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Abstract. Contemporary business process simulation environments are
geared towards design-time analysis, rather than operational decision
support over already deployed and running processes. In particular, sim-
ulation experiments in existing process simulation environments start
from an empty execution state. We investigate the requirements for a
process simulation environment that allows simulation experiments to
start from an intermediate execution state. We propose an architecture
addressing these requirements and demonstrate it through a case study
conducted using the YAWL workflow engine and CPN simulation tools.

1 Introduction

Business process simulation enables the analysis of business process models with
respect to performance metrics such as throughput time, cost or resource utiliza-
tion. A number of business process modelling tools support simulation to varying
degrees [7]. However, this tool support is largely geared towards a priori, i.e.,
design time, comparison of candidate business process models. Accordingly, they
assume that simulation experiments are run from an empty initial state, for a
very large number of cases, to give analysts insight into the average, long-term
benefits of process improvement options.

This contrasts markedly with the requirements of operational decision sup-
port, where the goal is to evaluate short-term options for adjusting an already
deployed business process in response to contextual changes or unforeseen cir-
cumstances. In this situation, the current system state and recent event history
cannot be ignored, and the emphasis is on understanding the short-term impli-
cations of making a change to the system.

Another shortcoming of contemporary process simulation tools with respect
to operational decision support is the inability to set different completion hori-
zons for simulation experiments. The focus of traditional simulation experiments
is to identify average long-term behaviour, over a wide variety of contextual sce-
narios. By contrast, operational decision making introduces the need to make



short-term decisions, based on the current state and specific recent history. To
do this we need the ability to limit the simulation’s forward-looking ‘horizon’, to
enable rapid evaluation of the consequences of various decisions. A typical exam-
ple is the need to determine if redeploying resources will eliminate a temporary
backlog of unprocessed jobs within a given time frame. Simulation horizons of
interest include absolute times (e.g., 30 June 9pm), time durations (e.g., 5 hours
from now), the number of jobs completed (e.g., 200th case), and the number of
resources consumed (e.g., when 80% of employees are busy).

In this paper we define the requirements for an operational process simula-
tion environment which addresses these issues, and describe a suitable toolset
architecture. To demonstrate the feasibility of the concept, we also describe the
outcomes of a proof-of-concept case study performed using existing, off-the-shelf
tools, the YAWL workflow engine and the CPN simulation tools.

2 Previous and related work

Business process simulation involves developing an accurate simulation model
which reflects the behaviour of a process, including the data and resource per-
spectives, and then performing simulation experiments to better understand the
effects of running that process [13]. In general, a business process simulation
model consists of three components: basic model building blocks (e.g., enti-
ties, resources, activities, and connectors); activity modelling constructs (e.g.,
branch, assemble, batch, gate, split and join); and advanced modelling functions
(e.g., attributes, expressions, resource schedules, interruptions, user defined dis-
tributions) [13]. Business process simulation is regarded as an invaluable tool
for process modelling due to its ability to perform quantitative modelling (e.g.,
cost-benefit analysis and feasibility of alternative designs) as well as stochastic
modelling (e.g., external factors and sensitivity analysis) [4]. Simulation has been
used for the analysis and design of systems in different application areas [13], a
“decision support tool” for business process reengineering [6] and for improving
orchestration of supply chain business processes [12].

Simulation functionality is provided by many business process modelling tools
based on notations such as EPCs or BPMN. These tools offer user interfaces to
specify basic simulation parameters such as arrival rate, task execution time,
cost, and resource availability. They allow users to run simulation experiments
and to extract statistical results such as average cycle time and total cost. Pro-
cess simulation can also be performed using a more general class of simulation
techniques known as discrete event simulation [13].

Even though simulation is well-known for its ability to assist in long-term
planning and strategic decision making, it has not to date been considered a
mainstream technique for operational decision making due to the difficulty of
obtaining real-time data in the timely manner to set up the simulation experi-
ments [8]. Nevertheless, a number for recent developments point out how aspects
of the problem can be handled, and form the basis of our approach.



