
Service Interaction Patterns: A Configurable
Framework

Nataliya Mulyar1, Wil M.P. van der Aalst1,2, Lachlan Aldred2 and Nick Russell1

1 Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL5600 MB Eindhoven, The Netherlands

{n.mulyar, w.m.p.v.d.aalst,n.russell}@tue.nl
2 Faculty of Information Technology, Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{l.aldred}@qut.edu.au

Abstract. In this paper we present a framework for describing a series
of pattern variants encountered in the context of Service Interaction. The
original Service Interaction Patterns [9] only covered 13 interactions sce-
narios. Moreover, some important aspects of service interaction of a bilat-
eral and multilateral nature are not addressed in [9]. Furthermore, these
patterns allow for ambiguous interpretation due to the absence of a formal
semantics. The scope of the patterns generated by means of the framework
described in this paper is much broader. To avoid ambiguities we formalize
the semantics of the patterns by means of Colored Petri Nets (CPN). In
addition, we propose an intuitive graphical notation that can be used to
denote the various pattern variants. This paper also provides an evaluation
of WS-BPEL v2.0 standard using these patterns.

Keywords: Service Interaction Patterns, Colored Petri Nets, BPEL, cor-
relation.

1 Introduction

In recent years the Service-Oriented Architecture (SOA) has started gaining pop-
ularity within organizations aiming to integrate third party software applications
and external services into their business processes. To coordinate the interaction
between service providers and consumers, a set of standards and technologies
were proposed which underpin the notion of web-service. Standards like SOAP
[14], WSDL [16], UDDI [13], etc. were developed to interconnect independently
developed web-services. A number of standardization proposals (XLANG, BPML
and WSCI) [6, 7, 32, 27] were discontinued, however they have served as the basis
for two ongoing standardization initiatives: the Business Process Execution Lan-
guage for Web-Services (BPEL4WS, BPEL, WSBPEL) [5] and the Web Services
Choreography Description Language (WSCDL) [24]. The resultant technologies
successfully handle simple interaction scenarios, however when it comes to inter-
actions involving large numbers of participants many issues remain unresolved.

The concepts of orchestration and choreography come into focus when two or
more organizations wish to embed complex long-running multi-party interactions

within their business processes. A business process can be defined as a group of
activities executed according to a defined set of rules in order to achieve a specific
goal. A choreography defines the sequence of dependencies between interactions
between multiple parties in order to implement a business process comprising
multiple web services [26]. In other words, choreography describes the externally
visible behavior of the interacting parties. Orchestration defines the control and
data flow between web services that are necessary to achieve a business process,
from the viewpoint of one participant [26].

A business process can be defined as a set of activities executed according to a
defined set of rules in order to achieve a specific goal. When two or more organi-
zations wish to embed long-running interactions within their business processes,
the focus shifts from the inside of a process to interactions of this process with an
external environment. What aspects of service interaction have to be explicitly
modeled? How to classify a given interaction scenario? What standard supports
a desirable interaction scenario, and which system to select for the realization of
the service interaction? Answering these questions is significant for understanding
of the requirements for service interaction.

To specify requirements in service interaction more extensively than what has
been done in the content of BPEL4WS and to assess emerging web standards,
thirteen Service Interaction Patterns [9] covering bilateral, multilateral, compet-
ing, atomic and causally related interactions were identified. A systematic review
of the thirteen Service Interaction Patterns presented in [9] has revealed that the
scope of these patterns is limited to simple interaction scenarios and that they
suffer from an ambiguous interpretation due to their imprecise definition. In this
paper, we address these gaps by broadening the scope of the service interaction
patterns and by providing a precise formal semantics in the form of Colored Petri
Nets (CPNs) [18, 23]. We also propose a notation to represent different pattern
variants.

The concept of patterns was introduced by Christopher Alexander [3], who
developed a set of patterns in the architectural domain and combined them in a
pattern language related to architecture. This triggered the discovery and defi-
nition of patterns in many other fields and resulted in a number of pattern col-
lections, in areas such as software design [21], architecture [12, 28] and workflow
management [34, 29].

In this paper, we continue the work on patterns in the context of service
interaction. The framework proposed in this paper consists of five pattern families.
Each pattern family contains a large set of pattern variants that address the same
issue in different ways. A pattern configuration is a set of configuration parameters
defined for a particular pattern family to differentiate between different pattern
variants. By setting configuration parameters to different values from the defined
range various different pattern variants can be generated. Figure 1 illustrates
main building blocks the given framework consists of, and indicates how many
meaningful pattern variants can be generated from a pattern configuration of
the pattern families identified. Note that the original thirteen Service Interaction

2

Patterns [9] correspond to pattern variants belonging to different pattern families
presented in this paper.

In order to visualize a pattern variant, for each pattern family we propose
an intuitive notation that allows different values of configuration parameters to
be graphically depicted. Each configuration parameter is associated with a label
depicted differently for each of the values in the predefined range. Thus, the
graphical notation serves as a means of visualizing and distinguishing pattern
variants.

Multi-party Multi-message Request-Reply Conversation

Renewable Subscription

Message Correlation

Message Mediation

Bipartite Conversation Correlation

2880

20

100

576

19

pattern
families

pattern
variants

pattern
configuration

Fig. 1. The configurable framework for service interaction

On the conceptual level, all pattern families are built up around the concepts
defined in a meta-model, which serves as the foundation of the framework. Each
pattern family augments a set of concepts defined in the meta-model with con-
cepts specific to the pattern context. Besides defining the pattern families on the
conceptual level, we formalize the semantics of pattern variants by means of CPNs
[23]. For every pattern family, we have developed a set of CPN models and tested
them by means of CPN Tools [18].

The five pattern families described in this paper address the following prob-
lems.
• The Multi-party Multi-message Request-Reply Conversation pattern family

considers conversations in which a single party interacts with multiple parties
using multiple messages. It addresses the problems of non-guaranteed response
and different aspects of message handling. For this family, there are poten-
tially 6912 pattern configurations, althought only 2880 of these are actually
meaningful pattern variants.

• The Renewable Subscription pattern family addresses problems related to
long-running conversations (subscriptions) where either of the two parties

3

involved in the conversation can take the initiative when initializing and re-
newing a subscription. In total, 20 meaningful pattern variants can be derived
from the pattern configuration of this family.

• The Message Correlation, Message Mediation and Bipartite Conversation
Correlation pattern families address the problem of correlation, where the
first pattern family addresses the problem at a low-level of abstraction, while
the latter two do so at a higher-level of abstraction.

- In the context of interactions between two tightly-coupled parties, the
Message Correlation pattern family addresses the issue of correlating in-
coming messages with previously exchanged messages related to the same
conversation. This pattern family combines 100 meaningful pattern vari-
ants.

- The Message Mediation pattern family concentrates on the particularities
of message exchange between two-loosely coupled parties that interact
via an intermediary. This pattern family combines 64 pattern variants for
Mediated Introduction and 512 pattern variants for Mediated Interaction
where the role of the intermediary is to introduce one party to another or
to forward messages back-and-forward between these parties respectively.

- The Bipartite Conversation Correlation pattern family concentrates on
message correlation in the context of a long-running conversation be-
tween two parties, where knowledge accumulated during message corre-
lation may change in the course of the conversation. This pattern family
combines 19 meaningful pattern variants.

Patterns that can be derived by means of the framework proposed in this paper
also can be used as a benchmark for evaluating tools and standards. Furthermore,
they can serve as a language for communicating problems and solutions within
the domain.

The remainder of the paper is organized as follows. Section 2 gives an overview
of related work. Section 3 presents the concepts common to each of the pattern
families and introduces the format for describing pattern variants. The Multi-
party Multi-message Request-Reply Conversation pattern family is described in
Section 4. The Renewable Subscription pattern family is described in Section 5.
The Message Correlation pattern family is described in Section 6. Scenarios re-
lated to the Message Mediation are described in Section 7, and the Bipartite
Conversation Correlation is described in Section 8. We evaluate the Web Services
Business Process Execution Language (WS-BPEL v2.0) in Section 9. This paper
concludes with future work and conclusions in Section 10.

2 Related work

The Service Interaction Patterns documented by Barros et al. [10, 9] describe a
collection of scenarios, where a number of parties, each with its own internal pro-
cesses, need to interact with one another according to pre-agreed rules. These
scenarios were consolidated into 13 patterns and classified based on the maximal

4

number of parties involved in an exchange, the maximum number of exchanges
between two parties involved in an interaction and whether the receiver of a re-
sponse is necessarily the same as the sender of a request. Based on this classifica-
tion four groups were identified: (1) single transmission bilateral interactions (i.e.
one-way and round-trip bilateral interactions where a party sends and/or receives
a message to another party); (2) single transmission multilateral non-routed in-
teractions (i.e. a party sends/receives multiple messages to different parties); (3)
multi transmission bilateral interaction (i.e. a party sends/ receives more than
one message to/from the same party); and (4) routed interactions.

The Service Interaction Patterns [9] lacked formal semantics, hence their for-
malization by means of the π-calculus has been proposed by [20]. The majority of
these patterns can be interpreted in various ways. Decker and Puhlmann formalize
the patterns based on the pattern descriptions and some additional assumptions
about the value of variable pattern attributes, however they do not specify the
whole range of values the selected pattern attributes may take. Thus, they show
the possibility of formalizing certain aspects of service interaction, but in fact
do not make the definition of patterns less ambiguous. For example, the pattern
Racing Incoming Messages specifies: A party expects to receive one among a set of
messages. These messages may be structurally different (i.e. different types) and
may come from different categories of partners. The way a message is processed
depends on its type and/or the category of partner from which it comes. This
pattern does not specify what happens if the party receives multiple messages at
once, i.e. it is not clear how many of the received messages will be consumed and
whether the rest of the messages will be discarded.

In [36] Zaha et al. formulate requirements for a service interaction modeling
language, in addition to the ones covered by Barros et al. in [10]. The authors
used these requirements for modeling behavioral dependencies between service
interactions.

Barros et al. [8] introduced five correlation mechanisms, five conversation pat-
terns, and eight relationships between process instances and conversations that
were used for evaluation of standards WS-Addressing and BPEL. The framework
presented by the authors does not cover relationships between different process
instances. In this paper, we address the latter issue by analyzing correlation on
the low- and high-level of abstraction.

Aldred et al. [2] have performed a detailed analysis of the notion of (de-)
coupling in communication middleware using three dimensions of decoupling, e.g.
synchronization, time and space, and documented coupling integration patterns .

In [17] Cooney et al. proposed a programming language for service interaction,
which has been used to describe the implementations of two Service Interaction
Patterns, i.e. One-to-Many Send-Receive and Contingent Requests [9].

This work is also related to contracting workflows and protocol patterns of
van Dijk [33], who proposed a number of protocol patterns for the negotiation
phase of a transaction.

Barros et al. [11] proposed a compositional framework for service interaction
patterns and interaction flows. They provided high-level models for eight service

5

interaction scenarios using ASM, illustrating the need to distinguish between dif-
ferent interpretations of the patterns.

The work of Hohpe and Woolf on Enterprise application integration [22] covers
various messaging aspects that may be encountered during application integra-
tion.

Furthermore, this work relates to the Workflow Patterns Initiative [1, 35],
where a set of 43 Control-flow patterns [29], a set of 40 Data patterns [30] and
a set of 43 Resource patterns [31] are proposed. In particular, the control-flow
patterns have had a considerable influence on the development of new languages,
the adaptation of the existing ones and various standardization efforts. This paper
should be seen as a part of the Workflow Patterns Initiative.

The work presented in this paper, differs from the work described above in a
number of ways. We broaden the scope of the original Service Interaction Pat-
terns and systematically describe various pattern variants. Moreover, we offer a
graphical notation that is suitable for representing every pattern variant. To avoid
multiple interpretations, we formalize the patterns by means of CPNs.

3 New Service Interaction Patterns

In this section we present a framework for describing new Service Interaction Pat-
terns. Instead of listing all of the patterns identified, we identify the differences
between the pattern variants belonging to the same pattern family, i.e. individ-
ual pattern variants are obtained by setting the configuration parameters for a
particular pattern family.

The patterns we introduce in this paper adopt a consistent presentation for-
mat. We depict a pattern variant belonging to a given pattern family with a label
which graphically represents a set of attributes. By configuring the attributes, a
specific variant of a pattern family is enabled. We introduce the key concepts used
in the pattern description by means of a UML class diagram (see Figure 2). The
main purpose of this diagram is to represent the pattern at a conceptual level.
Later, various parts of this core model will be extended by concepts specific to
each of the pattern families.

The meta-model depicted in Figure 2 represents concepts that are common
to all of the pattern families identified. For the purpose of this paper, a conver-
sation is defined as the communication of a set of contextually related messages
between two or more parties. A party is an entity involved in communication with
other parties by means of sending/receiving messages. A party may represent a
process, a service, a business unit, etc. The association involves shows that two
or more parties Party may be involved in a Conversation. The composition re-
lation between Conversation and Message indicates that at least one message
is exchanged in a conversation. A message is a unit of information that may be
composed of one or more data fields. A message may represent a request or a
reply as visualized by specializations Request and Reply of the Message. There
is an association between Request and Reply indicating that there may be mul-
tiple replies corresponding to a given request. To represent the concepts specific

6

Request Reply

1 *1 *

Message

Party

Conversation

1..*1..*

2..*

0..*

2..*

0..*

involves

Fig. 2. UML Meta-model of service interaction concepts shared by all pattern families

to a given pattern family we will augment this meta-model by adding relevant
concepts for this family.

The attributes that influence the detailed semantics of each pattern variant are
described separately. To clarify the semantics of the pattern we use a formalism
based on CPNs. For each pattern family we have designed a (set of) CPN model(s)
and tested them using the simulator facilities of CPN Tools. Declarations used
within CPN models are based on the set of the concepts introduced in the UML
diagrams.

Pattern attributes (also referred to as parameters) represent orthogonal di-
mensions used for classifying different aspects of the service interaction within
the context of the given meta-pattern. All possible combinations of the attribute
values result in a large set of pattern variants, each of which can be easily derived
from the meta-pattern and are depicted by a corresponding label.

The five pattern families presented in this paper are described using the fol-
lowing format:
• Description: of service interaction scenarios combined in the given pattern

family.
• Examples: illustrating the application of the given pattern variant in practice.
• UML meta-model : a description of concepts specific to a given pattern family.

7

• Visualization: a graphical notation representing a pattern configuration and
the description of configuration parameters that can be used for configuring
the graphical notation to represent specific pattern variants.

• CPN semantics: the semantics of a generic pattern illustrated in the form
of CPNs presented by means of the screen-shots of the models and their
corresponding description.

• Issues: that can be encountered when applying a pattern variant from the
given pattern family in practice and corresponding solutions.

These five pattern families generate 3595 pattern variants in total. We describe
each of the pattern families in detail below.

4 Pattern Family: Multi-party Multi-message
Request-Reply Conversation

The first pattern family we describe using the format discussed in the previous sec-
tion is the Multi-party Multi-message Request-Reply Conversation pattern family.
Description A requestor posts a compound request consisting of N sub-requests
to a set of M parties and expects a reply message to be received for every sub-
request. There exists the possibility that some parties will not respond at all
and also the possibility that a responder will not reply to some sub-requests.
The requestor queues all incoming messages in a certain order. The enabling of
the requestor for consumption of reply messages depends on the fulfillment of
activation criteria. The requestor should be able to, optionally, consume a subset
of the responses and even process a subset of the consumed set - hence allowing
for use in cases where only the best or fastest responses are needed. The number
of times the requestor may consume messages from the queue can be specified
explicitly.
Example
• Requests to submit an abstract or to submit a paper are issued by an editor to

a list of 117 people registered for participation in a workshop. Only papers and
abstracts submitted before the deadline will be reviewed. If a large number of
papers arrive, only the first 50 will be reviewed and only 10 best papers out
of the reviewed ones will be published.

UML meta-model An object diagram illustrating the pattern at the conceptual
level is presented in Figure 3. A conversation consists of a set of messages (see
the composition relation between Conversation and Message). A conversation
involves an initiating process (e.g. requestor), and at least one following process
(e.g. responder), depicted by associations requestor and responder. A process
may be or may not be involved in multiple conversations (see the multiplicity of
the association involves). The requestor generates at least one Request mes-
sage, while the responder returns one or more Reply messages or does not react
at all. The relation between Request and Reply messages is depicted by the
corresponds to association, and the sending of request and reply messages by
a party is illustrated by the is sent by and is produced by dependency re-
lations). Requests issued by a requester can be composite. This means that the

8

requestor may send several sub-requests in a single message concurrently to a
single or to multiple parties.

Request Reply

1 0..*1 0..*

corresponds to

Message

Party

0..*

is produced by
Conversation

1..*1..*

0..*

0..*

0..*

0..*

responder

0..*

1

0..*

1

requestor
2..*

0..*

2..*

0..*

involves

0..*

is sent by

Fig. 3. UML meta-model of
Multi-party Multi-message Request-Reply Conversation

Visualization The graphical notation of the configurable Multi-party Multi-
message Request-Reply Conversation is given in Figure 4. The parties are vi-
sualized as rectangles. Directed arrows represent the direction in which a party
sends a message. A message containing a single request is visualized as a black
token, while a compound request is represented by multiple overlapping tokens.
Parameters specific to a given party are visualized as labels residing within the
boundaries of a rectangle representing a party. This graphical notation is used to
set the following set of configuration parameters:

• N - a parameter denoting a list of sub-requests sent by a requestor to a re-
sponder in a single message.
Range of values: size(N)≥1.
Default value: size(N)=1.
Visualization: This parameter is depicted by the dots on the arc from Re-
quester to responder. For size(N)>1 and size(N)=1 the graphical notations
depicted in Fig. 5 (1a) and (1b) are used respectively.

• M - a parameter denoting a list of responders involved in the conversation.
Range of values: size(M)≥1.
Default value: size(M)=1.
Visualization: For size(M)>1 and size(M)=1 the graphical notations depicted
in Figure 5 (2a) and (2b) are used respectively.

9

C
FIFO

U

 M

?

?

List of
Responders

Sorting algorithm of
messages in the
queue

Number of messages
consumed from queue

Consumption
frequency

Enabling condition
for message
consumption

Number of used
messages
from the consumed
ones

List of sub-
requests

Possibility
of missing
replies

Possibility of
non-responding
parties

Requestor

Reply
Message

 E

F

Fig. 4. Graphical notation:
Multi-party Multi-message Request-Reply Conversation

 M

?

? ?

?

 (4a) (4b) (4c) (4d)

K B

 (2a) (2b)

(1a) (1b)

 FIFO LIFO PRIO NOQUEUE

 (3a) (3b) (3c)

(5a) (5b) (5c) (5d)

Fig. 5. Variants of graphical notation:
Multi-party Multi-message Request-Reply Conversation

• Possibility of non-responding parties - a parameter specifying whether some
of the responders will ignore the request issued by the requestor.
Range of values:

◦ No: all M responders will reply at least something (for example, a request
to report the level of income to the tax-office obliges all receivers to reply);

◦ Yes: some responders may not reply at all (for example, only interested
parties react on the invitation to participate in a social event).

Default value: No.
Visualization: Figure 5 depicts the graphical representation of four variations,

10

where: in (4a) and (4b) all M responders will produce at least some replies;
in (4c) and (4d) some responders may not reply to all requests received.

• Possibility of missing replies - a parameter specifying whether the responder
will not reply on some of the sub-requests (i.e. it is a choice of the responder
to engage in the conversation or not, and respectively to reply on all or only
some of the received requests).
Range of values:
◦ No: responders reply to all sub-requests (for example, the responder an-

swers on all questions in the tax declaration);
◦ Yes: responders reply only to some sub-requests (for example, a client

subscribes only to two out of five journal offers received).
Default value: No.
Visualization: Figure 5 depicts the graphical representation of four variations,
where: in (4a) and (4c) no replies will be lost; in (4b) and (4d) some replies
may not reach the requestor.

• Sorting of the queued messages - a parameter specifying an ordering discipline
according to which response messages queued by the sender are sorted.
Range of values:
◦ FIFO: oldest message is the first one in the queue;
◦ LIFO: newest message is the last one in the queue;
◦ PRIO: sorting based on some criterion (for instance, on price);
◦ NoQueue: messages are not queued and are consumed upon arrival if the

sender is ready to process them, otherwise they are lost.
Default value: NoQueue.
Visualization: Figure 5 (5a)-(5d) depicts the graphical notation of different
policies applied for sorting messages in the queue.

• Enabling condition - a parameter specifying the condition that has to be
fulfilled to enable the requestor to consume replies.
Range of values:
◦ a timeout (for example, requests for purchase on a discounted basis are

accepted only until the expiration of the discount period);
◦ a specified minimal number of messages K (0<K≤N);
◦ a Boolean condition, examining the properties of the queued messages (for

example, at least three low-cost offers are required to select the best of
them).

Default value: K=1.
Visualization: the E label residing at the requestor’s side in Figure 4 sub-
stituted with one of the graphical notations presented in Figure 5 (3a), (3b)
and (3c) which denote activation conditions based on a timeout, availability
of specific number of messages and a Boolean expression respectively.

• Consumption index - a parameter specifying the number of reply messages to
be consumed by the requestor from the queue.
Range of values:

11

◦ 0: none of the messages are removed from the queue (for example, messages
must have enabled the process to receive, but it may be necessary to leave
them on the queue for another process to use);

◦ S: S messages are removed from the queue such that 0<S<K, where K is
the number of replies sufficient for activation of the requester (as specified
in the enabling condition);

◦ All: all messages contained in the queue are removed.
Default value: All.
Visualization: the C label residing at the requestor’s side in Figure 4 substi-
tuted with a suitable value.

• Utilization index - a parameter specifying a number of messages from the
consumed ones used by the requestor for the processing.
Range of values:
◦ 0: no messages are used for processing (for example, if no messages were

consumed, or if none of the consumed messages are required by the re-
ceiving process);

◦ 1: one message is used for processing (for instance, a best offer from the
available ones is selected);

◦ UN: a number of messages used for the processing such that 1<UN<C,
where C is the number of messages consumed;

◦ All: all consumed messages are used for the processing.
Default value: All.
Visualization: the U label residing at the requestor’s side in Figure 4 substi-
tuted with its value.

