
Reduction Rules for YAWL Workflow Nets with
Cancellation Regions and OR-joins

M.T. Wynn1, H.M.W. Verbeek2, W.M.P. van der Aalst1,2, A.H.M. ter Hofstede1 and
D. Edmond1

School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia.
{m.wynn,d.edmond,a.terhofstede}@qut.edu.au

Department of Technology Management, Eindhoven University of Technology
PO Box 513, NL-5600 MB Eindhoven, The Netherlands.

{h.m.w.verbeek,w.m.p.v.d.aalst}@tm.tue.nl

Abstract. A reduction rule can transform a large net into a smaller and simple
net while preserving certain interesting properties and it is usually applied be-
fore verification to reduce the complexity and to prevent state space explosion.
Reset nets have been proposed to formally describe workflows with cancellation
behaviour. In our previous work, we have presented a set of reduction rules for
Reset Workflow Net (RWF-net), which is a subclass of reset nets. In this paper,
we will present a set of reduction rules for YAWL nets with cancellation regions
and OR-joins. The reduction rules for RWF-nets combined with the formal map-
pings from YAWL nets provide us with the means to define a set of reduction
rules for YAWL nets. We will also demonstrate how these reduction rules can be
used for efficient verification of YAWL nets these features.
Keywords: Petri nets with reset arcs, reset nets, reduction rules, workflow veri-
fication, Yet Another Workflow Language, soundness property, cancellation re-
gions, OR-joins.

1 Introduction

Verification of workflows enables the detection of certain desirable properties before
actual deployment. If verification is not performed at design time, it is possible for
workflows to be running for a long time before errors are discovered. This may, on the
one hand, be time consuming and potentially costly to correct. On the other hand, when
a workflow contains a large number of tasks and involves complex control flow depen-
dencies, verification can take too much time or it may even be impossible. Applying
reduction rules before carrying out verification could decrease the size of the problem
by cutting down the size of the workflow that needs to be examined while preserving
some essential properties. As a result, reduction rules could potentially decrease average
case complexity of performing workflow verification.

Some have advocated the use of Petri nets for the specification of workflows among
others due to the formal foundation, their graphical nature and the presence of analysis
techniques [4]. There exists a body of work concerning the verification of workflow
specifications expressed as Petri nets or expressed in languages for which mappings to

Petri nets have been defined [2, 3, 18]. In either case, verification boils down to exam-
ining certain properties of Petri nets. Unfortunately, these results are not transferable to
situations where languages are involved that use concepts not easily expressed through
Petri nets.

Two typical concepts difficult to express in terms of Petri nets are cancellation re-
gions and OR-joins [7]. Cancellation is used to capture the interference of one task in
the execution of others. If a task is within the cancellation region of another task, it
may be prevented from being started or its execution may be terminated. For example,
you might want to simply cancel other order processing tasks if a customer’s credit
card payment did not go though. An OR-join is used in situations when we need to
model “wait and see” behaviour for synchronisation. For example, a purchase process
could involve the separate purchase of two different items and the customer can decide
whether he/she wants to purchase one or the other or both. The subsequent payment
task is to be performed only once and this requires synchronisation if the customer has
selected both products. If the customer selects only one product, no synchronisation is
required before payment. Cancellation and OR-joins change the behaviour of a work-
flow and verification needs to take into account the effects that these constructs have on
the execution of the workflow.

Cancellation and OR-joins occur naturally in workflow specifications and are men-
tioned in the collection of so called workflow patterns identified in [9]. This collection
comprises 20 workflow patterns that were proposed to address control flow require-
ments in a language independent style. They are based on an in-depth analysis and
a comparison of a number of commercially available workflow management systems.
The findings highlight the need for an expressive workflow language that can support
all of these workflow patterns. We believe that it is preferable to support business an-
alysts with an expressive workflow language where verification consequently is more
complex rather than to restrict the expressive power of the language in order to make
verification simpler (see e.g., also [6]).

We took on the challenge of finding more sophisticated verification techniques for
workflows that use cancellation and OR-joins. We are interested in determining whether
a workflow possesses the following desirable properties. Firstly, it is important to know
that a workflow, when started, can complete. Secondly, it should never have tasks still
running when completion is signalled. Thirdly, the workflow should not contain tasks
that can never be executed. These requirements encompass the soundness property of a
workflow specification as expressed in [4]. In [22], we proposed a new verification ap-
proach for the soundness property in workflows with cancellation and OR-joins using
reset nets. In this paper, we aim to build on this approach through the exploration of
possible reduction rules for workflows with cancellation regions and OR-joins. We will
take YAWL as the vehicle through which our results are expressed. YAWL is a general
and powerful language grounded in workflow patterns and in Petri nets [8]. YAWL pro-
vides direct support for cancellation regions and general OR-joins. YAWL has a formal
foundation and an open-source support environment is available. The YAWL Editor
(version 1.4) provides verification support based on the approach described in [22]. A
mapping exists for YAWL specifications without OR-joins to reset nets [20]. In order
to study the verification of YAWL specification containing OR-joins, we also need to

2

study reduction rules at the YAWL level. The reduction rules for reset nets as shown
in [23] combined with the formal mappings from YAWL specifications to reset nets
provide us with the means to formally prove the correctness of reduction rules at the
YAWL specification level.

In this paper, we define a set of reduction rules at YAWL net level and demon-
strate how these reduction rules can be used for efficient verification of YAWL nets
with cancellation regions and OR-joins1. This is done for the following reasons. Firstly,
by applying reduction rules at YAWL level, problematic tasks and conditions could
be highlighted with ease and meaningful error messages could be provided based on
YAWL terminology. Secondly, reduction rules for YAWL nets without OR-joins can
still be applied to YAWL nets with OR-joins and in particular to those parts of the net
that do not use any OR-join constructs. This enables us to reduce the complexity of
the verification process for YAWL nets with OR-joins. Finally, by first abstracting from
non OR-join constructs in YAWL nets with OR-joins, the resulting YAWL nets with
OR-joins may become much simpler. This allows us to define some reduction rules for
YAWL nets with OR-joins, which will be explained in more detail in Section 4.

The organisation of the paper is as follows. Section 2 provides the formal foundation
by introducing reset nets and Reset Workflow Nets(RWF-nets) and discusses briefly a
set of reduction rules for RWF-nets. Section 3 discusses ten reduction rules for YAWL
nets without OR-joins. The proof for each rule makes use of a series of transformations
at reset net level. Section 4 describes additional reduction rules for YAWL nets with
OR-joins. Section 5 describes the implementation of our approach in the YAWL editor.
Section 6 discusses related work and Section 7 concludes the paper.

2 Preliminaries

The formal semantics of YAWL is expressed in terms of a transition system [8] and
while inspired by Petri nets, YAWL should not be seen as an extension of these. YAWL
constructs such as OR-join, cancellation and multiple instances are not directly sup-
ported by Petri nets. The cancellation feature of YAWL is theoretically closely related
to reset nets, which are Petri nets with reset arcs. Next, we present background defini-
tions for Petri nets and Reset nets.

2.1 Petri nets and Reset nets

Petri nets were originally introduced by Carl Adam Petri [15] and since then, they are
widely used as mathematical models of concurrent systems for various domains [14,
10]. Numerous analysis techniques exist to determine various properties of Petri nets
and its subclasses [14, 10, 13, 16, 17].

Definition 1 (Petri net [15, 14]). A Petri net is a tuple (P, T, F) where P is a (non-
empty finite) set of places, T is a set of transitions, P ∩ T = ∅ and F ⊆ (P × T) ∪
(T × P) is the set of arcs.

1 The bulk of this work was done while visiting Eindhoven University of Technology in close
collaboration with Dr. Eric Verbeek and Professor Wil van der Aalst.

3

A reset net is a Petri net with special reset arcs, that can clear the tokens in selected
places.

Definition 2 (Reset net [12]). A reset net is a tuple (P, T, F,R) where (P, T, F) is a
Petri net and R : T → P(P) provides the reset places for the transitions2.

Fig. 1. An example reset net

In the remainder of the paper, when we use the function F (x, y), it evaluates to 1 if
(x, y) ∈ F and 0 if (x, y) 6∈ F . We write F+ for the transitive closure of the flow
relation F and F ∗ for the reflexive transitive closure of F . R−1 is the (straightforward)
inverse function of R where R−1 ∈ P → P(T). The notation R(t) for a transition t

returns the (possibly empty) set of places that it resets. We also write R↼p for a place
p, which returns the set of transitions that can reset p.

Let N be a reset net and x ∈ (P ∪ T), we use •x and x• to denote the set of inputs
and outputs. If the net involved cannot be understood from the context, we explicitly
include it in the notation and we write N

• x and xN
• . A marking is denoted by M and, just

as with ordinary Petri nets, it can be interpreted as a vector, function, and multiset over
the set of places P . M(p) returns the number of tokens in a place p if p ∈ dom(M)
and zero otherwise. We can use notations such as M ≤ M ′, M + M ′, and M ¦ M ′.
M ≤M ′ iff ∀p∈PM(p) ≤M ′(p). M +M ′ and M ¦ M ′ are multisets such that ∀p∈P :
(M +M ′)(p) = M(p)+M ′(p) and (M ¦ M ′)(p) = M(p) ¦ M ′(p) 3. We represent a
multiset by simply enumerating the elements, e.g., 2a+3b+c is the multiset containing
two a’s, three b’s and one c. If X is a set over Y , it could also be interpreted as a bag
which assigns to each element a weight of 1.