A novel use of discrete event simulation, close to our own aims, is short-
interval scheduling of a shop floor control system where the ability of the sim-
ulation to “look ahead” at the expected performance of the system in the near
future, given its current status, is used to provide real-time responses to dynamic
status changes [3, 11]. We aim to generalise this specific capability to arbitrary
business models. More significantly, Reijers et al. [8], introduced the concept
of ‘short-term simulation’. They went on to experiment with short-term simu-
lations from a ‘current’ system state to analyse the transient behaviour of the
system, rather than its steady-state behaviour [9]. A similar resource-oriented
approach is provided by the proprietary Staffware prediction engine1. Our goal is
to design such a ‘short-term’ analysis architecture in the context of widely-used,
off-the-shelf workflow tools, and without the specific focus on resourcing.

To do this, we have experimented with a combination of the YAWL work-
flow engine [1] and the CPN Tools simulator [2]. A number of previous such
experiments have informed our work. For instance, Gottschalk et al. [5] used a
YAWL subset to generate CPN models, and Verbeek et al. [14], integrated the
ExSpect simulator with Protos 7.0 to provide modelling and simulation facilities
in one tool. Also, Rozinat et al. [10] showed how event logs produced by CPN
models can be ‘mined’ to discover the operational characteristics of the model.
Our aim is to combine both these notions, i.e., creating simulation models from
workflow processes and feeding back simulation results to calibrate the model,
but with a particular emphasis on incorporating observed behaviours from the
‘real’, operational system into the predictive simulation.

3 Requirements for operational process simulation

In this section we use a simple example to motivate the requirements for oper-
ational decision support. Consider the credit card application process expressed
as a workflow model in Figure 1. The process starts when an applicant submits
an application. When an application is received, a credit clerk checks whether
the application is complete. If the application is found to be incomplete, the
clerk requests additional information and waits until the information is received
before proceeding. For a complete application, the clerk performs further checks
to validate the applicant’s income and credit history. The validated application
is then passed on to a manager to make the decision. The manager decides either
to accept or reject an application. For an accepted application, a credit card is
produced and delivered to the applicant. For a rejected application, the appli-
cant is given a timeframe to request a review of the decision. If a review request
is not received, the process ends.

A typical question for the credit application process might be “How long
will it take to process a credit card application?” Using conventional tools for
business process simulation, it is possible to answer this question with an average
duration, assuming some ‘typical’ knowledge regarding the available resources

1 http://www.tibco.com/



Receive info Request info

Receive
credit card
application

Check for 
completeness

Perform 
checks

Make 
decision

Notify 
acceptance

Notify 
rejection

Deliver 
credit card

Time out

Receive review request

Fig. 1. Workflow model of a credit card application process

and expected execution times for the involved activities. However, if the business
process is already operational, and it is supported by a workflow management
system, the same question can be asked for observed, specific states of execution.
For instance, we could ask ourselves, “how long will it take to complete processing
a particular application, provided that all documentation is complete and the
application is now ready for a manager to make the decision?” Most importantly,
this can be done using the actual state of the system’s resources, such as the
number of clerks already occupied with other applications.

While performing ‘short-term’ system predictions, we need to define when
a simulation experiment should stop, i.e., the completion horizon. This can be
defined as a bound on various aspects of simulation, such as end times and dura-
tions, as well as the number of case completions and at various resource utilisa-
tion rates. For the credit card application example, some interesting completion
horizons include: 12 or 24 hours duration from now; the time at which the delay
for decision making is over 3 days; the point at which 1000 applications have
been processed, etc. Operational decision makers seeking to adjust the credit
card process following spikes in demand, or delays caused by unexpected events,
would benefit from being able to perform simulations with different horizons.

Consider for example the case where the company runs a highly successful
promotion campaign and receives unexpectedly large numbers of credit appli-
cations. As a result, the company now has a backlog of applications (e.g., 100
applications) waiting to be processed. In this case, the average time (e.g., five
days) to process a credit card application cannot be guaranteed with the current
number of staff members (3 clerks and 1 manager). At this stage, it is desirable
to obtain more realistic input data to determine the cycle time by taking into
consideration the current number of applications in the queue, and other ob-
servable properties of the ‘live’ system. Understanding this can lead to a more
effective resource planning for the manager. Given the current state of system,
the following questions might be of interest to a manager:

1. What is the cycle time to process an application at this current load?
2. Is it possible for all applications in the queue to be processed after a certain

duration (e.g., in 12 hours)?