• Consumption Frequency - a parameter specifying the number of times the
requestor performs the consumption of messages from the queue.
Range of values:
◦ 1: the requestor is activated only once, after this all remaining and arriving

messages are destroyed;
◦ FN: the requestor consumes messages FN number of times, 1<FN, after

which all remaining and arriving messages are destroyed;
◦ ∞: the requestor consumes messages as long as they continue to arrive.

Default value: 1.
Visualization: the F label residing at the requestor’s side in Figure 4 substi-
tuted with its value.

The pattern variant representing a scenario in which every parameter is set
to the default value is presented in Figure 6. A party A sends a single request to
a party B, who sends a reply back. The party A does not queue messages, and
consumes them as soon as they arrive. Only one message is necessary for the party
A to become enabled and start consumption and processing of the messages. All
other messages that may arrive later on will be discarded.
Illustrative example To illustrate how the pattern configuration of the Multi-
party Multi-message Request-Reply Conversation can be applied in practice, we
revisit the example presented earlier for which we describe the corresponding
pattern variant by defining values for configuration parameters.

12

NoQueue

All

1

A B

All

1

1

Fig. 6. Notation for the default pattern variant of
the Multi-party Multi-message Request-Reply Conversation pattern family

In this example, the editor plays the role of the requestor and people registered
for participation in a workshop represent multiple responders (size(M)=117). The
editor sends a request to submit an abstract or to submit a paper, thus the request
is of the composite nature and size(N)≥1. Since there is no guarantee that the
responders will reply, there is the possibility of non-responding parties. Since not
all responders may respond by sending an abstract and a paper, there is also the
possibility of missing replies. Reply messages are sorted according to a FIFO pol-
icy. The enabling condition for consumption of replies for processing is set to the
timeout corresponding to the indicated deadline. The consumption index is set to
50 papers, this means that all other messages will be discarded. The utilization
index is set to 10 (only 10 best papers will be reviewed). The consumption fre-
quency is set to 1, no messages are stored in the queue for subsequent processing.
The graphical notation representing the pattern configuration for this example is
shown in Figure 7.

FIFO

10

M=117

50

1

N=2

?

?

Fig. 7. Notation for the paper submission example

CPN semantics To avoid an ambiguous interpretation of the pattern variants
related to Multi-party Multi-message Request-Reply Conversation we formalize
the semantics by means of CPNs. Figure 8 depicts the top view of the CPN
diagram representing the pattern. Requestor and responder are represented as
substitution transitions which can be unfolded to the nets depicted in Fig. 9 and
Fig. 10(c) respectively. In every conversation the parties exchange requests and
replies of type Message.

The requestor (whose behavior is shown in Figure 9) can send requests and re-
ceive response messages using substitution transitions Send request and Receive

13

response whose decompositions are shown in Figure 10(b) and Figure 11. A re-
questor process may have multiple process instances, whose lifecycle is shown in
Figure 10(a). Process instances available for participation in a conversation are
stored in the enabled place. When for a given process instance a conversation is
started, a conversation identifier cid is coupled with the process instance. The
uniqueness of identifiers is ensured by incrementing a counter whose value is stored
in the Conversation counter place. A process instance chosen for conversation
is stored in the running place. Transitions activate, deactivate and complete
control the status of a process instance during its lifecycle. When an enabled
process instance is activated, it has the status active and may participate in
sending and receiving of messages. Meanwhile the active process instance can be-
come inactive through deactivation or can become completed. The lifecycle of
a process instances ends when it is complete and the process instance is added to
the completed place.

The requestor’s Send Request sub-page in Fig. 10(b) shows that the requestor,
whose identifier is stored in place Requestor ID, at the moment of sending a
request message creates a new conversation. Function create messages() takes
a list of conversation requests crqs of the ConvRequests type, which contains a list
of parties to whom a request should be sent, and a list of sub-requests that should
be sent to each party, and creates as many messages as there are parties in the
list. This function directly corresponds to the configuration parameter specifying
that messages with N sub-requests are sent to M parties.

Table 1. Data types used in Figures 8 -11
colset Party = string;
colset Request = string;
colset Requests = list Request;
colset Reply = string;
colset Replies = list Reply;
colset ConvId = int;
colset Content = union Req:Requests + Repl:Replies; a

colset Message = product ConvId * Party * Party * Content; b

a The content of a message is ei-
ther a list of requests or a list of
replies. The CPN union type is
used to specify this.

b A message is a tuple
(cid,P1,P2,c) where cid is
a conversation identifier, P1 is
the requestor, P2 is the respon-
der, and c is the content. Such a
message is of type Message.

���������
���������

���	��
� �
���	��
� � �����������

���	��
������
���	��
� � ���������

Fig. 8. CPN diagram: The top view of Multi-
party Multi-response Request-Reply Conversation

14

When request messages are created, a new conversation is created by means
of the function create conversation(). This function records the information
about the conversation identifier, conversation-specific parameters (the start time
of the conversation, the time of the last activation, a total number of messages
sent, the number of parties to whom the requests have been sent, and a number
of unique messages (i.e. a number of sub-requests can be contained in the sin-
gle message)), and the status of the process instance. The recorded conversation
information is used later on for the purpose of correlating response messages re-
ceived with the requests sent and for identifying how many times the received
messages can be consumed for processing.

The responder page shown in Figure 10(c) illustrates the behavior of respon-
ders involved in the conversation. The identities of the responders are stored in
place self. They are used to relate incoming requests to the right party, based on
the party identifier. When a responder receives a request message, it unpacks the
composite requests into separate messages each containing a separate sub-request.

colset Count = int;
colset MTime = int;
colset Status = with active|inactive|enabled|completed; a

colset ConvRequest = product Parties * Requests;
colset ConvRequests = list ConvRequest;
colset ConvReply = product Parties * Replies;
colset ConvReplies = list ConvReply;
colset Pr = product ConvRequests*ConvReplies*Status;

colset Proc = product ConvId*Pr; b

colset ConvInfo = record start time: MTime * last act:MTime
* nof unique messages: Count * nof parties: Count * total nof messages: Count;
colset Conv = product ConvId * ConvInfo * Status;

Table 2. Data types (cont.)

a The lifecycle of a process
instance starts with the
activation of an enabled

instance. An active

instance can become
inactive through deac-
tivation, or completed

when the instance lifecy-
cle ends.

b Process instances of type
Pr contain a list of re-
quests sent, replies re-
ceived and the status of
the instance. When a con-
versation starts, a process
instance is coupled with a
conversation identifier.

���� ��� �����	������ ��� �����	��

�	� ������
�	� ������
������� �	���	���������� �	���	��� ��	������ ��	���	� ������� ��� ����� ����		�	� ����

�������

�������

�	� ������

���� ��� �����	��

����������

������	�	
������� �	���	���

Fig. 9. CPN diagram: The Requestor page of
Multi-party Multi-message Request-Reply Conversation

15

�� ����� ��������	
�
�
����
����

��
��� ������������ ����

���	
� ���� ������

����	
�
�����
��� �� ����� ��������	
�
� ����	
�
����	
�
����	
�

��� ����
��� ����
��� ����
�
��� ����
�
��� ����
�
��� ����

(a) The Process instances

sub-page

�
�� ����� ���� 	�
�	�������� ��� ����������� ������� �������� ��
 �������� �
 ���������
����� ��� ����� ���������

���������
���� ���������� �����

����� �� ���� �� ����!�
 ����!�
 ����!��������"�"� �� ��
 �������� �
���������
���� �� ��############$� ���� ��� �� ��� %���� ������� �������� �� �� ���&��'� �����############

�()*)++�(),)++�()-)

�����.��.���� ����� ���� 	�
�	������� ��� �� ���� �������!�� �������� �(�� ��� ����� ############$����� ��� �� ��� %���� ������� ��������� ������� ������ ���� ��������############
(c) The Responder sub-page

�������������� ���� ��� �� ��� 	�
� ������� �
 �
��
����� �� �
�����
 �� �

��
�
 ��
� �����
��
��
��
����������������

������������������ ��� �� ��� 	�
����
� � �� ��
��
��� ��
 �
���� � ���� �
�������������
�� ����� ������� ��
�
�� ����� ������� ��
�

�� ��� ������ ������� ��
� �
��
��� �
� �
��
��
����
��� ��� �
��
��� ��� ����

�� ����� ������� ��
� �� ���� �� ����� ��
�
�� ����� ������� ��
��� ��� ������ ������� ��
�

� �
��
�����
���� ����� ��� �
��
������ �����
��
����� �
��
��
����
��� ��� �
��
��� ��� ����
�
� ��������� ��� �! ���� ������� ��

����
� �� ��!
�
���� ���"#�!!

����
��
��
��
��� $����������%&' $��� ����
���� ����'�� (���
)
��
��� �%*%&' +,+$���-

�
��
��'�� �
����
'��
%&'

'��
%&'

.(���%�� ������
���� ��������
 �� ��/.

(b) The requestor’s Send Request sub-page

Fig. 10. CPN models of Multi-party Multi-message Request-Reply Conversation

The parameter prob all lost for party corresponds to a configuration param-
eter specifying the probability that the responder will ignore a received composite

16

request or will process it. If the responder decides to reply on the request, the
parameter prob individual message lost is used as a configuration parameter
to define the probability that a reply will be sent for every unpacked sub-request.

The requestor’s Receive response sub-page presented in Figure 11 illus-
trates the mechanism of queueing and processing of incoming responds by the
requestor. The requestor processes only messages addressed to it (for this purpose,
a Requestor ID is used). The response messages received are queued according
to the QueueingDiscipline() function, which corresponds to the configuration
parameter that can be set to any of the queueing disciplines, i.e. LIFO, FIFO or
PRIO. If messages should not be sorted (NoQueue), they are consumed immedi-
ately.

Function Consume() corresponds to the configuration parameter specifying
how many messages from the queued ones have to be consumed. One, several, or
all available messages in the queue can be consumed. The consumption of messages
occurs when the enabling condition (encoded as a guard of transition Pull) is
satisfied. The Activated function can be configured to specify the enabling upon
the availability of one or several messages in a queue, upon the satisfaction of a
certain condition or upon a timeout.������������������ ��� �� ��� 	� �
��� �� � ����� ���� �� ��� �������� ����
��� ��������������� ������������������ ��� �� ��� 	���� ��� ����
��� ���� � ���������������

������������������ ��� �� ��� 	������� ���� �� ������ ��� ���� ��� ������
��� ��� �������������������� �������������� ���� ��� �� ��� 	�� �� ��� �� � � ������������������

�� ��� �� ����� ��������
��� � ��� ������� ������������

��� ���� �� �����

�� ��� �� ����� ������� ����
������� �� ��� ��
����� �������������� ���� �� ����� ����� ���
���� ��� ������ ���� !����� ��� �� �� ��������

�

 ���"��� ����� ��� ��� ��
��� �� �����������������������
��� ��# ������$����%� ��� ������� ������������

�&

�� ���
 ��$!�� ����� �� ���� ������& '������("()* +,+-� ��# '��#(������
�
�����()* -���

.������� ����()* .���
�

 $&������

()*

()*
(�()*.���
��� ���� ������������������������ ��� �� ��� 	� �
��� �� ����
���������������������� ��� �� ����� ���//0��� ���� ���������� ������������������ ���� ��� �� ��� 	� �
��� �� ������
�� � ��� ������
�� ��������������

Fig. 11. CPN diagram: The requestor’s Receive Response sub-page of
Multi-party Multi-message Request-Reply Conversation

From the messages consumed only the number of messages defined by the
Use() function are actually used by the requestor for the processing. This con-

17

figuration parameter can be set for using either one, several or all consumed
messages.

The MaxAct parameter corresponds to the configuration parameter specifying
how many times the requestor may consume the messages from the queue for the
given conversation. If the messages have been consumed the specified number of
times, the process instance receives the status completed and the messages left
in the queue are removed from it by means of the filter() function. Transition
destroy messages is used to retrieve messages from the queue place if the in-
coming response messages do not need to be sorted and have to be consumed
immediately upon arrival.
Issues When applying pattern variants belonging to the Multi-party Multi-message
Request-Reply Conversation pattern family the issue of the message correlation
may arise while matching replies received with the requests sent. This issue can
be addressed by applying a suitable pattern variant from the Message Correlation
family (see Section 6). If the Multi-message Multi-Party Request-Reply Conver-
sation pattern variant has to be applied in the context of a long-running con-
versation, where a series of requests have to be sent one after another, the given
pattern variant can be combined with a suitable pattern variant from the pattern
family Bipartite Conversation Correlation.

5 Pattern Family: Renewable Subscription

This section describes the second pattern family named Renewable Subscription.
Description Two parties, a provider and a customer, are involved in a conver-
sation with each other. A provider offers a product under specific subscription
terms and a customer consumes the product. Both the provider and the customer
may initiate the subscription process by sending a request message. There may
be a confirmation/rejection response on the subscription request or no response
at all. Depending on terms of subscription, the subscription can be renewed au-
tomatically, at the initiative of the customer or the provider.
Examples

• To apply for travel insurance, a client contacts an insurance company. The
insurance company informs the client about available types of insurance and
duration terms. Once the client has taken out insurance, it is automatically
renewed every year. The insurance can be canceled at the client’s request at
any time.

• A short-term trial newspaper subscription can be extended at the request of
a reader.

UML meta-model Concepts specific to the Renewable Subscriptions pattern
family are illustrated by means of the UML model in Figure 12. By subscription we
understand a conversation between two parties, one party offering a product (see
the provider association between Party and Subscription) and another party
consuming it (see the customer association between Party and Subscription),
to establish an agreement for delivery of a certain product according to pre-agreed

18

subscription terms. A party may offer zero or more products and define a set of
subscription terms (see aggregation relations between Party, and Product and
SubscrTerms). Subscription terms define a subscription period, a number of prod-
ucts to be delivered during this subscription period, a response period within
which the customer has to acknowledge the acceptance or rejection of the offered
subscription, and how the acknowledgment should be notified. The established
subscription relates to one product and a particular set of subscription terms,
although these could be the same for multiple subscriptions.

ReplyRequest

0..*1 0..*1

corresponds to

Message

SubcrTermsProduct

** **

RenewalInitialization

Conversation

1..*1..*

Party

0..*0..*

+defines

0..*0..*

+owns
1

**
requestor

1

** responder

1

**

requestor

1

**responder

0..*

1

is sent by

2..*

0..*

2..*

0..*

involves

0..*

1

is generated by

Subscription

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

1

1

1

1

1

*

1

* customer

1

*

1

* provider

1

1
11

Fig. 12. UML meta-model of Renewable Subscriptions

19

Each subscription has one initiation phase and may have multiple renewal
phases or may not have the Renewal phase at all (see the association relations
between Subscription, Initiation and Renewal). Initiation and renewal are
conversations (see specialization relation between Conversation, Initiation and
Renewal) held for the purpose of establishing and renewing of a subscription
respectively. Parties involved in the conversation, play the role of requestor or
responder, where requestor initiates a phase by sending a Request message and
responder replies with zero or more Reply messages.
Visualization Figure 13 illustrates the graphical notation for Subscription Re-
newal pattern configuration. Depending on who initiates the subscription and who
takes the initiative for its renewal, six subscription renewal types can be distin-
guished. For each subscription renewal type listed in Table 3 there is a separate
graphical notation in Figure 13.

The parties are visualized as rectangles with a vertical line in the center of a
rectangle representing internal message flow. Directed arrows between rectangles
represent the direction in which a party sends a message. A dashed arrow indicates
that no reply may be sent back, i.e. the reply is optional. Every message is repre-
sented as a black token. The message properties are embedded into the rectangles
attached to the message. The time sequence of message exchange corresponds to
the time axis. Request and reply messages are denoted as REQ and RPL respec-
tively. Message indexes c and p denote that message is sent by the customer or the
provider respectively. Message indexes init and renew denote that the message
is related to the initialization or renewal of a subscription, while index cnlrenew
identifies that the message relates to the cancellation of an automatically renewed
subscription.

Subscription type Initiator Renewer

(a) Customer-initiated Automatically-renewed Subscription Customer none

(b) Provider-initiated Automatically-renewed Subscription Provider none

(c) Customer-initiated Customer-renewed Subscription Customer Customer

(d) Provider-initiated Customer-renewed Subscription Provider Customer

(e) Customer-initiated Provider-renewed Subscription Customer Provider

(f) Provider-initiated Provider-renewed Subscription Provider Provider

Table 3. Renewable Subscriptions types

Besides selecting the subscription renewal type, there is a number of configuration
parameters1 that have to be set to a specific value in order to differentiate pattern
variants:

• Expected initiation confirmation: confirmation expected by the provider on
the subscription initiation offer sent to the customer.
Range of values:

1 We omit the default values of the configuration parameters, since these do not apply
to all subscription renewal types

20

REQc,cnlrenew(Prod)tim
e

SP

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

Message propertiesMessage

Product
delivery

(a) Customer-initiated
Automatically-renewed Subscription

REQc,renew(Prod)tim
e

RPLp,renew(Prod,Nr,SP,PRr)

SP

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

(b) Customer-initiated Customer-renewed
Subscription

tim
e

REQp,renew(Prod,Nr,SP,RP,Qr)

RPLc,init(Prod,Rr)

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

SP

RP

(c) Customer-initiated Provider-renewed
Subscription

REQc,cnlrenew(Prod)tim
e

REQp,init(Prod,Nr,SP,RP,Qi)

RPLc,init(Prod,Ri)

RP

Customer Provider

SP

(d) Provider-initiated
Automatically-renewed Subscription

tim
e

REQp,init(Prod,Nr,SP,RP,Qi)

REQc,renew(Prod)

RPLc,init(Prod,Ri)

RPLp,renew(Prod,Nr,SP,PRr)

RP

SP

Customer Provider

(e) Provider-initiated Customer-renewed
Subscription

tim
e

REQp,init(Prod,Nr,SP,RP,Qi)

REQp,renew(Prod,Nr,SP,RP,Qr)

RPLc,init(Prod,Ri)

RPLc,init(Prod,Rr)

RP

SP

Customer Provider

(f) Provider-initiated Provider-renewed
Subscription

Fig. 13. Graphical notation: Renewable Subscriptions

◦ Yes/No: the provider requests that the customer reply with “Yes” or “No”
to accept or reject an offer for initiation of a subscription. If no confirma-
tion is received, no subscription is established.

21

◦ Yes: the provider requests that the customer reply with “Yes” in order
to initiate a subscription. If the expected response is not received, no
subscription is established.

◦ No: the provider requests that the customer reply “No” in order to ter-
minate the initiation of a subscription which is implicitly considered to
be established. If expected response is not received, the subscription is
considered to be accepted.

Visualization: the Qi label in the message properties of an initiation request
sent by the provider to the customer, substituted with a suitable value (Fig-
ure 13). An example illustrating the provider’s request with an expected con-
firmation “Yes” is presented in Figure 14.

• Expected renewal confirmation: confirmation expected by the provider on the
subscription renewal offer sent to the customer.
Range of values:
◦ Yes/No: the provider requests the customer to reply with “Yes” or “No”

to accept or reject an offer for the renewal of a subscription. If no confir-
mation is received, no subscription is established.

◦ Yes: the provider requests the customer to reply with “Yes” in order to
renew a subscription. If the expected response is not received, no sub-
scription is established.

◦ No: the provider requests the customer to reply “No” in order to terminate
the renewal of a subscription which is implicitly considered to be estab-
lished. If expected response is not received, the subscription is considered
to be accepted.

Visualization: the Qr label in the message properties of a renewal request sent
by the provider to the customer, substituted with a suitable value (Figure 13).

Besides the configuration parameters, the graphical notation in Figure 13 also
contains a set of dynamic attributes. Values of dynamic attributes may vary for
different examples that are based on by the same pattern variant. The dynamic
attributes describe characteristics of a subscription such as the period of subscrip-
tion (SP), the specific product (Prod), the number of products to be delivered
(Nr) within the subscription period, and the response period (RP) during which
a subscription offer has to be accepted. Furthermore, the customer’s response to
the subscription initiation offer and on the subscription renewal offer (denoted Ri
and Rr respectively), and the provider’s response to the subscription initiation
request or the subscription renewal request received from the customer (denoted
PRi and PRr respectively) correspond to behavioral variables that may have dif-
ferent values in different conversations. In particular, the customer may reply on
the subscription offer received from the provider with Yes or No, or not reply
at all. When the customer sends a request to the provider to initiate or renew
a subscription, the provider may accept or reject the request, or may not reply
at all. The behavioral variables are visualized by substituting labels Prod, SP,
RP, NR, Ri, Rr, PRi, and PRr, residing in the properties of messages in the
corresponding subscription renewal type in Figure 13, with a suitable value.

22

The example shown in Figure 14 presents a subscription offer for 4 issues of a
journal “Cosmo” that will be delivered within 30 days. The customer is expected
to reply on this offer with “Yes” to accept the offer within the response period of 14
days. The values of behavioral variables Ri and PRr are not specified, because these
are set dynamically and thus may take different values for every conversation.
In one particular instance of the subscription conversation, the customer could
accept the offer from the provider and acknowledge the acceptance by sending
“Yes”. When the subscription period is about to finish, the customer can request
the renewal of the subscription by sending a request specifying the name of the
magazine. The provider may acknowledge the acceptance of the renewal request
by issuing the “Accept” response, confirming the subscription period and the
number of issues to be delivered.

REQp,init("Cosmo",4,30,14,Yes)

RPLc,init("Cosmo", Ri)

tim
e

REQc,renew("Cosmo")

RPLp,renew("Cosmo",4,30,PRr)

Customer Provider

Fig. 14. An example of the Provider-initiated Customer-renewed pattern variant

Illustrative example To describe the pattern variants used in one of the exam-
ples listed earlier, let’s define the values of the configuration parameters. In the
travel insurance example, where a client contacts an insurance company to apply
for travel insurance, the insurance is renewed automatically every year. The client
and the insurance company map onto the roles of the customer and the provider
respectively. This corresponds to the Customer-initiated Automatically-renewed
subscription type. The graphical notation for the pattern configuration for the
given example is depicted in Figure 15. In its request to the insurance provider,
the client specifies the product requested “trvl insurance”. The provider indicates
to the client in the reply message the number of products to be delivered, i.e. 1,
the subscription period of 1 year, and its acceptance response PRi, which can be
either “Accept” or “Reject”. Since the acceptance response is determined dynam-
ically, it’s value is not specified. Within the subscription period, the client may
send a cancellation request tot the insurance provider to cancel the insurance.
CPN semantics In this section, we describe in detail the semantics of one
Provider-initiated Customer-renewed subscription scenario. As they are similar

23

REQc,cnlrenew("trvl ins")tim
e

1 year

Customer Provider

REQc,init("trvl ins")

RPLp,init("trvl ins",1,1year,PRi)

Fig. 15. Notation for the travel insurance example

in form, the CPN models for the remaining subscription renewal scenarios are
listed in Appendix B.