The notation IM(N) is used to represent possible markings of a reset net N .

2 Where P is a power set of P, i.e., X ∈ P if and only if X ⊆ P .
3 For any natural numbers a, b: a ¦ b is defined as max(a− b, 0).

4

Definition 3 (IM(N)). Let N = (P, T, F,R) be a reset net, then IM(N) = P → IN is
the set of possible markings.

A transition is enabled when there are enough tokens in its input places. Note that
reset arcs do not change the requirements of enabling a transition.

Definition 4 (Enabling rule). Let N be a reset net, t ∈ T , and M ∈ IM(N). Transition
t is enabled at M , denoted as M [t〉, if and only if ∀p ∈ •t : M(p) ≥ 1.

The concept of firing a transition t in a net N is formally defined in Definition 5 and
denoted as M N,t

→ M ′. If there can be no confusion regarding the net, the expression is
abbreviated as M t

→M ′ and if the transition is not relevant, it is written as M →M ′.

Definition 5 (Forward firing). Let N = (P, T, F,R) be a reset net, t ∈ T and
M,M ′ ∈ IM(N).

M
N,t

→ M ′ ⇔M [t〉∧

M ′(p) =

{

M(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

It is possible to fire a sequence of transitions from a given marking in a reset net
resulting in a new marking using the forward firing rule defined above. This sequence
of transitions is represented as an occurrence sequence.

Definition 6 (Occurrence sequence). LetN = (P, T, F,R) be a reset net andM,M1, ...,Mn ∈

IM(N). If M
t1→ M1

t2→ ...
tn→ Mn are firing occurrences then σ = t1t2...tn is an oc-

currence sequence leading from M to Mn and it is written as M σ

→Mn.

We now define the concepts of reachability and coverability of markings from a
given marking in a reset net. A marking M ′ is reachable from another marking M in a
reset net, if there is an occurrence sequence leading from M to M ′.

Definition 7 (Reachability). LetN = (P, T, F,R) be a reset net andM,M ′ ∈ IM(N).
M ′ is reachable in N fromM , denotedM N

→M ′, if there exists an occurrence sequence
σ such that M σ

→M ′.

Thereachability set is the minimal set of markings that can be reached from a given
marking M in a reset net after firing all possible occurrence sequences.

Definition 8 (Reachability set). Let N = (P, T, F,R) be a reset net and M ∈ IM(N).
The reachability set of the marked net (N,M), denoted N [M〉, is the minimal set that
satisfies the following conditions:

1. M ∈ N [M〉 and
2. if transition t ∈ T and markings M1,M2 ∈ IM(N) exist such that M1 ∈ N [M〉

and M1

N1,t→ M2, then M2 ∈ N [M〉.

Definition 9 (Directed labelled graph). A directed labelled graph G = (V,E) over
label set L consists of a set of nodes V and a set of labelled edges E ⊆ V × L× V .

5

The reachability graph is a directed labelled graph where the elements of the reach-
ability set form the nodes and the tuple consisting of a source marking that enables a
transition, the transition and the target marking that is reached by firing the transition
form the edges. The graph can be used to determine the possible states of a reset net
from an initial marking.

Definition 10 (Reachability graph). Let N = (P, T, F,R) be a reset net and M ∈
IM(N). The directed labelled graphG = (V,E) with label setL = T is the reachability
graph of the marked net (N,M) iff

1. V = N [M〉 and
2. for any transition t ∈ T and markings M1,M2 ∈ IM(N) : M1

t

→ M2 ⇔
(M1, t,M2) ∈ E.

Liveness, boundedness and safeness are defined as in previous work [14, 13]. Live-
ness, boundedness and safeness can be determined from the reachability graph.

Definition 11 (Liveness, boundedness, safeness [14, 13]). A transition is live if it can
be enabled from every reachable marking. A place is safe if it never contains more than
one token at the same time. A place is k-bounded if it will never contain more than k

tokens. A place is bounded if it is k-bounded for some k.

If all places in a reset net are bounded, the reset net is also bounded and hence, it is
possible to generate a finite reachability set. If a place is unbounded, the reachability set
contains an infinite number of states (an infinite state space). In such cases, reachability
of a marking cannot be determined but coverability can be determined. Coverability
is a relaxed notion that can handle unbounded behaviour. A marking M2 is said to be
coverable from another marking M1 in a reset net if there is a reachable marking M ′

from M1 such that M ′ is bigger than or equal to M2.

Definition 12 (Coverability). Let N = (P, T, F,R) be a reset net and M1,M2 ∈
IM(N). M2 is coverable from M1 in N, if there exists a marking M ′ such that M ′ ∈
N [M1〉 and M ′ ≥M2.

We conclude this section with the notion of Backward firing that is used to generate
coverable markings for a reset net by firing transitions backwards.

Definition 13 (Backward firing [21]). Let (P, T, F,R) be a reset net and M,M ′ ∈
IM(N). M ′

99K
t M iff it is possible to fire a transition t backwards starting from M

and resulting in M ′.

M ′
99K

t M ⇔M [R(t)] ≤ t • [R(t)]∧

M ′(p) =

{

(M(p) ¦ F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For places that are not reset places, the number of tokens in M ′ is determined by the
number of tokens inM for p and the production and consumption of tokens. If a place is
an output place of t and not a reset place, one token is removed fromM(p) ifM(p) > 0.
If a place is an input place of t and not a reset place, one token is added to M(p). For
any reset place p, M(p) ≤ F (t, p) because it is emptied when firing and then F (t, p)

6

tokens are added. We do not require M(p) = F (t, p) for a reset place p because the
aim is coverability and not reachability. M ′, i.e., the marking before (forward) firing
t, should at least contain the minimal number of tokens required for enabling t and
resulting in a marking of at least M . Therefore, only F (p, t) tokens are assumed to be
present in a reset place p.

2.2 Reset WorkFlow nets (RWF-nets)

Definition 14 (WF-net [3, 18]). Let N = (P, T, F) be a Petri net. The net N is a
WF-net iff the following three conditions hold:

1. there exists exactly one i ∈ P such that •i = ∅, and
2. there exists exactly one o ∈ P such that o• = ∅, and
3. for all n ∈ P ∪ T : (i, n) ∈ F ∗ and (n, o) ∈ F ∗.

The notion of a Reset WorkFlow net (RWF-net) is introduced to represent work-
flows with cancellation features. We define Reset WorkFlow nets (RWF-nets) which
are reset nets with the same structural restrictions as WF-nets.

Definition 15 (RWF-net [19]). Let N = (P, T, F,R) be a reset net. The net N is an
RWF-net iff (P, T, F) is a WF-net.

In an RWF-net, there is an input place i and an output place o and an initial marking
Mi and an end marking Mo is defined as follows:

Definition 16 (Initial marking and End marking). LetN = (P, T, F,R) be an RWF-
net and i, o be the input and output places of the net. The initial marking ofN is denoted
as Mi and it represents a marking where there is a token in the input place i (i.e.,
Mi = i). Similarly, the end marking of N is denoted as Mo and it represents a marking
where that is a token in the output place o (i.e., Mo = o).

A WF-net is an RWF-net iff R is empty (for all t ∈ T : R(t) = ∅). Thus (P, T, F)
suffices (we may omit R).

The soundness definition for an RWF-net is based on the soundness definition
from [8] for WF-nets. An RWF-net is sound if and only if it satisfies the three crite-
ria: option to complete, proper completion and no dead transitions.

Definition 17 (Soundness [19]). Let N = (P, T, F,R) be an RWF-net and Mi,Mo be
the initial and end markings. N is sound iff:

1. option to complete: for every marking M reachable from Mi, there exists an occur-
rence sequence leading from M to Mo, i.e., for all M ∈ N [Mi〉 : Mo ∈ N [M〉,
and

2. proper completion: the marking Mo is the only marking reachable from Mi with at
least one token in place o, i.e, for all M ∈ N [Mi〉 : M ≥Mo ⇒M = Mo, and

3. no dead transitions: for every transition t ∈ T , there is a marking M reachable
from Mi such that M [t〉, i.e, for all t ∈ T there exists an M ∈ N [Mi〉 such that
M [t〉.

7

2.3 Reduction rules for RWF-nets

We now briefly summarize seven reduction rules for RWF-nets for completeness. The
detailed explanation of these rules together with associated proofs can be found in our
earlier paper [23]. These rules for RWF-nets are based on existing reduction rules for
Petri nets and free-choice nets [13, 10] and they have been extended and generalised as
necessary. Figure 2 visualises these seven reduction rules.

1. Fusion of series places rule (φR
FSP)

The φR
FSP rule allows for the merging of two sequential places p and q with one

transition t in between them into a single place r which takes on the same reset arcs
as p and q (if any). The rule only holds if transition t does not have any reset arcs
and the two places are reset by the same set of transitions.

2. Fusion of series transitions rule (φR
FST)

The φR
FST rule allows for the merging of two sequential transitions t and u with

one place p in between them into a single transition v. Additional requirements
(required to allow for reset arcs) are that place p and output places of u should
not be the source of any reset arcs and transition u should not reset any place. The
rule allows reset arcs from transition t and these arcs will be assigned to the new
transition v in the reduced net.