3. What are the consequences of adding five additional clerks and two managers
to assist in processing?

None of these questions can be answered with precision using the ‘average’
results produced by a conventional simulation from an empty state. Overall,
therefore, the requirements for an operational process simulation toolkit are:

1. The ability to start a simulation from a non-empty state, using data obtained
from the operational system’s actual behaviour.

2. The ability to specify (multiple) breakpoints in a simulation experiment
based on different criteria such as the number of cases completed, the time
horizon, or based on conditions encountered in the simulated environment
(e.g., queue or resource utilization dropping below preset levels).

3. The ability to automatically extract and process historical execution data,
and in particular recent data, in order to calibrate the simulation model.

4 Architecture for operational process simulation

In this section, we first propose the generic architecture for simulation and then
discuss the various process components to realise this architecture.

4.1 Generic architecture

Figure 2 shows a data flow diagram of the proposed architecture as a tool chain
to support operational process simulation. The process modelling and analytics
phase of the tool chain is concerned with developing a stateful simulation model
while the process simulation phase focuses on running various simulation experi-
ments and providing simulation reports as well as detailed simulation logs for use
as input into (re)design of the simulation model. The diagram shows a “step-
by-step” translation of a simulation template: first by enriching the template
with historical data to derive the various simulation parameters and second by
including the starting state to develop a stateful simulation model. The resulting
stateful simulation model is then used to run various simulation experiments.
The external input from observed “real-world” logs plays a crucial role in this
architecture and it is envisioned that a number of extraction functions will be
used to derive the historical data and the starting state from these logs. The
architecture also supports the use (and conversion) of simulation logs to derive
historical data and a starting state.

The main data objects (depicted as hexagons) and activities (depicted as
rectangles) comprising the architecture in Fig. 2 are as follows.

Simulation template A simulation template includes the representation of con-
trol, data, and resource requirements of a business process (process definition)
as well as necessary setup information for simulation experiments. To run sim-
ulation experiments, a simulation template defines various input and output
parameters, breakpoints for completion horizons and derivation functions. At
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Fig. 2. Architecture of the operational process simulation toolkit

a minimum, a simulation template needs to specify the following setup infor-
mation: arrival rates of cases, a resource calender, simulation parameters (Key
Performace Indicators), completion horizons (breakpoints) and simulation re-
port requirements (monitors). Furthermore, various parameters in the template
are also enriched with information on how to generate the data used in the simu-
lation (estimated or derived). In our proposed architecture such parameters can
be specified either by entering estimations or by specifying various derivation
functions over the observed and simulated log files. For example, the case arrival
rate parameter is typically specified over a Poisson distribution. Similarly, the
average execution time of a task is specified using mean and standard deviation.
Abstract data types for case arrival rates and execution times in a simulation
template can be specified as follows:

ArrivalRate : (ArrivalRateFunction ∪HistoricalData → ArrivalRateFunction)
ExecutionTime : Task → (TimeFunction ∪HistoricalData → TimeFunction)

Instantiation This activity takes a simulation template with derivation functions
and historical data from the logs to generate a simulation model. It is essential
that log data contains relevant information that can be used for a given derived
parameter. Obviously, the requirements for logs could vary depending on a given
parameter and the derivation function used. The logs data can be based either
on observations from a running process engine or from prior simulation logs.

Historical data Historical data to instantiate a simulation template could be
extracted from the execution logs of a process engine or from previous simulation
runs. For instance, if an average execution time of a task is to be derived using
log data to calculate the mean and standard deviation, the log should contain
information about when all instances of a given task are executed and completed.
If a derivation function is also based on resources (i.e., the time it takes to
execute a task by a manager), then the log should contain information about
resource utilisation in addition to time. Conversions and adjustments might be
necessary if log data is incompatible with the requirements in the template.



These conversions take place during the Extract history activity for observed
logs and the Convert log activity for simulation logs. The necessary abstract
data type for a log to derive case arrival rate and execution times is as follows:

Cases : Case × CreationTime × CancellationTime × CompletionTime
CompletedTasks : Case × Task × StartTime × EndTime × Resource

Observed logs and Simulation logs While the observed logs represent the data
and metrics from executing process engines, the simulation logs provide the
information from prior simulation runs. Both types of historical data are useful
in determining appropriate values for simulation parameters.

Simulation model After ensuring that all derivable simulation parameters have
been instantiated with historical data, a simulation model is generated. It is now
possible to use this simulation model to run simulations from the initial state.

