as soon as t3 and t8 are blocked, it would be desirable to suggest the user to
block t6 and t5 too, so as to get rid of the unreachable branch. In the following
section we present an approach to automatically derive a set of constraints from
a WF -net that preserve the model correctness during its configuration.

4 Correctness-Preserving Configuration

Existing tools like Woflan [23] support the verification of Petri net-based process
models. These tools could be used to check every single configured net that can
be derived from a reference process model. If the net is incorrect, the configu-
ration that has generated this net should be excluded from the set of possible
configurations. However, this approach is costly, considering that reference pro-
cess models can potentially yield thousands of individualized process models.

Our aim is therefore to define a framework which allows incorrect configu-
ration steps to be discarded incrementally and without computing all possible
configurations of the reference model. In addition, the framework needs to seam-
lessly integrate the domain constraints, so that a user can derive a correct process
model which also satisfies any domain constraints.

To this end, we complement the domain constraints with a set of process
constraints to guarantee the preservation of syntactic and semantic correctness
in the configured net. Both sets of constraints are captured in propositional logic
over the nodes of a WF -net and are reduced by a BDD solver. In this way we
can provide interactive support to the user, by pinpointing the impact of each
configuration step on the resulting net and by eliminating unfeasible options.

4.1 Preserving syntactic correctness

In a staged configuration, users make configuration decisions one after another
in steps, and the set of configuration options is recalculated after each step. To
remain syntactically correct, a WF -net must thus be checked on which configura-
tion options are still viable among the transitions that have not been configured
yet. For this, we have to consider the configuration decisions already taken.

To distinguish nodes which remain in the net from nodes which do not, we use
a boolean variable for each node. If the variable is set to true, the node remains
part of the net; if it is set to false, the node is dropped in the configured net.
Accordingly, we assign a blocked transition the value false, while a transition that
is allowed or hidden is assigned the value true. Since silent transitions have the
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same routing behavior as the original transitions, we do not need to distinguish
hidden from allowed transitions. All transitions that are not explicitly configured
remain as variables (i.e. unset).

According to Definition 6, any internal place remains in the net if there is
a non-blocked transition in its present or postset. Translating this definition
in boolean logic, if one such transition is true, the place has also to be set
to true; if all the connected transitions are false, the place has to be set to
false; if some transitions have no value assigned yet, the place remains unset.
Since a configuration is defined over the transitions of a net, we have to derive
the values of the places. We do that by imposing that each transition set to
true implies true for all the places in its preset and in its postset. Formally:∧

t∈T c [ t ⇒
∧

p∈•t p ∧
∧

p∈t• p].2

Assuming the original net is a WF -net, to guarantee the configured net is
still a WF -net, we have to ensure that each node that remains in the configured
net be on a directed path from pI to pO. This is the only requirement of WF -net
to be verified, as pI and pO are part of the configured net by definition. This
means all the nodes composing the directed path should not be false. For each
node, we can decompose this path into two sub-paths: one from pI to the node
in question and the other from the node to pO, and verify the property over
the nodes of each sub-path. However, as per Definition 6, we can restrict the
verification to the places of each sub-path, by deriving the places’ values from
the ones of the transitions. Indeed, if a non-blocked transition has at least one
place in its preset on a directed path from pI and at least one place in its postset
on a directed path to pO, then the transition is on a directed path from pI to
pO. When searching for such paths we can restrict our analysis to acyclic paths.
In fact a cycle always leads back to the same node, but does not provide any
valuable progress from pI to pO. Formally, we define an acyclic path as follows:

Definition 7 (Acyclic Path). Let PN = (P, T, F ) be a Petri Net:

– φ = 〈n1, n2, ..., nk〉 is an acyclic path of PN such that (ni, ni+1) ∈ F for
1 ≤ i ≤ k − 1 and i 6= j ⇒ ni 6= nj,

– α(φ) = {n1, n2, ..., nk} is the alphabet of φ,
– ΦPN is the set of all acyclic paths of PN ;
– for all n ∈ P ∪ T , AC I(n) = {φ ∈ ΦPN | φ = (pI , ..., n)} is the set of all

acyclic paths from pI to n,
– for all n ∈ P ∪ T , ACO(n) = {φ ∈ ΦPN | φ = (n, ..., pO)} is the set of all

acyclic paths from n to pO. �

The set of process constraints is called PC and is defined as follows:

Definition 8 (Process Constraint). Let N = (P, T, F ) be a WF-net. Treat-
ing each place and each transition of N with a propositional variable, the process
constraint PC (N) is a propositional logic formula over these variables, given by
the conjunction of the following expressions:

2 Where with t, p we indicate a transition, resp. a place, which is set to true.
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– pI and pO are always true, i.e. pI ∧ pO;
– each place p implies the disjunction of all acyclic paths from pI to p

and the disjunction of all acyclic paths from p to pO:
∧

p∈P [p ⇒∨
φ∈AC I(p)(

∧
n∈α(φ) n) ∧

∨
φ∈ACO(p)(

∧
n∈α(φ) n)]. �

The following theorem shows that any configured net derived from a configura-
tion that satisfies PC is a WF -net.

Theorem 1. Let N = (P, T, F ) be a WF-net and PC (N) be its process con-
straint. Let c be a configuration of N and let Nc = (P c , T c , F c) be the resulting
configured net. Let v ∈ T ∪ P → {true, false} be such that v(q) = true iff
q ∈ T c ∪ P c. Then Nc is a WF-net ⇔ v |= PC (N).

Proof. By construction. �

PC has to be satisfied over a system of variables represented by the nodes of the
net, where the values of the transitions are configured by the user and the values
of the places are derived automatically. Checking the satisfiability of PC is an
NP-complete problem. To overcome this issue, we propose to use a SAT solver3

based on Shared Binary Decision Diagrams (SBDDs). Existing SBDD solvers
can efficiently deal with systems made up of around one million possibilities [15].
Hence they are reasonably adequate to capture all the configurations produced
by a reference process model.

We propose to use the solver to obtain a reduced representation of PC in
conjunctive normal form, where each variable is initially unset. Then we conjunct
this formula with each new transition valuation as provided by the user during
the configuration process, and further reduce the formula. In this way we do
not recalculate PC for each configuration step. The solver can only reduce the
formula if this is satisfiable, i.e. if the configuration can yield a syntactically
correct process model. This may imply to automatically force to true or false
the conjunction or disjunction of other transitions which are still unset, in order
to keep the formula satisfiable. For example, after blocking t8 in the model of
Fig. 2a, the solver would force to false t5 and t6 as well.

This solver can be embedded in a tool to support staged configuration of
process models, where invalid configurations are identified when a configuration
step is applied and alternatives are suggested to keep the model correct.

4.2 Preserving Semantic Correctness

In addition to structural correctness, a configuration should be semantically
correct. The example in Fig. 3 shows that a configuration conforming to the
WF -net properties is not automatically sound, even if it is derived from a sound
WF -net. The WF -net in (a) is a sound WF -net: if t8 fires before t4, the token
in p2 can reach p5 via t3. However, if t3 is blocked (b), t4 needs to fire before
t8 as t4 depends on the token in p6 which is removed when t8 fires. Since this
behavior is not enforced in the net, the process might deadlock, and is therefore
not sound, although (b) is still a valid WF -net.
3 Available at http://www-verimag.imag.fr/~raymond/tools/bddc-manual.
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Fig. 3. Blocking t3 in (a) leads to an unsound WF -net (b)

Soundness is only defined for WF -nets (Definition 2), but it can be generalized
to any Petri net with a designated source and sink place. However, it is easy
to show that any non WF -net would still violate this generalized soundness
notation. Therefore, the process constraint defined in Definition 8 is a necessary
requirement for soundness, but as Fig. 3 shows, it is not sufficient.

Below, we prove that PC is a sufficient requirement to guarantee soundness
of a configured net, if the original model is a sound extended free-choice WF -net.
The restriction to this class of Petri nets provides a good compromise between
expressiveness and verification complexity. Not only do extended free-choice WF -
nets have several desirable properties [9], but the large majority of constructs of
process modeling languages such as EPCs, BPMN or BPEL can be mapped to
Petri nets in this class. An extended free-choice is defined as follows [16]:

Definition 9 (Extended Free-choice WF -Net). Let N = (P, T, F ) be a
Petri net. N is extended free-choice (eFC ) if for every couple of places sharing
transitions in their postset, these postsets coincide, i.e. ∀p1,p2∈P\pO

[p1• ∩ p2• 6=
∅ ⇒ p1• = p2•]. �

Assuming the reference process model is a sound, eFC WF -net, we are able to
identify several configuration properties relevant for the preservation of sound-
ness during the configuration process:

Proposition 1 (Properties of Configuration). Let N = (P, T, F ) be a
sound, eFCWF-net with source place pI and sink place pO, let c be a con-
figuration of N , and let Nc = (P c , T c , F c) be the configured net resulting from
c. If Nc is a WF-net (i.e. PC (N) evaluates to true), then:

a) ∀t∈T c [(•
N

t = •
Nc t) ∧ (t•

N
= t•

Nc )].
b) pI ∈ P c and pO ∈ P c.
c) ∀t∈Bc

N
[(•

N
t∩P c = ∅) ∨ ∃t′∈T c (•

N
t = •

N
t′)] (a blocked transition is either

not consuming any tokens from P c or there is a transition in T c with the
same input set).
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d) ∀σ∈T c∗ (MI
σ

�
N

) ⇔ (MI
σ

�
Nc ) (the input and output sets of transitions in

T c are the same in both nets, therefore, the respective behaviors are identical
when considering only firing sequences σ ∈ T c∗).

e) ∀σ∈T c∗ ∀M [(MI
σ

�
N

M) ⇔ (MI
σ

�
Nc M)].

f) Nc [MI〉 ⊆ N [MI〉 (all firing sequences of Nc are also possible in N).
g) Nc is eFC .
h) ∀M∈Nc [MI〉\{MO} ∃t′∈T c [M [t′〉] (Nc has no deadlock markings).

Proof.

a) Follows directly from the construction of Nc.
b) Idem.
c) Suppose that some t ∈ Bc

N consumes a token from a place p ∈ P c in N .
Because Nc is a WF-net with source place pI and sink place pO, there has
to be a path from p to pO. Hence there is a transition t′ ∈ T c consuming a
token from p. Hence •

N
t ∩ •

N
t′ 6= ∅, thus •

N
t = •

N
t′ (N is eFC ).

d) Follows directly from (a).
e) Follows directly from (d).
f) Follows directly from (e).
g) Let t, t′ ∈ T c such that •

Nc t ∩ •Nc t′ 6= ∅. Given that •
N

t′ = •
Nc t′ and

•
N

t = •
Nc t, we have •

Nc t ∩ •Nc t′ = •
N

t ∩ •
N

t′ 6= ∅. Hence •
N

t = •
N

t′ and
thus •

Nc t = •
Nc t′. Therefore Nc is eFC .

h) Let M ∈ Nc [MI〉 \ {MO}. Then using (e) we can deduce MI �
N

M , thus
there exists a t ∈ T such that M [t〉 (as N is sound). If t ∈ T c then we
are done. If t ∈ Bc

N then there exists a t′ ∈ T c such that •
N

t = •
Nc t′ (c).

Therefore M [t′〉. �

While propositions a, b, d, e and f follow directly from the construction of con-
figured nets and hold for non eFC WF -nets, propositions c, g, and h are par-
ticularly interesting for soundness. The problem in the example of Fig. 3 is that
the configuration may yield an unsound model when a transition is blocked
which shares part of its preset with another transition. By definition, in an eFC
WF -net such a situation cannot exist and therefore a deadlock marking cannot
occur (propositions c and h). Further on, the deadlock in the example prevents
all tokens from reaching the final place. As the configured net derived from an
eFC WF -net remains eFC (proposition g), the eFC property prevents also this
problem as it permits any token to move towards the final place.

These properties allow us to prove that if a configured net, derived from a
sound eFC WF -net, is a WF -net, it fulfills the soundness criteria. Formally:

Theorem 2. Let N = (P, T, F ) be a sound, eFCWF-net with source place pI

and sink place pO, let c be a configuration of N and let Nc = (P c , T c , F c) be
the resulting configured net. If Nc is a WF-net, then Nc is sound.

Proof. Note that changing a transition into a silent transition (hiding) has no
implications for soundness analysis.

– proper completion: since Nc [MI〉 ⊆ N [MI〉 (Proposition 1f), MO is the only
state marking pO.
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– option to complete: because Nc is an eFCWF-net (Proposition 1g), any
token can decide to move towards pO. If pO is marked, all other places are
empty (Nc has proper completion). Hence, marking MO can be reached (and
the property holds) or the net is in a deadlock M . However, this is not possible
as Nc has no deadlock markings (Proposition 1h).

