Dynamic and Extensible Exception Handling for
Workflows: A Service-Oriented Implementation

Michael Adams!, Arthur H. M. ter Hofstede!, David Edmond?,
and Wil M. P. van der Aalst!?

! Business Process Management Group
Queensland University of Technology, Brisbane, Australia
{m3.adams,a.terhofstede,d.edmond}@qut.edu.au
2 Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. This paper presents the realisation, using a Service Oriented
Architecture, of an approach for dynamic, flexible and extensible excep-
tion handling in workflows, based not on proprietary frameworks, but
on accepted ideas of how people actually work. The approach utilises an
established framework for workflow flexibility called worklets and a de-
tailed taxonomy of workflow exception patterns to provide an extensible
repertoire of self-contained exception-handling processes which may be
applied at the task, case or specification levels, and from which a dynamic
runtime selection is made depending on the context of the exception and
the particular work instance. Both expected and unexpected exceptions
are catered for in real time, so that ‘manual handling’ of the exception
is avoided.

Key words : workflow exception handling, workflow flexibility, service
oriented architecture, worklet

1 Introduction

Workflow management systems (WIMS) are used to configure and control struc-
tured business processes from which well-defined workflow models and instances
can be derived [1,2]. However, the proprietary process definition frameworks
imposed by WIMSs make it difficult to support (i) dynamic evolution (i.e. modi-
fying process definitions during execution) following unexpected or developmen-
tal change in the business processes being modelled [3]; and (ii) exceptions, or
deviations from the prescribed process model at runtime [4-6].

For exceptions, the accepted practice is that if an exception can conceivably
be anticipated, then it should be included in the process model. However, this ap-
proach can lead to very complex models, much of which will never be executed in
most cases, and adds orders-of-magnitude complexities to workflow logic; mixing
business logic with exception handling routines complicates the verification and
modification of both [7], in addition to rendering the model almost unintelligible
to most stakeholders.



Conversely, if an exception occurs that is unexpected, the model is deemed
to be simply deficient, and thus needs to be amended to include the previously
unimagined event (see for example [8]). This approach, however, tends to gloss
over the frequency of such events and the costs involved with their correction.
Most often, suspension of execution while the deviation is handled manually or
the termination of the entire process instance are the only available options, but
since most processes are long and complex, neither option presents a satisfactory
solution [9]. Manual handling incurs an added penalty: the corrective actions
undertaken are not added to ‘organisational memory’ [10,11], and so natural
process evolution is not incorporated into future iterations of the process. Asso-
ciated problems include those of migration, synchronisation and version control
(4].

These limitations imply that a large subset of business processes do not easily
map to the rigid modelling structures provided [12], due to the lack of flexibility
inherent in a framework that, by definition, imposes rigidity. This is further
supported by our work on process mining. When considering processes where
people are expected to execute tasks in a structured way but are not forced by
some workflow system, process mining shows that the processes are much more
dynamic than expected, that is, people tend to deviate from the “normal flow”,
often with good reasons.

Thus, process models are ‘system-centric’, or straight-jacketed [1] into the
supplied framework, rather than truly reflecting the way work is actually per-
formed [13]. As a result, users are forced to work outside of the system, and/or
constantly revise the static process model, in order to successfully support their
activities, thereby negating the efficiency gains sought by implementing a work-
flow solution in the first place.

Since the mid-nineties many researchers have worked on problems related to
workflow flexibility and exception handling (cf. Section 7). This paper is based
on and extends the ‘worklets” approach described in [14] and [15] and applies the
classification of workflow exception patterns from [16]. It introduces a realisa-
tion of a service that utilises an extensible repertoire of self-contained exception
handling processes and associated selection rules, grounded in a formal set of
work practice principles called Activity Theory, to support the flexible modelling,
analysis, enactment and support of business processes. This approach directly
provides for dynamic change and process evolution without having to resort to
off-system intervention and/or system downtime. It has been implemented as a
discrete service for the well-known, open-source workflow environment YAWL
[17,18] using a Service Oriented Architecture (SOA), and as such its applicabil-
ity is in no way limited to that environment. Also, being open-source, it is freely
available for use and extension.

The paper illustrates aspects of the approach throughout using the organisa-
tion of a rock concert as an example process and is organised as follows: Section
2 provides a brief overview of the theoretical underpinnings of the approach.
Section 3 provides an overview of the design and operation and service, while
Section 4 details the service architecture. Section 5 discusses exception types



handled by the service and the definition of exception handling processes. Sec-
tion 6 describes how the approach utilises Ripple Down Rules (RDR) to achieve
contextual, dynamic selection of handling processes at runtime. Section 7 dis-
cusses related work, and finally Section 8 outlines future directions and concludes
the paper.

2

Theoretical Framework

In [19], we undertook a detailed study of Activity Theory, a broad collective of
theorising and research in organised human activity (cf. [20-22]) and derived
from it a set of principles that describe the nature of participation in organisa-
tional work practices. Briefly, the principles relevant to this paper are:

1.

Activities (i.e. work processes) are hierarchical (consist of one or more ac-
tions), communal (involve a community of participants working towards a
common objective), contextual (conditions and circumstances deeply affect
the way the objective is achieved), dynamic (evolve asynchronously), and
mediated (by tools, rules and divisions of labour).

Actions (i.e. tasks) are undertaken and understood contextually. A repertoire
of applicable actions is maintained and made available to each activity, which
is performed by making contextual choices from the repertoire.

A work plan is not a prescription of work to be performed, but merely a
guide which may be modified during execution depending on context.
Deviations from a plan will naturally occur with every execution, giving rise
to learning experiences which can then be incorporated into future instanti-
ations of the plan.