3. Fusion of parallel places rule (φR
FPP)

The φR
FPP rule allows for the merging of places in Q (i.e., p1 to pL) that have the

same inputs and outputs into a single place q. If none of the places are reset places,
then it is obvious that the rule holds. If one is a reset place, then other places should
also be reset by the same set of transitions. As all places in Q = {p1, ..., pL} have
the same input, output and reset arcs, these identical places can be merged into a
single place while preserving the soundness property. Place q in the reduced net has
the same input, output and reset arcs as any place p ∈ Q.

4. Fusion of parallel transitions rule (φR
FPT)

The φR
FPT rule allows for the merging of transitions V (i.e., t1 to tL) that have the

same inputs and outputs into a single transition v. If no transition has reset arcs,
then it is obvious that the rule holds. If one transition resets a place, then other
transitions must also reset the same place. As all transitions in V = {t1, ..., tL}
now have the same input, output and reset arcs, these identical transitions could be
merged into a single transition while preserving the soundness property. Transition
v in the reduced net has the same input, output and reset arcs as any transition
t ∈ V .

5. Abstraction rule (φR
A)

The φR
A rule allows the removal of a place s and a transition t, where s is the only

input of t, t is the only output of s and there is no direct connection between the
inputs for s with the outputs for t. The rule holds if and only if transition t does not
reset any place, place s is not reset by any transition, and outputs for t are not reset
by any transition. Input transitions for place s can have reset arcs.

6. Elimination of self-loop transitions rule (φR
ELT)

The φR
ELT rule allows removal of a transition t which has a single place as its input

and its output. The additional requirement is that transition t has no reset arcs.

8

p

t

q

r p

t

u

v

p1

t1

x1

pL

tN

xM

q

t1

x1

tN

xM

r

Q1

V1

Q2

V2

Q3

Q1

V3

V4

Q3

FSP FST

FPP

u1

s

uN

t

qMq1

u1 uN

qMq1

A p t pELT

FES

p1

t1 tL

pN

xMx1

p1

v

pN

xMx1

FPT

R

R

RR

R R

R

Fig. 2. Reduction rules for RWF-nets

9

7. Fusion of equivalent subnets (φR
FES)

The φR
FES rule allows the removal of multiple identical subnets by replacing them

with only one subnet. The rule requires that pairs of transitions have the same input
and output places. That is, all places in Q2 are reset by the same set of transitions
and all transition pairs in V1 and V3 also reset the same places. The set of transitions
V1 and V2 are replaced by V3 and V4 respectively in the reduced net. The set of
places Q2 has been replaced with r. The rule is very effective in reducing YAWL
models as we will see in the next section.

3 Reduction rules for nets with cancellation regions and without
OR-joins

3.1 Introduction to YAWL

The control flow perspective of a workflow specification captures the execution interde-
pendencies between the tasks of a business process. An in-depth analysis and a compar-
ison of a number of commercially available workflow management systems had been
performed [9]. The findings demonstrate that the interpretation of even the basic control
flow constructs is not uniform and it is often unclear how the more complex require-
ments could be supported. Twenty workflow patterns were proposed to address control
flow requirements in a language independent style [9]. Yet Another Workflow Language
(YAWL) is the result of this analysis [8, 9]. YAWL exploits concepts from Petri nets and
provides direct support for most workflow patterns proposed in [8, 9].

A YAWL specification is made up of tasks, conditions and a flow relation between
tasks and conditions. YAWL uses the terms tasks and conditions to avoid confusion
with Petri net terminology (transitions and places). An overview of YAWL can be found
in [8]. Figure 3 shows some of the YAWL constructs used in this paper. There are three
kinds of splits (AND, XOR and OR) and three corresponding kinds of joins in YAWL.
A task is enabled when there are enough tokens in its input conditions according to the
join behaviour. When a task is enabled, it fires and takes tokens out of the input condi-
tions and puts tokens in its output conditions according to the join and split behaviour
respectively. If there is a cancellation set associated with a task, the execution of the task
removes all the tokens from the conditions and tasks in the cancellation set. Cancelling
a task will stop the execution of the task.

We propose to abstract from the following features of YAWL for the purpose of
verification.

– composite tasks and hierarchy: A YAWL specification could contain multiple YAWL
nets with hierarchical structure and each composite task is unfolded into one of
these nets. We analyse each YAWL net individually to determine the soundness
property of the net and hence, we abstract from composite tasks and ignore the
hierarchical structure.

– multiple instances task: A multiple instances task can be used to execute a particular
task a number of times in parallel. For this abstraction, we assume that the engine
is capable of keeping the multiple instances apart, and that it will synchronise them
at the end. This assumption is consistent with the definition of the language and
implementation. Therefore, we only need to take a single instance into account.

10

start
condition

end
conditioncondition remove

 tokens

AND-split
 task

XOR-split
 task

OR-split
task

AND-join
 task

XOR-join
 task

OR-join
 task

Fig. 3. Symbols in YAWL

– data perspective: We also abstract from data perspective and in particular, branch-
ing conditions of XOR-split and OR-split tasks are not taken into account when
applying reduction rules. As a result, two XOR-split or OR-split tasks with identi-
cal input and output nodes are considered to be equivalent regardless of branching
conditions assigned to each arc, i.e., choices are assumed to be non-deterministic.

A YAWL specification is formally defined as a nested collection of Extended Work-
flow Nets (EWF-nets) [8]. A YAWL specification supports hierarchy and a composite
task is unfolded into another EWF-net. We refer the reader to [8] for a formal defi-
nition of a YAWL specification. In an EWF-net, it is possible for two tasks to have a
direct connection. We add an implicit condition between two tasks if there is a direct
connection between them and we define the corresponding explicit EWF-net (E2WF-
net) for an EWF-net in [20]. The corresponding E2WF-net is represented by the tuple
(C, i,o, T, F, split , join, rem,nofi) where C is a set of conditions, T is a set of tasks,
i, o are unique input and output conditions, F is the flow relation, split and join specify
the split and join behaviours of each task, rem specifies the cancellation region for a
task and nofi specifies the multiplicity of each task. As we abstract from multiple in-
stances, nofi function can be abstracted from the definition as well. From now on, we
will use the tuple (C, i,o, T, F, split , join, rem) to represent a YAWL net. The notion
of preset and postset defined for an RWF-net is also be used for an E2WF-net. For sim-
plicity, we propose the synonyms a “YAWL net” and an “eYAWL-net” (explicit YAWL
net) for an EWF-net and an E2WF-net respectively. We assume that all YAWL nets
considered in this paper are first transformed into eYAWL-nets.

The concepts of reachability and coverability are defined using YAWL semantics
as in [8, 20]. This definition of soundness for YAWL is very similar to the notion of
soundness introduced in Definition 17. The main difference is that Definition 17 refers
to RWF-nets rather than eYAWL-nets.

Definition 18 (Soundness). Let N be an eYAWL-net, i, o be the input and output con-
ditions of the net and Mi,Mo be the initial and end markings, i.e., Mi = i is the initial
state marking only condition i and Mo = o is the end state marking only condition o.
N is sound iff:

– for every marking M reachable from Mi, there exists a firing sequence leading
from M to Mo (Option to complete),

11

– the marking Mo is the only marking reachable from Mi with at least one token in
condition o (Proper completion) and

– for every task t ∈ T , there is a markingM reachable fromMi such that t is enabled
at M (No dead transitions).

A mapping from a YAWL-net without OR-joins to an RWF-net already exists using
the transformation function defined in [20]. In general, a condition is mapped onto a
place, and a task onto two sets of transitions and an intermediate place. The transitions
in the first set start the task (modelling the join behaviour), whereas the transitions in the
second set complete it (modelling the split behaviour). Figure 4 shows the transforma-
tion for YAWL tasks and conditions. In Figure 4, we use labels S and E to denote start
transitions and end transitions and condition names to differentiate transitions within a
particular set (e.g., transition tp1

S represents the start transition for task t that has p1 as
its input). If the split behaviour of a YAWL task is not explicitly mentioned, it could
be one of XOR, AND or OR splits. Similarly, join behaviour could be one of XOR or
AND joins. Note that we first limit ourselves to nets without OR-joins. In YAWL, can-
cellation regions can be associated with both tasks and conditions and they are denoted
as dotted lines around the elements. If a running task is cancelled, it will stop the exe-
cution immediately. A task within a cancellation region in YAWL is mapped to a reset
arc of its intermediate place in the corresponding RWF-net. An example of this is given
in the bottom-left corner of Figure 4.

Due to these mappings, it is possible to perform reduction of YAWL nets without
OR-joins by first transforming the net into the corresponding RWF-net and then apply
the reduction rules defined in [23]. However, we decide to define a set of reduction
rules at YAWL net level for the following reasons. Firstly, by applying reduction rules
at YAWL net level, problematic tasks and conditions could be highlighted with ease
and meaningful error messages could be provided based on YAWL terminology. As
complex mappings between YAWL-net and the corresponding RWF-net do not need to
be kept, verification can be performed more efficiently. Secondly, reduction rules for
YAWL nets without OR-joins can still be applied to YAWL nets with OR-joins and in
particular to those parts of the net that do not use any OR-join construct. This enables us
to reduce the complexity of verification process for YAWL nets with OR-joins. Finally,
by first abstracting from other non OR-join constructs in YAWL nets with OR-joins, the
resulting YAWL nets with OR-join become much simpler and this allows us to define
some reduction rules for YAWL nets with OR-joins, which will be explained in more
detail in Section 4. Next, we present ten reduction rules for YAWL constructs based
on the reduction rules for RWF-nets. The proof for each rule makes use of a series of
transformations at reset net level.