Adding a state This activity takes a simulation model and a given state to set
the starting state of a simulation experiment. If a simulation experiment is to
be started from scratch (an empty state), minimal transformation is required
to include resource scenario for a simulation experiment. On the other hand,
if a simulation experiment is to be started from a given state, current state
information is added to obtain a stateful simulation model. In cases where some
of the tasks are already running for a certain amount of time in the simulation’s
starting state, we propose to use a truncated probability distribution so that the
duration randomly assigned to an active task during the simulation is always
greater than the amount of time for which the task has already been running.

Starting state The state information can be derived from historical logs and also
from prior simulation runs. At a minimum, the logs used to derive state should
contain information on active cases, resource availability and active and enabled
tasks information. Inconsistencies are possible between a given model and the
data obtained from the logs and conversions might be necessary. The following
abstract datatypes for logs capture the minimum information requirements to
generate an initial simulation state:

ActiveCases : Case × CreationTime
ActiveTasks : Case × Task × StartTime × Resource
EnabledTasks : Case × Task
ResourceAvailability : Resource × Role
LogTime : Time

Importantly, this allows us to inject observed characteristics of the system into
the simulation. For instance, let’s assume a simulation model may specify the
(initial) availability of three staff members, whereas the observed logs show there
are actually five staff members currently assigned to this process.



Breakpoint state Capturing the full state of the simulation model at the end of a
simulation experiment provides an opportunity to use the breakpoint state as the
initial state for another simulation, thus facilitating the conduct of simulation
experiments with different breakpoints.

Stateful simulation model A stateful model is obtained by enriching a simulation
model with starting state information for simulation runs. More than one stateful
simulation model can be developed where each one represents the state at a
certain point in time. The LogTime parameter from the state is used to set the
starting time of the simulation experiments.

Running the simulation Simulation experiments can now be started using a
stateful model and stopped at various completion horizons. In addition to the
generation of simulation reports for analysis, the architecture makes provision
for the generation of both breakpoint states and simulation logs. This data can
then be used as input for later simulation runs after necessary conversions.

4.2 A practical instantiation of the architecture

It is possible to realise the proposed simulation architecture in a number of ways
using a suitable process editor, a process engine (with logging functionality)
and a simulation tool that is flexible enough to support our requirements. For
our research, we are using the YAWL workflow environment for both modelling
and analytics components and the simulation capabilities within CPN Tools for
process simulation, as shown by the partition in Fig. 2.

The YAWL workflow environment was chosen because of its formal founda-
tion in Petri nets, its expressiveness in providing support for workflow patterns,
its easy-to-use graphical editor that has the ability to generate executable pro-
cess models, and its extensive logging function for process execution. There are
also mappings available between various business process modelling notations
(EPC, BPMN, BPEL) and Petri nets. Furthermore, the YAWL workflow lan-
guage is supported by an open-source implementation2. The YAWL editor is an
ideal candidate for the process modelling component in the architecture as the
user can specify control, data and resource requirements of a business process
using a natural graphical notation and then export the process definition as an
XML file ready for execution in the engine. Various verification functionalities
are also available in the editor to ensure the correctness of the process model
before execution. The YAWL editor can be easily extended to capture various
setup parameters for a simulation template. The logging module in the YAWL
engine can be used to record the statistics of various cases (such as the start and
end times, the resource, whether the task is cancelled or completed, etc). These
logs provide sufficient information to generate stateful simulation models.

The current YAWL implementation does not provide simulation function-
ality. However, it is rather straightforward to transform YAWL models into
2 http://www.sourgeforge.net/yawl



Coloured Petri Nets (CPNs) [2], modulo some restrictions, and to exploit the
simulation capabilities of CPN Tools3. Coloured Petri nets can be used to model
Petri nets with time constraints and hierarchy. In contrast to contemporary
BPM simulation tools, CPN Tools can be customised to support our require-
ments, i.e., the ability to start simulation experiments from a given state and
the specification of different completion horizons using breakpoints. It is possible
to incorporate the log data by specifying derivation rules using ML functions.
Rather than modelling the business process directly in CPN Tools (i.e., mod-
elling the process as one or more Coloured Petri nets), our arrangement avoids
the need for detailed knowledge of Petri nets, which would make CPN Tools
unsuitable for business process designers. For these reasons, we combine use of
YAWL for modelling and execution of business processes with CPN Tools for
BPM simulation, to leverage their strengths in their respective areas.