Consideration of these principles has delivered a discrete service that transforms
otherwise static workflow processes into fully flexible and dynamically extensible
process instances by offering full support for realtime handling of both expected
and unexpected exceptions, using a Service-Oriented Architecture. The service:

regards the process model as a guide to an activity’s objective, rather than
a prescription for it;

provides a repertoire (or catalogue) of applicable actions to be made available
at each execution of a process model,;

provides for choices to be made dynamically from the repertoire at runtime
by considering the specific context of the executing instance; and

allows the repertoire of actions to be dynamically extended at runtime, thus
incorporating unexpected process deviations, not only for the current in-
stance, but for other current and future instantiations of the process model,
leading to natural process evolution.

As detailed in the following sections, the service has been implemented di-

rectly on top of an Activity Theory framework, and thus provides workflow
support for processes from a wide variety of work environments.



3 Worklet Service Description

The Worklet Service (essentially, a worklet is a small, discrete workflow process
that acts as a late-bound sub-net for an enabled workitem) comprises two distinct
but complementary sub-services: a Selection sub-Service, which enables dynamic
flexibility for YAWL process instances [14]; and an Fzception sub-Service (the
focus of this paper), which provides facilities to handle both expected and unex-
pected process exceptions (i.e. events and occurrences that may happen during
the life of a process instance that are not explicitly modelled within the process)
at runtime.

The Selection Service: The Selection Service enables flexibility by allowing a
process designer to designate certain workitems to each be substituted at run-
time with a dynamically selected worklet, which contextually handles one specific
task in a larger, composite process activity. Each worklet instance is dynamically
selected and invoked at runtime and may be designed and provided to the Selec-
tion Service at any time, as opposed to a static sub-process that must be defined
at the same time as, and remains a static part of, the main process model.

An extensible repertoire of worklets is maintained by the Service for each
task in a specification. Each time the Service is invoked for a workitem, a choice
is made from the repertoire based on the contextual data values within the
workitem, using an extensible set of rules to determine the most appropriate
substitution.

The workitem is checked out of the workflow enactment engine, the cor-
responding data inputs of the original workitem are mapped to the inputs of
the worklet, and the selected worklet is launched as a separate case. When the
worklet has completed, its output data is mapped back to the original workitem,
which is then checked back into the engine, allowing the original process to con-
tinue.

An extensive discussion of the implementation of the Worklet Selection Ser-
vice may be found in [14].

The Exception Service: Virtually every process instance (even if it follows a
highly structured process definition) will experience some kind of exception (or
deviation) during its execution. It may be that these events are known to occur
in a small number of cases, but not often enough to warrant their inclusion in
the process model; or they may be things that were never expected to occur (or
may be never even imagined could occur). In any case, when they do happen,
since they are not included in the process model, they must be handled ‘off-
line’ before processing can continue (and the way they are handled is rarely
recorded). In some cases, the process model will be later modified to capture this
unforeseen event, which involves an, often large, organisational cost (downtime,
remodelling, testing and so on), or in certain circumstances the entire process
must be aborted.

Alternately, an attempt might be made to include every possible twist and
turn into the process model so that when such events occur, there is a branch in



the process to take care of it. This approach often leads to very complex models
where much of the original business logic is obscured, and doesn’t avoid the same
problems when the next unexpected exception occurs.

The Exception Service addresses these problems by allowing designers to de-
fine exception handling processes (called exlets) for parent workflow instances
to be invoked when certain events occur and thereby allow the process to con-
tinue unhindered. Additionally, exlets for unexpected exceptions may be added
at runtime, and such handling methods automatically become an implicit part
of the process specification for all current and future instances of the process,
which provides for continuous evolution of the process while avoiding the need
to modify the original process definition.

The Exception Service uses the same repertoire and dynamic rules approach
as the Selection Service. There are, however, two fundamental differences be-
tween the two sub-services. First, where the Selection Service selects a worklet
as the result of satisfying a rule in a rule set, the result of an Exception Service
selection is an exlet (which may contain a worklet to be executed as a compen-
sation process — see Section 5). Second, while the Selection Service is invoked
for certain nominated tasks in a YAWL process, the Exception Service, when
enabled, is invoked for every case and task executed by the YAWL engine, and
will detect and handle up to ten different kinds of process exceptions (these ex-
ception types are described in Section 5). As part of the exlet, a process designer
may choose from various actions (such as cancelling, suspending, completing,
failing and restarting) and apply them at a workitem, case and/or specification
level. And, since the exlets can include compensatory worklets, the original par-
ent process model only needs to reveal the actual business logic for the process,
while the repertoire of exlets grows as new exceptions arise or different ways of
handling exceptions are formulated. Table 1 summarises the differences between
the two sub-services (the interfaces are described in the next section).

Table 1. Summary of Service Actions

Cause |Interface Selection Action Returned
Workitem Case & item
Enabled B context data Worklet
Internal Exception type
Exception X and Case & item Exlet
context data
External Exception type
Exception - and Case & item Exlet
context data




An extensible repertoire of exlets is maintained by the service for each work-
flow specification, and may be applied at the workitem, case or specification
level. Each time the service is notified of an event or checkpoint, the service first
determines whether an exception has in fact occurred, and if so makes a choice
from the repertoire based on the type of exception and the data attributes and
values associated with the workitem/case, using a set of rules to select the most
appropriate exlet to execute (see Section 6).

If the exlet contains a compensation action (i.e. a worklet to executed as a
compensatory process) it is run as a separate case in the enactment engine, so
that from an engine perspective, the worklet and its ‘parent’ (i.e. the process that
invoked the exception) are two distinct, unrelated cases. The service tracks the
relationships, data mappings and synchronisations between cases, and maintains
a process log that may be combined with the engine’s process logs via case
identifiers to provide a complete operational history of each process. Figure 1
shows the relationship between a ‘parent’ process, an exlet repertoire and a
compensatory worklet, using the Organise Concert example.

compensation worklet

cancel stadium  book theatre advise fans

ChangeToMidVenue

IltemPreConstraint
exlets

RN .~ .~" ‘parent process

book stadium sell tickets do show

OrganiseConcert

Fig. 1. Process — Exlet — Worklet Hierarchy

Any number of exlets can form the repertoire of an individual task or case.
An exlet may be a member of one or more repertoires — that is, it may be re-used
for several distinct tasks or cases within and across process specifications.