Figure 5 illustrates the top view of the Provider-initiated Customer-renewed
subscription scenario. Customer and provider are represented by substitution
transitions with corresponding names that unfold to the sub-pages presented in
Figure 16 and Figure 17 respectively. The definition of data types is is based on the
concepts and notation introduced earlier. The subscription scenario is based on
the assumption, that there is a one-to-one relation between customer and provider.
This means that from the customer perspective, conversations are performed with
a single provider, and the same holds for the provider. This implies that customer
and provider do not need to specify their identities in the messages exchanged
(this could easily be added if desired). However, since multiple subscriptions can
be established between customer and provider for the same product, the subscrip-
tions have to be differentiated. For this purpose, a subscription identifier of type
SID is introduced in the messages exchanged.

The customer, whose behavior is presented in Figure 16, receives an ini-
tialization request reqpinit and puts it in the place Subscription offered by
means of transition Receive init request. If the customer decides to reply,
function createcinitreply() generates an initialization reply message of type
RPLcinit. A variable r of type R indicates whether the request is accepted, re-
jected or ignored. If the customer accepts the subscription, the subscription de-
tails are recorded in place Subscription established by means of the function
recordsubscr(). Products sent by the provider are received by the customer via
transition Receive product, which examines whether the product delivered is
the product expected by the customer by means of the function productforme().
When the last product has been received by the customer, the customer generates
a renewal request via function createcrenewreq() and sends it to the provider
by transition Send renew request. In order to match future replies from the
provider with the request sent, the customer stores the subscription request in
place Subscription requested. When a renewal reply rplprenew is received from

24

the provider, the function replyforcustomer() locates a corresponding request.
If the provider accepted the renewal request, the function updatesubscr() records
the details of the subscription renewed in the place Subscription established.
From this moment on, the customer may continue receiving products and may
perform subscription renewal requests again.

The provider, whose behavior is presented in Figure 17, initiates the conversa-
tion with the potential customer by sending an initialization request for subscrip-
tion reqpinit of type REQpinit. Decomposition of a substitution transition Send

Table 4. Data types used in Fig. 5-18
colset Prod = string; a

colset RP = int; b

colset SP = int; c

colset Nr = int; d

colset Q = with YesNo|Yes|No; e

colset R = with Yes|No|none; f

colset PR = with Accept|Reject|Neglect; g

colset SID = INT; h

colset REQpinit = product SID * Prod * Nr *RP * SP * Q; i

colset REQprenew = product SID * Prod * Nr * RP * SP *Q; j

colset REQcinit = Prod; k

colset REQcrenew = product SID * Prod; l

colset RPLpinit = product SID * Prod * Nr * SP * PR; m

colset RPLprenew = product SID * Prod * Nr * SP * PR; n

colset RPLcinit = product SID * Prod * R; o

colset RPLcrenew = product SID * Prod * R; p

a Product name
b Response period
c Subscription period
d Number of products to be deliv-

ered
e Confirmation expected by

provider
f Confirmation sent by customer
g Confirmation sent by provider
h An identifier for distinguishing

identical subscriptions
i Init. request of provider
j Renewal request of provider
k Init. request of customer
l Renewal request of customer

m Init. reply of provider
n Renewal reply of provider
o Init. reply of customer
p Renewal reply of customer

���� ��� �
���� ��� �

��	
��� �
��	
���� �����������������

���������	
���� ����������
������
��������� ��
��
�����	
������

��	
���� ���� ��� �
Table 5. CPN diagram: The top view of Provider-
initiated Customer-Renewed Subscription

25

init request is presented in Figure 18. The createpinitrequest() function
generates an initialization request based on the product offers available at the
provider in Product offers place and a variable q of type Q that represents the
confirmation expected by the provider on the given request. This is a configura-
tion parameter that is set dynamically to one of the values of the small color-set
Q. Subscription offers sent are stored in place Offered subscription.

��� �
�����	����� �
������		��

� �	��	� �		��	�
��� ����� ������	
��� ��
�� ���	� ��	�	�� ������� �
�	������� ��	 ��	 	���� �	�������	������

������		�
��	��	� �		��	�
��� ��

����
�	������

�	�	 ��	�		��	�����	����� �������	�
�	��� �		�� ������		���
�� ��	�� �		�
��� �� ��	�	 ��	����������������� ��	
��� ��������

���� �		�
 ���� ���� ��	��������	� ���� �
!��	 �	� ���� �

�����		�
�"#� ���
�������
"���

�"#��		�

 ���� ���� �����	 �	� 	���� �	 ���
�	�	 ��	��� �	��	�� $���	��	��$$

$���	���!��!��"������$$
�		��	���$$

 	��		��	��	�� �		��	��	��!��!�� ���� ���� ���	��	��	� �	��� �		�

�� ���	 ��		���� 	 ��	� �	��	� ��� �	���
�	������� ��
%%%%%%%%%%%%%%%%&������	 � �� ���	 � ���'�	�	 ������ ��� ����	� �� �	� �	 ��	��	���	 ���	�� �(�� �)	�� �(�	����	 � ��� �	 �	��� � � �	����	 � ��� �	 �	� �� � ��%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%*�	 �	� �� �� �� �		���	 ����� ���� �� ���'�	�	 ������ ��%%%%%%%%%%%%%%%%%
Fig. 16. The Customer page of Provider-initiated Customer-Renewed Subscription

colset Offer = product Prod * Nr * RP * SP * Ren; a

colset Subscr = product SID * Prod * Nr * SP *Ren; b

colset OfferedSubscr = product SID * Prod * Nr * RP * SP * Q * Ren; c

colset RequestedSubscr = product SID * Prod; d

a Offers of provider
b Established subscription
c Subscription offered
d Subscription requested

26

��������� ���������	
�����

�� ������	� �	� �	�	������ ����� �����	 ��	 	������ ���� ���� �
� �	�	����� ������� ���������

�	
�� �	�	�
����� ��� �	�� �������	�� ������

�	����� �	
�	��	�� ��� �	
�	�

�	���	�	� �	���
�	�	 ��	�	�	� �	
�	���	
�� ����� ��	 ���	
�� �	�	����� ���
�	�	 ��	��� �	�����	����� ����� ��	 ������� ��������

���������	 �� ��	 �

�	
�	�	������ ��� �������� �
!�������	������ ��� �������� �
 ��	 �	������ ��� ��� ��	 �	������ �

�	�	��	��� ���"��	�	�
�	�	��	
�	�#��!$��	�	�
#���	���#���"� ���
#���	
�	� ��!$����

������ ����� �
 �
#�
#� �

�	�� ��� �	
�	�
�	�� ������

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&������	 �� �� ��	 �� ���� �� �� �� �'�	� ���	 ���'�		 ������ ��� ��� � �	� ��	 ��	�	��	 ���� ��	 �� ��� ���	�� �	(�� �� �) �	� �	 �	
�	� �� � ����� ��� ��� �	�	�� �%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
�� ���*) �	� �	� 	��� 	 ��	� �	�	 �	�	��	��� ���� �����

+,�-.����-�/�+0�12�

Fig. 17. CPN diagram: The Provider page of Provider-initiated Customer-Renewed
Subscription ��� � ������	�� ���
����� ������ ���
��
 ���� �����	�� ���
���� �������	�� �����
� ��� �����	�� ���
���� ��	��	�� �����
�

��	���	�� � ������ ���������� �
��� ���� ����� ���
��
 ���� ��	������� ������
 ��	�������
������ ��	����� ���
���!!!!!!!!!!!!!!!!!!!!!!"����� ��	 �� �	� #������$� � �� �%�� �
&� $$ � $� �'
��������
�	� �	(�	 �)�����
��
 ���� ��	 �	�� ��� ��	 �	� ��&�� ��	 �

���%	�&�� $$%!!!!!!!!!!!!!!!!!!!!!!!!

Fig. 18. CPN diagram: The Send init request sub-page of Provider-initiated
Customer-Renewed Subscription

27

When a customer replies on the initialization request, the provider at first ex-
amines the reply message (rplcinit) received. The replyforprovider() function
checks whether the reply received corresponds to any of the requests sent. Then,
for correlated requests the subscription details are recorded by the createsubscr()
function in the Established subscription place if the customer confirms the
acceptance of the subscription. For established subscriptions, the provider delivers
a specified number of products nr during the agreed subscription period sp.

Products are sent to the customer via transition Send product. When the
provider receives a renewal request reqcrenew from the customer, it examines
by the reqforprovider() function whether there is a corresponding subscrip-
tion that could be renewed. A subscription which can be renewed is stored in
place Requested subscription. If the provider decides not to neglect the re-
ply, a reply message is created by the createrenewreply() function, and if the
provider accepts the request received, the subscription details are recorded by the
renewsubscr() function to the Established subscription place.
Issues The pattern variants belonging to a family of Renewable Subscription con-
sider one-to-one relation between a customer and a provider. However, in many
real life scenarios a customer may have multiple subscriptions with the same or
different providers and a provider may have multiple subscriptions with the same
or different customers. Such context conditions obviously require a deep insight
into the message correlation issue. The issues of correlation can be addressed
by combining a Renewable Subscription pattern variant with a suitable pattern
variant from the families of Message Correlation or Bipartite Conversation Cor-
relation. The involvement of multiple providers and customers as well as requests
for multiple subscriptions can be expressed by combining a renewable subscrip-
tion pattern variant with the pattern variants of the Multi-party Multi-message
Request-Reply Conversation family.

6 Pattern Family: Message Correlation

The third pattern family, named Message Correlation, addresses issues of corre-
lation at a lower-level of abstraction. This family is described in this section.

Description A Party communicating with other parties has to handle incoming
messages in accordance with a history of established conversations. Message Cor-
relation is the act of identifying the relevant conversation for a message received
by the Party.
Example
• An insurance company handles claims for refund of lost baggage, medical

costs, etc. When a claim is received, an insurance advisor determines whether
the client has a valid insurance policy and whether there are any records
related to the claim received. If the client has no valid insurance, the advisor
may provide the client with a new policy or may refuse to handle the claim.

UML meta-model Concepts specific to the Message Correlation pattern family
are illustrated by means of the UML diagram in Figure 19. A Party may partic-

28

ipate in multiple conversations with other parties (illustrated by the association
relation between Party and Conversation). The Party may send messages to
and receive messages from other parties (see the relations send and receive be-
tween Party and Message). Messages exchanged can be either of type Request or
Reply, where every request may have multiple replies, but each reply corresponds
to exactly one request (see dependency relation between Request and Reply). It
is an assumption of this pattern that messages exchanged between parties contain
information about the sender, the receiver and as well as additional content in the
format (From, To, Content). The party sending out a message determines what
information relating to the sender’s and receiver’s identity it wants to reveal in
the message.

ReplyRequest

0..*1

corresponds to

Message

Party

0..*

1

0..*

1

sends

0..*

0..1

0..*

0..1

receives
Conversation

1..*1..*

2

0..*

2

0..*

Fig. 19. UML Meta-model of
Message Correlation

Visualization Figure 20 illustrates the graphical notation for Message Correla-
tion. A party is visualized as a rectangle. The direction of arrows linked to the
party node indicates the direction of message flow. Information about the mes-
sage sender contained in the message is enclosed in the From-field. Information
about the message receiver contained in the message is enclosed in the To-field.
Information the receiving party has about its own credentials before correlating

29

a message received is enclosed in the Me field. Information the party has about
the credentials of the other party involved in a conversation is enclosed in the You
field. Information the party has about its own identity and the identity of the
other party from whom a message has been received after message correlation is
enclosed in fields Me and You’ respectively.

This graphical notation contains a set of static attributes and configuration
parameters. Both static attributes and configuration parameters have to be con-
figured for each of the pattern variants. For all pattern variants, the value of
static attributes is fixed and does not change, while configuration parameters can
be configured in accordance with values in the specified range.

Values of the static attribute representing the knowledge of the receiving party
about own identity before and after message correlation are denoted by the Me
label. Me is a pair (Pr, Cr) where Pr denotes the id of the party-receiver and Cr

denotes the id of the conversation used by the receiving party to correlate the
message received. To illustrate a pattern variant, the Me label is substituted with
the value (Pr, Cr).

Me You

ToFrom

Credentials of the
receiving party after
message correlation

Information about sender
in a message

Credentials of the receiving
party before message
correlationInformation about receiver

in a message

Me You`

Credentials of the
sending party before
message correlation

Credentials of the
sending party before
message correlation

Fig. 20. Graphical notation:
Message Correlation

The graphical notation shown in Figure 20 illustrates that this pattern family
has the following set of configuration parameters:

• Message Sender field : the extent of the information revealed by the sender of
a message regarding its identity.
Range of values: From is a tuple of potential sender identifier and conversation
identifier. The sender identifier is denoted Ps and the conversation identifier
used by the sender for correlation purposes is denoted Cs. Either the id of the
sender, the id of the conversation or both can be missing in the From-field.
Missing information can be either intentionally or accidentally underspecified
by the message sender (for instance, when a party wants to hide its id or when
it forgets to include some information). Missing information is denoted as ⊥.

30

So, possible values of the From-field are (Ps, Cs), (Ps,⊥), (⊥, Cs) and (⊥,⊥).
Default value: (Ps, Cs) (i.e. both the party identifier and the conversation are
supplied by the sender).
Visualization: the From label shown in Figure 20 substituted with a suitable
value. An example specifying the default value of the message sender field is
shown in Figure 21.

• Message Receiver field : the extent of information specified by the sender of a
message regarding the receiver’s identity.
Range of values: To is a tuple comprised of the intended receiver identifier and
its conversation identifier. The receiver identifier is denoted Pr and the con-
versation identifier used by the receiver for correlation purposes is denoted Cr.
Either the id of the receiver, the id of the conversation or both can be omitted
in the To-field. So, possible values of the To-field are (Pr, Cr), (Pr,⊥), (⊥, Cr)
and (⊥,⊥).
Information specified by the message sender about the identity of the receiving
party is required by the message receiver to uniquely identify a conversation
related to the message received.
Default value: (Pr,⊥) (i.e. only the id of the intended party is specified).
Visualization: the To label shown in Figure 20 substituted with a suitable
value. An example specifying the default value for the message receiver field
is shown in Figure 21.

• Credentials of the message sender before message correlation: receiver’s knowl-
edge in regard to the credentials of the sending party involved in the conver-
sation with the receiving party.
Range of values: You is a tuple including the potential message sender identi-
fier and its conversation identifier. The same notation as introduced earlier is
used to denote the id of the party-sender and its conversation identifier. Since
the receiver’s information about the message sender may be incomplete, pos-
sible values of the You-field are (Ps, Cs), (Ps,⊥), (⊥, Cs) and (⊥,⊥).
Default value: (Ps,⊥) (i.e. the receiving party has knowledge only about the
identity of the sending party).
Visualization: the You label shown in Figure 20 substituted with a suitable
value. An example specifying the default value of the message receiver field is
shown in Figure 21.

• Credentials of the message sender after message correlation: information about
the credentials of the sending party involved in the conversation with the given
receiving party, updated after message correlation.
Range of values: You‘ is a pair comprised of the possible sender identifier and
its conversation identifier. Since information the party has about the sender
id and its conversation id available before the message correlation might be
incomplete, some of the missing knowledge can be gained by the receiving
party from the information provided in the message sender field. For instance,
if You=(⊥,⊥) and From = (Ps, Cs), then You’= (Ps, Cs) if all missing in-
formation is recorded. Note that some of the missing information may be
forgotten, and the resulting value of Y ou‘ may be (Ps,⊥), (⊥, Cs) or may

31

even remain unchanged (⊥,⊥). Table 6 illustrates possible values of the You‘
field calculated based on the information available in the You field, the in-
formation provided in the From field and the possibility of not recording the
provided information.

Table 6. Enumeration of all scenarios regarding possible information gained

From You You’
(Ps, Cs) (Ps, Cs) (Ps, Cs)

(Ps,⊥) (Ps, Cs)
(Ps,⊥)

(⊥, Cs) (Ps, Cs)
(⊥, Cs)

(⊥,⊥) (Ps, Cs)
(Ps,⊥)
(⊥, Cs)
(⊥,⊥)

(Ps,⊥) (Ps, Cs) (Ps, Cs)
(Ps,⊥) (Ps,⊥)
(⊥, Cs) (Ps, Cs)

(⊥, Cs)
(⊥,⊥) (Ps,⊥)

(⊥,⊥)
(⊥, Cs) (Ps, Cs) (Ps, Cs)

(Ps,⊥) (Ps, Cs)
(Ps,⊥)

(⊥, Cs) (⊥, Cs)
(⊥,⊥) (⊥, Cs)

(⊥,⊥)
(⊥,⊥) (Ps, Cs) (Ps, Cs)

(Ps,⊥) (Ps,⊥)
(⊥, Cs) (⊥, Cs)
(⊥,⊥) (⊥,⊥)

Default value: (Pr, Cr).
Visualization: the You’ label shown in Figure 20 substituted with a suitable
value. An example specifying the default value for the message receiver field
is shown in Figure 21.

Figure 21 illustrates the graphical notation used for the Message Correlation
pattern variant where all configuration parameters are set to the default values.
Illustrative example To illustrate the example presented earlier, we identify
values for the configuration parameters of the Message Correlation pattern con-
figuration, and show the graphical notation for the given pattern configuration
(see Figure 22). In the insurance claims handling example, when a claim is re-
ceived, an insurance advisor determines whether the client has a valid insurance
policy and whether there are any records related to the claim received. Let Ps

32

(Pr,Cr)(Ps,)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

Fig. 21. Default notation: Message Correlation

be an identity of the client specified by the client, Cs be the insurance number
specified by the client for handling the claim, Pr be the identity of the insurance
advisor, and (Cr) be a client number associated with the client used within the
insurance company. It is the assumption in this example that the client has a
valid insurance. The client specifies both information about their identity, the
insurance number in its claim, and the identity of the insurance company. Since
no correlation-related information is gained by the insurance advisor from the
incoming message, the knowledge about the client after handling the claim does
not change.

(Pr,Cr)(Ps,Cs)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

Fig. 22. Notation for the claim handling example

CPN semantics In this section, we formalize the semantics of Message Corre-
lation by means of CPN. The CPN diagram presented in Figure 23 illustrates
the act of correlating an incoming message of type Message with the history of
existing conversations Conv via transition Correlate. Messages that have to be
processed by the party are supplied in the form (from,to,cont), where from (of
type From) represents the identity of the message sender; to (of type To) repre-
sents the identity of the party to which the message is dedicated, and cont (of

33

type Cont) represents the content of the message. The knowledge based on the
history of existing conversations is available to the party before a received mes-
sage has been correlated has the form (me,you,cont old). The element me of
type Me represents the knowledge of the receiving party itself. The element you
(of type You) represents the knowledge about the message sender from previous
interactions. The element cont old (of type Content) represents the content of
all messages previously exchanged in the given conversation.

Values NoPartyId and NoConvId (which correspond to the symbol ⊥ intro-
duced in the pattern visualization section above) denote the absence of the in-
formation about the party identifer and conversation identifier respectively. Note
that a union type is used to incorporate such “missing values”.

The abletocorrelate() function matches information supplied in the incom-
ing message with the history of previous and current conversations. In particular,
matches are performed between variables to and me, and from and you. In this
example, the abletocorrelate() function performs correlation by matching the
identities of the message sender and message receiver supplied in the message
with the corresponding identities available to the party-receiver in the history
of conversations. Note that instead of correlating based on matching the infor-

Table 7. Data types used in Fig. 23
colset PartyId = union smallstr + NoPartyId; a

colset ConvId = union smallint + NoConvId; b

colset PxC = product PartyId*ConvId;
colset Content = string;
colset From = PxC;
colset To = PxC;
colset Me = PxC;
colset You = PxC;
colset Conv = product Me*You*Content;
colset Message = product From*To*Content;

a The id of a party
is a small color-
set of a certain
type (STRING in
this case) or is de-
noted by NoPar-
tyId if not speci-
fied.

b The id of a con-
versation is a small
color-set of a cer-
tain type (INT in
this case) or is de-
noted by NoPar-
tyId if not speci-
fied.

�����������	
� ���� ����	�����	 ����� ��	�
���	� ����	� ��� ��� ��	 ������
����
���	��	

���	� ������ ���� ��� ��	 �����
���
���	��	
����	 ����� � ���� ���	� ���	
� �� ���	��	 ������ ���	
��� ���	 ��� �������� ��� ����������� ������ �������	� ���	
� �� �

�����	��� ��� ��	� ��� ����	�����	������������	
� ������������������ ������������	
��� !����	 ��� �� ��	� "�������	 ��� ���# ��������	 	$� ������������� ��� 	$� ����������� �#� � %���
&�
���	��	 !����	 ��� �� ��	 " � ��� ���� �� ���������	 ��� �� �� ���� ��	� �������� �� ��� ��	 ���
 !����	 ��� �� ��	 "'�������� ����	 	$�������� ������

Fig. 23. CPN diagram: Message Correlation

34

mation contained in the incoming message with local knowledge of the party,
also some analysis of the message content can be performed (this issue is dis-
cussed in more detail in the next paragraph). If correlation is successful, i.e. the
abletocorrelate() function has identified a conversation to which the message
received can be uniquely correlated, then the history of existing conversations
is updated. In particular, the merge() function adds the content cont of the
message received to the old content cont old of the identified conversation. The
addmissing() function identifies if there is any missing information regarding the
credentials of the message sender, and where such information is identified, adds
it to the existing information. Note that since not all information provided nec-
essarily has to be recorded, the some() function defines how much of the missing
information will be actually recorded.