3.2 Fusion of series conditions

The Fusion of Series Conditions Rule for YAWL nets (φR
FSP) allows for the merging of

two sequential conditions p and q in a YAWL net that have only one task t in between
them into a single condition. The φY

FSP rule makes use of the φR
FSP rule for RWF-nets.

The application requirements are similar to those for the φR
FSP rule except that we refer

to tasks and conditions instead of transitions and places. In addition, we require that

12

p1

t
pN

p1

t
pN

t
p1

pN

t
p1

pN

t
p1

pN

tp

p1

pN

tS pt

p1

pN

pt

tS
p1

tS
pN

p1

pN

tEpt

p1

pN

pt

tE
p1

tE
pN

p1

pN

pt

tE
p1

tE
p1N

tE
pN

p tS pt tE

YAWL Reset net YAWL Reset net

t tS pt tE

Fig. 4. Transformations from YAWL net to RWF-net

task t is cancelled by the same set of tasks that remove tokens from conditions p and
q. This is because a task can be part of a cancellation region while a transition cannot.
Figure 5 visualises the φY

FSP rule. Conditions p and q are merged into a new condition
r and the in-between task t is abstracted in the reduced net.

Definition 19 (Fusion of Series Conditions Rule: φY
FSP). Let N1 and N2 be two

eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and
N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FSP if there exists a task
t ∈ T1, two conditions p, q ∈ C1 \ {i, o} and a condition r ∈ C2 \ (C1 ∪T1) such that:

Conditions on N1:

1. •t = {p} (p is the only input of t)
2. t• = {q} (q is the only output of t)
3. p• = {t} (t is the only output of p)
4. •p∩•q = ∅ (any input of p is not an input of q and vice versa)
5. rem1(t) = ∅ (t does not reset)
6. rem↼

1 (p) = rem↼
1 (q) = rem↼

1 (t) (p, q, and t are reset by the same set of tasks)

Construction of N2:

7. C2 = (C1 \ {p, q}) ∪ {r}
8. T2 = T1 \ {t}

9. F2 = (F1∩((C2×T2)∪(T2×C2)))∪(
N1

• p×{r})∪({r}×q
N1

•)∪((
N1

• q\{t})×{r})
10. rem2 = {(z, rem1(z)∩ (C2 ∪ T2))|z ∈ T2 ∩ T1}⊕ {(z, (rem1(z)∩ (C2 ∪ T2))∪

{r})|z ∈ rem↼
1 (p)}

11. split2 = {(z, split1(z))|z ∈ T2 ∩ T1}
12. join2 = {(z, join1(z))|z ∈ T2 ∩ T1}

13

p t q r

YAWL net
RWF- net

p tS qtEpt
r

pt tE q

FSP

R

FSP

R

Fig. 5. Fusion of Series Conditions Rule for YAWL nets: φY

FSP

Theorem 1 (The φY
FSP rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FSP. N1 is sound iff N2 is sound.

Proof By construction. Figure 5 visualises the φY
FSP rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving. First, conditions p, q and task t in the YAWL net
are transformed into corresponding places and transitions in the RWF-net. The φR

FSP

rule for an RWF-net is then applied twice to obtain a reduced RWF-net. In the first
step, places p and pt are merged into one place pt and transition tS is abstracted. In
the second instance, places pt and q are merged into one place r and transition tE
is abstracted. Finally, the reduced RWF-net is mapped back to the YAWL level with
a condition r replacing the place r. Since the φR

FSP rule is soundness preserving, the
sequence of transformations is also soundness preserving.

3.3 Fusion of parallel conditions

The Fusion of Parallel Conditions Rule for YAWL nets (φY
FPP) allows for the merging of

two or more parallel conditions in a YAWL net with the same input tasks and the same
output tasks into a single condition. The φY

FPP rule makes use of the φR
FPP rule for

RWF-nets. The application requirements are the same as those for the φR
FPP rule except

that we refer to tasks and conditions instead of transitions and places. In addition, we
require that all input tasks for these conditions are AND-split tasks and all output tasks
for these conditions are AND-join tasks. Figure 6 visualises the φY

FPP rule. Multiple
identical conditions are merged into a single condition in the reduced net with the same
input, output, and reset arcs as those conditions in the original net.

14

Definition 20 (Fusion of Parallel Conditions Rule: φY
FPP). Let N1 and N2 be two

eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and
N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FPP if there exists tasks
T,X ⊆ T1 ∩ T2 where |T | ≥ 1, |X| ≥ 1, conditions P ⊆ C1 where |P | ≥ 2, and
a condition c ∈ C2 \ (C1 ∪ T1) such that:

Conditions on N1:

1. for all t ∈ T : split1(t) = AND (all tasks in T are AND-split tasks)
2. for all x ∈ X : join1(x) = AND (all tasks in X are AND-join tasks)
3. for all p ∈ P : •p = T and p• = X (all conditions in P have the same input and

output)
4. for all p, q ∈ P : rem↼

1 (p) = rem↼
1 (q) (all conditions in P are reset by the same

tasks)

Construction of N2:

5. C2 = (C1 \ P) ∪ {c}
6. T2 = T1

7. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (T × {c}) ∪ ({c} ×X)
8. rem2 = {(z, rem1(z)∩(C2∪T2))|z ∈ T1}⊕{(z, (rem1(z)∩(C2∪T2))∪{c})|z ∈

rem↼
1 (p) ∧ p ∈ P}

9. split2 = split1
10. join2 = join1

t1

tN

x1

xL

p1

pM

YAWL net

RWF- net

pt1 p1t1E x1S px1

ptN pMtNE xLS pxL

pt1

c
t1E x1S px1

ptN tNE xLS pxL

FPP

R

t1

tN

x1

xL

c

Fig. 6. Fusion of Parallel Conditions Rule for YAWL nets: φY

FPP

15

Theorem 2 (The φY
FPP rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FPP. N1 is sound iff N2 is sound.

Proof By construction. Figure 6 visualises the φY
FPP rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

3.4 Fusion of alternative conditions

The Fusion of Alternative Conditions Rule for YAWL nets (φY
FAP) allows for the merging

of two or more alterative conditions in a YAWL net with the same input tasks and
output tasks. The φY

FAP rule makes use of the φR
FES rule for RWF-nets. The application

requirements are the same as those for the φR
FES rule except that we refer to tasks and

conditions instead of transitions and places. In addition, we require that all input tasks
for these conditions are XOR-split tasks and all output tasks for these conditions are
XOR-join tasks. Figure 7 visualises the φY

FAP rule. Multiple conditions are merged into
a single condition in the reduced net with the same input, output, and reset arcs as those
conditions in the original net.

Definition 21 (Fusion of Alternative Conditions: φY
FAP). LetN1 andN2 be two eYAWL-

nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and N2 =
(C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FPP if there exists tasks T,X ⊆
T1 ∩ T2 where |T | ≥ 1, |X| ≥ 1, conditions P ⊆ C1 where |P | ≥ 2, and a condition
c ∈ C2 \ (C1 ∪ T1) such that:

Conditions on N1:

1. for all t ∈ T : split1(t) = XOR (all tasks in T are XOR-split tasks)
2. for all x ∈ X : join1(x) = XOR (all tasks in X are XOR-join tasks)
3. for all p ∈ P : •p = T and p• = X (all conditions in P have the same input and

output)
4. for all p, q ∈ P : rem↼

1 (p) = rem↼
1 (q) (all conditions in P are reset by the same

tasks)

Construction of N2:

5. C2 = (C1 \ P) ∪ {c}
6. T2 = T1

7. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (T × {c}) ∪ ({c} ×X)
8. rem2 = {(z, rem1(z)∩(C2∪T2))|z ∈ T1}⊕{(z, (rem1(z)∩(C2∪T2))∪{c})|z ∈

rem↼
1 (p) ∧ p ∈ P}

9. split2 = split1
10. join2 = join1

16

t1

tN

x1

xL

p1

pM

YAWL net
RWF- net

FES

R

pt1

t1E x1S

px1

ptN pM

tNE xLS

pxL

p1

t1E x1S

tNE xLS

pt1

ptN

pt1

ptN

px1

px1

pxL

pxL

pt1

tNE xLS

px1

c

t1E x1S

ptN pxL

t1

tN

x1

xL

c

Fig. 7. Fusion of Alternative Conditions Rule for YAWL nets: φY

FAP

Theorem 3 (The φY
FAP rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FAP. N1 is sound iff N2 is sound.

Proof By construction. Figure 7 visualises the φY
FAP rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

3.5 Fusion of series tasks

The Fusion of Series Tasks Rule for YAWL nets (φY
FST) allows for the merging of two

sequential tasks t and u in a YAWL net that have only one condition p in between
them into a single task v. The φY

FST rule makes use of the φR
FST rule and the φR

FSP rule
for RWF-nets. The application requirements are similar to those for the respective rules
except that we refer to tasks and conditions instead of transitions and places. In addition,
we require that tasks t and u are AND-split tasks and tasks t and u are cancelled by the
same set of transitions that remove tokens from condition p (if any). It is possible that
task t can reset certain places. Figure 8 visualises the φY

FST rule. Two tasks t and u are
merged into a new task v and condition p is abstracted from the reduced net. Task v also
takes on the reset arcs of task t (if any).