The repertoire for a task or case can be added to at any time, as can the
rules base used, including while the parent process is executing. Thus the service
provides for dynamic ad-hoc change, exception handling and process evolution,
without having to resort to off-system intervention and/or system downtime,
and avoiding the need to modify the original process specification.

The Selection and Exception sub-services can be used in combination within
particular case instances to achieve dynamic flexibility and exception handling
simultaneously. The Worklet Service is extremely adaptable and multi-faceted,
and allows a designer to provide tailor-made solutions to runtime process excep-
tions.

4 Service Architecture

The Worklet Service has been implemented as a YAWL Custom Service [17, 18].
The YAWL environment was chosen as the implementation platform since it pro-
vides a very powerful and expressive workflow language based on the workflow
patterns identified in [23], together with a formal semantics. It also provides
a workflow enactment engine, and an editor for process model creation, that
support the control flow, data and (basic) resource perspectives. The YAWL en-
vironment is open-source and offers a service-oriented architecture, allowing the
service to be implemented completely independent to the core engine. Thus the
deployment of the Worklet Service is in no way limited to the YAWL environ-
ment, but may be ported to other environments (for example, BPEL engines) by
making the necessary links in the service interface. As such, this implementation
may also be seen as a case study in service-oriented computing whereby dy-
namic exception handling for workflows, orthogonal to the underlying workflow
language, is provided.

Figure 2 shows the external architecture of the Worklet Service. The YAWL
system allows workflow instances and external services to interact with each
other in order to delegate work, to signal the creation and completion of process
instances and workitems, or to notify of certain events or changes in the status
of existing workitems and cases. These services interact with the YAWL engine
across a number of interfaces designed for particular purposes, supporting the
ability to send and receive both messages and XML data to and from the engine.
Three interfaces are used by the Worklet Service (see Figure 2):

— Interface A provides endpoints for process definition, administration and
monitoring [18] — the service uses Interface A to upload worklet specifications
to the engine;

— Interface B provides endpoints for client and invoked applications and work-
flow interoperability [18] — used by the service for connecting to the engine,
to start and cancel case instances, and to check workitems in and out of the
engine after interrogating their associated data; and

— Interface X (‘X for ‘eXception’), which has been designed to allow the en-
gine to notify custom services of certain events and checkpoints during the



execution of each process instance where process exceptions either may have
occurred or should be tested for. Thus Interface X provides the service with
the necessary mechanisms to dynamically capture and handle process excep-
tions.

In fact, Interface X was created to enable the Exception sub-service to be
built. However, one of the overriding design objectives was that the interface
should be structured for generic application — that is, it can be applied by a
variety of services that wish to make use of checkpoint and/or event notifications
during process executions.

Since it only makes sense to have one custom service acting as an exception
handling service at any one time, services that implement Interface X have two
distinct states — enabled and disabled. When enabled, the engine generates no-
tifications for every process instance it executes — that is, the engine makes no
decisions about whether a particular process should generate the notifications or
not. Thus it is the responsibility of the designer of the custom service to deter-
mine how best to deal with the notifications. When the service is disabled, the
engine generates no notifications across the interface. Enabling and disabling an

Interface X custom service is achieved via parameter setting in a configuration
file.

YAWL
EE— Editor
B =
Worklet Specs T
YAWL @ C E Service §
engine v
e N

——— Editor

|

YAWL
worklist J

)

user

Fig. 2. External Architecture of the Worklet Service

The entities ‘Worklet specs’, ‘Rules’ and ‘Logs’ in Figure 2 comprise the
worklet repository. The service uses the repository to store rule sets, worklet
specifications for uploading to the engine, and generated process and audit logs.
The YAWL editor is used to create new worklet specifications, and may be in-
voked from the Rules Editor, which is used to create new or augment existing



rule sets, making use of certain selection logs to do so, and may communicate
with the Worklet Service via a JSP/Servlet interface to override worklet selec-
tions following rule set additions (see Section 6). The service also provides servlet
pages that allow users to directly communicate with the service to raise external
exceptions and carry out administration tasks.

5 Exception Types and Handling Primitives

This section introduces the ten different types of process exception that have
been identified, seven of which are supported by the current version of the
Worklet Service. It then describes the handling primitives that may be used
to form an exception handling process (i.e. an exlet) for the notified exception
event. The exception types and primitives described here are based on and ex-
tend from those identified by Russell et. al., who define a rigorous classification
framework for workflow exception handling independent of specific modelling
approaches or technologies [16].

The Exception sub-service maintains a set of rules (described in detail in
Section 6) that is used to determine which exlet, if any, to invoke. If there are no
rules defined for a certain exception type for a specification, the exception event
is simply ignored by the service. Thus rules are needed only for those exception
events that are desired to be handled for a particular task and/or specification.

5.1 Exception Types

Constraint Types Constraints are rules that are applied to a workitem or case
immediately before and after execution of that workitem or case. Thus, there
are four types of constraint exception:

— ClasePreConstraint - case-level pre-constraint rules are checked when each
case instance begins execution;

— ItemPreConstraint - item-level pre-constraint rules are checked when each
workitem in a case becomes enabled (i.e. ready to be checked out);

— ItemPostConstraint - item-level post-constraint rules are checked when each
workitem moves to a completed status; and

— ClasePostConstraint - case-level post constraint rules are checked when a
case completes.

The service receives notification from the YAWL Engine when each of these
constraint events occur within each case, then checks the rule set associated with
the case to determine, firstly, if there are any rules of that exception type defined
for the case, and if so, if any of the rules evaluate to true using the contextual
data of the case or workitem. If the rule set finds a rule that evaluates to true
for the exception type and data, an associated exlet is selected and invoked.