– no dead transitions: we define a length function as follows: L : T c → N. If
pI ∈ •t then L(t) = 0. Otherwise L(t) = 1 + minp∈•t,t′∈•p L(t′). Given
that every transition in Nc is on a path from pI , the function is well-defined.
Using induction we prove ∀n∈N∀t∈T c [L(t) = n ⇒ t is not dead in Nc ].
(Base case) If n = 0 then •t = {pI} and as pI ∈ P c (Proposition 1b), MI [t〉,
hence t is not dead.
(Induction Hypothesis (IH)) If t ∈ T ′c is such that L(t) = n+1, there exists
a transition t′ such that L(t′) = n and t′ • ∩ • t 6= ∅. t′ is not dead (IH),
hence there exists an M ∈ Nc [MI〉 such that M [t′〉. Let M ′ be such that
M t′−→ M ′, then M ′ marks at least one input place (i.e., p) of t. As Nc

has the option to complete, M ′ � MO. This implies that some transition t′′

exists which removes the token from p in some marking M ′, hence p ∈ •t′′.
Therefore •t ∩ •t′′ 6= ∅, and thus, given that Nc is eFC (Proposition 1g)
•t = •t′′. Therefore M ′[t〉 and t is not dead. �

Theorems 1 and 2 can be combined to show that a configured net is sound if and
only if the process constraint PC is satisfied for the corresponding configuration.
If the configured net is not an eFC WF -net, the implication only holds in one
direction and in the other direction soundness cannot be guaranteed. In these
cases PC can be used to rule out all the syntactically incorrect process models
and conventional analysis tools such as Woflan [23] have to be used in addition.

5 Related Work

Variability modeling has been widely studied in the field of Software Product
Line Engineering (SPLE) [17]. Techniques developed in the field enable the con-
figuration of software artifacts based on models that relate these artifacts to
domain concepts (e.g. parameters, options or features). The techniques differ in
the way domain models are captured and related to software artifacts, and also
in the way they capture constraints. The Adele Configuration Manager [10] and
the Cosmic Configurable Middleware [22] use first-order logic to capture con-
straints. In contrast, we use propositional logic, for which we can apply efficient
techniques to discard incorrect configuration steps or to suggest ways of repairing
them. Batory [5] presents a Feature-Oriented Domain Analysis (FODA) tech-
nique in which constraints are captured in propositional logic. The respective tool
uses a SAT solver to determine if a configuration is valid. A similar approach is
adopted in [4]. Our work is inspired by these approaches but it is targeted at
business process model configuration. Thus, we deal with graph-oriented mod-
els (hence, structural correctness needs special attention) and we are concerned
with ensuring absence of deadlocks or livelocks and other behavioral properties.
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We outlined a technique to derive propositional logic constraints from process
models. Similar techniques have been used for analyzing Petri nets [3] and process
graphs [19]. However, the constraints we derive are specifically aimed at checking
that a configuration step preserves the structural properties of workflow nets.

Our previous work includes the definition of variation mechanisms for existing
process modeling languages: EPCs [18], YAWL [13] and SAP WebFlow [12].
In [14] we proposed a framework which ensures domain conformance (but not
syntactic or behavioral correctness) by linking configurable process models to
domain models expressed as questionnaires. Finally, the use of the hiding and
blocking operators for variation points is sketched in [11].

6 Summary and Outlook

We have proposed a framework for staged correctness-preserving configuration
of reference process models. Assuming the initial (reference) process model is
correct, the framework guarantees that the individualized process models are
also correct at each stage of the configuration procedure. This is achieved by
capturing the syntactic correctness constraints as a propositional logic formula.
This formula, in conjunction with another formula capturing the domain con-
straints, is used to check the correctness-preservation of each configuration step.
If a configuration step violates the constraints, a formula is derived to suggest
ways of making the configuration step correctness-preserving. A cornerstone of
the framework is a proof that, for free-choice process models, the enforcement of
these syntactic constraints also ensures the preservation of semantic correctness.

The proposal is framed in the context of Petri net-based process models.
Existing mappings from other process modeling notations to Petri nets provide a
basis to enhance the framework’s applicability in practice. This will be a direction
for future work. Another goal is to provide tool support based on the proposed
framework. In previous work [14], we have developed a tool for questionnaire-
driven configuration of C-EPC and C-YAWL process models. After adapting the
framework to the syntax of these languages, we will be able to extend this tool
with the ability to derive and to enforce correctness-preserving constraints.
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