Definition 22 (Fusion of Series Tasks Rule: φY
FST). Let N1 and N2 be two eYAWL-

nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and N2 =
(C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FST if there exists tasks t, u ∈ T1,
a condition p ∈ C1 and a task v ∈ T2 \ (T1 ∪ C1) such that:

17

Conditions on N1:

1. {t} = •p (t is the only input of p)
2. {u} = p• (u is the only output of p)
3. {p} = •u (p is the only input of u)
4. rem↼

1 (p) = rem↼
1 (t) = rem↼

1 (u) = ∅ (t, u and p are not reset by any task)
5. rem1(u) = ∅ (u does not reset)
6. for all c ∈ u• : rem↼

1 (c) = ∅ (outputs of u are not reset by any task)
7. split1(t) = split1(u) = AND (both t and u are AND-split tasks)

Construction of N2:

8. C2 = C1 \ {p}

9. T2 = (T1 \ {t, u}) ∪ {v}

10. F2 = (F1∩((C2×T2)∪(T2×C2)))∪(
N1

• t×{v})∪({v}×u
N1

•)∪({v}×(t
N1

• \{p}))

11. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2 ∩ T1} ∪ {(v, rem1(t))}

12. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v,AND)}

13. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ {(v,AND)}

pt u v

YAWL net
RWF- net

pt tE uS uEp pu

tE uEqpt

pt tuE

FST

R
FSP

R

Fig. 8. Fusion of Series Tasks Rule for YAWL nets: φY

FST

Theorem 4 (The φY
FST rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FST. N1 is sound iff N2 is sound.

Proof By construction. Figure 8 visualises the φY
FST rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

18

3.6 Fusion of parallel tasks

The Fusion of Parallel Tasks Rule for YAWL nets (φY
FPT) allows for the merging of two

or more identical tasks in a YAWL net into a single task. Two tasks are identical if both
have the same input set and output set, the same split behaviour and join behaviour,
empty cancellation regions, and are not cancelled by any other tasks. The φY

FPT rule
makes use of the φR

FPT rule and the φR
FST rule for RWF-nets. The application require-

ments are similar to those for the respective rules except that we refer to tasks and
conditions instead of transitions and places. In addition, we require that all tasks AND-
split and AND-join tasks. Figure 9 visualises the φY

FPT rule. All tasks which satisfy
the requirements are merged into a new task v in the reduced net. Task v takes on all
characteristics of one of these tasks in the original net.

Definition 23 (Fusion of Parallel Tasks Rule: φY
FPT). Let N1 and N2 be two eYAWL-

nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and N2 =
(C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FPT if there exists tasks T ⊆ T1

where |T | > 1, conditions P,X ⊆ C1 and a task v ∈ T2 \ (T1 ∪ C1) such that:

Conditions on N1:

1. for all t ∈ T : •t = P ∧ join1(t) = AND (all tasks in T have the same input and
AND-join structure)

2. for all t ∈ T : t• = X ∧ split1(t) = AND (all tasks in T have the same output
and AND-split structure)

3. for all t ∈ T : rem1(t) = ∅ (all tasks in T do not reset)
4. for all t ∈ T : rem↼

1 (t) = ∅(all tasks in T are not reset by any tasks)

Construction of N2:

5. C2 = C1

6. T2 = (T1 \ T) ∪ {v}

7. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (P × {v}) ∪ ({v} ×X)

8. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2 ∩ T1} ∪ {(v,∅)}

9. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v,AND)}

10. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ {(v,AND)}

Theorem 5 (The φY
FPT rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FPT. N1 is sound iff N2 is sound.

Proof By construction. Figure 9 visualises the φY
FPT rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

19

t1

tN

x1

xL

YAWL net
RWF- net

p1 pt1t1S t1E x1

pM ptNt1E tNE xL

p1

pM

v

x1

xL

p1

pM

p1 t1SE x1

tNSE xL

p1

t1N

x1

xLpM pM

p1

t1NS

x1

xLpM

pt t1NE

FPT

R

FST

R

2 x FST

R

Fig. 9. Fusion of Parallel Tasks Rule for YAWL nets: φY

FPT

3.7 Fusion of alternative tasks

The Fusion of Alternative Tasks Rule for YAWL nets (φY
FAT) also allows for the merging

of two or more identical tasks in a YAWL net into a single task. The only difference
between the φY

FPT rule and the φY
FAT rule is that tasks in the φY

FAT rule are XOR-split
and XOR-join tasks and tasks in the φY

FPT rule are AND-split and AND-join tasks. The
φY

FAT rule makes use of the φR
FES rule for RWF-nets. The application requirements are

similar to those for the φR
FES rule except that we refer to tasks and conditions instead

of transitions and places. In addition, we require that all tasks are XOR-split and XOR-
join tasks and they are cancelled by the same set of tasks. Figure 10 visualises the φY

FAT

rule. All tasks which satisfy the application requirements are merged into a new task v
in the reduced net. Task v takes on all characteristics of one of the tasks in the original
net.

Definition 24 (Fusion of Alternative Tasks Rule: φY
FAT). Let N1 and N2 be two

eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1) and
N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

FAT if there exists tasks
T ⊆ T1 where |T | > 1, conditions P,X ⊆ C1 and a task v ∈ T2 \ (T1 ∪C1) such that:

Conditions on N1:

1. for all t ∈ T : •t = P ∧ join1(t) = XOR (all tasks in T have the same input and
XOR-join structure)

20

2. for all t ∈ T : t• = X ∧ split1(t) = XOR (all tasks in T have the same output
and XOR-split structure)

3. for all tx, ty ∈ T : rem1(tx) = rem1(ty) (all tasks in T reset the same tasks and
conditions)

4. for all tx, ty ∈ T : rem↼
1 (tx) = rem↼

1 (ty) (all tasks in T are reset by the same
tasks)

5. for all t ∈ T : rem1(t) ∩ T = ∅ (all tasks in T should not reset themselves)

Construction of N2:

6. C2 = C1

7. T2 = (T1 \ T) ∪ {v}
8. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (P × {v}) ∪ ({v} ×X)
9. rem2 = ({(z, rem1(z)∩(C2∪T2))|z ∈ T2∩T1}∪{(v, (rem1(t)∩(C2∪T2)))})⊕
{(z, (rem1(z) ∩ (C2 ∪ T2)) ∪ {v})|z ∈ T2 ∧ t ∈ T ∧ z ∈ rem↼

1 (t)}
10. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v,XOR)}
11. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ {(v,XOR)}

t1

tN

x1

xL

YAWL net
RWF- net

p1 t1S t1E

x1

pM

ptN

tNS tNE

xL

p1

pM

v

x1

xL

p1

pM

pt1

t1S t1E

tNS tNE

FES

R

p1

p1

pM

pM

x1

x1

xL

xL

p1

tS tE

x1

pt

tS tE
p1

pM

x1

xLpM
xL

Fig. 10. Fusion of Alternative Tasks Rule for YAWL nets: φY

FAT

Theorem 6 (The φY
FAT rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
FAT. N1 is sound iff N2 is sound.

Proof By construction. Figure 10 visualises the φY
FAT rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

21

3.8 Elimination of self-loop tasks

The Elimination of Self-Loop Tasks Rule for YAWL nets (φY
ELT) allows removal of a

self-loop task in a YAWL net. The φY
ELT rule makes use of the φR

FST and the φR
ELT rule

for RWF-nets. The application requirements are similar to those for the respective rules
except that we refer to tasks and conditions instead of transitions and places. In addition,
we require that t and p are not part of any cancellation region. Figure 11 visualises the
φY

ELT rule. Task t and associated arcs from t to p are abstracted in the reduced net.

Definition 25 (Elimination of Self-Loop Tasks Rule: φY
ELT). Let N1 and N2 be two

eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1)
and N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

ELT if there exists a task
t ∈ T1 and a condition p ∈ C1 ∩ C2 such that:

Conditions on N1:

1. •t = t• = {p} (p is the only input and output of t)
2. rem1(t) = ∅ (t does not reset)
3. rem↼

1 (t) = ∅ (t is not reset by any task)
4. rem↼

1 (p) = ∅ (p is not reset by any task)

Construction of N2:

2. C2 = C1

3. T2 = T1 \ {t}
4. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2)))
5. rem2 = {(z, rem1(z)|z ∈ T2}
6. split2 = {(z, split1(z))|z ∈ T2}
7. join2 = {(z, join1(z))|z ∈ T2}

Theorem 7 (The φY
ELT rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
ELT. N1 is sound iff N2 is sound.

Proof By construction. Figure 11 visualises the φY
ELT rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

22

p t p

p tSE

p

YAWL net
RWF- net

p tS tEpt

FST

R

ELT

R

Fig. 11. Elimination of Self-Loop Tasks Rule for YAWL nets: φY

ELT

3.9 Elimination of self-loop conditions

The Elimination of Self-Loop Conditions Rule for YAWL nets (φY
ELP) allows removal

of a self-loop condition in a YAWL net. The φY
ELP rule makes use of the φR

FSP and
the φR

ELT rule for RWF-nets. The application requirements are similar to those for the
respective rules except that we refer to tasks and conditions instead of transitions and
places. Figure 12 visualises the φY

ELP rule. Condition x and associated arcs from x to t
are abstracted in the reduced net.