TimeQOut A timeout event occurs when a workitem is linked to the YAWL Time
Service and the deadline set for that workitem is reached. In this case, the
YAWL Engine notifies the Worklet Service of the timeout event, and passes to
the service a reference to the workitem and each of the other workitems that
were running in parallel with it. Therefore, timeout rules may be defined for
each of the workitems affected by the timeout (including the actual timed out
workitem itself).

Eaxternally Triggered Types Externally triggered exceptions occur, not through
the case’s data parameters, but because of an occurrence outside of the process
instance that has an effect on the continuing execution of the process. Thus,
these events are triggered by a user; depending on the actual event and the
context of the case or workitem, a particular exlet will be invoked. There are
two types of external exceptions, CaseExternalTrigger (for case-level events) and
ItemExternalTrigger (for item-level events).

These seven types of exceptions are supported by our current implementation.
Three more exception types have been identified but are not yet supported:

ItemAbort An ItemAbort event occurs when a workitem being handled by an
external program (as opposed to a human user) reports that the program has
aborted before completion.

ResourceUnavailable This event occurs when an attempt has been made to al-
locate a workitem to a resource and the resource reports that it is unable to
accept the allocation or the allocation cannot proceed.

Constraint Violation This event occurs when a data constraint has been violated
for a workitem during its execution (as opposed to pre- or post- execution).

5.2 Exception Handling Primitives

When any of the above exception events occur, an appropriate exlet, if defined,
will be invoked. Each exlet may contain any number of steps, or primitives, and
is defined graphically using the Worklet Rules Editor.

An example of a definition of an exlet in the Rules Editor can be seen in
Figure 3. On the left of the graphical editor is the set of primitives that may be
used. The available primitives (reading left-to-right, top-to-bottom) are:

— Remove Workltem: removes (or cancels) the workitem; execution ends, and
the workitem is marked with a status of cancelled. No further execution
occurs on the process path that contains the workitem.

— Remove Case: removes the case. Case execution ends.

— Remove All Cases: removes all case instances for the specification in which
the workitem is defined, or of which the case is an instance.



‘;i Worklet Rules Editor: =<New Conclusion> g@

>—M——D—@®

| = ==]=]

= (3] ||=] (=]

- |2 [~ |=] ]

Save | Align | LClear | Cancel |

|

Fig. 3. Example Handler Process in the Rules Editor

— Suspend WorklItem: suspends (or pauses) execution of a workitem, until it is
continued, restarted, cancelled, failed or completed, or the case that contains
the workitem is cancelled or completed.

— Suspend Case: suspends all ‘live’ workitems in the current case instance (a
live workitem has a status of fired, enabled or executing), effectively sus-
pending execution of the entire case.

— Suspend All Cases: suspends all ‘live’ workitems in all of the currently execut-
ing instances of the specification in which the workitem is defined, effectively
suspending all running cases of the specification.

— Continue WorkItem: un-suspends (or continues) execution of the previously
suspended workitem.

— Continue Case: un-suspends execution of all previously suspended workitems
for the case, effectively continuing case execution.

— Continue All Cases: un-suspends execution of all workitems previously sus-
pended for all cases of the specification in which the workitem is defined or of
which the case is an instance, effectively continuing all previously suspended
cases of the specification.

— Restart WorkItem: rewinds workitem execution back to its start. Resets the
workitem’s data values to those it had when it began execution.

— Force Complete WorklItem: completes a ‘live’ workitem. Execution of the
workitem ends, and the workitem is marked with a status of ForcedComplete,
which is regarded as a successful completion, rather than a cancellation or
failure. Execution proceeds to the next workitem on the process path.

— Force Fail Workltem: fails a ‘live’ workitem. Execution of the workitem ends,
and the workitem is marked with a status of Failed, which is regarded as an
unsuccessful completion, but not as a cancellation — execution proceeds to
the next workitem on the process path.

— Compensate: runs a compensatory process (i.e. a worklet). Depending on
previous primitives, the worklet may execute simultaneously to the parent
case, or execute while the parent is suspended.



Worklets can in turn invoke child worklets to any depth. The primitives
‘Suspend All Cases’, ‘Continue All Cases’ and ‘Remove All Cases’ may be edited
when being added to an exlet definition in the Rules Editor so that their action
is restricted to ancestor cases only. Ancestor cases are those in a hierarchy of
worklets back to the original parent case — that is, where a process invokes an
exlet which invokes a compensatory worklet which in turn invokes an exlet, and
so on. Also, the ‘continue’ primitives are applied only to those workitems and
cases that were previously suspended by the same exlet.

A compensation primitive may contain an array of one or more worklets —
when multiple worklets are defined for a compensation primitive via the Rules
Editor, they are launched concurrently as a composite compensatory action when
the exlet is executed. Execution moves to the next primitive in the exlet when
all worklets have completed.

In the same manner as the Selection sub-service, the Exception sub-service
also supports data mapping from a case to a compensatory worklet and back
again. For example, if a certain variable has a value that prevents a case instance
from continuing, a worklet can be run as a compensation, during which a new
value can be assigned to the variable and that new value mapped back to the
parent case, so that it may continue execution.

Referring back to Figure 1, the centre tier shows the exlets defined for Item-
PreConstraint violations. As mentioned above, there may actually be up to
eleven different members of this tier. Also, each exlet may refer to a differ-
ent set of compensatory processes, or worklets, and so at any point there may
be several worklets operating on the upper tier.