In the net presented in Figure 23, messages which can not be correlated are
blocked in the Incoming messages place. This net could be extended with mech-
anisms for handling correlation failure. In particular, constructs could be added
for creating a new conversation or for discarding an incoming message for which
no corresponding conversation has been found in the history of existing conver-
sations.

Issues The Message Correlation pattern family identifies the issues experienced
by a party receiving a message that must be correlate. The given pattern family
considers correlation between two tightly-coupled parties. When fewer dependen-
cies are desired between the parties, the tight binding between them may be
relaxed. The issue of message mediation among two loosely-coupled parties are
addressed in the Message Mediation pattern family. Furthermore, the Message
Correlation pattern family concentrates on a single interaction between two par-
ties in the context of already existing conversation. Thus, it does not provide any
insight into how information used for correlation changes during the course of
the conversation. The issue of varying correlation information in the context of
a bipartite conversation is addressed in the Bipartite Conversation Correlation
pattern family.

From a functional point of view, message correlation is performed by a party
using either a key-matching or a property-analysis approach. A party may use key-
matching to uniquely identify a conversation related to the message received. For
this, message fields From and To are used as keys for correlation. The mapping of
these keys to the values of You and Me should be unique, i.e. no two conversations
can be identified as a result of applying key-matching. In situations, where key-
matching results in a non unique mapping, some additional analysis of the message
content might be needed. The property-analysis approach is used to identify a
conversation related to the message received based on the examination of the
message content. For analysis purposes, other information available to the party
may also be used. Based on the content of the message (for instance, message
id, conversation id, time-stamp, etc.) together with other information available to
the party it may be possible to determine the conversation to which the message
received relates. Note that in this section we only considered key matching.

35

The perfect scenario leading to successful correlation would contain the max-
imal possible information for all configuration parameters. However, in real-life
situations not all information is guaranteed available. For instance, information
specified by the message sender in the message may be incomplete or information
available to the receiver about the sender may be missing. If no identifier for the
receiving party is specified in the message, no guarantee can be given that the
message will be delivered to the right party. If the message sender does not dis-
close its id in the message, there is no guarantee that the follow-up response will
be correctly delivered. If no conversation id, used by the receiver for correlation
purposes, is contained in the message, then there is the possibility of it being
correlated with the wrong conversation.

An exceptional situation may occur if, as a result of correlation, no conversa-
tion related to the message received can be identified (i.e. in case of the correlation
failure). To deal with such an exception, a party may create a new conversation
or discard the message received.

The majority of existing products rely on the key-matching approach, i.e. they
perform correlation based on matching of information supplied in the message
with information available to the party. These products discard messages which
do not provide complete information about the credentials of the message receiver,
while the identity of the party or the conversation identifier could be inferred based
on analysis of available message content.

7 Pattern Family: Message Mediation

In this section, we describe the fourth pattern family called Message Mediation.
This pattern family concentrates on mediation of messages related to a conversa-
tion between two loosely-coupled parties.
Description A party requesting a service may not know the credentials of the
party providing this service or may know the party credentials but not be willing
to engage in a message exchange with them directly. To establish a conversation
between two loosely-coupled parties, the customer and the provider, a third inter-
mediary party named “the mediator” is required. The customer posts a request
to the mediator and expects the response to be received back. The mediator for-
wards both requests from the service customer to the service provider and replies
from the provider back to the customer. Alternatively, the mediator may provide a
party with details of the credentials of the other party involved in the conversation
to allow for future interactions to occur directly between them.
Examples
• To organize a business trip, a manager asks their secretary to arrange the trip

and provide itinerary details when they become available.
• To order office equipment an employee contacts a secretary, who forwards the

employee’s request to a supplier. After processing the request, the supplier
delivers the equipment ordered directly to the employee.

• Air-miles card owners may exchange accrued air-miles for reservation of flights
provided by one of the airline partners. The miles-to-flight exchange is per-

36

formed via the Air-miles web-site, which mediates data exchange between the
client and the airline operator. The itinerary details provided to the client con-
tain contact details of the airline operator for any future enquiries regarding
the booking.

UML meta-model Concepts specific to Message Mediation are illustrated by
means of the UML diagram in Figure 24. A conversation between a customer
and a provider involves a third party, i.e. a mediator (the three parties involved
in a conversation are illustrated by the association relations between Party and
Conversation). Each party involved in the conversation may send and receive
messages (see the association relations between Party and Message). Messages
exchanged can be either of type Request or Reply, where each reply corresponds
to one request, and one request may have multiple replies.

ReplyRequest

0..*1

corresponds to

Message

Party

0..*

1

0..*

sends

0..*

0..*

0..*

receives
Conversation

1..*1..*

3

0..*

3

0..*

1

0..*

1

0..*

provider

1

0..*

1

0..*

customer 11

mediator

1

0..*

Fig. 24. UML meta-model of
Message Mediation

Visualization The graphical notation for Message Mediation is presented in Fig-
ure 27. The mediator may play two different roles in the tripartite conversation:
(1) forward both a request from the customer to the provider and the provider’s
reply back to the customer; (2) route a request from a customer to a provider and
supply the provider with a reference to the customer’s credentials (so that the
provider can reply to the customer directly). The role of the mediator is one of

37

the configuration parameters that have to be set in order to distinguish between
two types of message mediation: Mediated Interaction and Mediated Introduction
denoted using the notation presented in figures 29 and 27 respectively. This nota-
tion is based on the graphical notation used for the Message Correlation pattern
family. It is assumed that messages exchanged between parties involved in the
tripartite conversation are of the format (From, To, Them, Expose, Content),
where From represents the credentials of the message sender, To represents the
credentials of the message receiver, Them identifies the third party involved in the
given conversation, Expose indicates permission to reveal the credentials of the
message sender to the third party in the conversation, and Content represents
additional content of the message. Note that compared to the basic correlation
scenario described in the previous section, there are two additional fields: Them
and Expose.

Both graphical notations contain a set of configuration parameters (i.e. pa-
rameters that have to be set to a specific value in order to configure a pattern
variant), a set of static attributes (i.e. pattern attributes whose value is fixed for
all pattern variants derived from the pattern configuration), and a set of dynamic
attributes (i.e. pattern attributes whose value is derived from other pattern at-
tributes once all configuration parameters for a specific pattern variant have been
set to a specific value).

For the sake of clarity, we describe the pattern configurations for Mediated
Introduction and Mediated Interaction separately.

Let P1, P2, and P3 denote the party identifiers of the customer, the media-
tor, and the provider respectively. Let C1, C2, and C3 denote the conversation
identifiers used by the customer, the mediator and the provider for correlation
purposes respectively. Let ⊥ denote the absence of either party or conversation
identifier in the message.

The graphical notation of the Mediated Interaction pattern configuration is
shown in Figure 29. This notation contains the following configuration parameters:

• Customer request for specific provider : denotes information revealed by the
customer about the identity of provider, which the mediator has to forward
at the customer’s request.
Range of values: Them1 is a pair comprising a party identifier and a con-
versation identifier, potentially representing the credentials of the provider
supplied by the customer to the mediator. The customer may know the iden-
tity of provider or may not know who the potential provider will be. If the
customer knows the identity of the provider, it may indicate it in the Them1
field in the form of (P3,⊥). The mediator will forward the request to the
specified party. If the customer does not know the provider’s identity or does
not want to specify it, the value (⊥,⊥) is assigned to the Them1 field.
Default value: (⊥,⊥).
Visualization: the Them1 label substituted with a suitable value in Figures 29.
An example specifying a default value is given in Figures 26.

• Customer’s permission to expose its credentials: denotes permission granted
to the mediator by the customer to disclose its credentials to the provider.

38

From1 To1 Them1 Expose1

From2 To2 Them2

From3 To3 Them3 Expose3

 From4 To4 Them4

Mediator

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Credentials of
Mediator

Credentials of
Customer

Credentials of the Provider
supplied by the Customer

Knowledge about the
visibility of Customer's
credentials

Knowledge about the
visibility of Provider's
credentials

Credentials of Provider after
receiving the Provider's
reply

Customer's permission
to expose its credentials

Provider's permission to
expose its credentials

Credentials of a
specific provider

Fig. 25. Graphical notation: Mediated Interaction

Range of values: Expose1 is a Boolean variable, whose value can be true or
false indicating that the customer allows the mediator to expose its identity
to the provider or prohibits it to do so in order to remain anonymous respec-
tively.
Default value: false (i.e. the customer does not give permission for their cre-
dentials to be revealed).
Visualization: the Expose1 label substituted with a suitable value in Fig-
ure 29. An example specifying a default value is given in Figure 26.

• Visibility of the provider’s credentials: denotes whether permission is granted
to the mediator by the provider to disclose its credentials to the customer.
Range of values: Expose3 is a Boolean variable, indicating whether the provider
allows the mediator to expose its identity to the customer or prohibits it to
do so in order to remain anonymous. The provider may expose its identity
in order to allow the customer to interact directly with them in the future
independently of the mediator.
Default value: false (i.e. the permission to expose the credentials is not
granted).
Visualization: the Expose3 label substituted with a suitable value in Fig-
ure 29. An example specifying a default value is given in Figure 26.

• Provider’s knowledge about credentials of customer : denotes information re-
vealed by provider in the response message to the mediator about the cre-
dentials of the customer. This information may be used by the mediator to

39

correlate response messages received from the provider.
Range of values: Them3 is a pair comprising the customer identifier and the
conversation identifier. The provider may specify none, some or all information
received from the mediator about the identity of the customer retrieved from
the Them2 field. So, possible values for Them3 are (P1, C1), (P1,⊥), (⊥, C1)
or (⊥,⊥).
Default value: (⊥,⊥).
Visualization: the Them3 label substituted with a suitable value in Figure 29.
An example specifying a default value is given in Figure 26.

• Information about the message sender in the response from provider to me-
diator : denotes credentials of the provider revealed by the provider in the
response message sent to the mediator.
Range of values: From3 is a pair comprising the provider identity and the con-
versation identifier. The provider may underspecify some information about
its identity in the message sent to the mediator. If an underspecified identity
is passed by the mediator to the customer, the customer may fail to start
a direct interaction with provider in the future. Thus, possible values of the
From3 field are (P3, C3), (P3,⊥), (⊥, P3) or (⊥,⊥).
Default value: (P3, C3).
Visualization: the From3 label substituted with a suitable value in Figure 29.
An example of specifying a default value is given in Figure 26.

• Information about the message sender in the response from mediator to cus-
tomer : denotes the identity of mediator revealed in the response message sent
by the mediator to the customer.
Range of values: From4 is a pair comprising a party identifier and a conversa-
tion identifier. The mediator may underspecify some information about its cre-
dentials, therefore possible values of the From4 field are (P2, C2), (P2,⊥), (⊥, C2)
and (⊥,⊥).
Default value: (P2, C2).
Visualization: the From4 label substituted with a suitable value in Figure 29.
An example of specifying a default value is given in Figure 26.

The static attributes of the Mediated Interaction pattern configuration are
listed below:

– From1: information specified by the customer about its credentials in the re-
quest message to the mediator. It is assumed that the customer reveals all
information about its credentials, therefore From1 = (P1, C1).

– To1: information about the mediator’s credentials specified by the customer in
the message receiver field of the request message sent to the mediator. Initially,
the customer has no knowledge about the conversation identifier used by the
mediator for correlation, therefore To1 = (P2,⊥).

– Me: knowledge of the mediator about its party identifier and the associated
conversation identifier: Me = (P2, C2).

– From2: information specified by the mediator about its credentials in the re-
quest message to the provider. It is assumed that the mediator reveals all

40

information about its credentials in order for the response message to be de-
livered at the correct address, therefore From2 = (P2, C2).

The dynamic attributes for the Mediated Interaction pattern configuration are
listed below.

– Cust: information supplied by the customer about its credentials in the request
to the mediator. This information corresponds to retained knowledge held by
the mediator for correlation purposes. The knowledge about the identity of
the customer is gained by the mediator from the From1 field: Cust=From1.

– Prov: information supplied by the customer in the request sent to the medi-
ator about the identity of a provider. This information is retained knowledge
held by the mediator in order to to forward the request received from the
customer to the party with the indicated identity (if it has been provided).
This knowledge is gained from the Them1 field: Prov=Them1.

– To2: information about the provider’s credentials specified by the mediator in
the message receiver field of the request message forwarded to the provider.
The identity of the provider is set to Prov if it has been provided by the
customer, or is defined by the mediator based on its implicit knowledge and
set to (P3,⊥).

– Prov’: credentials of the provider to whom the mediator has sent the request,
recorded for the purpose of the future correlations. This information is derived
from the To2 field: Prov’=To2.

– Prov’’: knowledge about the credentials of the provider available to the me-
diator after receiving the response message from the provider. The mediator
extends information about the provider’s identity stored in the Prov’ field
with missing knowledge gained from the From3 field of the response mes-
sage received from the provider. Since the provider could underspecify some
knowledge about its identity, the possible values of Prov’’ are (P3, C3) or
(P3,⊥).

– ExpC: knowledge of the mediator about permission granted by the customer to
disclose its credentials to the provider. It is assumed that the mediator hides
the identities of parties involved in the conversation and discloses them only if
the corresponding party has given the permission to do so, i.e. ExpC=Expose1.

– Them2: information specified by the mediator in the request message to the
provider about the credentials of the customer. The knowledge retained in the
Cust field is used to set the value of the Them2 field only if the customer has
granted the permission to disclose its credentials, i.e. Them2=Cust=(P1, C1)
if and only if ExpC=true, otherwise Them2=(⊥,⊥).

– ExpP: knowledge of the mediator as to whether permission granted by the
provider to disclose its credentials to the customer. This knowledge is gained
from the Expose3 field: ExpP=Expose3.

– Them4: information specified by the mediator in the response message to the
customer about the credentials of the provider. The knowledge retained in the
Prov field is used to set the value of the Them4 field only if the provider has

41

granted the permission to disclose its credentials, i.e. Them4=Prov if and only
if ExpP=true, otherwise Them4=(⊥,⊥).

– To4: information about the customer’s credentials specified by the media-
tor in the message receiver field of the reply message sent to the customer.
The mediator retrieves the credentials of the customer from the Cust field:
To4=Cust.

Figure 26 illustrates the graphical notation of the Message Interaction pattern
variant where all pattern attributes are set to the default value.

(P2,C2)(P3,)(,)

(P3,C3)(P2,C2)(,)(false)

Mediator

 (P2,C2) (P1,C1)(,)(false)

 (P2,C2) (P1,C1)(P3,C3)(false)(false)

 (P2,C2)(P1,C1)(,)

(P1,C1) (P2,) (,) (false)

 (P2,C2) (P1,C1)(P3,)(false)

From1 To1 Them1 Expose1

 From4 To4 Them4

From2 To2 Them2

From3 To3 Them3 Expose3

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Fig. 26. Default notation: Message Interaction

From1 To1 Them1

From2 To2 Them2

Mediator

 Me Cust Prov
Credentials of the third
party involved in the
conversation

Credentials of the
message receiver

Credentials of the
message sender

From5 To5 Them5

Fig. 27. Graphical notation: Mediated Introduction

42

The configuration parameters of the Mediated Introduction pattern configu-
ration are described below:

• Customer request for specific provider : denotes information revealed by the
customer about the identity of provider, which the mediator has to forward
at the customer’s request.
Range of values: Them1 is a pair comprising a party identifier and a conver-
sation identifier, representing the credentials of the provider supplied by the
customer to the mediator. The customer may know the identity of provider or
may not know who the potential provider will be. If the customer knows the
identity of the provider, it may indicate this in the Them1 field in the form of
(P3,⊥). The mediator will forward the request to the specified party. If the
customer does not know the provider’s identity or does not want to specify
it, the value (⊥,⊥) is assigned to the Them1 field.
It is assumed that the customer has no knowledge about the conversation
identifier used by the provider, since there was no direct interaction between
them in the context of the given conversation before. Therefore, the value
(P3, C3) is excluded. The value (⊥, C3) is also excluded since it does not
give complete information about the provider’s identity and corresponds to
an arbitrary provider.
Default value: (⊥,⊥).
Visualization: the Them1 label substituted with a suitable value in Figures 27.
An example specifying a default value is given in Figures 28.

• Information about the message sender in the request from mediator to provider :
denotes information revealed by the mediator about its credentials in the re-
quest message forwarded to the provider.
Range of values: information provided by the mediator about its credentials in
the request to the provider may be underspecified. The mediator may reveal
all, some or none of its identity to the provider, providing that the mediator
passes a complete reference to the credentials of the customer (the latter are
required for sending a response message directly back to the customer).
So, possible values of the From2 field are (P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Fixed value: (P2, C2).
Visualization: the From2 label substituted with its value in Figure 27. An
example specifying a default value is given in Figure 28.

• Information about the message sender in the response from provider to cus-
tomer : denotes credentials of the provider revealed by the provider in the
response message sent to the customer.
Range of values: From5 is a pair comprising the provider identity and the con-
versation identifier. The provider may underspecify some information about
its identity in the message sent to the mediator. If an underspecified identity
is passed to the customer, the customer may be unable to start a direct in-
teraction with the provider in the future. Thus, possible values of the From5
field are (P3, C3), (P3,⊥), (⊥, P3) or (⊥,⊥).
Default value: (P3, C3).

43

Visualization: the From5 label substituted with a suitable value in Figure 27.
An example of specifying a default value is given in Figure 28.

• Information about mediator exposed by provider to customer : denotes the cre-
dentials of the mediator revealed by the provider in the response message sent
to the customer.
Range of values: Them5 is a pair comprising the party identifier and the con-
versation identifier, whose value is based on the From2 field. Table 8 illustrates
possible values of the Them5 field, containing all or part of the information
from the From2 field.
Default value: (⊥,⊥).
Visualization: the Them5 label substituted with a suitable value in Figure 27.
An example specifying a default value is given in Figure 28.

Table 8. Enumeration of all scenarios regarding revealed credentials of the mediator

From2 Them5
(Ps, Cs) (Ps, Cs)

(Ps,⊥)
(⊥, Cs)
(⊥,⊥)

(Ps,⊥) (Ps,⊥)
(⊥,⊥)

(⊥, Cs) (⊥, Cs)
(⊥,⊥)

(⊥,⊥) (⊥,⊥)

The static attributes of the Mediated Introduction pattern configuration are
listed below:

– From1: information specified by the customer about its credentials in the re-
quest message to the mediator. It is assumed that the customer reveals all
information about its credentials, therefore From1 = (P1, C1).

– To1: information about the mediator’s credentials specified by the customer in
the message receiver field of the request message sent to the mediator. Initially,
the customer has no knowledge about the conversation identifier used by the
mediator for correlation, therefore To1 = (P2,⊥).

– Me: knowledge of the mediator about its party identifier and the associated
conversation identifier: Me = (P2, C2).

The dynamic attributes of the Mediated Introduction pattern configuration
are listed below. Their values are derived from other pattern attributes.

– Cust: information supplied by the customer about its credentials in the request
to the mediator. This information is retained knowledge held by the mediator
for correlation purposes. The knowledge about the identity of the customer is
gained by the mediator from the From1 field: Cust=From1.

44

– Prov: information supplied by the customer in the request sent to the medi-
ator about the identity of a provider. This information is retained knowledge
held by the mediator in order to to forward the request received from the
customer to the party with the indicated identity (if it has been provided).
This knowledge is gained from the Them1 field: Prov=Them1.

– To2: information about the provider’s credentials specified by the mediator in
the message receiver field of the request message forwarded to the provider.
The identity of the provider is set to Prov if it has been provided by the
customer, or is defined by the mediator based on its implicit knowledge and
set to (P3,⊥).

– Them2: information specified by the mediator in the request message to the
provider about the credentials of the customer. This information will be used
by the provider when sending the response to the customer. The knowledge
retained in the Cust field is used to set the value of the Them2 field, i.e.
Them2=Cust.

– To5: information about the customer’s credentials specified by the provider
in the message receiver field of the reply message sent to the customer.
The provider retrieves the credentials of the customer from the Them2 field:
To5=Them2.

Figure 28 illustrates the graphical notation of the Message Introduction pat-
tern variant where all pattern attributes are set to the default value.

(P1,C1)(P2,)(,)

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P1,C1)(P2,C2)

 (P2,C2) (P1,C1) (,)
From1 To1 Them1

 Me Cust Prov

From2 To2 Them2

From5 To5 Them5

Fig. 28. Default notation: Message Introduction

Illustrative example To show how the pattern configuration can be used in
practice, we analyze one of the examples presented earlier and define the corre-
sponding pattern variant. In the air-miles exchange example, the air-miles card
owner sends a request to the Air-miles web-site to exchange accrued air-miles
for reservation of the specific flight. The Air-miles web-site serves as a mediator
between the client and the airline operator. When forwarding the request from

45

the client to the selected by the client airline operator, the mediator reveals the
client’s credentials (these are needed to book a flight). The airline operator sends
the details of the reservation back to the mediator, who in its turn forwards them
to the client. Together with the details of the reservation made, the mediator
specifies the contact address of the airline operator in order to allow the customer
to contact the airline company in the future for any outstanding issues. In this
example, the Mediated Interaction is performed by the Air-miles web-site. The
label Expose1 is set to true, since the clients details have to be communicated to
the airline operator. The Them1 label contains the identity of the airline operator
selected by the client. The Expose3 label is set to true, since the airline operator
discloses its credentials to the client in order to allow for the future interactions.
The From3 label contains complete information about the credentials of the air-
line operator and the From4 label also contains complete information about the
Air-miles organization.

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P2,C2)(,)(true)

Mediator

 (P2,C2) (P1,C1)(P3,)(true)

 (P2,C2) (P1,C1)(P3,C3)(true)(true)

 (P2,C2)(P1,C1)(P3,C3)

(P1,C1) (P2,)(P3,) (true)

 (P2,C2) (P1,C1)(P3,)(true)

From1 To1 Them1 Expose1

 From4 To4 Them4

From2 To2 Them2

From3 To3 Them3 Expose3

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Fig. 29. Notation for the air-miles exchange example

CPN semantics In this section, we describe the semantics of both Message Me-
diation scenarios in the form of CPN models. The Mediated Interaction scenario
is represented in Figure 30. The three parties involved in a conversation, i.e. cus-
tomer, mediator, and provider, are represented as substitution transitions that
decomposed in Figures 31, 32 and 33 respectively.