Definition 26 (Elimination of Self-Loop Conditions Rule: φY
ELP). Let N1 and N2 be

two eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1, split1, join1, rem1)
and N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φY

ELP if there exists a task
t ∈ T1 ∩ T2 and a condition x ∈ C1 such that:

Conditions on N1:

1. •x = x• = {t} (t is the only input and output of x)
2. split1(t) = join1(t) = XOR (t has XOR-split and XOR-join structure)
3. rem1(t) = ∅ (t does not reset)
4. for all p ∈ • t ∪ t• : rem↼

1 (t) = rem↼
1 (p) (t and all its input conditions and

output conditions are reset by the same tasks)

Construction of N2:

2. C2 = C1 \ {x}
3. T2 = T1

4. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2)))
5. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2}
6. split2 = split1
7. join2 = join2

23

YAWL net
RWF- net

ELT

R

t

q1

qL

p1

pM

x

t

q1

qL

p1

pM

pt

tS
p1

tS
pN

p1

pN

tE
q1

tE
qL

FSP

R

q1

qL

tE
xtS

x x

pt

tS
p1

tS
pN

p1

pN

tE
q1

tE
qL

q1

qL

pt

tS
p1

tS
pN

p1

pN

tE
q1

tE
qL

q1

qL

tE
x

Fig. 12. Elimination of Self-Loop Conditions Rule for YAWL nets: φY

ELP

Theorem 8 (The φY
ELP rule is soundness preserving). Let N1 and N2 be two eYAWL-

nets without OR-joins such that (N1, N2) ∈ φY
ELP. N1 is sound iff N2 is sound.

Proof By construction. Figure 12 visualises the φY
ELP rule and sketches the proof of

this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

3.10 Fusion of AND-split and AND-join tasks

The Fusion of AND-split and AND-join tasks for YAWL nets (φFAND) allows for the
merging of structured AND-split and AND-join tasks into a single task in a YAWL
net. The φFAND rule makes use of the φR

FPP rule and the φR
FSP rule for RWF-nets.

In addition, we require that tasks t, u, and conditions p1, ..., pN are not part of any
cancellation region nor do both t and u reset any places. Figure 13 visualises the φFAND

24

rule. Tasks t and u have been merged into a new task v and v takes on the split behaviour
of u and the join behaviour of t.

Definition 27 (Fusion of AND-split and AND-join Rule: φFAND). Let N1 and N2 be
two eYAWL-nets without OR-joins, whereN1 = (C1, i, o, T1, F1, split1,

join1, rem1) and N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φFAND if
there exists two tasks t, u ∈ T1, a task v ∈ T2 \ (T1 ∪ C1), and conditions P ⊆ C1

where |P | ≥ 1 such that:

Conditions on N1:

1. for all p ∈ P : •p = {t} ∧ p• = {u} (all conditions in P have input t and output
u)

2. split1(t) = join1(u) = AND (t is an AND-split task and u is an AND-join task)
3. for all p ∈ P : rem↼

1 (p) = ∅ (all conditions in P are not reset by any task)
4. rem↼

1 (t) = rem↼
1 (u) = ∅ (t and u are not reset by any task)

5. rem1(t) = rem1(u) = ∅ (t and u do not reset)

Construction of N2:

6. C2 = C1 \ P
7. T2 = (T1 \ {t, u}) ∪ {v}

8. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (
N1

• t× {v}) ∪ ({v} × u
N1

•)
9. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2 ∩ T1} ∪ {(v,∅)}

10. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v, split1(u))}
11. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ ({(v, join1(t))}

t
p1

pN

u v

YAWL net
RWF- net

puuS

p1

pN

pt tE

2 x

puuSppt tE

pv

FPP

R

FSP

R

Fig. 13. Fusion of AND-split and AND-join tasks for YAWL nets: φFAND

25

Theorem 9 (The φFAND rule is soundness preserving). LetN1 andN2 be two eYAWL-
nets without OR-joins such that (N1, N2) ∈ φFAND. N1 is sound iff N2 is sound.

Proof By construction. Figure 13 visualises the φFAND rule and sketches the proof of
this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

3.11 Fusion of XOR-split and XOR-join tasks

The Fusion of XOR-split and XOR-join tasks for YAWL nets (φFXOR) allows for the
merging of structured XOR-split and XOR-join tasks into a single task in a YAWL net.
The φFXOR rule makes use of the φR

FSP rule and the φR
FST rule for RWF-nets. In addi-

tion, we require that tasks t, u, and conditions p1, ..., pN are not part of any cancellation
region. Figure 14 visualises the φFXOR rule. Tasks t and u have been merged into a new
task v and v takes on the split behaviour of u and the join behaviour of t.

Definition 28 (Fusion of XOR-split and XOR-join tasks Rule: φFXOR). Let N1 and
N2 be two eYAWL-nets without OR-joins, where N1 = (C1, i, o, T1, F1,

split1, join1, rem1) andN2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φFAND

if there exists two tasks t, u ∈ T1, a task v ∈ T2 \ (T1 ∪ C1), and conditions P ⊆ C1

where |P | ≥ 1 such that:

Conditions on N1:

1. for all p ∈ P : •p = {t} ∧ p• = {u} (all conditions in P have input t and output
u)

2. split1(t) = join1(u) = XOR (t is an XOR-split task and u is an XOR-join task)
3. for all p ∈ P : rem↼

1 (p) = ∅ (all conditions in P are not reset by any task)
4. rem↼

1 (t) = rem↼
1 (u) = ∅ (t and u are not reset by any task)

5. rem1(t) = rem1(u) = ∅ (t and u do not reset)

Construction of N2:

6. C2 = C1 \ P
7. T2 = (T1 \ {t, u}) ∪ {v}

8. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (
N1

• t× {v}) ∪ ({v} × u
N1

•)
9. rem2 = {(z, rem1(z) ∩ (C2 ∪ T2))|z ∈ T2 ∩ T1} ∪ {(v,∅)}

10. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v, split1(u))}
11. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ ({(v, join1(t))}

Theorem 10 (The φFXOR rule is soundness preserving). Let N1 and N2 be two
eYAWL-nets without OR-joins such that (N1, N2) ∈ φFXOR. N1 is sound iff N2 is
sound.

Proof By construction. Figure 14 visualises the φFXOR rule and sketches the proof of
this rule. The proof is given in terms of a number of transformations to and from reset
nets that are soundness preserving.

26

t
p1

pN

u v

YAWL net
RWF- net

pu

uS
p1

uS
pN

p1

pN

pt

tE
p1

tE
pN

pt

tu

tupN

pu

p1

tu

pv

FST

R

FPT

R

FSP

R

pt pu

Fig. 14. Fusion of XOR-split and XOR-join tasks for YAWL nets: φFXOR

4 Reduction rules for nets with cancellation regions and OR-joins

A YAWL net with OR-joins requires special attention as the decision to enable an
OR-join task cannot be made locally as seen in [20]. As verification techniques for
YAWL nets with OR-joins utilise reachability analysis using the YAWL semantics as
seen in [19] and hence, state space explosion is a real concern. Our objective is to iden-
tify possible reduction rules for YAWL nets with OR-joins that could be used under
certain context assumptions so that verification can be performed more efficiently.

To achieve this, we propose to apply reduction rules defined for nets without OR-
joins as presented in Section 3 to those parts of the net without OR-joins. These reduc-
tion rules have been defined for tasks without OR-join behaviour. However, the reset
net transformations still hold and therefore, the reduction rules also apply. In addition,
these reduction rules do not affect the OR-join semantics in the net. We now demon-
strate this concept using an example. Figure 15 shows a YAWL net with an OR-join
task G. First, consider task B and its associated input and output condition. It is clear
that the φY

FSP rule could be used to abstract task B if we are dealing with a net without
OR-joins. The same is true for tasks C, E, and F . Applying the φY

FSP rule to the net
would result in the (top) reduced net as shown in Figure 16. In this reduced net, it is
now possible to merge tasks A and D into a new task X using the φFAND rule. Note
that task X takes on the split behaviour of D and the join behaviour of A. The bottom
net in Figure 16 shows the resulting net after applying φFAND rule to the top net. When
the original net in Figure 15 is compared with the reduced net in Figure 16, it is clear

27

that the enabling requirements for the OR-join task G are the same. As these reduction
rules do not reduce an OR-join task, they do not invalidate the OR-join semantics of
task G.

A G

B

C

D

E

F

Fig. 15. A YAWL net with an OR-join task G

GX

A GD

Fig. 16. Reduced nets after applying the φY

FSP rule and the φFAND rule to Figure 15

From the above discussion, we can see that it is possible to apply YAWL reduction
rules to those parts of a YAWL net that do not have any OR-joins. Next, we present
two additional reduction rules directly related to the OR-join construct: the φFOR rule
and the φFIE rule. Both reduction rules presented here are provided under the context
assumption of safeness. A condition is safe if it is not possible to have more than one
token at a time. This is especially important for conditions which are on the path to an
OR-join task. Figure 17 shows a net with conditions c2, c3, and c4 that could contain
more than one token at a time. When task A fires, a marking c1 + c2 is reached. From
that marking, A can fire again and again, put more tokens into place c2. As a result, it is
possible for conditions c3 and c4 to have multiple tokens as well. The OR-join task C
will wait for both input conditions c3 and c4 to be marked before enabling. This means

28

that task C is only enabled after multiple firings of task B. By making the assumption
of safeness, we can ensure that if task B is enabled and fired and tokens are put into the
input conditions of task C, then more tokens cannot arrive at C without firing task B

again. Hence, the OR-join enabling rule can be localised in this particular circumstance.
Next, we formalise this concept and present two reduction rules specific for the OR-join
construct.