Rollback: A further primitive identified by Russell et. al. is ‘Rollback’ [16], where
the execution of the process may be unwound back to a specified point and all
changes to the case’s data from that point forward are undone. The term ‘roll-
back’ is taken from database processing, where it serves the essential purpose of
reverting the database to a previous stable state if, for some reason, a problem
occurs during an update. Thus, rollback certainly applies in terms of workflow
systems at the transactional level. However, for this implementation we con-
sidered that a rollback action serves no real purpose at the control-flow level
and so has not been included. For tasks that have already completed, erasing
the outcomes of those tasks as if they had never been carried out is counter-
productive; better to execute a compensation exlet that corrects the problem so
that both the original and corrective actions are maintained — that is, a redo is
more appropriate than an undo at the control-flow level. In so doing, a complete
picture of the entire process is available. There is enough flexibility inherit in
the primitives above to accommodate any kind of compensatory action. For ex-
ample, if a loan is approved before it becomes evident that a error of judgement
has been made by the approving officer, it is better to run some compensation
to redo the approval process again (so that a record of both approval processes
remains), rather than rollback the approval process, and thus lose the details of
the original approval.



6 Contextual Selection of Exlets

The runtime selection of an appropriate exlet relies on the type of exception
that has occurred and the relevant context of each case instance, derived from
case and historical data. The selection process is achieved through the use of
modified Ripple Down Rules (RDR), which comprise a hierarchical set of rules
with associated exceptions, first devised by Compton and Jansen [24]. The fun-
damental feature of RDR is that it avoids the difficulties inherent in attempting
to compile, a-priori, a systematic understanding, organisation and assembly of
all knowledge in a particular domain. Instead, it allows for general rules to be
defined first with refinements added later as the need arises [25].

Any specification may have an associated rule set, which consists of a collec-
tion of RDR trees stored as XML data. Each RDR tree is a collection of simple
rules of the form “if condition then conclusion”, conceptually arranged in a bi-
nary tree structure (see Fig. 4). When a rule tree is queried, it is traversed from
the root node of the tree along the branches, each node having its condition eval-
uated along the way. If a node’s condition evaluates to True, and it has a true
child (that is, it has a child node connected on a True branch), then that child
node’s condition is also evaluated. If a node’s condition evaluates to False, and
there is a false child, then that child node’s condition is evaluated [26]. When a
terminal node is reached, if its condition evaluates to True then that conclusion
is returned as the result of the tree traversal; if it evaluates to False, then the
last node in the traversal that evaluated to True is returned as the result.

Effectively, each rule node on the true branch of its parent node is an ex-
ception rule of the more general one of its parent (that is, it is a refinement of
the parent rule), while each rule node on the false branch of its parent node
is an “else” rule to its parent (or an alternate to the parent rule). This tree
traversal provides implied locality - a rule on an exception branch is tested for
applicability only if its parent (next-general) rule is also applicable.

The hierarchy of a worklet rule set is (from the bottom up):

— Rule Node: contains the details (condition, conclusion, id, parent and so
on) of one discrete ripple-down rule.

— Rule Tree: consists of a number of rule nodes conceptually linked in a
binary tree structure.

— Tree Set: a set of one or more rule trees. Each tree set is specific to a
particular rule type (Timeout, ExternalTrigger, etc.). The tree set of a case-
level exception rule type will contain exactly one tree. The tree set of an
item-level rule type will contain one rule tree for each task of the specification
that has rules defined for it (not all tasks in the specification need to have a
rule tree defined).

— Rule Set: a set of one or more tree sets representing the entire set of rules
defined for a specification. Each rule set is specific to a particular specifica-
tion. A rule set will contain one tree set for each rule type for which rules
have been defined.



n __4_ condition

true 4
default - LemmTTs -
""""" conclusion
-
Condition not satisfied - o
TicketsSold < (Seating * 0.75) Condition satisfied

suspend workitem
run ChangeToMidVenue
continue workitem

Equipmentinstalled = False TicketsSold < (Seating * 0.5)
suspend case suspend workitem

run BescheduIeConcert run ChangeToSmallVenue
continue case continue workitem

TicketsSold < (Seating * 0.2)

suspend case
run CancelShow
remove case

Fig. 4. Example rule tree (for OrganiseConcert ItemPreConstraint)

Each specification has a unique rule set (if any), which contains between one
and eleven tree sets (or sets of rule trees), one for selection rules (used by the
Selection sub-service) and one for each of the ten exception types. Three of those
ten relate to case-level exceptions (i.e. CasePreConstraint, CasePostConstraint
and CaseExternalTrigger) and so each of these will have at most one rule tree
in the tree set. The other eight tree sets relate to workitem-level events (seven
exception types plus selection), and so may have one rule tree for each task in
the specification - that is, the tree sets for these eight rule types may consist of
a number of rule trees.

It is not necessary to define rules for all eleven types for each specification,
only for those types that are required to be handled; the occurrence any exception
types that aren’t defined in the rule set file are simply ignored. So, for example,
if an analyst is interested only in capturing pre- and post- constraints at the
workitem level, then only the ItemPreConstraint and ItemPostConstraint tree
sets need to be defined (i.e. rules defined within those tree sets). Of course, rules
for other event types can be added later if required.

Figure 4) shows the ItemPreConstraint rule tree for the Organise Concert
example, which represents the rule tree for the exlets shown on the centre tier
of Figure 1. The condition part is the rule that is evaluated, and the conclusion
is the exlet selected by that rule if the condition evaluates to true.

The third task in the OrganiseConcert specification, Do Show, has a pre-item
constraint rule tree (refer Fig. 1), and so when a workitem of the task becomes



enabled (and thus the engine notifies the service), the rule tree is queried. The
Rules Editor provides a textual representation of the relevant rule tree (called
the effective composite rule) as can be seen in Figure 5.