The behavior of the customer is shown in Figure 31. The customer communi-
cates directly with the mediator by sending a request message of type CustRequest
to and receiving a response message of type MedReply from the mediator via
transitions Send request and Receive response respectively. Place Mediator
identity stores information about the identity of mediators to one of which a
request message will be sent by the customer. Initially, the customer has no knowl-

46

���� ��� �
���� ��� �

��� ��	� �
��� ��	��

��	���

��	��� �� ����������������������

�� �����������	���������	���	����������������
���	������	
��	������	

��	��� ��� ��	�� ���� ��� �
Fig. 30. CPN diagram: The top view of Mediated Interaction

Table 9. Data types used in the Mediated Interaction diagrams

colset PartyId = union smallstr + NoPartyId;
colset ConvId = union smallint + NoConvId;
colset PxC = product PartyId * ConvId;
colset Content = STRING;
colset From = PxC;
colset To = PxC;
colset Them = PxC;
colset Expose = BOOL;
colset ExpC = Expose;
colset ExpP = Expose;
colset Me = PxC;
colset You = PxC;
colset Cust = PxC;
colset Prov = PxC;
colset Conv = product Me * PxC * PxC * Content;
colset ConvM = product Me * Cust * Prov * ExpC * ExpP * Content; a

colset CustRequest = product From * To * Them * Expose * Content;
colset MedRequest = product From * To * Them * Content;
colset MedReply = product From * To * Them * Content;
colset ProvReply = product From * To* Them * Expose * Content;

a ConvM denotes information recorded by mediator about conversations with cus-
tomer and provider. While customer and provider communicate directly only with
one party and store conversations of type Conv, the mediator has to keep track of
interaction with both parties at once.

47

edge about the conversation identifier used by the mediator for correlation pur-
poses. The customer may know the identity of the provider with whom it wishes
to communicate directly. The customer may either provide the mediator with the
identity of the provider or may leave it out. The knowledge about the identity of
the provider is enclosed in the them1 field of the request message. The value of this
configuration parameter is set by the non-deterministic defthem1() function that
either specifies the credentials of the provider or leaves this field empty. In the
request message the customer explicitly specifies whether it allows the mediator
to disclose its credentials to the provider or not by setting the expose1 variable
of Boolean type to true or false respectively.

�� ��
��������	

 	������� ����������	

 	��������������� �� ���������� �� ��� ������������������ ��� ��������� ������������� ���������
�����������������������

���� 	����
���
��� !����� ��� !��� ��� �����������������������"
#�����$��
� 	���� ���� %������ �� ����� %��� 	������� ��������� %���� 	�� �	���� 	��&��'�'�((�&���� �� ����)�

*�� 	����	���� 	��&��'+'�����)�

,�������	
�� � ����
-	
�� � ����
������� �&���'.'�� ��������

��
���
�)� *�����!
��$��
�/����
���$��
�/��

)�

0000000000000001� �	�� 	�� �� 	�� 2��� ��
����� � 	��� �
��� 	� 	�
��� 	���� 	� �� � �� ���� 	�� ��� !��
 ��� *�� 	���� �� �� 	�0000000000000000000000000000000001��	�� 	�� �� 	�� 2� �� ��
����� � 	��� �� !!��
 	�
 � ������ 	� !
 �� �����
�� �� ��� ���� 	�� �� � ���00000000000000000000000000000000000001��	�� 	�� �� 	�� 2��� *�� 	��� � ��

��� 	� 	��� 	� �� � � !! 	��� ���� 	�� � ���	�
 	���� 	� � � ��! �� �� �� 	�0000000000000000000000
Fig. 31. CPN diagram: The Customer page of Mediated Interaction

The History place keeps track of all messages sent by the customer to the
mediator, including the credentials of all parties involved in the conversation.
Response messages sent by the mediator to place Response are received by the
customer via the Receive response transition. A function abletocorrelate()
in the transition guard checks whether the response message received can be
correlated with any of the requests sent. In this example, correlation is performed
based on matching the message receiver field with the identity of the customer.
If the result of the correlation is successful, the missing information gained from
the response message is recorded in the Updated history place by means of the
addmissing() function. Information contained in the them4 field of the response
message can be used by the customer to send a follow-up request directly to
provider.

The behavior of the mediator is shown in Figure 32. Requests sent by the
customer to the Init request place are received by mediator via the Receive

48

��

�������	�
��� ��
�� ��
�����������	���� ���� ��� �
���� �� ���� ��
�� ��
�������� �� �� ���	���	 �� �����
���������������	�
��� ��
�� ��
�������	�	�����
���� �� �� ���	���	 �� ������������	�
��� ��
����

�� �� ���	��� 	 �� �����

��� ���������������� �� ��� ���� ���� ���	 �� �����
��� ��� ��

���� ���� ���
� ����� � �	��� ��� �	� ��� �� ���	�����������
������!
"� ��� ����#���	 ��
�	 ����
������	���
�� ��� $��	
�	 �� �� ���	���	 �� ��� $��	 �� ��������	�� ����
�������	 �� �����	���
��� $

%� ����
 & ��
�	 �������	�
�����
�� $��	
�	 �� �� ���	���	 �� ��� $��	 �� ���� �� ��������	����	 �� ��
�����
��� $

���� ����#���	
��� ��� ��'��(�(� �� �	&)�

*��	� �& �����
� ������ �+�
*��	� �& ���� ��� ������#���	� �� �+ "� ��� �����
� ���) ���� ��
 &

"� ��� ����#���	,�	+�� ��#���	
*��	� �& ������ �����#���	� �� �+

����� � �'���(-(�� � �������

) ��	���
� ���,�	+�� ��
 &

) ��	��#���) ����	 ��#���) �

,�	

,�	
) �

���������� �� ���	 �� �����
��� ��� ��
......................./� ���	 �� �
� ��	 0	 �� ���	� �� � ��� � �	 �� � �
�� �� ���	 �� ��� �	 �	& �� 	 �� ��� ��� � � � ��/� ���	 �� �
� ��	 0	 �� ���	� �� � ��� � ���� �	�� ���� �	 �� � 	� �� ���� �� 	�	 �� ��� ��� � � � ��

.................../� ���	 �� �
� ��	 0	 �� +�� ��	� � �
�� �� ���� �	 �� � � ���� ���	 �� � � ���	�	� ��� �	 �	& � � � � &
� �	 �� �
.................../� ���	 �� �
� ��	 0	 �� +�� ��	� � ��� � �	 �� ��
�� �� ��� � ���� ���	 �� � � ���	�	� � ���� �	 �� � � � � � &
� �	 �� �

.................../� ���	 �� �
� ��	 0	 �� +�� ��	� � ��� � �	 �� �� ���� �	� � ���� �	 �� �	� �� ��
���� � � ��

Fig. 32. CPN diagram: The Mediator page of Mediated Interaction

request transition. For each of the requests received, the mediator creates a new
conversation, whose identifier is provided by the counter place New Conv. After
receiving the request, the mediator adds a record about the request received to
place History of received requests. This record contains information about
the credentials of the customer from1, information provided by the customer
about the identity of a provider them1, and information about the visibility of
the customer’s credentials to the provider expose1. When forwarding a request
received from the customer, the mediator specifies the address of the message
receiver, its own credentials and shows the credentials of the customer if the cus-
tomer has granted the permission to disclose its credentials. The latter is done by

49

means of the function defthem(). The defto2() function determines the identity
of the provider. If the customer has specified the identity of the provider to which
the mediator has to forward the request, then this identity is used in the to2 field,
otherwise the mediator determines to which of the parties, whose identities are
stored in place Provider, the message can be forwarded.

When response messages of type ProvReply, stored in place Forward response,
are received from the provider, the mediator tries to correlate them with previ-
ous requests using the abletocorrelate() function. If the related conversation
has been identified, the mediator records missing information gained from the
response message in the History of responses place using the addmissing()
function. The mediator forwards the response message to the customer via the
Send Reply transition. In this message, the mediator may underspecify its cre-
dentials in the from4 field using function some(). Function defthem() is used
to define the value of the them4 field. In particular, if the provider has granted
permission for its credentials to be revealed to customer (i.e. a variable expP has
been set to true), the credentials of provider stored in variable prov are assigned
to the them4 field.

�� �����������	���	
���	���� ��	����� ��	�� ���������� � ����� ��	��� ���� ���������� �	����� ��������	��������
�	���	�����	 ����� ��	�������	��������� �� �����������	������ �������	��	������ � �	���

�		 ��	�	��	������� �� ����
�	����� !���"�"�� � � ���
�#� ��� ���	��	��$�%	��	��	��

#� ������	�����	&�������	�'�&��
$�

((((((((((((((((((()����� ��� �� ��� *��	 %	� ���� � 	 ���	 ���	 �� �	� � '' ���� ���� ��� �+������ �	�	�� �� '� � � ��'� �� �� �� ��((((((((((((((((((((((((
((((((((((((((((((()����� ��� �� ��� *��	 %	� ���� � 	 ���	 �� ''��� ��� �	�	�� �� '��� +	 	
���	� � � ���((((((((((((((((((((

Fig. 33. CPN diagram: The Provider page of Mediated Interaction

The behavior of the provider is shown in Figure 33. For each of the requests
forwarded by the mediator, the provider creates a new conversation and records
information related to the conversation in the History place. The provider sends
a response message to the address specified by the mediator in the From2 field.
When sending a response message, the provider may decide to reveal all, some or

50

none of its identity to the mediator. This information is defined by function some
and enclosed in the from3 field of the response message. Moreover, the provider
may decide to expose its credentials to the customer, and for this, the Boolean
variable expose3 has to be set to true.

The main page of the Mediated Introduction pattern configuration is shown in
Figure 34. The behavior of customer has been presented in Figure 31. The behavior
of both the mediator and provider differs slightly from the nets described in the
Mediated Interaction scenario and is presented in figures 35 and 36 respectively.

In the Mediated Introduction scenario, messages of different types are used
(see Table 10). None of the messages exchanges between parties in this scenario
contain the Expose field, because it is assumed that the credentials of the parties
can be freely revealed to other parties.

Table 10. Data types used in Mediated Introduction diagrams

colset CustRequest = product From * To * Them * Content;
colset MedRequest = product From * To * Them * Content;
colset MedReply = product From * To * Them * Content;
colset ProvReply = product From * To* Them * Content;

���� ��� �
���� ��� �

��� ��	����� ��	��
��	���

��	���

�� �����������	���������	�����������������
���	������	
��	������	

��	��� ��� ��	�� ���� ��� �
Fig. 34. CPN diagram: The top view of Mediated Introduction

The substantial difference between the behavior of the mediator presented in
Figure 35 and that for the mediator in the Mediated Interaction, is that credentials
of the customer recorded by the mediator in the cust variable are assigned to
the them2 field of the response message sent to the provider without examining
the permission of the customer to expose its credentials. As has been mentioned
already, this is done based on the assumption that no permission is required for
the mediator to expose the credentials of the customer to the provider.

The behavior of the provider is shown in Figure 36. After receiving a response
message from the customer, the provider sends the response message directly to

51

�� �������	�	
���� � �
���	
��	 ��������������	���
������������� �
���	�������� ������������������ �
��� �����
�
����	 ��������
�
��� ��������	 ����	 ������
�����	���� �
�	��	 � �
���	
��	����� ���	 �
�������	
�������
������	� �
���� ���������	

��
� ��� ��������� ���	 !� "��	
 �

 �������������	� �
��
�
��� ��������	#�	$��������	

"��	
 �
���� ����������	� �
��
����
�� ������%��� ������&�!��	������	!����	������	!�

#�	'''''''''''''''''''''(����	 �
� �
 ��) 	�� $�� ��	
 �� ��� � ��� � ** ��
 ���	 �
� �+
�	�	� � �����	 �� *�
 �
�* ���	
 �	''''''''''''''''''''''''
'''''''''''''''''''''''(����	 �
� �
 ��) 	 �� ���	
������ � �	 �� � ���� � ���	�� ����	 �	
 	�� ��
� ��� �
 � *�	� 	 �� $�� ��	
 � 	
 �
 �	''''''''''''''''''''''''

Fig. 35. CPN diagram: The Mediator page of Mediated Introduction

the customer. Although there was no interaction between the customer and the
provider in the past, and the customer does not know the provider, therefore the
provider uses the reference to the customer’s credentials provided by the mediator
in the them2 field to specify the address of the message receiver to5 in its response
message.
Issues Pattern variants belonging to the Message Mediation family address sce-
narios where a single message is exchanged between the involved parties. If mul-
tiple sub-requests have to be sent to a set of mediators at once, or if a customer
has to send requests to a set of mediators, who in turn might want to forward
the request to a set of providers, then the given pattern variant can be combined
with another suitable pattern variant belonging the Multi-Party Multi-message
Request-Reply Conversation family. One of the roles of the mediator in the tri-
partite conversation may be to pass the reference from one party to another in
order to enable their direct interaction in the future. In the course of long-running
bipartite conversations, information used for correlation may change. This issue
is addressed by the Bipartite Conversation Correlation pattern family.

8 Pattern Family: Bipartite Conversation Correlation

In this section we describe the fifth and final pattern family, Bipartite Conversa-
tion Correlation, which addresses the issue of correlation in a conversation between
two parties.
Description Each of the two parties involved in a long-running conversation may
indicate during the initiation of the conversation what correlation token it expects

52

�� �����������	���
� ��	���� ��	��
���������� � ����� ��	���
���� ���������� �	���
�� ��������	��������
�	���	�����	 ���� ��	������	������� �� �����������	�����
� �������	��	��� �	�� ���	����� �

�	
	 ��	�	�	������� �� ����
�	����� !���"�"�� � � ���#�$� ��� ���	�	��%�&	��	�	��

�	�����	'������	�(�'�
%�

)))))))))))))))))))))))))*����� ��� �� ��� + ��	 ���� ��	 ���	
 �� �	� 	 ���	 � � ((���� ���� ����,�� ��� ��	�� ��� � � ��(� �� �� �� ��)))*����� ��� �� ��� +� �	 ���� ��	 � 	 �� �	 � - ��	�� ((�������� ��� �,�� ��	&	� ���� � �� ��(� ���� �� ��))))))))))))))))))))))
Fig. 36. CPN diagram: The Provider page of Mediated Introduction

in the follow-up messages in order to unambiguously relate them to the existing
conversation. Independent of the correlation information provided by one party
during the conversation initiation, the other party may forget or choose to ignore
it in the follow-up interactions.
Example
• A client requests a telephone subscription from the telephone company. The

company registers the customer and confirms the registration by sending a
letter with a telephone number and the client’s name to the address specified
by the client. The company expects a client to indicate the telephone number
in any future enquiries. However, it is likely that when making future enquiries,
the client will forget to do so or will send incomplete information.

UML meta-model Concepts specific to the Bilateral Conversation Correlation
pattern configuration are illustrated by means of the UML diagram in Figure 37.
Two parties, a requestor and a responder, are involved in a bipartite conver-
sation (see the responder and requestor association relations between Party
and Conversation). Each party involved in a conversation may send and receive
messages (see associations sends and receives between Party and Message).
Messages can be either of type Request or Reply, where every reply corresponds
to precisely one request and multiple replies can be sent for the same request. A
conversation consists of two phases: initiation and follow-up interactions (repre-
sented as specializations Initiation and Follow-up). The requestor initiates a
conversation by sending a message to the other party. The requestor specifies its
correlation credentials (i.e. a party identifier and a conversation identifier) in the
initial message sent to the other party and expects the responding party to use

53

the same credentials in the response messages, however the responder may choose
to ignore this information is the follow-up interactions.

ReplyRequest

0..*1

corresponds to

Initiation

Message

Party

0..*

1

0..*

1

sends

0..*

0..1

0..*

0..1

receives
Conversation

1..*1..*

2

0..*

2

0..*

1

0..*

1

0..*

requestor 1

0..*

1

0..*

responder

Follow-up
1..*

1

follows

Fig. 37. UML meta-model of
Bipartite Conversation Correlation

Visualization Figure 38 illustrates the graphical notation used for illustrating
Bipartite Conversation Correlation. Parties are visualized as rectangles. Arrows
between rectangles indicate interactions between parties, where direction of arrows
corresponds to the message flow. Interactions marked as initial request and
initial response correspond to the initiation of conversation, where parties
notify each other about the credentials they want to use as tokens for correlation
in the follow-up interactions. It is an assumption of this pattern, that messages
exchanged have the form (From, To, Content), specifying the information about
the message sender, message receiver, and the content of the message. Labels,
marked as From and To, denote information about the message sender and the
message receiver respectively.

Let P1 and P2 denote party identifiers of the requestor and responder respec-
tively. Let C1 and C2 denote conversation identifiers used by the requestor and
the responder for correlation purposes respectively. Let ⊥ denote the absence of
either party or conversation identifier in a message.

This graphical notation in Figure 38 contains a set of static attributes, dynamic
attributes and configuration parameters. The static attributes refer to information
that is fixed in every pattern variant. The dynamic attributes derive their value

54

P1 P2

To1From1

To3From3

From2To2

Requestor Responder

Party
identifier

Message
sender field

Message
receiver field

initial request

initial response

follow-up request

Fig. 38. Graphical notation:
Bipartite Conversation Correlation

from other pattern attributes. The configuration parameters refers to information
that varies in all pattern variants, i.e. the configuration parameters have to be
set to a value from the defined range in order for a specific pattern variant to be
configured. The list of the static attributes is shown below:

– Requestor credentials in the initial request : information specified by the re-
questor about its identity in the conversation initial request. The requestor
expects the responder to use the specified credentials when sending a response
message back. From1 is a pair comprising the requestor identifier and the con-
versation identifier used by the requestor for correlation purposes. It is an
assumption, that the requestor always specifies the maximal possible infor-
mation about its identity when initiating the conversation with another party:
From1=(P1, C1).

– Responder credentials in the initial request : information specified by the re-
questor about the credentials of the responder in the conversation initiation
request. To1 is a pair comprising the responder identifier and the conversation
identifier used by the responder for correlation purposes. It is assumed, that
initially the requestor does not have any knowledge about the conversation
identifier the responder will use for correlation: To1= (P2,⊥).

The graphical notation in Figure 38 contains only one dynamic pattern at-
tribute described below:

• Requestor credentials in the initial response: information specified by the re-
sponder about the identity of the requestor in the response on the initiation
request. To2 is a pair comprising the requestor identifier and the conversation
identifier used by the requestor for correlation purposes, such that To2=From1.
Fixed value: (P1,C1).
Visualization: label To2 in Figure 38 substituted with its value.

55

The list of configuration parameters is given below.

• Responder credentials in the initial response: information specified by the re-
sponder about its identity in the response to the initial request received from
the requestor.
Range of values: From2 is a pair containing the responder identifier and the
conversation identifier used by the responder for correlation purposes. The
requestor identifier is denoted as P2 and its conversation identifier is de-
noted as C2. It is assumed, that the requestor may forget to specify or choose
not to disclose some of the information about its credentials. The absence of
this information is denoted by ⊥. So, possible values of the FROM2 field are
(P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: (P2, C2).
Visualization: the From2 label in Figure 38 substituted with a suitable value.
An example specifying a default value is shown in Figure 39.

• Responder credentials in the follow-up request : information specified by the
requestor about the identity of the responder in follow-up requests.
Range of values: To3 is a pair containing the possible responder identifier and
the conversation identifier used by the responder for correlation purposes. Al-
though the requestor has received information about the responder credentials
in the initiation response, it may decide to use all of the information provided,
some of it or no information at all. Where the requestor decides to use the
credentials specified by the responder in the FROM2 field, To3 = From2. If the
requestor decides to specify only part of the information retrieved from the
FROM2 field, either the party identifier of the responder or responder’s con-
versation identifier may be omitted. For example, if From2=(P2, C2), then
possible values of the To3 field are (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: From2.
Visualization: the To3 label in Figure 38 substituted with a suitable value.
An example specifying a default value is shown in Figure 39.

• Requestor credentials in the follow-up request : information specified by the
requestor about its identity in the follow-up requests sent to the requestor.
Range of values: From3 is a pair containing the responder identifier and the
conversation identifier used by the responder for correlation purposes. De-
pending on what information the requestor specified about the identity of the
responder in the follow-up request, i.e. whether it used all credentials specified
by the responder or only part of them, the requestor may specify either com-
plete information about its identity as indicated in the From1 field, or only
part of it. So, possible values of the From3-field are: (P1, C1), (P1,⊥), (⊥, C1)
and (⊥,⊥).
Default value: (P1, C1).
Visualization: the From3 label in Figure 38 substituted with a suitable value.
An example specifying a default value is shown in Figure 39.

Figure 39 presents the graphical notation for one of the bipartite conversa-
tion pattern variants where all configuration parameters are set to their default

56

values. The requestor and the responder retrieve all information from the mes-
sage received, and specify complete information about the identity of the message
sender and the message receiver.
Illustrative example For the telephone subscription example described earlier
we define the pattern configuration depicted in Figure 40. In this example, a
client requests a telephone subscription from the telephone company. The com-
pany registers the customer and confirms the registration by sending a letter with
a telephone number and the client’s name to the address specified by the client.
The company expects a client to indicate the telephone number in any future
enquiries. However, when making the next enquiry, the client forgets to specify
their telephone number. In the graphical notation, the client and the telephone
company map directly on the roles of the responder and the provider. The re-
questor omits the conversation id specified by the responder (i.e. the telephone
number) in the follow-up request. Note that the requestor assumes the responder
to have used C1 as an identifier.

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,C2)

(P2,C2)

(P1,C1)

Fig. 39. Default notation: Bipartite Con-
versation Correlation

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,)

(P2,C2)

(P1,C1)

Fig. 40. Notation for the telephone sub-
scription example

CPN semantics A CPN diagram illustrating the semantics of the Bipartite
Conversation Correlation is shown in Figure 41. Two parties, a requestor and a
responder, represented as substitution transitions Requestor and Responder, are
involved in a conversation. The responder initiates a conversation by sending an
initiation request Init request of type Message. In this initiation request the
requestor specifies the credentials it wants the responder to use when responding
on this request. The responder sends an initiation response Init response of type
Message, where it specifies its own credentials that must be used by the requestor
in the follow-up requests. Messages are exchanged between the parties take the
form (From,To,Content), where From is credentials of the message sender, To is
credentials of the message receiver and Content is the content of the message.