A C

c1

B

c4

c3

c2

Fig. 17. An example of a YAWL net with unsafe conditions

4.1 Fusion of an OR-join and another task

The Fusion of an OR-join and another task for YAWL nets (φFOR) rule enables certain
OR-join tasks to be abstracted from the net under the context assumption of safeness.
Figure 18 visualises the φFOR rule. The rule requires that all inputs to an OR-join task
are from one task (regardless of the split behaviour of that task). In addition, tasks t
and u are not allowed to have cancellation regions and all output places for t as well as
tasks t and u are part of the same cancellation regions (if any). If all requirements are
satisfied, tasks t and u are merged into a new task v in the reduced net. Task v takes on
the split behaviour of u and the join behaviour of t.

Definition 29 (Fusion of an OR-join and another task Rule: φFOR).
Let N1 and N2 be two eYAWL-nets with OR-joins, where N1 = (C1, i, o, T1, F1, split1,

join1, rem1) and N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φFOR if
there exists two tasks t, u ∈ T1, a task v ∈ T2 \ (T1 ∪ C1) and conditions Q1 ⊆ C1

such that:

Conditions on N1:

1. for all p ∈ Q1 : •p = {t} ∧ p• = {u} (t is the only input and u is the only output
of all places in Q1)

2. t• = •u (output set of t and input set of u are identical)
3. join1(u) = OR (u is an OR-join task)
4. for all p ∈ Q1 : rem↼

1 (p) = rem↼
1 (t) = rem↼

1 (u) (t, u, and Q1 are reset by the
same tasks)

5. rem1(t) = rem1(u) = ∅ (t and u do not reset)

29

Construction of N2:

6. C2 = C1 \Q1

7. T2 = (T1 \ {t, u}) ∪ {v}
8. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ (•t× {v}) ∪ ({v} × u•)
9. rem2 = {(z, rem1(z)∩ (C2 ∪ T2))|z ∈ T2 ∩ T1}⊕ {(z, (rem1(z)∩ (C2 ∪ T2))∪
{v})|z ∈ rem↼

1 (t) ∩ T2}
10. split2 = {(z, split1(z))|z ∈ T2 ∩ T1} ∪ {(v, split1(u))}
11. join2 = {(z, join1(z))|z ∈ T2 ∩ T1} ∪ {(v, join1(t))}

1

N

Fig. 18. Fusion of an OR-join and another task Rule for YAWL nets: φFOR

Assume that task t is enabled at M and M → M ′. If t is an AND-split task,
M ′ marks all output conditions of t which are also input conditions of u and u is
enabled. If t is an XOR-split task,M ′ marks a subset of conditions in •u. The unmarked
conditions in •u cannot be marked again without potentially adding more tokens into
already marked conditions in •u and thus making this condition unsafe. As a result, no
more tokens can be put into •u under the safeness assumption and u is also enabled. The
same is true when the split type of t is an OR-split task. Under the context assumption of
safeness, we can see that OR-join task u will fire once for every firing of t as t• = •u.
Hence, we can conclude that if there is a marking M that enables t, the reachable
marking M ′ will enable OR-join task u. If there is no marking that enables t, then both
t and u are not enabled.

In the reduced net, tasks t and u are replaced by task v. The φFOR rule requires that
inputs for t and v are the same, outputs for u and v are the same, the join behaviours
of t and v are the same and the split behaviours of u and v are the same. Therefore, a
marking that enables t also enables v. After the sequence tu fires, it puts tokens into
u• depending on the split behaviour of u. As v has the same split behaviour as u, the
resulting marking after firing the sequence tu is also the same as the marking after firing
v. If it is not possible to enable t in N1, it is also not possible to enable v in N2 and
hence, the behaviour is still the same.

The φFOR rule is very useful as it can potentially transform the net into one without
OR-joins. It is then possible to perform verification of the resulting reduced YAWL
net without OR-joins using reset net analysis [19]. However, the rule is quite restrictive
because it requires that all output arcs from a task to go into an OR-join and the OR-join
could not have additional input arcs from any other tasks. As a result, the φFOR rule
is not applicable to OR-joins with input arcs from multiple tasks. Hence, we propose a

30

weaker rule that is intended to remove arcs and not the OR-join. Even though the rule
does not remove OR-joins, it will help reduce the complexity of the model.

4.2 Fusion of incoming edges to an OR-join

The Fusion of Incoming Edges to an OR-join for YAWL nets (φFIE) rule allows for
the merging of two or more conditions that have the same input task and the same
output task (an OR-join) into a single condition. Also, these conditions cannot be in
any cancellation region. Figure 19 visualises the φFIE Rule. The φFIE rule is a weaker
rule compared to the φFOR rule and it could also be applied to nets that can be reduced
by the φFOR rule.

Definition 30 (Fusion of Incoming Edges to an OR-join Rule: φFIE).
Let N1 and N2 be two eYAWL-nets with OR-joins, where N1 = (C1, i, o, T1, F1, split1,

join1, rem1) and N2 = (C2, i, o, T2, F2, split2, join2, rem2). (N1, N2) ∈ φFIE if
there exists two tasks t, u ∈ T1 ∩ T2, conditions Q ⊆ C1 where |Q| ≥ 2, and a
condition p ∈ C2 \ (C1 ∪ T1) such that:

Conditions on N1:

1. for all p ∈ Q1 : •p = {t} ∧ p• = {u} (t is the only input and u is the only output
of all places in Q1)

2. join1(u) = OR (u is an OR-join task)
3. for all p ∈ Q1 : rem↼

1 (p) = ∅ (conditions in Q1 are not reset by any task)

Construction of N2:

4. C2 = (C1 \Q1) ∪ {p}
5. T2 = T1

6. F2 = (F1 ∩ ((C2 × T2) ∪ (T2 × C2))) ∪ {(t, p), (p, u)}
7. rem2 = rem1

8. split2 = split1
9. join2 = join1

t

p1

pN

u t up

Fig. 19. Fusion of Incoming Edges to an OR-join Rule for YAWL nets: φFIE

As conditions in Q1 = {p1, ..., pN} and p have the same input task t and output
task u, if some subset of places in Q1 is marked at a marking in N1, p is also marked at

31

the corresponding marking in N2. Under the assumption of safeness, if some conditions
in Q1 cannot get marked, they cannot get marked later as this would enable currently
marked places to be marked twice, which is not safe. If p cannot be marked, then con-
ditions in p1, ..., pN cannot be marked. Therefore, the OR-join enabling behaviour of u
is identical in both nets regardless of whether there is only one condition p or multiple
conditions Q1.

Remark: Please note that reachability analysis needs to be carried out to determine
whether the safeness assumption holds for a net. Currently, the implementation assumes
safeness and no checking is done before applying the two reduction rules (φFOR and
φFIE).

5 Implementation

Reduction rules presented in this paper have been implemented in the YAWL editor.
The algorithm requires two input parameters: a net in the form of an XML file and the
name of a particular reduction rule. The rule is then applied exhaustively to the net and
if it is possible to reduce the net, the reduced net is returned as an XML file, otherwise
null is returned. At the moment, the reduction rules cannot be invoked individually
from the editor. The tests are carried out by first drawing the model in the editor and
then exporting it as an XML file. If a rule reduces the net then the net is exported back
as another XML file. Otherwise, a message is displayed to indicate that the net cannot
be reduced by the rule. The resulting XML file is then imported back into the editor so
that the reduced net can be displayed on the screen.

5.1 YAWL reduction rules

We first demonstrate how reduction rules can be applied to YAWL nets without OR-
joins using the example in Figure 20. The total number of elements in the net is 27.
Also note that task F has a cancellation region with five elements: c1, c2, c3, C, and D.
The editor displays F in grey and elements in the cancellation region in red. To make the
cancellation region more obvious, the screenshot has been modified by adding a dotted
line around the cancellation elements. First, the φY

FSP rule is applied recursively to the
net until the net cannot be reduced further using this rule. This results in the reduction
of elements from 27 to 15 and the reduced net is given in Figure 21. Note that the
sequence of tasks and conditions between G and L has been abstracted using this rule
and replaced by two conditions identified as null-135 and null-138. The same applies
for conditions between tasksB andH which are now replaced by a new condition (null-
136). As all elements in the cancellation region of F are cancelled by the same task, the
cancellation region of task F now contains only one condition (the condition between
tasks A and H - null-145). As the YAWL editor does not display conditions without
names or labels, tasks B and F are shown as having a direct connection even though
there is a condition in between them. The same holds for the condition between tasks
A and B and also between tasks F and G. Therefore, there are only 12 elements shown
in the diagram even though the net has 15 elements. Next, the φFXOR rule is applied to
abstract the XOR-split task G and the XOR-join task L and the resulting net is shown

32

in Figure 22. Finally, the φR
FST rule is applied to abstract task G and this results in the

reduced net with 10 elements shown in Figure 23.