Effective Composite Rule

if TicketzSold < [Seating * 0.75] then suspend workitem; run worklet ChangeT oMidyenue; continue workitem
except if TicketsSold < [Seating * 0.5] then suzpend warkitem; run warklet ChangeT oSmallenue; continue warkitem
except if TicketsSald < [Seating ™ 0.2] then suspend caze; run waorklet CancelShow; remove case

Fig. 5. Effective Composite Rule for Do Show’s Pre-Item Constraint Tree

When Do Show is enabled and the value of the case data attribute ‘Tick-
etsSold’ is less than 75% of the attribute ‘Seating’ (i.e. the seating capacity of
the venue), an exlet is run that suspends the workitem, runs the compensatory
worklet ChangeToMidVenue, and then, once the worklet has completed, contin-
ues (or unsuspend) the workitem. That is, this pre-constraint exception allows
organisers to change the venue of the concert to a mid-sized stadium when there
are insufficient tickets sold to fill the original venue. Following the structure of
the ripple-down rule, if the tickets sold are also less than 50% of the capacity,
then we want instead to suspend the workitem, run the ChangeToSmallVenue
worklet, and then unsuspend the workitem. Finally, if less than 20% of the tick-
ets have been sold, we want to suspend the entire case, run a worklet to perform
the tasks required to cancel the show, and then remove (i.e. cancel) the case.

The effects of a scenario where 60% of tickets have been sold can be seen in
the Available Work screen of the YAWL worklist handler (Figure 6). The Do
Show workitem is marked as ‘Suspended’ and thus is unable to be selected for
execution, while the ChangeToMidVenue worklet has been launched and its first
workitem, Cancel Stadium, is enabled and may be executed. The ChangeToMid-
Venue worklet is being treated by the YAWL Engine as just another case, and
so the service receives notifications from the engine for pre-case and pre-item
constraint events for the worklet also — thus the worklet may also respond to its
own exception notifications.

When the ChangeToMidVenue worklet has completed, the engine will no-
tify the service of the case completion, at which time the service completes the
third and final part of the exlet, that is continuing (unsuspending) the Do Show
workitem so that the parent case can continue. Back at the Available Work
screen, the Do Show workitem will now be shown as enabled and thus will be
able to be checked out, and will contain the data values entered in the worklet’s
workitems mapped back to the Do Show workitem — that is, the changes to
venue and capacity data values captured by the worklet are now found in Do
Show’s input data.

As mentioned previously, the service also allows for external events to be
handled on-system by providing a means for exceptions to be raised by users
external to the process itself. The service provides a set of servlet pages that



O AN INO

wrorkflow worklet Admin
Specifications Tasks
Welcome to YAWL admin

| AWML Home | Administrate |

Available Work ‘ Checked Out Work Logout |

Available Work Items

D ‘ Task Description ‘ Status ‘ Enablarment Time

7:DoShow_4 DoShow Suspended MNow:13 11:00:32

[ 5] 8:CancelStadium 3 CancelStadium Enahled MNow:13 11:00:32
Check Qut ] [ Fieset l [ Riaise Exception

Fig.6. Available Work Screen after ItemPreConstraint exception (Organise
Concert Example)

can be invoked directly by the user via add-ins to the YAWL worklist handler,
which are visible only when the service is enabled. One of the servlet pages
allows a user to raise an exception directly with the service (i.e. bypassing the
engine). When invoked, the Exception Service retrieves from the rule set for
the selected case the list of existing external exception triggers (if any) for the
case’s specification. See Figure 7 for the Raise Case-Level Fxception page listing
the case-level external triggers defined for the Organise Concert specification.
Note that these triggers describe events that may be considered either adverse
(e.g. Band Broken Up) or beneficial (e.g. Ticket Sales Better Than Expected)
to the current case, or may simply represent new or additional tasks that need
to be carried out for the particular case instance (e.g. Band Requests Backstage
Refreshments). In any case, the methods for handling these kinds of exceptions
become an implicit part of the process for all future instantiations, rather than
being lost.

This list contains all of the external triggers either conceived when the spec-
ification was first designed or added later as new kinds of exceptional events
occurred and were added to the rule set for the specification. When a trigger
is selected by the user, the conclusion for that trigger’s rule is invoked by the
service as an exlet for the current case.

Item-level external exceptions can be raised in a similar way. External excep-
tions can be raised at any time during the execution of a case - the way they are
handled may depend on how far the process has progressed (via the definition
of appropriate rule tree or trees which consider, as part of the rule conditionals,
the status of the case and/or its workitems).

Notice that at the bottom of the list (Figure 7) the option to add a New
External Exception is provided. If an unexpected external exception arises that
none of the available triggers represent, a user can use that option to notify an
administrator of the new exception, its context and possible ways to handle it.
The administrator can then create a new exlet in the Rules Editor and, from the
Editor, connect directly to the service to launch the new exlet for the parent case.



(o RN Ko

Worklet Service The Power of Expressiveness

FAWL Home Administrate Workfiow available Work Ghacket Gl Logout
Specifications Waork

Raise Case-Level Exception

Case ID Specification ID

7 OrganiseConcert
Select the type of exception that has occurred:

O Support Act Breakup

O Singer Tired and Emaotional

© Guitarist Refused Visa

© Band Broken Up

O Ticket Sales Better than Expected

© Band Requests Backstage Refreshments

O Mew Extermnal Exception. ..

Fig. 7. Raise Case-Level Exception Screen (Organise Concert example)

New exlets for unexpected internal exceptions are raised and launched using the
same approach as that described for the Selection sub-service, as detailed in
[14].