The decomposition of transitions Requestor and Responder is shown in Fig-
ure 42 and Figure 43 respectively. The CPN models for bipartite conversation
correlation are based on the correlation mechanisms and data types introduced
for the Message Correlation pattern family (see Section 6).

The behavior of the requestor is depicted in Figure 42. Transitions Send init
request, Receive init request and Send follow-up request correspond to
the send conversation initiation request, receive initiation reply, and send follow-

57

up request respectively. To initiate a new conversation, a new unique conversation
id is created by function new(), which increments the identifier of the last con-
versation. When sending out an initialization request, the requestor specifies its
identity (P1,C1), where P1 is a party identifier of type PartyId and C1 is a con-
versation identifier of type ConvId. In the credentials of the message receiver in
the initiation request, the requestor only specifies the id of the responder P2. The
absence of the conversation identifier is denoted by means of the value NoConvId.
After the message has been sent, it is recorded in place History of type Conv.
This place stores the history of all current conversations for use in correlating
response messages from the responder.

When an initialization response arrives, transition Receive init response
checks by means of the function abletocorrelate() whether the message re-
ceived can be correlated with one of the conversations recorded in the place
History. The mechanism of correlation is based on the model presented for the
Message Correlation pattern family. If the message received can be correlated,
the history of conversations is updated. Function addmissing() records informa-
tion supplied by the responder about its identity which was not known to the
requestor. Since the requestor may forget to retrieve some information, function
some() defines how much information will be included in each case. By means of

colset PartyId = union smallstring +
NoPartyId; a

colset ConvId = union smallint +

NoConvId; b

colset PxC = product
PartyId * ConvId;

colset Content = string;
colset From = PxC;
colset To = PxC;
colset Me = PxC;
colset You = PxC;
colset Conv = product Me*You*

Content;
colset Message = product From*

To*Content;

Table 11. Data types used in Figs. 41-43

a The id of a party is a small color-set of
type STRING or is denoted by NoPar-
tyId if not specified.

b The id of a conversation is a small color-
set of type INT or is denoted by NoPar-
tyId if not specified.

�� ���������	��
���

��
������
���
���

��
������	��
���

�� ��
������

��
������
��	��
�� �

��	��
�� ���	��
�� � ��
������
Fig. 41. CPN diagram: The top view of
Bipartite Conversation Correlation

58

������������������������ ���� �� � �� ��� 	 ��
� ���� �� �� �� �
 �� �� � � ������ �� ���� � � � �� � � �� � � �� �� ��
 � �
� ������ � ����������������������������

��

�
 �� ��������� ������������� ��������� ��� ��! ��� �
 �� ��� ��"�# "���� ������������� ������"�# "�� ���� $�#� ������ �� "� ���"�# "�� ���� $�#� ������ �� "��� ��"�# "���"�# "�

% ��
� ������ ��� �� �� ����� ������� &��� ��� �
 �� ������� &��� �� ���� � ������ � ������ &
�� ������ �� �� ��'� ������ �� ��� ��
 �� ��� ��"�# "���� ������������� �����(����� � ����
 �� ��� �� ��� �� ���� &��� ��� ���� � �� ��! ��� &��� �� �� ��� ���� ��) ������� � �
 �� ������ �) ��� ����� ����� &
% ������ ������� �� �� ��� �� ���"*��+ ,+��� ���-�

.���������� �� #� ��
/���� �� #� ��

$�#� �� "*���+0+�� # �"���1#

2� ������ ������3��4���)
- ����� �� ��- � 4���)
- ��������3�� 4���)3��

- �
3��

Fig. 42. CPN diagram: The requestor page of Bipartite Conversation Correlation

this function, it is possible to specify that either the party identifier, the conver-
sation identifier or both are forgotten.

In the follow-up request, the requestor may use all or just part of the informa-
tion stored in place Updated history to specify the credentials of the message
sender and the message receiver. Function some determines how much information
will be underspecified in the From- and To- fields of the follow-up response.

The behavior of the responder is depicted in Figure 43. A conversation initia-
tion request sent by the requestor in place Init request is consumed by transi-
tion Receive init request, which creates a new conversation identifier via the
function new(). The created conversation identifier will be used by the responder
in the future interactions with the requestor for correlation purposes. Information
contained in the initialization request received is associated with the newly cre-
ated conversation identifier, and all this information is recorded in the History
place. When sending the initialization response, the responder may underspecify
its identity in the from2-field by applying the some() function. After the re-
sponse message has been sent, the conversation history is updated and recorded
in the Updated History place. The responder expects the requestor to use the

59

��������������������� ���� ��� �� ��� 	��
� ���� ��� ��� �
 ���� �� ������� �������� ���� �����������������������
 ��������������� ��������������������� ��������������������������
 ����� �������������� ��������� ����������������������� ��������������������������������������� ��������� ��������

�� �
� !!��"���#���$��!���� �� !�� ��
 �����������������������������%
&������ ��!�$
 ����'������������%
�� � ���� �#���
(�����)������ ���
)������ ���
����� �*���+,+�� ������-�

.���������/�� 0����
1� !!��"���#���.�0����

.����#���.� 0����.�

.�
/��

Fig. 43. CPN diagram: The responder page of Bipartite Conversation Correlation

information previously provided by the responder about its identity in follow-up
requests. Follow-up requests sent by the requestor to place Follow-up request
are checked by transition Receive follow-up request and consumed only if the
function abletocorrelate() has identified a conversation with which the mes-
sage received could be correlated. In this net, all messages for which no matching
conversation can be found are ignored. Note that a mechanism for handling cor-
relation failure could be added to this model, in order to specify whether such
messages have to be discarded, or whether a new conversation has to be created
to process them.

Issues In long-running conversations, the information used for correlation pur-
poses may change. If the parties involved in the conversation underspecify the in-
formation about the identity of a requestor or a responder, the correlation might
fail. In this pattern family the parties involved in the conversation are assumed to
already know each other. However, in some situations the identity of a responding
party is not known to the requestor directly. The conversation in such a setting
involves an intermediary, who either forwards requests and replies between the
involved parties and hides the identify of the parties involved from each other,
or brings the parties in contact by providing a reference to their identity. These
scenarios are described in the Message Mediation pattern family.

60

9 Assessment of WS-BPEL v2.0

In this section, we use the service interaction patterns to analyze the Web Services
Business Process Execution Language (WS-BPEL) v2.0 [4] and related technolo-
gies. For each of the pattern families, we illustrate how the default pattern variants
can be realized in practice using Oracle BPEL PM 10.1.3.1.0 (which is a tool based
on BPEL) as an implementation vehicle. Furthermore, we analyze which pattern
configurations are possible in the context of WS-BPEL.

9.1 Background

Oracle BPEL PM is based on BPEL, therefore it enables interactions across mul-
tiple organizations whose processes are deployed as Web services. BPEL is based
on the XML schema [15], Simple Object Access Protocol (SOAP) [14], and Web
Services Description Language (WSDL) [16]. In order to be accessible by other
processes, the process that has been defined in the Oracle Process Designer, must
be deployed to Oracle BPEL Server. Once deployed, a BPEL process is published
as a Web service, and can be accessed through the client that uses WSDL interface
definition of the given process and SOAP as a protocol. The role of the client may
be performed by a user initiating the deployed process via the BPEL console, or
by another process.

In order to send a message to a process, the client needs to know the custom
data types defined in the XML schema of the target process, the message types
and the port types declared in the WSDL definition of this process. Types of
messages, sent and received by a process, are defined based on the data types
declared in the XML schema. The portType element includes a supported set of
operations, each including the input and the output messages of the operation.
Thus, in order to send a message to a process, in fact an operation on the specific
port type has to be called, providing that the type of the message sent coincides
with the type of the input message defined for the given port type.

BPEL defines the concept of a partner link, which represents a dependency
between two services. A partner link specifies roles played by the services, and the
port types supported by each of the roles. In order to represent an interaction of
a process with another service, a valid partner link needs to be defined. In Oracle
BPEL PM, in order to define the partner link, one has to look up the required
service in a Universal Description, Discovery, and Integration (UDDI) browser.
UDDI is a specification for maintaining standardized Web-based distributed di-
rectory containing information about Web services, i.e. their capabilities, location
and requirements in a universally recognized format [13].

Two types of interactions can be implemented in Oracle BPEL PM: syn-
chronous and asynchronous. In a synchronous interaction, a client sends a request
to a service, and immediately receives a reply. In an asynchronous interaction, a
client sends a request and waits until a service replies. When describing the imple-
mentation of a pattern variant, we will explicitly indicate the type of interaction
modeled.

61

Having introduced the main technologies and concepts, the knowledge of which
is necessary for understanding the details of implementing services in Oracle BPEL
PM, we proceed with pattern evaluations. For each of the pattern families, first,
we illustrate how a selected pattern variant can be implemented in Oracle BPEL
PM. For this, we describe the mapping between the configuration parameters and
corresponding settings in the implementation presented. Thereafter, we discuss
the support for other pattern variants by analyzing each of the configuration
parameters in a detail.

9.2 Multi-party Multi-message Request-Reply Conversation

Figure 44 shows the notation for the pattern variant where all configuration pa-
rameters are set to the default values. In this pattern variant, a Requestor sends
one message to a Responder, who responds with a reply message. Messages re-
ceived by the Requestor are not queued and consumed immediately (one message
is required for the requestor to start the consumption and utilization of the mes-
sages received). The Requestor consumes a message from the queue only once,
and the rest of the messages are discarded. Below we describe what steps have to
be taken in order to realize this example in Oracle BPEL PM.

NoQueue

All

1

All

1

1

Requestor Responder

Fig. 44. Notation for the default pattern variant of
the Multi-party Multi-message Request-Reply Conversation pattern family

We implement the considered example as an asynchronous interaction, because
there is a possibility that the responder service will not reply.

Each of the processes we consider, i.e. the requestor and the responder, needs
to define the other process as a partnerLink. Since the requestor process needs
to send a message to one responder process, only one partner link needs to be
defined. In order to send a message, the requestor process needs an <invoke>
activity, and in order to receive a message, one of the Inbound Message Activities
(IMA), i.e. <receive>, <pick>, and onEvent is required. The responder process
needs a <receive> activity to accept the incoming request, and a <reply> activity
to return either the requested information or an error message (a fault).

The requestor and responder processes, implemented in Oracle BPEL PM,
are illustrated in Figures 45(a) and (b) respectively. Figure 45(a) shows an asyn-
chronous process which upon an initiation by a client performs an invocation of a

62

Fig. 45. Implementation in Oracle BPEL PM: the default pattern variant of the Multi-
party Multi-message Request-Reply Conversation

synchronous service ResponseProcess presented in Figure 45(b) using an invoke
activity SendRequestToResponder. The request message sent by the requestor
process is specified in the RequestorInputVariable input variable of the invoke
activity as shown below. Note that the type of the message sent by one process to
another has to be the same in the input variable of the invoke activity and in the
output variable of the reply activity. The message types are defined in the WSDL
definition of each of the interacting processes. In this case, the input and output
variables are of the String type (the source code of the XML, WSDL and BPEL
files can be found in []).

<invoke name="SendRequestToResponder" partnerLink="ResponseProcess"
portType="ns2:ResponseProcess" operation="process"
inputVariable="RequestorInputVariable"
outputVariable="ObtainedOutputVariable"/>

In order to specify the content of the message, prior to the invoke activity
the value of its input variable has to be set. For this, the <assign> activity
AssignInputData in Figure 45(a) is used.

The ResponseProcess process is initiated by a message received from the re-
questor process. The message received via the <receive> activity is processed
by an <assign> activity ProcessRequest in Figure 45(b), and a response is

63

sent back to the requestor process using a replyOutput reply activity. The re-
sponse message sent by the responder process is assigned to an output variable
ObtainedOutputVariable of the SendRequestToResponder invoke activity. Note
that the <invoke> activity has no attribute for message queueing, therefore re-
sponse messages are not queued and are consumed and processed as soon as they
arrive. This maps to consumption and utilization indexes whose value is set to
one, and the sorting of messages configuration parameter whose value is set to
NoQueue. Messages only of a specific type can be consumed by the <invoke>
activity, other messages are ignored. In this implementation, as soon as the corre-
sponding message is received by the <receive> activity of the requestor process,
the flow of control proceeds. This maps onto the consumption frequency configu-
ration parameter whose value is set to one.

For each of the configuration parameters listed below, we describe how different
values from the predefined range can be realized.

• N (number of sub-requests in a message): to include multiple sub-requests in a
message, the type of the message has to be of composite form. Since WS-BPEL
is XML-based, it is possible to define custom data types in the XML-schema
and use them afterwards for message definition in the corresponding WSDL-
source. Sending a message of the defined type to another service can be done
via an <invoke> activity as has been described earlier.

• M (number of responders involved in a conversation): by definition, an invo-
cation activity may call operations only on a single service represented as a
partner link. In order to involve multiple responding parties in the conversa-
tion, every party has to be defined as a separate PartnerLink. To send the
same message to the set of defined partner links, a <flow> construct must
be introduced with as many parallel branches as there are partner links, pro-
viding that a separate <invoke> activity is placed in each of the branches.
The model resulting from the addition of a separate branch for interacting
with each responding process may become complex. As an alternative to this
implementation, a new variant of the <invoke> activity associated with a set
of partner links can be defined using an <extensionActivity>.

• Possibility of non-responding parties: an <invoke> activity is used to call
(an operation on) a service. Such an invocation can be one-way or request-
response. When a request-response invocation is performed by the requester
process, the <invoke> activity is blocked until the response is received. This
however does not guarantee that the service invoked will respond. A fault
response to an <invoke> activity can be generated if the request sent is unde-
liverable (fault types and how they are handled can be explicitly defined in the
<invoke>). The definition of such a fault is handled in the WSDL operation.

• Possibility of missing replies: in WS-BPEL inbound message activities may
complete only after they have received a matching message. However, in some
situations an orphaned IMA occurs when an inbound message activity remains
to be blocked for which no matching message has been received. In this case,
the standard fault bpel:missingReply is thrown and the orphaned IMA is
not considered to be orphaned anymore.

64

• Sorting of queued messages: WS-BPEL defines that a receiving activity needs
at most one message to proceed. A message is processed as soon as it has
been received by the matching target activity. This corresponds to the pat-
tern variants, where NoQueue is specified. However, in situations where a
receiving activity is not ready for consumption and multiple messages arrive
simultaneously, a race condition occurs. WS-BPEL does not mandate any spe-
cific mechanism for handling race conditions and leaves this decision to the
BPEL engine designers. In order to support scenarios where multiple mes-
sages are required in order to make a decision, the receiving activity has to be
included in a loop. During each iteration, an array can be used to aggregate
data from the messages received. When sufficient number of messages have
been received, the array data can be examined and the required data can be
extracted from it. FIFO, LIFO and PRIO ordering of messages received can
be realized via the extension construct <extensionAssignOperation>. These
newly defined operations should be used for assigning data from the received
messages to the array. Note, that the inability to queue incoming messages
limits the number of service interaction pattern variants supported by WS-
BPEL. For instance, scenarios where non-consumed messages have to be kept
in the queue for future use are not possible.

• Enabling condition: an IMA becomes enabled as soon as a matching message
has been received by a process instance (i.e. a message of a specific type). This
corresponds to an enabling condition where the number of messages required
is set to one, i.e. K=1. If queuing of the messages is realized by a receiving
activity inserted in a loop, the enabling condition examining properties of the
messages received can be specified as part of the loop termination condition.
To realize enabling for message consumption based on the timeout, a <wait>
construct can be used.

• Consumption index : only one message at a time can be consumed by an
inbound message activity. In WS-BPEL, due to the absence of the message
queueing facilities, it is not possible to specify that a subset of the messages
received has to be consumed for processing. The consumption index of a queue
that is associated via the receiving activity embedded in the loop, is set to
All for consumption of all messages received in the loop.

• Utilization index : inbound message activities can only consume one message at
at a time, therefore the message consumed is also the one used for processing,
and is set to 1.

• Consumption Frequency : in WS-BPEL, it is possible to specify that a party
may consume messages multiple times if an IMA is placed in a <while> or
<repeatUntil> loop construct. The consumption frequency in this case is
defined by the evaluation of the Boolean condition defined in these repetitive
constructs.

To conclude, the majority of pattern variants belonging to the Multi-party Multi-
message Request-Reply Conversation pattern family can be realized in WS-BPEL
through the entities it offers for defining a business process and some program-
matic extensions. However, since support for queues in inbound message activities

65

is missing, pattern variants based on queueing and consumption of multiple mes-
sages are hard or even im possible to realize.

9.3 Renewable Subscription

Figure 46 shows a graphical notation for the Provider-initiated Customer-renewed
subscription. We will use this subscription type as an example for realizing in
Oracle BPEL PM.

tim
e

REQp,init(Prod,Nr,SP,RP,Qi)

REQc,renew(Prod)

RPLc,init(Prod,Ri)

RPLp,renew(Prod,Nr,SP,PRr)

RP

SP

Customer Provider

Fig. 46. Implementation in Oracle BPEL PM: Provider-initiated Customer-renewed
subscription

In this example, two communicating parties, i.e. a customer and a provider, are
involved in a conversation that consists of two phases: a subscription initiation and
a subscription renewal. The customer and the provider have to be implemented
as two processes. Each of these processes has to declare the other process as a
PartnerLink, with whom it will interact. Figures 47 and 48 show the implemen-
tation of the provider process, and figures 49 and 50 show the implementation of
the customer process respectively.

The processes presented describe the logic of the subscription renewal, where
the provider sends to the customer via an <invoke> activity an offer for the
subscription initiation. This offer specifies the product offered, the subscription
period, the period within which the customer has to respond, and the expected
initiation confirmation. The messages exchanged in this example are of composite
data types, which have to be defined in the XML-schema shared between both the
provider and customer processes, since no predefined messages of subscription type
are available. The XML-schema shown below declares four message types that map
directly on the graphical notation in Figure ??. These are Request, Response,
RenewRequest and RenewResponse defined for the RespondingCustomerProcess
customer process to represent an initiation request issued by the provider, an ini-
tiation response issued by the customer, a renewal request issued by the customer,

66

and a renewal response issued by the provider respectively. These message types
are used in invocation and inbound message activities of both processes.

<schema attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/RespondingCustomer"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="RespondingCustomerProcessRequest">

<complexType>

<sequence>

<element name="Prod">

<simpleType>

<restriction base="string"/>

</simpleType>

</element>

<element name="Nr" type="int"/>

<element name="SP" type="int"/>

<element name="RP" type="int"/>

<element name="Q">

<simpleType>

<restriction base="string">

<enumeration value="Yes"/>

<enumeration value="No"/>

<enumeration value="YesNo"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

<element name="RespondingCustomerProcessResponse">

<complexType>

<sequence>

<element name="Prod" type="string"/>

<element name="R">

<simpleType>

<restriction base="string">

<enumeration value="Yes"/>

<enumeration value="No"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

<element name="RespondingCustomerProcessRenewRequest">

<complexType>

<sequence>

<element name="Prod" type="string"/>

</sequence>

</complexType>

67

</element>

<element name="RespondingCustomerProcessProviderRenewResponse">

<complexType>

<sequence>

<element name="Prod" type="string"/>

<element name="Nr" type="int"/>

<element name="SP" type="int"/>

<element name="PR">

<simpleType>

<restriction base="string">

<enumeration value="Accept"/>

<enumeration value="Reject"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

</schema>

In general, in a renewable subscription process both the customer and the
provider of a service can play a role of the subscription initiator. For this, an
initiating party has to execute an <invoke> activity, while the invoked party has
to respond tothe message received via a <receive> or <pick> activity, where
the createInstance attribute is set to “yes” (the latter is needed to create a
new process instance which can be correlated with a given subscription). In this
specific example, the provider process plays the role of the subscription initiator.

The top level of the provider process is shown in Figure 47. After a process has
been initiated, the AssignVariationPoints activity is executed that sets config-
uration parameters in the initiation request to a value from the defined range. The
product identifier, subscription period, response period, an expected response pe-
riod are the values specified to the InvokeInitCustomerInputVariable input
variable of the InvokeInitCustomer invocation activity. This activity is of the
synchronous type, which means that the flow of control in the provider process is
blocked until a response from the customer process arrives.

Figure 48 shows the details of processing the renewal request sent by the cus-
tomer when the accepted subscription is about to expire. The <switch> construct
is used to model that either no response is sent by the provider or a response ap-
proving or rejecting the subscription renewal request is sent to the customer.
Figure 49 illustrates the top view of the customer process, that is initialized upon
receival of a subscription offer from the provider process via the <receiveInput>
activity. The assignment activity is used to set static attributes and configuration
parameters of the customer response, i.e. whether the subscription offer will be
accepted, rejected or ignored.

The details of processing the offer received by the customer are shown in
Figure 50. Several switch cases are used to define the content of the initiation
response message depending on the type of the request posted by the Provider.
For instance, for the subscription offer whose confirmation attribute Qi=“No”, no

68

Fig. 47. Provider process: top level

response is required to accept the subscription, while for Qi=“Yes/No” an explicit
response needs to be sent.

Figure 49(b) shows the logic for renewing the subscription on the initiative
of the customer. The decision of the customer process to renew or not to renew
the subscription is implemented via the <switch> construct with two branches.
If the subscription does not need to be renewed, an <empty> activity is executed,
after which the customer process is terminated, otherwise the invocation activity
is executed to send a message of the RenewRequest type to the provider process.

In this example, only one configuration parameter (Qi) needs to be set in order
for a specific pattern variant to be realized. The expected initiation confirmation

69

Fig. 48. Provider process: processing of the renewal request

parameter is set in the <assign> activity before the subscription initiation offer
is sent to the customer process.

We have shown how different pattern variants for the Provider- initiated
Customer- renewed subscription type can be realized in Oracle BPEL PM. To
illustrate what other pattern configurations can be realized in WS-BPEL, we dis-
cuss each of the configuration parameters below.