5 Proof of concept

To validate the simulation architecture, we developed a stateful simulation model
for the credit card application process from Section 3 and performed simulation
experiments using the CPN Tools. The credit card application workflow process
from Fig. 1 was (manually) translated into a corresponding hierarchical and
timed colored Petri net as depicted in Fig. 3.

The translations are similar to the Gottschalk et al.’s approach [5] where a
YAWL condition is mapped to a CPN place and a YAWL task to a CPN substi-
tution transition (see the Make decision task Fig. 4). As the credit card process
does not contain tasks with complex split and join behaviours, we elected to map
most YAWL tasks to CPN transitions directly for simplicity. The Environment
subpage controls the arrival of cases. Tokens in the resource place indicates the
number of employees available to execute the tasks (e.g., clerks and managers).
Execution times for tasks were specified using ML functions and a time delay
was attached to the task (e.g.,a@+ getExecT ime(mean = 7200, stdD = 3600)).
In Fig. 4, the XOR-split behaviour of the task is modelled as two transitions
that share the same input place (busy). The start transition for the Make deci-
sion task has another input from the resource place with a guard to that only a
manager can carry out this task ([#role(e) = mgr]).

To determine the feasibility of the proposed architecture, we tested out the
resource planning scenario as discussed in section 3. For testing purposes, the
stateful simulation model is populated with the following data.

– a case arrival rate of 1 application per hour following a Poisson distribution;
– 100 active cases as the starting state where 80 credit card applications are

in the ready place, 15 in the complete check place, 3 in the receive place, 1
in the accept place and 1 in the busy place of the Make decision task;

– breakpoint monitors with 12-hour and 24-hour time horizons and marking
size monitors to observe the two places of interest, the ready place and the
complete check place;

3 http://www.daimi.au.dk/CPnets/
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– execution times (sample mean and standard deviation) for each task; and
– two resource availability scenarios, namely 5 clerks and 1 manager, and

10 clerks and 3 managers.

Multiple simulation runs are carried out using the starting state with 100
active cases, two different time horizons (12 hours and 24 hours) and with two
different resource scenarios. The results (see Table 1) show that when processing
the applications with 5 clerks and 1 manager, on average (with 95% probability)
between 48 to 55 applications are still in the queue in the ready (R) place and
between 17 to 28 in the complete check (C) after 12 hours and it becomes 13-19
(R) and 14-22 (C) after 2 24 hours. On the other hand, the queue is reduced to
12-20(R) and 3-9 (C) after 12 hours, and 10-17(R) and 0-2(C) when 10 clerks
and 3 managers are available. This scenario illustrates the possibilities opened
by operational process simulation, in terms of being able to perform “what-if”
analysis based on the current situation and to different completion horizons.

Table 1. Summary of simulation results

Resource availability Duration (12 hours) Duration (24 hours)

5 clerks and 1 manager 48-55 (R) and 13-19 (C) 17-28 (R) and 14-22 (C)

10 clerks and 3 managers 12-20 (R) and 3-9 (C) 10-17(R) and 0-2 (C)

In this proof-of-concept demonstration we were specifically interested in val-
idating the feasibility of inserting a non-empty starting state and multiple com-
pletion horizons into simulation experiments. For instance, we assumed an arrival
rate of 1 application per hour instead of deriving the actual arrival rate for these
observations. Nevertheless, we have confirmed that the YAWL engine logs con-
tain sufficient data to instantiate the simulation template and to add state. The
same goes for the resource availability statistics and the current state. In the next
stage, we plan to implement the necessary extraction and conversion functions
to derive simulation parameters and starting states automatically from logs.

6 Conclusion and future work

To produce accurate short-term predictions a workflow simulation environment
must start its analysis in a state that incorporates the actual, observed proper-
ties of the operational system, including its recent history. In this paper we have
demonstrated the feasibility of building such a simulation environment using off-
the-shelf workflow modelling and system simulation tools. A general design for
such a system was defined in terms of its essential capabilities and a (manual)
feasibility study was conducted using the YAWL and CPN Tools toolkits. Cur-
rently we are implementing the various ‘gluing’ components needed to automate
the transformation of ‘mined’ log values to produce simulation inputs.
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