7 Related Work

Since the mid-nineties much research has been carried out on issues related
to exception handling in workflow management systems. While it is not the
intention of this paper to provide a complete overview of the work done in this
area, reference is made here to a number of quite different approaches; see [16]
for a more systematic overview, where different tools are evaluated with respect
to their exception handing capabilities using a patterns-based approach.
Generally, commercial workflow management systems provide only basic sup-
port for handling exceptions [9, 27] (besides modelling them directly in the main
‘business logic’), and each deals with them in a proprietary manner; they typ-
ically require the model to be fully defined before it can be instantiated, and
changes must be incorporated by modifying the model statically. Staffware pro-
vides constructs called event nodes, from which a separate pre-defined exception
handling path or sequence can be activated when an exception occurs. It may
also suspend a process either indefinitely or wait until a timeout occurs. If a work
item cannot be processed it is forwarded to a ‘default exception queue’ where it
may be manually purged or re-submitted. COSA provides for the definition of
external ‘triggers’ or events that may be used to start a sub-process. All events
and sub-processes must be defined at design time. MQ Workflow supports time-



outs and, when they occur, will branch to a pre-defined exception path and/or
send a message to an administrator. SAP R/3 provides for pre-defined branches
which, when an exception occurs, allows an administrator to manually choose
one of a set of possible branches.

Among the non-commercial systems, the OPERA prototype [9] incorporates
language constructs for exception handling and allows for exceptions to be han-
dled at the task level, or propagated up various ancestor levels throughout the
running instance. It also removes the need to define the exception handler a-
priori, although the types of exceptions handled are transactional rather than
control flow oriented. The eFlow system [28] uses rules to define exceptions, al-
though they cannot be defined separately to the standard model. ADEPT [29]
supports modification of a process during execution (i.e. add, delete and change
the sequence of tasks) both at the type (dynamic evolution) and instance levels
(ad-hoc changes). Such changes are made to a traditional monolithic model and
must be achieved via manual intervention. The ADOME system [30] provides
templates that can be used to build a workflow model, and provides some sup-
port for (manual) dynamic change. A catalog of ‘skeleton’ patterns that can be
instantiated or specialised at design time is supported by the WERDE system
[5]. Again, there is no scope for specialisation changes to be made at runtime.
AgentWork [31] provides the ability to modify process instances by dropping
and adding individual tasks based on events and ECA rules. However, the rules
do not offer the flexibility or extensibility of Ripple Down Rules, and changes
are limited to individual tasks, rather than the task-process-specification hierar-
chy supported by the Worklet Service. Also, the possibility exists for conflicting
rules to generate incompatible actions, which requires manual intervention and
resolution.

It should be noted that only a small number of academic prototypes have had
any impact on the frameworks offered by commercial systems [32]. Nevertheless,
there are some interesting commercial products that offer innovative features
with respect to handling exceptions, for example FLOWer supports the concept
of case-handling; the process model only describes the preferred way of doing
things and a variety of mechanisms are offered to allow users to deviate in a
controlled manner [1].

The implementation discussed in this paper differs considerably from the
above approaches. Exlets, that may include worklets as compensatory processes,
dynamically linked to extensible Ripple Down Rules, provide an novel alterna-
tive method for the provision of dynamic flexibility and exception handling in
workflows.

8 Conclusion and Future Work

Workflow management systems impose a certain rigidity on process definition
and enactment because they generally use frameworks based on assembly line
metaphors rather than on ways work is actually planned and carried out. An
analysis of Activity Theory provided principles of work practices that were used



as a template on which a workflow service has been built that better supports
flexibility and dynamic evolution through innovative exception handling tech-
niques. By capturing contextual data, a repertoire of actions is constructed that
allow for contextual choices to be made from the repertoire at runtime to effi-
ciently carry out work tasks. These actions, whether exlets or worklets, directly
provide for process evolution, flexibility and dynamic exception handling, and
mirror accepted work practices.

This implementation presents several key benefits, including;:

— A process modeller can describe the standard activities and actions for a
workflow process, and any deviations, using the same methodology;

— It allows re-use of existing process components and aids in the development
of fault tolerant workflows using pre-existing building blocks [7];

— Its modularity simplifies the logic and verification of the standard model,
since individual worklets are less complex to build and therefore easier to
verify than monolithic models;

— It provides for a variety of workflow views of differing granularity, which
offers ease of comprehensibility for all stakeholders;

— It allows for gradual and ongoing evolution of the model, so that global
modification each time a business practice changes or a deviation occurs is
unnecessary; and

— In the occurrence of an unexpected event, the process modeller needs sim-
ply to choose an existing exlet or build a new one for that event, which
can be automatically added to the repertoire for current and future use as
necessary, thus avoiding manifold complexities including downtime, model
restructuring, versioning problems and so on.

This implementation uses the open-source, service-oriented architecture of
YAWL to develop a service for dynamic exception handling completely indepen-
dent to the core engine. Thus, the implementation may be viewed as a successful
case study in service-oriented computing. As such, the approach and resultant
software can also be used in the context of other process engines (for example
BPEL based systems, classical workflow systems, and the Windows Workflow
Foundation). One of the more interesting things to be incorporated in future
work is the application of process mining techniques to the various logs collected
by the Worklet service; a better understanding of when and why people tend
to “deviate” from a work plan is essential for providing better tool support.
Archival and resource data will also be useful for refining the contextual choices
defined in the rule set.

All system files, source code and documentation for YAWL and the worklet
service, including the examples discussed in this paper, may be downloaded via
www.yawl-system. com.



References

1.

10.

11.

12.

13.

14.

15.

W.M.P. van der Aalst, Mathias Weske, and Dolf Griinbauer. Case handling: A new
paradigm for business process support. Data & Knowledge Engineering, 53(2):129—
162, 2005.

Gregor Joeris. Defining flexible workflow execution behaviors. In Peter Dadam and
Manfred Reichert, editors, Enterprise-wide and Cross-enterprise Workflow Man-
agement: Concepts, Systems, Applications, volume 24 of CEUR Workshop Proceed-
ings, pages 49-55, Paderborn, Germany, October 1999.

Alex Borgida and Takahiro Murata. Tolerating exceptions in workflows: a uni-
fied framework for data and processes. In Proceedings of the International Joint
Conference on Work Activities, Coordination and Collaboration (WACC’99), pages
59-68, San Francisco, CA, February 1999. ACM Press.