• Subscription renewal type: six subscription renewal types can be realized in
the similar manner as it has been done for the Provider-initiated Customer-
renewed subscription earlier. In these subscription renewal types, one of the
processes, either a customer or a provider, has to take an initiative for the sub-
scription initiation. For this, an initiating party has to execute an <invoke>
activity, while the invoked party has to react on the message received via a
<receive> or <pick> activity, where the createInstance attribute is set to
“yes” (the latter is needed to create a new process instance which can be
correlated with a given subscription).
The subscription renewal can be done as at the initiative of the customer,
the provider or automatically. For automatically renewed subscriptions, in
the customer process the renewal phase has to be realized as a <while> con-
struct that contains an activity for receiving the product subscriptions from

70

(a) top level

(b) renewing the subscription

Fig. 49. Customer process

the provider process. The termination condition of this <while> construct
determines whether the subscription should be cancelled or not. If a decision
to terminate the subscription is taken, a message of the cancellation type has
to be sent to the provider process.
Different message types, i.e. initiation, renewal, and cancelation requests and
replies issued by the customer and the provider, must be defined for each of the
subscription renewal types. As it has been shown, the data type declarations
are made in the XML-schema that has to be included in both the provider
and the customer processes. The data types have to include of the configura-
tion parameters and static attributes, which when instantiated represent the
pattern configuration for a specific pattern variant.

• Expected initiation confirmation: this configuration parameter constitutes a
part of the initiation request issued by the provider process. It has to be de-
fined as an element with three possible values: Yes, No, YesNo. For a specific

71

Fig. 50. Customer process: processing the subscription initiation request by Customer

pattern variant, this parameter needs to be set to one of these values depend-
ing on what confirmation the provider process expects. In order to accept the
subscription offer whose Q field is set to Yes or YesNo the customer process
has to send Yes in the response message, or not to send any response if the Q
field is set to No.

• Expected renewal confirmation: this confirmation parameter constitutes a part
of the subscription renewal request issued by the provider process, thus it is
applied only to the provider-renewed subscriptions. The value of this config-
uration parameter has to be set to Yes, No, YesNo in the provider-renewal
request. The message of such type can be defined as it has been described for
the expected initiation confirmation parameter.

The decision of the customer to accept, reject or ignore the offer can be
encoded using the <switch> construct with three branches. Depending on the
type of the confirmation expected by the provider, either a message accepting
or rejecting the offer is returned or no message is sent at all.

WS-BPEL provides basic primitives to describe behavior of a business process
based on interactions with other processes through web service interfaces. Al-
though it concentrates on message exchange between processes, WS-BPEL does
not define mechanisms for conversation-oriented scenarios like renewable subscrip-
tions because they are considered to be operate at a higher level of abstraction
and they are typically managed at application level. Nevertheless, WS-BPEL pro-
vides business logic to realize all pattern variants of renewable subscription types
via predefined modeling entities and extension constructs.

72

9.4 Message Correlation

An example of the Message Correlation pattern variant where all configuration
parameters are set to the default value is presented in Figure 51. In this example,
a customer sends an order request to the provider, where it specifies its address
(Ps), the order id (Cs) and the address of the customer Pr. The provider receives
the order request and records the id of the order request received to use it for the
future correlations. We will use this example for illustrating an implementation
in Oracle BPEL PM.

(Pr,Cr)(Ps,)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

Fig. 51. Default notation: Message Correlation

There are two approaches for realizing message correlation in Oracle BPEL
PM. Either of the two approaches WS-Addressing [19], BPEL correlation sets
or their combination can be used for this purpose. Oracle BPEL PM uses WS-
Addressing to automatically set location and correlation information associated
with the client role. WS-Addressing defines two concepts: endpoint references and
message information headers. Endpoint references convey the information provid-
ing addresses for individual messages sent to and from Web services [19]. The end-
point reference format shown below includes the <Address> that could be used
for specifying of the address of the message sender or the message receiver. Fur-
thermore, it includes <ReferenceProperties> or <ReferenceParameters> fields
suitable for including the conversation identifier used by the party for correlation
purposes.

<wsa:EndpointReference>

<wsa:Address>xs:anyURI</wsa:Address>

<wsa:ReferenceProperties>... </wsa:ReferenceProperties> ?

<wsa:ReferenceParameters>... </wsa:ReferenceParameters> ?

<wsa:PortType>xs:QName</wsa:PortType> ?

<wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ?

<wsp:Policy> ... </wsp:Policy>*

</wsa:EndpointReference>

The message information headers convey message attributes including ad-
dresses of source and destination endpoints, and the message identity. The message

73

information header format shown below specifies the source address via the From
field and the destination address via the To field. The address of the message des-
tination must be explicitly specified, while the source address may be omitted (in
this case the message sender may stay anonymous). These requirements directly
map to the From and To configuration parameters of the Message Correlation
pattern family.

<wsa:MessageID> xs:anyURI </wsa:MessageID>

<wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo>

<wsa:To>xs:anyURI</wsa:To>

<wsa:Action>xs:anyURI</wsa:Action>

<wsa:From>endpoint-reference</wsa:From>

<wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

<wsa:FaultTo>endpoint-reference</wsa:FaultTo>

Endpoint references must contain addressing information identifying an end-
point on the mandatory basis. Reference properties and reference parameters spec-
ify individual properties and parameters required to properly interact with the
endpoint. This information is optional and may be omitted. When address and
reference properties supplied in a message are compared with actual address and
reference properties of the endpoint, these are checked for equivalence. Not only
addresses of endpoints must match, but also the endpoints must contain the same
number of individual properties and for each reference property there must exist
an equivalent reference property in the other endpoint. If the sender address ap-
pears to be anonymous, other information specified in the message information
header about the message id or about the relation of this message to another
message can be used to identify the destination where reply messages can be sent
to. This combines both the key-matching and property-based analysis correlation
methods.

In addition to WS-Addressing, Oracle BPEL PM supports the specification
of correlation sets, i.e. a set of properties, that are used amongst web-services to
uniquely identify a conversation. To use correlation sets for message correlation,
custom data types have to be defined in the XML-schema of the communicating
processes. An example below shows the declaration of the order type that will be
used to uniquely identify orders by their orderID identifiers.

<element name="order" type="tns:orderType"/> <complexType name="orderType">

<sequence>

<element name="orderId" type="string"/>

</sequence>

</complexType>

The actual definition of correlation sets is done in the BPEL-source of both
sender and receiver processes as follows:

<correlationSets>

<correlationSet name="Order" properties="tns:orderId"/>

</correlationSets>

74

(a) General settings (b) Correlation settings

Fig. 52. Correlation settings of the <Receive> activity

A receiving activity processes a message, whose property orderID matches
with the property specified in the correlation set (as shown in Figure 52).

When a message with a specified correlation set is sent to a process for the
first time, the correlation set has to be initialized. For this, its initiate attribute
is set to yes as shown in the following code fragment.

<receive name="receiveInput"

partnerLink="client"

portType="tns:Customer"

operation="initiate"

variable="input"

createInstance="yes">

<correlations>

<correlation set="Order" initiate="yes"/>

</correlations>

</receive>

We have shown how a Message Correlation pattern variant can be imple-
mented in Oracle BPEL PM. In this implementation, both the facilities of the
WS-Addressing and correlation of BPEL have been used. The combination of
WS-Addressing and correlation sets allows for the specification of the majority
of message correlation pattern variants except the ones where the identity of the
target process is underspecified by the sender process. Below we analyze which
pattern variants can be realized using WS-BPEL v.2.0. The relevant configuration
parameters are:
• Message Sender field : instead of the party identifier and the conversation iden-

tifier representing the credentials of the message sender, WS-BPEL provides
a mechanism to specify a set of properties shared by all messages in the cor-
related group of operations within a process instance known as a correlation
set.

<correlationSets>?

75

<correlationSet name="NCName" properties="QName-list">+

</correlationSets>

Uniquely named correlation sets together with the partner link can be used
to represent the credentials of the message sender.

• Message Receiver field : in WS-BPEL, the credentials of the message receiver
are not included in the message explicitly. To send a message to a certain
party, a PartnerLink is defined to whom the message is targeted. Thus the
destination address is specified in the process definition or it may be set
dynamically, however it is not possible to send a message to an arbitrary
party. In order to specify the conversation identifier used by the message
receiver, a correlation set initiated by the message receiver in the previous
interaction has to be specified.

• Credentials of the message sender before message correlation: parties with
whom the message receiver has been or will be involved in a conversation
with, have to be defined as partner links. Since a single dynamic partner link
can be used by different parties, messages sent by these parties have to be
accompanied by uniquely named correlation sets in order for these parties
to be unambiguously distinguished. It is possible that initially the message
receiver does not have any knowledge about the correlation set used by the
message sender.

• Credentials of the message sender after message correlation: If a message
received by a party contains a correlation set that has not been initialized yet,
the message receiver has to initiate it. After this, the initiated correlation set
can be used in follow-up interactions. If at the moment of the message receival,
the correlation set has been already initiated, no information is gained.

Although WS-BPEL claims to support message correlation, in fact it offers
a work-around solution based on correlation sets. Instead of using a party iden-
tifier and a conversation identifier in a message to unambiguously identify the
series of previously exchanged messages relevant to the conversation, it mandates
the obligation for all processes to adopt and utilize the same set of identifiers in
the form of correlation sets. The drawback of such an approach for correlation is
that it narrows the range of message interactions that can be successfully corre-
lated. As such, WS-BPEL is not capable of correlating messages where incomplete
credentials are specified for the message sender. In WS-BPEL, an incomplete or
incorrect specification of the correlation set would be considered as an exceptional
situation necessiating that either a new process instance be created for handling
of the message or that message be discarded.

In a more general case, despite the underspecified information about the mes-
sage sender credentials, it should be possible to identify the related conversation
by analyzing other properties of the message received (for instance, as can be
done in WS-Adressing by analyzing the reference properties and reference param-
eters). WS-BPEL also does not handle scenarios where the receiving party forgets
to retrieve some of the correlation-related information specified in the message. If

76

incomplete information about the message sender credentials is used in the follow-
up response, the response message would not be successfully correlated (unless
property-based analysis of this message is performed).

9.5 Message Mediation

In this section, we illustrate how a Mediated Introduction pattern variant whose
configuration parameters are set to the default value can be implemented in Oracle
BPEL PM. We omit the implementation of the Mediated Interaction pattern
variant, since the realization of the default pattern variant is very similar to the
example of the Bipartite Conversation Correlation presented in this next section
the only difference being with that instead of two parties, three parties are involved
in the conversation, and for correlation of messages two kinds of correlation sets
are used: one shared between the customer, mediator, and provider, and the other
shared only between the mediator and the provider.

Figure 53 illustrates the graphical notation of the Message Introduction pat-
tern variant where all pattern attributes are set to the default value. In this
pattern variant, the customer sends a request to the mediator who in turn has
to delegate it to the provider. The customer does not specify credentials of the
provider (the Them1 field is empty), therefore the mediator is responsible for its
selection. The customer expects a response to be received back. In order for the
provider to contact the customer directly, the mediator passes the reference to the
credentials of the customer in the Them2 field. When sending the response message
to the customer, the provider specifies all information about its credentials in the
From5 field, and also the reference to the mediator in the Them5 field.

(P1,C1)(P2,)(,)

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P1,C1)(P2,C2)

 (P2,C2) (P1,C1) (,)
From1 To1 Them1

 Me Cust Prov

From2 To2 Them2

From5 To5 Them5

Fig. 53. Default notation: Message Introduction

In the default Mediated Introduction pattern variant, a customer process
named FlowA sends a request to the mediator process FlowB. The mediator process
forwards the request to the provider process FlowC, who based on the information
provided by the mediator dynamically binds with the customer process and sends

77

the response message directly to it (note that the customer process does not know
the provider process initially). The customer, mediator and provider processes are
shown in Figures 54, 55 and 56 respectively.

Fig. 54. Customer process: FlowA

To correlate message exchange between these three processes, message invoca-
tion and receival activities have to be associated with a shared correlation set. In
this example, an order identifier is used as a property for correlation set Order.

<correlationSets>

<correlationSet name="Order" properties="tns:orderId"/>

</correlationSets>

<complexType name="orderType">

<sequence>

<element name="orderId" type="string"/>

</sequence>

78

Fig. 55. Mediator process: FlowB

Fig. 56. Provider process: FlowC

</complexType>

<bpws:property name="orderId" type="xsd:string"/>

79

<bpws:propertyAlias propertyName="tns:orderId"

messageType="tns:ABCARoutingFlowRequestMessage" part="payload"

query="/tns:order/tns:orderId"/>

After the customer process has sent a request, it awaits an asynchronous call-
back. In this example, the callback location and correlation id is transparently
handled using WS-Addressing. In particular, WSDL-file of the deployed FlowA
process contains the fields specifying that the ReplyTo field of the message infor-
mation header is used to utilize the address to which the response message has
to be sent. This corresponds to the configuration parameter Them2. Furthermore,
the address location is set dynamically by the caller.

<mesage name = "WSAReplyToHeader">

<part name = "ReplyTo" element = "wsa:ReplyTo"/>

</message>

<service name = "FlowACallbackService">

<port name = "FlowACallbackPort" binding="tns:FlowACallbackBinding">

<soap:address location = "http://set.by.caller" />

</port>

</service>

To support all Message Mediation pattern variants, it should be possible to
specify in a message the credentials of a third-party process; the message receiver
should be able to dispatch the information about the credentials of the third party
and dynamically bind with it. These requirements are met by WS-Addressing
using the concepts of endpoints and message information headers, whose format
has been described in Section 9.4.

An endpoint reference is the information needed to identify a process. The
endpoint reference must contain an address of the process and may contain other
properties and parameters that are necessary to properly interact with the process.

Message information headers convey information about the source and des-
tination endpoints of a given message in the From and To fields, and ReplyTo
address that can be used for as a destination address for the follow-up responses.

<wsa:MessageID> xs:anyURI </wsa:MessageID>

<wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo>

<wsa:To>xs:anyURI</wsa:To>

<wsa:Action>xs:anyURI</wsa:Action>

<wsa:From>endpoint-reference</wsa:From>

<wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

<wsa:FaultTo>endpoint-reference</wsa:FaultTo>

The only mandatory field in the message information header is the address of the
message destination To. This means that the message sender may stay anonymous
by omitting the detailed specification of the From field, while at the same time
it may provide additional information in the ReplyTo field, which will be used
as the address to which to send the response message. The RelatesTo field may
contain information specifying how the given message relates to other messages. In
addition, the MessageID field may contain a unique message identifier that could
be used for correlation purposes. In the considered example, the ReplyTo field of

80

the request sent by the mediator to the provider contains the credentials of the
customer process (Them2 field in Figure ??). The provider uses this information to
specify in the To5 field representing the address of the party to whom the response
message will be sent, i.e. the address of the customer.

We have shown an example of how the Mediated Introduction pattern variant
can be implemented in Oracle BPEL PM. In this implementation both facilities
of WS-Addressing and BPEL were used, and it is interesting to see what other
pattern variants can be implemented in WS-BPEL v.2.0. For this, we analyze
each of the configuration parameters below:

• Customer request for specific provider : in order to implement pattern variants,
where the customer specifies the credentials of the provider, the partner link
of the provider has to be set dynamically.
In order to send a request to the provider after the mediator has been trig-
gered by a request received from a customer, the mediator should be able to
dynamically bind to the reference provided. In WS-BPEL, this can be done via
assignment of end-point references using the <Assign> activity. The reference
provided is copied from the <from> field to the <to> field:

<from partnerLink="NCName" endpointReference="myRole|partnerRole"/>

<to partnerLink="NCName"/>

Note that types for values specified in the from/to-assignment clause is of the
<sref:service-ref>.
One could underspecify the PartnerLink by setting it to a generic service,
and assign its value during run-time using the endpoint reference of WS-
Addressing. Note that for this, a variable of the EndpointReference type
needs to be declared:

<variable name = "partyReference" element="wsa:EndpointReference">

The schema for the EndpointReference type is provided by the WS-Addressing
standard:

<xlmns:wsa = "http://schema.xmlsoap.org/ws/2003/03/addressing">

The value of this variable has to be assigned to the partner link that has to
be configured dynamically.

• Information about the message sender in the request from mediator to provider :
to receive a response message back, the mediator has to specify a correlation
set that can be shared with the provider, otherwise the correlation set initiated
by the customer service has to be passed.

• Information about the message sender in the response from provider to cus-
tomer : the identity of the provider may be enclosed in the new correlation
set (note that correlation sets have to be shared) or via end-point refer-
ences as has been described earlier. An endpoint reference represents data
required to describe a partner service endpoint as a service reference container
<sref:service-ref>. This reference can be used to dynamically determine
a partner service that is not known at the moment of process instantiation.

81

• Information about mediator exposed by provider to customer : in contrast to
WS-Addressing where the RelatesTo field is used to pass the reference to
related process, in WS-BPEL this can only be done in the content of the
message. The message in this case has to be based on the data type defined
in the XML-schema of the corresponding process.

To realize all Message Introduction and Message Interaction pattern variants,
processes involved in a bilateral interaction should be able to provide references to
other parties as well as to use the references provided for dynamic binding. WS-
BPEL acknowledges the importance of supporting such scenarios via a notion of
endpoint references.

In the Message Introduction and Message Mediation pattern variants there
exists the possibility that a customer process will provide the mediator with an
explicit reference to the provider process. As has been already mentioned in the
Message Correlation section, the credentials of parties corresponding to the
From and To message attributes are not used for correlation in WS-BPEL (cor-
relation sets are used instead). This sets limitations on the number of pattern
variants supported. All information related to identification of the party in inter-
actions with other parties is not explicitly exposed and is irrelevant for correlation
of messages in each of the interactions belonging to the corresponding Message
Mediation pattern variant. This however, does not prohibit the inclusion of infor-
mation about the party credentials in the content of messages and specification of
whether the information provided should be disclosed to the third party involved
in the conversation. In order to include such information in the message content,
the definition of data types in the XML-schema of the corresponding processes is
required.

Message Mediation pattern variants, where some of the information related to
the party credentials is underspecified, cannot be realized in WS-BPEL, mainly
because it has been deliberately chosen not to use this information for correlation
purposes. The rest of the pattern variants can be realized, providing that instead
of message sender credentials and message receiver credentials, correlation sets are
used. All limitations of using correlation sets for message correlation (described
in the analysis of Message Correlation pattern family) also apply to the Message
Mediation pattern family.

9.6 Bipartite Conversation Correlation

Figure 57 presents the graphical notation for one of the bipartite conversation pat-
tern variants where all configuration parameters are set to their default values. The
requestor and the responder retrieve all information from the message received,
and specify complete information about the identity of the message sender and
the message receiver. In the follow-up interaction, the requestor uses information
provided by the responder as a token of correlation. We use this example as a
basis for implementation in Oracle BPEL PM.

Two processes, Buyer and Seller, one requesting a service and another of-
fering it, are directly related and thus must be declared as partner links in the

82

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,C2)

(P2,C2)

(P1,C1)

Fig. 57. Default notation: Bipartite Conversation Correlation

corresponding processes. To illustrate correlation information changing during the
course of a conversation between these processes let’s consider their implementa-
tions shown in Figures 58 and 59 respectively.

The Buyer sends a request to the Seller and specifies the correlation set that
has to be used in the response message. Note that the correlation set has been
initialized before the invocation of the Seller process, therefore its initiate at-
tribute is set to no. Furthermore, the pattern attribute is set to out indicating
that the correlation set applies to the outbound message.
<invoke partnerLink="Seller" portType="seller:Seller"

inputVariable="input"

name="SendRequest" operation="AsyncPurchase">

<correlations>

<correlation set="PurchaseOrder" initiate="no" pattern="out"/>

</correlations>

</invoke>

In order to be used in the process, this correlation set must be declared in the
BPEL-specification of the Buyer process. The correlation sets shown below are
the ones used by the Buyer and Seller processes during the conversation. Each
correlation set contains two properties, representing the identity of the party and
the order identifier.
<correlationSets>

<correlationSet name="PurchaseOrder"

properties="cor:customerID cor:orderNumber"/>

<correlationSet name="Invoice" properties="cor:vendorID

cor:invoiceNumber"/>

</correlationSets>

The Seller process, receives an initiation request from the Buyer process, and
uses the same correlation set PurchaseOrder for correlation. Note that this mes-
sage not only creates a new process instance, but also initiates the correlation set
within this process instance:
<receive partnerLink="Buyer" portType="seller:Seller"

operation="AsyncPurchase" variable="input" createInstance="yes"

name="ReceiveInitRequest">

<correlations>

83

Fig. 58. Requestor process: Buyer

<correlation set="PurchaseOrder" initiate="yes"/>

</correlations>

</receive>

After processing an initiation request, the Seller invokes the Buyer process
and next to the PurchaseOrder correlation set required by the Buyer also specifies
its own correlation set Invoice that has to be used in the follows-up responses.

<invoke partnerLink="Buyer" portType="seller:Buyer"

operation="AsyncPurchaseResponse" inputVariable="output"

name="SendInitResponse">

<correlations>

84

Fig. 59. Responder process: Seller

<correlation set="PurchaseOrder" initiate="no" pattern="out"/>

<correlation set="Invoice" initiate="yes" pattern="out"/>

</correlations>

</invoke>

The Buyer process receives the initiation response from the Seller, and ini-
tializes the Invoice correlation set:

<receive partnerLink="Seller" portType="seller:Buyer"

85

operation="AsyncPurchaseResponse" variable="output"

createInstance="no" name="ReceiveInitResponse">

<correlations>

<correlation set="PurchaseOrder" initiate="no"/>

<correlation set="Invoice" initiate="yes"/>

</correlations>

</receive>

The follow-up request sent by the Buyer process to the Seller process specifies
both correlation sets as shown below.
<invoke name="FollowUpRequest" partnerLink="Seller"

portType="seller:Seller"

operation="AsyncNextPurchase" inputVariable="nextinput">

<correlations>

<correlation initiate="no" set="PurchaseOrder"/>

<correlation initiate="no" set="Invoice"/>

</correlations>

</invoke>

Realization of pattern variants, where only part of the correlation information
required by the message receiver is specified by the message sender is possible
by excluding corresponding correlation set details from the correlation sets of the
invocation activity. To deal with such a situation, the receiver must have a separate
inbound message activity whose correlation sets match with the ones specified by
the message sender. In general, such messages would not be processed, thus the
corresponding conversation will not be identified.