Fig. 20. A YAWL net without OR-joins

Fig. 21. The reduced net after applying the φY

FSP rule to Figure 20

Next, we demonstrate how the two reduction rules for OR-joins (φFIE and φFOR)
can be applied together with other YAWL reduction rules to a net with OR-joins. Fig-
ure 24 shows a YAWL net with OR-join tasks D and H . First, the φY

FSP rule is applied
to minimise the number of elements in the net and this results in reducing the number
of elements from 20 to 12. Next, the φFIE rule is applied to replace multiple conditions
between A and D with just one (condition null-12) and also for multiple conditions
between E and H with just one(condition null-11). Figure 25 shows two reduced nets
for the net in Figure 24. The net on the left is obtained after applying the φY

FSP rule
exhaustively to the net in Figure 24 and the net on the right is obtained after applying
the φFIE rule to the net on the left, resulting in 10 elements. Figure 26 shows two more
reduced nets. The net on the left is obtained by applying the φY

FSP rule to the right net
in Figure 25. The net on the right is obtained by applying the φFOR rule to the left net.

33

Fig. 22. The reduced net after applying the φFXOR rule to Figure 21

Fig. 23. The reduced net after applying the φY

FST rule to Figure 22

The reduced net on the right has only three elements with one input place, one output
place and a task in between, and hence, it is a trivial net.

We have seen how YAWL reduction rules can be used to reduce the number of
elements in a net. The same is also true for reset net reduction rules. The reduction
rules for RWF-nets presented in [23] have also been implemented in the YAWL editor
and they will be used together with verification techniques for YAWL nets without OR-
joins.

5.2 Linking reduction rules to verification

As all reduction rules proposed in this paper are soundness preserving, it is possible to
perform verification on the reduced nets instead of the original net. This improves the
efficiency of the verification process. We propose a three-step process for verification.

1. Reduction rules are applied exhaustively to a net until it cannot be reduced further.
For a YAWL net with OR-joins, YAWL reduction rules are applied to obtain a

34

Fig. 24. A YAWL net with OR-joins D and H

Fig. 25. Reduced nets after applying the φY

FSP rule and the φFIE rule

reduced net. For a YAWL net without OR-joins, the net is first translated to an
RWF-net and reset reduction rules are then applied to obtain a reduced RWF-net
net for verification. The mappings between different nets are also stored for error
reporting.

2. Verification is performed on the reduced net as defined in [19].
3. If there are any warnings to be reported, the element names in the reduced net are

mapped back to the names of tasks and conditions in the original net.

Reduction rules together with the three-step approach for verification using reduced
nets are implemented in the YAWL editor. For each element in the reduced YAWL net,
a mapping to a set of original YAWL elements is kept. For each element in the reduced

Fig. 26. Reduced nets after applying the φY

FSP rule and the φFOR rule

35

RWF-net, a mapping to a set of original RWF elements is kept. These mappings are used
for reporting error messages. Figures 27 and 28 show the results from the soundness
property checks for nets in Figures 20 and 24 using reduction rules.

Fig. 27. Soundness property results for the net in Figure 20

Fig. 28. Soundness property results for the net in Figure 24

6 Related work

Reduction rules have been suggested to be used together with Petri nets for the verifi-
cation of workflows (cf. Chapter 4 of the book by van der Aalst and van Hee [5]). Six

36

reduction rules that preserve correctness for EPCs including reduction rules for triv-
ial constructs, simple splits and joins, similar splits and joins, XOR loop and optional
OR-loop are proposed [11]. Some reduction rules presented for EPCs such as reduction
rules for simple splits and joins and reduction rules for similar splits and joins are re-
lated to reduction rules that we have defined for YAWL nets. However, these reduction
rules for EPCs do not take cancellation into account and the OR-join construct uses lo-
cal semantics. In Verbeek’s thesis [18], the author proposes reduction rules for WF-nets
based on the reduction rules from Murata and Desel and Esparza [13, 10]. We follow
a similar approach with a set of reduction rules for workflow nets with cancellation
regions and OR-joins using reset nets. The difference is that our approach takes into
account possible cancellation regions in workflows.

7 Conclusion

An important correctness notion for a workflow net is the soundness property. A work-
flow net is sound if it has the option to complete, proper completion, and no dead tran-
sitions. Verification can be used to detect whether a net satisfies the soundness prop-
erty. When a workflow language supports complex constructs such as cancellation and
OR-joins, verification becomes time consuming, challenging and sometimes not even
possible. In our previous work [22], we proposed a new verification technique for work-
flows with cancellation and OR-joins using reset nets and reachability analysis. This
approach can be used to detect four important structural properties of YAWL nets: the
weak soundness property, the soundness property, reducible cancellation regions and
convertible OR-joins. The verification feature has been incorporated in the graphical
editor of YAWL.

A reduction rule can transform a large net into a smaller and simple net while pre-
serving certain interesting properties and it is usually applied before verification to re-
duce the complexity and to prevent state space explosion. In our previous work [23],
we have presented a set of reduction rules for RWF-nets. In this paper, we have demon-
strated how these reduction rules for RWF-nets can be applied to YAWL, a workflow
language that provides direct support for cancellation regions and OR-joins. Whave
presented a set of reduction rules for YAWL nets with cancellation regions and OR-
joins that are soundness preserving. We have also extended the YAWL editor with the
ability to reduce YAWL nets based on the results presented in this paper [1]. We also
propose two reduction rules for YAWL specifications with OR-joins which hold under
the safeness assumption.

References

1. Yawl home page. http://www.yawl.fit.qut.edu.au/ accessed on 21 May 2006.
2. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G.Balbo, editors, Pro-

ceedings of Application and Theory of Petri Nets, volume 1248 of Lecture Notes in Computer
Science, pages 407–426, Toulouse, France, 1997. Springer-Verlag.

3. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

37

4. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri Net-
Based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Proceedings
of Business Process Management: Models, Techniques and Empirical Studies, volume 1806
of Lecture Notes in Computer Science, page 161. Springer-Verlag, 2000.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods and
Systems. MIT press, Cambridge, MA, 2004.

6. W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An alternative way to analyze
workflow graphs. In Anne Banks Pidduck, John Mylopoulos, Carson C. Woo, and M. Tamer
Özsu, editors, Proceedings of the 14th International Conference on Advanced Information
Systems Engineering, volume 2348 of Lecture Notes in Computer Science, pages 534–552,
Toronto, Canada, May 2002. Springer-Verlag.

7. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive Power
of (Petri-net-based) Workflow Languages. In Kurt Jensen, editor, Proceedings of the Fourth
International Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, volume
560 of DAIMI, pages 1–20, Aarhus, Denmark, August 2002. University of Aarhus.

8. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, June 2005.

9. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

10. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, United Kingdom, 1995.

11. B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Verification of EPCs: Using
Reduction rules and Petri Nets. In O.Pastor and J. Falcão e Cunha, editors, Proceedings of
the 17th Conference on Advanced Information Systems Engineering (CAiSE 2005), volume
3520 of Lecture Notes in Computer Science, pages 372–386, Porto, Portugal, June 2005.
Springer-Verlag.

12. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and Unde-
cidability. In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th Inter-
national Colloquium on Automata, Languages and Programming, volume 1443 of Lecture
Notes in Computer Science, pages 103–115, Aalborg, Denmark, July 1998. Springer-Verlag.

13. T. Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, 1989.

14. J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs,
USA, 1981.

15. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathe-
matik, Bonn, Germany, 1962. In German.

16. W. Reisig and G. Rozenberg. Lectures on Petri Nets I: Basic Models. In W. Reisig and
G. Rozenberg, editors, Advances in Petri Nets, volume 1491 of Lecture Notes in Computer
Science, Berlin, Germany, 1998. Springer–Verlag.

17. W. Reisig and G. Rozenberg. Lectures on Petri Nets II: Basic Models. In W. Reisig and
G. Rozenberg, editors, Advances in Petri Nets, volume 1492 of Lecture Notes in Computer
Science, Berlin, Germany, 1998. Springer–Verlag.

18. H.M.W. Verbeek. Verification of WF-nets. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, June 2004.

19. M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Verifying work-
flows with Cancellation Regions and OR-joins: An Approach Based on Reset nets and
Reachability Analysis. Technical report BPM-06-12, BPM Center (bpmcenter.org), 2006.

20. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-join in Workflow using Reset nets. In
G. Ciardo and P. Darondeau, editors, Proceedings of the 26th International conference on

38

Application and Theory of Petri nets and Other Models of Concurrency, volume 3536 of
Lecture Notes in Computer Science, pages 423–443, Miami, USA, June 2005. Springer-
Verlag.

21. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Synchronisa-
tion and Cancellation in Workflows based on Reset Nets. Technical report, submitted to an
international journal, jan 2006, Queensland University of Technology, 2006.

22. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Verifying work-
flows with Cancellation Regions and OR-joins: An Approach Based on Reset nets and
Reachability Analysis. In S. Dustdar, J. Fiadeiro, and A. Sheth, editors, Proceedings of 4th
International Conference of Business Process Management, volume 4102 of Lecture Notes
in Computer Science, pages 389–394, Vienna, Austria, Sep 2006. Springer-Verlag.

23. M.T. Wynn, H.M.W. Verbeek, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Reduction rules for Reset Workflow Nets. Technical report BPM-06-25, BPM Center (bpm-
center.org), 2006.

39