S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems: A survey. Data and Knowledge Engineering, 50(1):9-34, 2004.
Fabio Casati. A discussion on approaches to handling exceptions in workflows. In
CSCW Workshop on Adaptive Workflow Systems, Seattle, USA, November 1998.
C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10-21,
Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

Claus Hagen and Gustavo Alonso. Flexible exception handling in process support
systems. Technical report no. 290, ETH Zurich, 1998.

Fabio Casati, MariaGrazia Fugini, and Isabelle Mirbel. An environment for de-
signing exceptions in workflows. Information Systems, 24(3):255-273, 1999.
Claus Hagen and Gustavo Alonso. Exception handling in workflow management
systems. IEEE Transactions on Software Engineering, 26(10):943-958, October
2000.

Mark S. Ackerman and Christine Halverson. Considering an organization’s mem-
ory. In Proceedings of the ACM 1998 Conference on Computer Supported Cooper-
ative Work, pages 39-48. ACM Press, 1998.

Peter A. K. Larkin and Edward Gould. Activity theory applied to the corpo-
rate memory loss problem. In L. Svennson, U. Snis, C. Sorensen, H. Fagerlind,
T. Lindroth, M. Magnusson, and C. Ostlund, editors, Proceedings of IRIS 28 Lab-
oratorium for Interaction Technology, University of Trollhattan Uddevalla, 2000.
Jakob E. Bardram. I love the system - I just don’t use it! In Proceedings of the
1997 International Conference on Supporting Group Work (GROUP’97), Phoenix,
Arizona, 1997.

I. Bider. Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. In J. Castro and E. Teniente, editors, Proceedings of the
CAiISE’05 Workshops, volume 1, pages 7-18, Porto, Portugal, 2005. FEUP Edicoes.
Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van
der Aalst. Worklets: A service-oriented implementation of dynamic flexibility in
workflows. In R. Meersman and Z. Tari et. al., editors, Proceedings of the 14th In-
ternational Conference on Cooperative Information Systems (CooplS’06), volume
LNCS 4275, pages 291-308, Montpellier, France, November 2006. Springer-Verlag.
Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van der
Aalst. Facilitating flexibility and dynamic exception handling in workflows through
worklets. In Orlando Bello, Johann Eder, Oscar Pastor, and Joao Falcao e Cunha,
editors, Proceedings of the CAiSE’05 Forum, pages 45-50, Porto, Portugal, June
2005. FEUP Edicoes.



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Workflow exception
patterns. In Eric Dubois and Klaus Pohl, editors, Proceedings of the 18th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE 2006),
pages 288-302, Luxembourg, June 2006. Springer.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245-275, 2005.

W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and implementation of the YAWL system. In A. Persson and J. Stirna, editors,
Proceedings of The 16th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 04), volume 3084 of LNCS, pages 142159, Riga, Latvia,
June 2004. Springer Verlag.

Michael Adams, David Edmond, and Arthur H.M. ter Hofstede. The application of
activity theory to dynamic workflow adaptation issues. In Proceedings of the 2003
Pacific Asia Conference on Information Systems (PACIS 2003), pages 1836-1852,
Adelaide, Australia, July 2003.

Yrjo Engestrom, Reijo Miettinen, and Raija-Leena Punamaki, editors. Perspectives
on Activity Theory. Cambridge University Press, 1999.

Y. Engestrom. Learning by Fzpanding: An Activity- Theoretical Approach to De-
velopmental Research. Orienta-Konsultit, Helsinki, 1987.

Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, Cambridge, Massachusetts, 1996.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5-51, July 2003.

P. Compton and B. Jansen. Knowledge in context: A strategy for expert system
maintenance. In J.Siekmann, editor, Proceedings of the 2nd Australian Joint Artifi-
cial Intelligence Conference, volume 406 of Lecture Notes in Artificial Intelligence,
pages 292-306, Adelaide, Australia, November 1988. Springer-Verlag.

Tobias Scheffer. Algebraic foundation and improved methods of induction of ripple
down rules. In Proceedings of the Pacific Rim Workshop on Knowledge Acquisition,
pages 279-292, Sydney, Australia, 1996.

B. Drake and G. Beydoun. Predicate logic-based incremental knowledge acqui-
sition. In P. Compton, A. Hoffmann, H. Motoda, and T. Yamaguchi, editors,
Proceedings of the sizth Pacific International Knowledge Acquisition Workshop,
pages 71-88, Sydney, December 2000.

Fabio Casati and Giuseppe Pozzi. Modelling exceptional behaviours in commer-
cial workflow management systems. In 1999 IFCIS International Conference on
Cooperative Information Systems, pages 127-138, Edinburgh, Scotland, 1999.
Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. Adaptive and dynamic composition in eFlow. In 12th International Confer-
ence, CAISE 2000, pages 13-31, Stockholm, Sweden, 2000.

Clemens Hensinger, Manfred Reichert, Thomas Bauer, Thomas Strzeletz, and Pe-
ter Dadam. ADEPT yorkfiow - advanced workflow technology for the efficient sup-
port of adaptive, enterprise-wide processes. In Conference on Extending Database
Technology, pages 29-30, Konstanz, Germany, March 2000.

Dickson Chiu, Qing Li, and Kamalakar Karlapalem. A logical framework for ex-
ception handling in ADOME workflow management system. In 12th International
Conference CAiSE 2000, pages 110-125, Stockholm, Sweden, 2000.

Robert Muller, Ulrike Greiner, and Erhard Rahm. AgentWork: a workflow sys-
tem supporting rule-based workflow adaptation. Data ¢ Knowledge Engineering,
51(2):223-256, November 2004.



32. Michael zur Muehlen. Workflow-based Process Controlling. Foundation, Design,
and Implementation of Workflow-driven Process Information Systems, volume 6 of
Advances in Information Systems and Management Science. Logos, Berlin, 2004.