There is an alternative means of supporting message correlation via WS-
Addressing, where message information headers contain information both about
the message sender in the From field and the message receiver in the To field, thus
it should be possible to realize pattern variants where the message sender under-
specifies its credentials. If in general, the absence of the message sender credentials
makes it impossible to deliver the response message to the right destination, in
WS-Addressing message information headers may contain additional information
about a message id or relationship of this message to another message. By ana-
lyzing this information, a corresponding process instance to which the response
message has to be sent can be found.

In order to define what other pattern variants can be realized using WS-
BPEL v.2.0, we analyze configuration parameters of the Bipartite Conversation
Correlation pattern configuration below:

• Responder credentials in the initial response: All correlation sets specified by
the requestor process in a message initiating a conversation with the respon-
der process must be initiated, i.e. the initiate attribute of every correlation
set must be set to “yes”. Once initiated by the requestor, this correlation set
should be used by the responder process in the follow-up responses. However,
next to the correlation set provided by the requestor, the responder may ini-
tiate another correlation set that should be used in follow-up messages issued
by the requestor. This new correlation set may represent the provider creden-
tials. However in order to correlate a message in which this correlation set

86

is specified, the receiver process must have a corresponding inbound message
activity sharing the same correlation set.

• Responder credentials in the follow-up request : Depending on the context of
the conversation, the requestor may choose to use its own correlation set or
the one provided by the responder. In order for the follow-up request issued by
the requestor to be successfully processed, the responder process must have a
pending activity whose correlation sets match, otherwise such a message will
raise the bpel:correlationViolation fault. In general, the correlation set
specified by the responder may be combined with a new or already existing
correlation set initiated by the requestor.

• Requestor credentials in the follow-up request : The correlation set specified by
the responder process in the initiation response must be used by the requestor
in the follow-up request. It may only be omitted if the responder has a pending
activity whose correlation sets match, otherwise such a message will raise the
bpel:correlationViolation fault.

The Bipartite Conversation Correlation pattern family addresses scenarios
where knowledge used by a party for message correlation may change during the
course of a long-running conversation with another party. Obviously, WS-BPEL
allows parties involved in the conversation to define what information to use for
correlation of messages and correlation sets may change for different activities.
However, due to the limitations of the approach employed by WS-BPEL to real-
ize message correlation (as described in the Message Correlation pattern family
section), not all pattern variants of the Bipartite Conversation Correlation can be
realized in WS-BPEL. In particular, such scenarios where a party uses only a sub-
set of credentials provided by another party as correlation information specified in
the follow-up messages or scenarios where a party specifies additional information
to that requested by the other party can not be realized in WS-BPEL.

10 Conclusions

In this paper we presented a framework for generating pattern variants in the
context of service orientation. The core of the framework is composed of five pat-
tern families: Multi-party Multi-message Request-Reply Conversation, Renewable
Subscriptions, Message Correlation, Message Mediation and Bipartite Conversa-
tion Correlation. These pattern families are closely related to each other by means
of the concepts defined in the meta-model. In each pattern family, multiple pat-
tern variants can be identified. Pattern variants belonging to different pattern
families can be combined to solve more complex problems.

The framework presented in this paper is useful for a variety of purposes.
First of all, the framework allows for generation of different pattern variants. The
graphical notation proposed for each pattern family allows different patterns to
be visualized and distinguished in an intuitive way. The CPN models formalize
the patterns, thus minimizing the possibility for misinterpretation. Furthermore,
complex service orientation scenarios can be classified by means of this framework

87

by relating them to the pattern families identified. Consequently, this framework
can be used as a source of reference when comparing service-oriented languages
and standards. In this paper we applied the pattern families to analyze the capa-
bilities of WS-BPEL v2.0. In future we plan to use the proposed framework for
testing the pattern support of a selection of WFM tools.

Acknowledgments

We would like to thank Christian Stahl and Jan Martijn van der Werf for their
involvement in the clarification of message correlation scenarios.

88

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

2. L. Aldred, W.M.P. van der Aalst, M.Dumas, and A.H.M. ter Hofstede. Understand-
ing the Challenges in Getting Together: The Semantics of Decoupling in Middleware.
BPM Center Report BPM-06-19, BPMcenter.org, 2006.

3. C. Alexander. Timeless Way of Building. Oxford University Press, 1979.

4. A. Alves and A. Arkin et al. Web Services Business Process Execution Language,
Version 2.0. OASIS TC Available via http://www.oasis-open.org, Last accessed on
May 18, 2007, 2007.

5. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corporation,
2003.

6. A. Arkin, S. Askary, S. Fordin, and W. Jekel et al. Web Service Choreography
Interface (WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun
Microsystems, 2002.

7. A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.

8. A. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-
Oriented Architectures. In Proceedings of the 9th International Conference on Fun-
damental Approaches to Software Engineering (FASE), Braga, Portugal, 2007.

9. A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: To-
wards a Reference Framework for Service-based Business Process Interconnection.
QUT Technical report, FIT-TR-2005-02, Queensland University of Technology, Bris-
bane, 2005.

10. A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns. In In
Proceedings of the 3rd International Conference on Business Process Management,
volume 3716/2005, pages 302–318, Nancy, France, 2005.

11. A.P. Barros and E. Borger. A Compositional Framework for Service Interaction
Patterns and Interaction Flows. In ICFEM, pages 5–35. Springer Verlag, 2005.

12. M.A. Beedle. Enterprise Architecture Patterns. Cambridge University Press, 1998.

13. T. Belwood and et al. UDDI Version 3.0. http://uddi.org, 2000.

14. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap, 2000.

15. T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. eXtensible Markup Lan-
guage (XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml, 2000.

16. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

17. D. Cooney, M. Dumas, and P. Roe. GPSL: A Programming Language for Service
Implementation. In Proceedings of the 8th International Conference on Fundamental
Approaches to Software Engineering, Vienna, Austria, 2006.

18. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

19. D.Box, E.Christensen, and D.Ferguson et al. Web Services Addressing. W3C Avail-
able via http://www.w3.org/Submission/ws-addressing/, Last accessed on Novem-
ber 19, 2007, 2004.

89

20. G. Decker, F. Puhlmann, and M. Weske. Formalizing service interactions. In In S.
Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.), editors, Proc. of the 4th International
Conference on Business Process Management (BPM 2006), volume 4102 of LNCS,
pages 414–419, Vienna, Austria, 2006. Springer Verlag.

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison Wesley,
Reading, MA, USA, 1995.

22. G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA, 2003.

23. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1992.

24. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language Version 1.0(W3C Working Draft 17 December
2004). http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/, 2004.

25. Oracle BPEL Process Manager. Developers Guide 10g Release 2 (10.1.2). Available
via http://download.oracle.com/otndocs/products/bpel/bpeldev.pdf, Last accessed
on November 19, 2007, 2005.

26. C. McDonald. Orchestration, Choreography, Collaboration and Java
Technology-based Business Integration. Last accessed on May 18, 2007.
http://weblogs.java.net/blog/caroljmcdonald/archive/2003/10, , 2007.

27. C. Peltz. Web services orchestration: a review of emerging technologies, tools and
standards. Hewlett Packard, Co., 2003.

28. W. Pree. Framework patterns. SIGS Books, 1996.
29. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow

Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPM-
center.org, 2006.

30. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

31. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University of
Technology, Eindhoven, 2004.

32. S. Thatte. XLANG Web Services for Business Process Design, 2001.
33. A. van Dijk. Contracting Workflows and Protocol Patterns. In Business Process

Management, pages 152–167. Springer Verlag, 2003.
34. Workflow Patterns Home Page. http://www.workflowpatterns.com.
35. WPHP. Workflow Patterns Home Page. http://www.workflowpatterns.com.
36. J.M. Zaha, A.P. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance: A

Language for Service Behavior Modeling. In OTM Conferences (1), Vienna, Austria,
pages 145–162, 2006.

Appendix A: Glossary

Conversation Communication of a set of contextually related messages between
two or more parties.

Configuration parameters Parameters that have to be set to a specific value
from the defined range in order to for a specific pattern variant to be config-
ured.

90

Correlation A mechanism used by a party to identify a process instance for
processing a received message in the context of a particular conversation.

Customer A party who is a recipient of a service or a product. A customer may
be represented by various people and processes in different roles, the principal
roles being those of user, buyer, payer, etc.

Dynamic attribute A pattern attribute whose value is derived from other pat-
tern attributes once all configuration parameters characterizing a specific pat-
tern variant have been set to a specific value.

Mediator A party who acts as a link between two parties involved in a conver-
sation.

Message A unit of information that may be composed of one or more data fields.

Pattern A solution for a recurring problem encountered in a certain context.
Conceptually similar patterns that share a set of common pattern attributes
and differ only by values these pattern attributes take are also termed as
pattern variants.

Pattern attributes A set of attributes describing characteristics of a pattern
by means of the static attributes, dynamic attributes and configuration pa-
rameters.

Pattern configuration A set of configuration parameters defined for a given
pattern family to differentiate between different pattern variants. By setting
configuration parameters to different values, from the defined range, various
different pattern variants can be generated.

Pattern variant An instance of a pattern configuration for a particular pattern
family whose configuration parameters are set to a specific value from the
defined range.

Pattern family A set of pattern variants sharing the same concepts grouped
together.

Party An entity involved in communication with other entities by means of send-
ing/receiving messages. For instance, a process, a service, a business unit, etc.

Provider A party that provides services/products to a customer.

Product A good or a service that is produced.

Reply A reply, answer, or additional message that is returned to a requestor.

Renew policy A policy specifying which of the two parties involved in a sub-
scription is responsible for renewing the subscription.

Responder A party producing a reply message to respond to a on the request
message received.

Response period A period of time within which a reply to a previously sent
message is expected.

Request A message sent by a requestor party to another party.

Requestor A party issuing request messages to (a set of) other parties involved
in a conversation.

91

Static attribute A pattern attribute whose value is fixed for all pattern variants
derived from the pattern configuration.

Subscription A special kind of a conversation between two parties, a provider
and a customer, who are both capable of initiating and renewing the pro-
cess of subscription which aims to deliver a certain product under accepted
subscription terms.

Subscription initiation A conversation held for the purpose of establishing a
subscription.

Subscription renewal A conversation held for the purpose of renewing an es-
tablished subscription.

Subscription terms A set of rules or constraints characterizing a given sub-
scription, which includes the subscription period, the renewal policy and the
product of subscription.

92

Appendix: CPN models

The CPN model of the Customer-Initiated Customer-Renewable Subscription sce-
nario is presented in Figure 60, where both Customer and Provider are substi-
tution transitions unfolding to the nets presented in Figure 61 and Figure 62
respectively.

���� ��� �
���� ��� �

��	
��� �
��	
���� �����������������

���������	
���� ����������
������
����� ������
���� ��

��	
���� ���� ��� �

��
�����	

Fig. 60. CPN diagram: The top view of Customer-Initiated Customer-Renewable Sub-
scription

The CPN model of the Provider-Initiated Customer-Renewable Subscription
scenario is presented in Figure 63, where both Customer and Provider are sub-
stitution transitions unfolding to the nets presented in Figure 64 and Figure 65
respectively.

The CPN model of the Provider-Initiated Provider-Renewable Subscription
scenario is presented in Figure 66, where both Customer and Provider are sub-
stitution transitions unfolding to the nets presented in Figure 67 and Figure 68
respectively.

The CPN model of the Provider-Initiated Automatically-Renewable Subscrip-
tion scenario is presented in Figure 69, where both Customer and Provider are
substitution transitions unfolding to the nets presented in Figure 70 and Figure 71
respectively.

The CPN model of the Customer-Initiated Automatically-Renewable Sub-
scription scenario is presented in Figure 72, where both Customer and Provider
are substitution transitions unfolding to the nets presented in Figure 73 and Fig-
ure 74 respectively.

93

����
��� �
���	� ��
������������ �����	���
���

� ����� ��
��������� ����� ������ ���� ������ �������������� �����	��
������	� �
��
� ����� �
�� ��� ������

���	���
��
������ ��
��������� ���������	��
��
� ����� �
�� ���������

���� �����
��������������� �������������	� ��
��� ���	���
����
��
���
����������� ����� ��
������ �� ����� �������������������� ������� ���������������
�� �������
�� ������� �������������	� �
��� ���	��
������
��
�� ������������������ ���� ��� ������������

��
������� ���� ��
����������!"���
��
����� ���� ��
������� #������� �
$
������� ���� ��
����������!"� �
��

��
���������%���!"���
��
$
���� ���$
 ��&��
��
$
���������%�� �!"� �
��
�������$
 ����
��
�������$
��&���
��$

$

%��
$

%��

Fig. 61. CPN diagram: The Customer page of Customer-Initiated Customer-Renewable
Subscription

94

����� ���� � 	� �

������� ������ ����

����������

�� ������ ���� � ��� ������ ��� �������	�� �
�	� ������	� ��	� ��	� ��� ������ ���� ���� ����� � ���� ����� ����������
�	� ���������� �����

���� ������� ����������� ��� ���� �������
��� ��������� ������

�������� �����
���� �������� ������������� ����� �� �
����� �������	� ���

 ��������� ��!��� �

����������	�� ���� �����	�� �
"���	�������	�� ���� �����	�� �

����������!��� #������
������������$��"%� �����
$����� ���!�� � #�����
$����������$� �"%� ����
 �����!�� ��!��

$�
!��
$�!��

��� ������
���� ��� ���� �������

Fig. 62. CPN diagram: The Provider page of Customer-Initiated Customer-Renewable
Subscription

���� ��� �
���� ��� �

��	
��� �
��	
���� �����������������

���������	
���� ����������
������
��������� ��
��
�����	
������

��	
���� ���� ��� �
Fig. 63. CPN diagram: The top view of Provider-Initiated Customer-Renewable Sub-
scription

95

��� �
�����	����� �
������		��

� �	��	� �		��	�
��� ����� ������	
��� ��
�� ���	� ��	�	�� ������� �
�	������� ��	 ��	 	���� �	�������	������

������		�
��	��	� �		��	�
��� ��

����
�	������

�	�	 ��	�		��	�����	����� �������	�
�	��� �		�� ������		���
�� ��	�� �		�
��� �� ��	�	 ��	����������������� ��	
��� ��������

���� �		�
 ���� ���� ��	��������	� ���� �
!��	 �	� ���� �

�����		�
�"#� ���
�������
"���

�"#��		�

 ���� ���� �����	 �	� 	���� �	 ���
�	�	 ��	��� �	��	�� $���	��	��$$

$���	���!��!��"������$$
�		��	���$$

 	��		��	��	�� �		��	��	��!��!�� ���� ���� ���	��	��	� �	��� �		�

�� ���	 ��		���� 	 ��	� �	��	� ��� �	���
�	������� ��
%%%%%%%%%%%%%%%%&������	 � �� ���	 � ���'�	�	 ������ ��� ����	� �� �	� �	 ��	��	���	 ���	�� �(�� �)	�� �(�	����	 � ��� �	 �	��� � � �	����	 � ��� �	 �	� �� � ��%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%*�	 �	� �� �� �� �		���	 ����� ���� �� ���'�	�	 ������ ��%%%%%%%%%%%%%%%%%
Fig. 64. CPN diagram: The Customer page of Provider-Initiated Customer-Renewable
Subscription

96

��������� ���������	
�����

�� ������	� �	� �	�	������ ����� �����	 ��	 	������ ���� ���� �
� �	�	����� ������� ���������

�	
�� �	�	�
����� ��� �	�� �������	�� ������

�	����� �	
�	��	�� ��� �	
�	�

�	���	�	� �	���
�	�	 ��	�	�	� �	
�	���	
�� ����� ��	 ���	
�� �	�	����� ���
�	�	 ��	��� �	�����	����� ����� ��	 ������� ��������

���������	 �� ��	 �

�	
�	�	������ ��� �������� �
!�������	������ ��� �������� �
 ��	 �	������ ��� ��� ��	 �	������ �

�	�	��	��� ���"��	�	�
�	�	��	
�	�#��!$��	�	�
#���	���#���"� ���
#���	
�	� ��!$����

������ ����� �
 �
#�
#� �

�	�� ��� �	
�	�
�	�� ������

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&������	 �� �� ��	 �� ���� �� �� �� �'�	� ���	 ���'�		 ������ ��� ��� � �	� ��	 ��	�	��	 ���� ��	 �� ��� ���	�� �	(�� �� �) �	� �	 �	
�	� �� � ����� ��� ��� �	�	�� �%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
�� ���*) �	� �	� 	��� 	 ��	� �	�	 �	�	��	��� ���� �����

+,�-.����-�/�+0�12�

Fig. 65. CPN diagram: The Provider page of Provider-Initiated Customer-Renewable
Subscription

���� ��� �
���� ��� �

��	
��� �
��	
���� ������������������	
������
������
��������� ��
��
�����	
������

��	
���� ���� ��� ������������� ����
Fig. 66. CPN diagram: The top view of Provider-Initiated Provider-Renewable Sub-
scription

97

��� �
���������	
� ��� ����� ���� ������ ��� ����	������ �����������	� ��

���������	���������� ���� ��
� ��� ����� ���� ������ ��� ���������� �������
�
�� �������
�
�
�����
�
�

� ����� ���� ������ ��� � ������ ����	����� ����������	� ��
���������	���

� ����� ��������� � ���� ������
�
� ����� ������
�
�� ��
�����
�
�

��������	�����
����
������	������������	���� �������������	���� �������
���������������� ������� �����������
�
� �����

����
��
�
� �������

����	��� ����� �������� �
����� �
��
�������
� �������� �

����� �
��
���� ������� �������� �
����	��������� � !�����	
��
��� �������"#�
�
�

��
����������� !�
�
�
"������� "��
����	�������� �"#� ����	���

��
��
���
��

Fig. 67. CPN diagram: The Customer page of Provider-Initiated Provider-Renewable
Subscription ��������� ���� �� ���	����
�����

����������� ������� ��������	����� ����� �� ���������� ����� ��
	
� ��������� ������� ������	��

����� ������ ������������
 ���� ��
	
����� ��� ���� ���������� ������

������� ��
������� ��� ��
���

���� �������� ����������� ����� ��� ������� ��������	���������� ��
���� �������������� �	�
���� ������ ������������� ����� ��� ������� ������	�

���������� ������ �

���� ��� ���������� ��� ������� �������� �
��������������� ��� �������� �
���� �������� ��� ������� �������� �

���������� � ��!� �����
�������
����� ��"������
 ������� ���!� ���
 ����
�������"����

��������������
��
 �
�� �

���� ��� ��
���
���� ������

Fig. 68. CPN diagram: The Provider page of Provider-Initiated Provider-Renewable
Subscription

98

���� ��� �
���� ��� �

��	
��� �
��	
���� �����������������
�������
��������� ���
���
�����	
������

��	
���� ���� ��� �
����� ������� ������	

Fig. 69. CPN diagram: The top view of Provider-Initiated Automatically-Renewable
Subscription

��� ���� ������	
��� ��� ����� �	��� ��	� 	����	 ��	 �	��������� �
�	�������� ���	��������	�������

� �	��	� �	�	��	�
��� ������
� ����� �	��� ��	�	���� 	 ��	� �	��	� ���� �	���
�	�������� ��

�	�������

�	���	�	��	��	��
�	�	 ��	���������������� ��	
��� ���������	������ �	���

�	�	 ��	���� �	��	��
����� ���� ���	������� �	������ �

����� ���� ����	 �	��	 �	������ �
�	�	��	��	�������������	�	�
 ����	 �������!"� ����

 ����	��	�� ���������
!������ � !��� �

 �
���
���

Fig. 70. CPN diagram: The Customer page of Provider-Initiated Automatically-
Renewable Subscription

99

��������� ������ ���	����
�����

��� ���� �
� ��������� ������� ������	��

��
����������
����� ���

���� ���������� ������
������� ��
������� ��� ��
���

���� �������� ��
������
������� ��� ����
�������������� �	�
���� ������ ������������� ����� ��� ������� ������	�

���������� ������ �

����� ��������� ��� �������� �
��������������� ��� �������� �

���� �������� ��� ������� �������� �
�������
��� ���!���������
 ������� ���"� ���
 ����
�������!����

��������������
��
 �
 �

���� ��� ��
���
���� ������

Fig. 71. CPN diagram: The Provider page of Provider-Initiated Automatically-
Renewable Subscription

���� ��� �
���� ��� �

��	
��� �
��	
����

������
������
�����
��	
���� ���� ��� �

��
�����	

������������
�������
���� ���

����� ������� ������	

Fig. 72. CPN diagram: The top view of Customer-Initiated Automatically-Renewable
Subscription

100

��� ���� ������	
��� ���	�� �����	��	������ �
����������	��� ����
����

� �	��	� ���� �	�
�����

�	�	 ��	�	�	��	��	��
�	�	 ��	�������������������	
��� ���������	������ �	��

�	�	 ��	���� �	��	��
����� ���� ���	�������	������ �
���� ����

�	�	��	��	����� �������	�	�
 ����	�� �

 ����	��	�����
!������ � !��� �

���
 �

���� ����
�!"�����

!��� ���� ����� �	���� �������	�
�	��� ����� ������������������
�������	 ��� �
��� ��

����� ���� ������	 �	�!��������	� ��	� � �	��	� ���� �	�
�����#$%&	�����	�%

Fig. 73. CPN diagram: The Customer page of Customer-Initiated Automatically-
Renewable Subscription

���������
����	 ����
������ ���� ����

��	 �
��	 ���	 �����		�������

��	� ������� ���������	� ��� ���� �������
���� �����	����� �����	���������� ������������� ����� ��� �
����		���������	 ���

�����	����� ������ �

���	� ��������	 ���� ��������	 �
�������� �������	 ���� �������	 ����������������� 		�������

������ ��!��� ��"�����
������������� �� 	 ����

�����	���� �������
��
���
�� ���� �����	�

��	� ��� ���� �������

Fig. 74. CPN diagram: The Provider page of Customer-Initiated Automatically-
Renewable Subscription

101

